
Filtros Activos con Amplificadores Operacionales 

 

1. Introducción 

Los filtros activos permiten modificar el espectro de una señal utilizando amplificadores 

operacionales, resistencias y capacitores. A diferencia de los filtros pasivos, permiten: 

• Ganancia ajustable (𝐴 >  1). 

• Alta impedancia de entrada y baja impedancia de salida. 

• Control preciso de la respuesta en frecuencia. 

Ejemplos: filtros pasa-bajos, pasa-altos, pasa-banda y rechaza-banda de Butterworth, 

Chebyshev o Bessel. 

2. Funciones de transferencia y transformada de Laplace 

El comportamiento de un circuito lineal se describe por su función de transferencia: 

𝐻(𝑠) =
𝑉𝑜(𝑠)

𝑉𝑖(𝑠)
=

𝑁(𝑠)

𝐷(𝑠)
=

𝑏𝑚𝑠𝑚 + 𝑏𝑚−1𝑠𝑚−1 + ⋯ + 𝑏0

𝑎𝑛𝑠𝑛 + 𝑎𝑛−1𝑠𝑛−1 + ⋯ + 𝑎0
 

 
Donde 𝑆 =  𝜎 +  𝑗𝜔 es la variable compleja de Laplace 
 

• Numerador 𝑁(𝑠)  → los ceros: valores de 𝒔 que anulan 𝐻(𝑠)  →  𝑁(𝑆) = 0 

• Denominador 𝐷(𝑠)  → los polos: valores de 𝒔 que hacen 𝐻(𝑠) infinita →  𝐷(𝑆) =

0 

• El criterio para lo anterior es que 𝐻(𝑆) debe ser una función racional para la cual el 

grado del numerador 𝑁(𝑆) debe ser menor que el del denominador 𝐷(𝑆), de lo 

contrario, la ganancia sería ilimitada en frecuencias altas. 

Inductores en 𝒔: 

𝑍𝐿(𝑆) =
 𝑉(𝑆)

𝐼(𝑆)
= 𝑠𝐿 

𝑆 = 𝑗𝑤      →   𝑍(𝑗𝑤) = 𝑗𝑤𝐿 

Capacitores en 𝒔: 

𝑍𝑐(𝑆) =
1

𝑠𝐶
 

 



Ejemplo:  

                          

𝑉𝑠𝑎𝑙 = 𝑉𝑒𝑛𝑡  
𝑍𝐶

𝑍𝐶 + 𝑅
 

𝐻(𝑠) =
𝑉𝑠𝑎𝑙

𝑉𝑒𝑛𝑡
=

1

1 + 𝑠𝐶𝑅
 

donde 𝐻(𝑠) es la función de transferencia del circuito, definida coma la proporción entre 

la salida y la entrada. 

𝐻(𝑠) =
1

𝑅𝐶⁄

𝑠+1
𝑅𝐶⁄

   cero en 𝑠 = ∞ y polo en 𝑠 = −
1

𝑅𝐶
 

Diagrama de polos y ceros (gráficas en el plano de la frecuencia compleja) 

 

El origen, representa una cantidad de corriente directa. Los puntos que se ubican sobre el 

eje 𝜎 representan funciones exponenciales, que decaen para 𝜎 < 0 y que crecen para 

𝜎 > 0. Las senoides puras se asocian con puntos sobre el eje 𝑗𝑤 positivo o negativo. La 

mitad derecha del plano 𝑠, contiene puntos que describen frecuencias con partes reales 

positivas, y por ello le corresponden cantidades en el dominio del tiempo que son 

senoides exponencialmente crecientes, salvo sobre el eje 𝜎. De manera correspondiente, 

los puntos en la mitad izquierda del plano 𝑠, describen las frecuencias de senoides 

exponencialmente decrecientes. 

 



En el plano complejo: 

• Ceros: valores donde la salida se anula. 

• Polos: frecuencias de resonancia o de máxima ganancia. 

• La posición de los polos define el carácter temporal del sistema. 

Interpretación geométrica en el plano 𝒔: 

• Eje real (𝜎): determina amortiguamiento. 

• Eje imaginario (𝑗𝜔): determina la frecuencia oscilatoria. 

• Polos en el semiplano izquierdo → respuesta estable (exponencial decreciente). 

• Polos en el semiplano derecho → inestabilidad (crecimiento exponencial). 

Filtros: 

El análisis de filtros se realiza en el dominio de Laplace (sistemas de tiempo continuo), 

donde la variable 𝑆 =  𝜎 +  𝑗𝜔 permite expresar la función de transferencia 𝐻(𝑆) =
𝑉𝑜𝑢𝑡(𝑆)

𝑉𝑖𝑛(𝑆)
. Los polos y ceros determinan la respuesta en frecuencia: los polos indican 

frecuencias de resonancia o atenuación, y los ceros determinan cancelaciones de 

frecuencia. 

Tipo de 

filtro 
Distribución de polos/ceros Forma general de (H(s)) Característica 

Pasabajos 
Polos cercanos al eje real 

negativo, sin ceros en el eje 𝑗𝜔. 
𝐻(𝑠) =

1

(1 +  𝑠 𝑤𝑐⁄ )
𝑛 Atenúa altas 

frecuencias. 

