ESTRUCTURA DE LA MATERIA 2

SEGUNDO CUATRIMESTRE 2025

Guía 7: Magnetismo

1. Partiendo del Hamiltoniano para una partícula libre de espín 1/2

$$H = \frac{(\vec{\sigma} \cdot \mathbf{p})^2}{2m}$$

y reemplazando $\mathbf{p} \to \mathbf{p} + e\mathbf{A}/c$, obtener la variación de energía de un átomo en presencia de un campo magnético externo \mathbf{h} usando teoría de perturbaciones a segundo orden

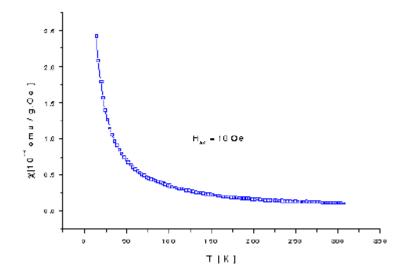
$$\Delta E_n = \mu_B \mathbf{h} \cdot \langle n | \mathbf{L} + g_0 \mathbf{S} | n \rangle + \sum_{n' \neq n} \frac{\left| \langle n | \mu_B \mathbf{h} \cdot (\mathbf{L} + g_0 \mathbf{S}) | n' \rangle \right|^2}{E_n - E_{n'}} + \frac{e^2 h^2}{8mc^2} \left\langle n \left| \sum_i \left(x_i^2 + y_i^2 \right) \right| n \right\rangle$$

donde $\mu_B = \frac{e\hbar}{2mc}$ es el magnetón de Bohr.

- 2. Aplicando las reglas de Hund calcular la configuración electrónica y momentos magnéticos aproximados correspondientes al estado fundamental de los siguientes iones: Fe^{2+} , Fe^{3+} , Mn^{2+} , Zn^{2+} y Eu^{3+} .
- 3. La función de onda del hidrógeno es $\Psi = (\pi a_0)^{-1/2} \exp(-r/a_0)$ para su estado fundamental (1s), donde $a_0 = \hbar^2/me^2 = 0.529 \times 10^{-8} \text{cm}$ es el radio de Bohr. Mostrar que para este estado $\langle r^2 \rangle = 3a_0^2$. Obtener la susceptibilidad diamagnética molar del átomo de hidrógeno.
- 4. Obtener la susceptibilidad paramagnética de un átomo con una capa parcialmente llena con momento angular total J, en el límite de altas temperaturas:

$$\chi = \frac{N}{V} \frac{(g\mu_B)^2}{3} \frac{J(J+1)}{k_B T}, \ (k_B T \gg g\mu_B h).$$

5. El gráfico corresponde a una medida de susceptibilidad de CrK(SO₄)₂. El único elemento que posee momento magnético es el Cr. La susceptibilidad magnética que se mide para este sistema es la que se muestra en la Figura.



- a) ¿Se trata de un paramagneto, un ferromagneto, un antiferromagneto, otra cosa?
- b) ¿La respuesta magnética proviene de momentos magnéticos localizados en los átomos o es de tipo itinerante (paramagnetismo de bandas)?
- c) En base a la respuesta anterior decida si es posible estimar el producto $s(s+1)g^2$, donde s es el spin y g el factor de Landé.
- 6. Graficar las susceptibilidades diamagnética y paramagnética χ_{dia} , χ_{para} (Curie Weiss) en función de la temperatura para el caso de un aislador paramagnético tipo A_2B_3 . Considerar el número de átomos magnéticos por unidad de volumen $N_A = 5 \times 10^{22} \text{at/cm}^3$, factor de Landé g = 2, s = 1 (tomar L = 0) y $\sum_i \overline{r_i^2} \simeq 2 \times 10^{-20} \text{m}^2$ el valor promedio para los dos elementos que integran la muestra.
 - a) ¿Domina el efecto diamagnético en algún rango de temperaturas?
 - b) ¿Qué valor debería tener s para que a temperatura ambiente $\chi_{dia} > \chi_{para}$?
 - c) Usando una temperatura de Fermi del orden de 8×10^4 K comparar con la susceptibilidad χ_{para} (Pauli) que se esperaría si el material fuera un metal con idénticos valores de N_A y s y que sus electrones de conducción pueden ser tratados como libres.
- 7. Considere un modelo de Ising ferromagnético de espín S=1 en una red triangular. El Hamiltoniano es:

$$\mathcal{H} = -J \sum_{\langle ij \rangle} S_i^z S_j^z - H \sum_i S_i^z,$$

donde H es una campo magnético uniforme y la primera suma es sobre primeros vecinos.

- a) Encuentre el Hamiltoniano de campo medio \mathcal{H}_{MF} para este modelo.
- b) Derive la energía libre por sitio F/N en campo medio.
- c) Encuentre la ecuación autoconsistente para la magnetización local $m = \langle S_i^z \rangle$ y obtenga la temperatura crítica $T_C(H=0)$.
- d) Suponiendo $|H| \ll k_B |T T_C| \ll J$, expanda la energía libre adimensional f = F/6NJ en función de $\theta = T/T_C$, $h = H/k_BT$ y m. Minimizando para m, halle una expresión para la susceptibilidad magnética $\chi = \partial m/\partial h$ cerca del punto crítico.
- 8. Considerar el modelo de Ising en una red consistente en dos redes interpenetradas 1 y 2 y el Hamiltoniano:

$$\mathcal{H} = -J_1 \sum_{\langle i_1, j_1 \rangle} S_{i_1}^z S_{j_1}^z - J_2 \sum_{\langle i_2, j_2 \rangle} S_{i_2}^z S_{j_2}^z - J_3 \sum_{\langle i_1, j_2 \rangle} S_{i_1}^z S_{j_2}^z - H \sum_{i_1} S_{i_1}^z - H \sum_{i_2} S_{i_2}^z,$$

siendo J_1 , J_2 , $J_3 > 0$, las interacciones entre primeros vecinos dentro de la subred 1, 2, y entre 1 y 2, respectivamente.

- a) Plantear la solución de campo medio para este modelo, definiendo dos magnetizaciones m_1 y m_2 correspondientes a cada una de las dos subredes.
- b) Escribir las ecuaciones de autoconsistencia para m_1 y m_2 . En ausencia de campo magnético, ¿es posible que existan dos transiciones de fase en este modelo como función de la temperatura? ¿Por qué?

- c) Considerando que cerca de la temperatura crítica T_c , m_1 y m_2 son pequeños, intentar encontrar el exponente crítico β a campo magnético externo B=0 a partir de aproximaciones adecuadas.
- d) Discutir en qué limite se recupera el modelo de Ising ferromagnético con interacciones entre primeros vecinos y demostrar que se recuperan las expresiones correspondientes para la magnetización y la susceptibilidad magnética cerca de la temperatura crítica.
- 9. Considerar el modelo de Ising "cuántico", definido por el siguiente Hamiltoniano:

$$\mathcal{H} = -J \sum_{\langle ij \rangle} S_i^z S_j^z - \Gamma \sum S_i^x,$$

con J > 0.

- a) Escribir las ecuaciones de campo medio para este modelo.
- b) Graficar esquemáticamente el diagrama de fases en el plano $\Gamma-T$ y discutir la naturaleza de cada una de las fases. Encontrar los valores críticos de Γ para T=0 y de T para $\Gamma=0$.