Pasaaltos 

Ceros en el origen, polos 

alejados en semiplano 

izquierdo. 

𝐻(𝑠) =
𝑠𝑛

(𝑠 + 𝑤𝑐)𝑛
 

Atenúa bajas 

frecuencias. 

• Un filtro pasa-bajos tiene polos cerca del eje negativo (respuestas lentas). 

• Un filtro pasa-altos tiene ceros en el origen (cancelan continua). 

El diagrama de Bode refleja la relación entre polos, ceros y la pendiente de atenuación: 

• Cada polo introduce una caída de −20 dB/década. 

• Cada cero introduce un aumento de +20 dB/década. 

• La fase varía ±90° por polo o cero. 



La estabilidad puede verificarse con el criterio de Nyquist o de Bode: 

Un sistema es estable si la ganancia de lazo < 0 dB cuando la fase llega a −180°. 

Ejemplo:  

Para el circuito mostrado, encuentre la función transferencial 𝐴𝑉(𝑆) =
𝑉𝑜(𝑆)

𝑉𝑖(𝑆)
 . 

 

Solución: 

El amplificador operacional está en configuración de seguidor de voltaje con 𝐴𝑉 = 1, la 

caída de tensión a través del capacitor 𝐶2 es 𝑉𝑜, de donde al aplicar LKV en la malla de 

entrada se tiene que: 

𝑉𝑖(𝑆) = 𝐼𝑅 + 𝐼1𝑅 + 𝑉𝑜(𝑆) =  (𝐼 + 𝐼1)𝑅 + 𝑉𝑜(𝑆)  

Pero: 𝑉𝑜(𝑆) = 𝐼1 (
1

𝑆𝐶2
)   →  𝐼1 = 𝑆𝐶2𝑉𝑜(𝑆)    

𝐼1𝑅 = 𝐼2 (
1

𝑆𝐶1
)     →  𝐼2 = 𝐼1𝑆𝑅𝐶1     

Aplicando LKC en el nodo A, se tiene que: 

𝐼 = 𝐼1  +  𝐼2 = 𝐼1 +  𝐼1𝑆𝑅𝐶1 = 𝐼1(1 + 𝑆𝑅𝐶1) =  𝑆𝐶2𝑉𝑜(𝑆)(1 + 𝑆𝑅𝐶1)    

Sustituyendo en la expresión antes hallada para 𝑉𝑖(𝑆), se obtiene que: 

𝑉𝑖(𝑆) = 𝑅[𝑆𝐶2𝑉𝑜(𝑆)(1 + 𝑆𝑅𝐶1) + 𝑆𝐶2𝑉𝑜(𝑆)] +  𝑉𝑜(𝑆) = 𝑆𝑅𝐶2𝑉𝑜(𝑆)(2 + 𝑆𝑅𝐶1) +  𝑉𝑜(𝑆) 

𝑉𝑖(𝑆) = 𝑉𝑜(𝑆)[𝑆2𝑅2𝐶1𝐶2 +  2𝑆𝑅𝐶2 + 1] 

De donde: 

𝐴𝑉(𝑆) =
𝑉𝑜(𝑆)

𝑉𝑖(𝑆)
=

1

𝑆2𝑅2𝐶1𝐶2 +  2𝑆𝑅𝐶2 + 1
 



La función transferencial hallada corresponde con la del filtro de segundo orden de 

Butterworth. 

3. Programas de diseño y simulación 

Se pueden emplear herramientas de simulación analógica para verificar el 

comportamiento del filtro antes de implementarlo físicamente. Entre las más utilizadas: 

LTspice, Multisim. Estas permiten obtener diagramas de Bode, respuesta temporal y 

análisis de estabilidad. 

4. Filtro pasivo de segundo orden 

Un filtro pasivo de segundo orden se obtiene combinando dos etapas RC. Aunque su 

pendiente de atenuación mejora (−40 dB/década), presenta pérdidas significativas debido 

a la falta de ganancia activa y una impedancia de carga dependiente de la etapa siguiente. 

5. Osciladores resonantes 

Los osciladores resonantes generan señales sinusoidales sin entrada externa, basándose 

en una red de realimentación selectiva que cumple la condición de Barkhausen (ganancia 

unitaria y fase nula total). Ejemplos clásicos son el oscilador de Wien y el oscilador Twin-T, 

ambos derivados de configuraciones de filtros activos resonantes. 

Ejemplo: en el oscilador de Wien, la frecuencia de oscilación está dada por 𝑓𝑜 =

1/(2𝜋𝑅𝐶), y la estabilidad depende del control de ganancia del amplificador operacional. 

8. Conclusiones 

Los filtros activos con amplificadores operacionales constituyen una herramienta esencial 

en la electrónica analógica moderna. El análisis mediante la transformada de Laplace 

permite comprender su comportamiento dinámico, mientras que la simulación facilita el 

diseño antes de la implementación física. La comprensión de polos, ceros y estabilidad es 

clave tanto en filtros como en osciladores resonantes. 


