Potencial periódico débil

Potencial débil

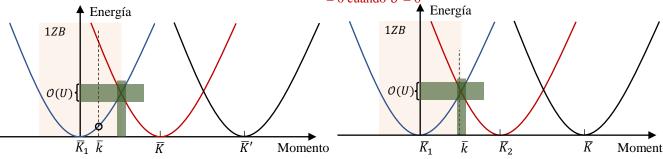
$$\begin{cases} \psi_{n\bar{k}}(\bar{r}) = \sum_{\bar{K}} c_{\bar{k}-\bar{K}} e^{i(\bar{k}-\bar{K})\cdot\bar{r}} \\ (\varepsilon - \varepsilon_{\bar{k}-\bar{K}}^0) c_{\bar{k}-\bar{K}} = \sum_{\bar{K}'} U_{\bar{K}'-\bar{K}} c_{\bar{k}-\bar{K}'} \end{cases}$$

Tomamos \bar{k} y \bar{K}_1 tal que:

$$\left|\varepsilon_{\overline{k}-\overline{K}_{1}}^{0}-\varepsilon_{\overline{k}-\overline{K}}^{0}\right|\gg \overline{U}, \forall \overline{K}\neq \overline{K}_{1}$$
Valor típico de $U_{\overline{K}}$

Queremos ver cómo afecta el potencial al estado de e⁻ libre dado por: $\varepsilon = \varepsilon_{\bar{k}-\bar{K}_1}^0$, $c_{\bar{k}-\bar{K}} = 0$, $\forall \bar{K} \neq \bar{K}_1$

$$\frac{\overline{K} = \overline{K}_{1}:}{E} \left(\varepsilon - \varepsilon_{\overline{k} - \overline{K}_{1}}^{0}\right) c_{\overline{k} - \overline{K}_{1}} = \sum_{\overline{K}} U_{\overline{K} - \overline{K}_{1}} c_{\overline{k} - \overline{K}_{1}} e^{-\varepsilon_{\overline{k}} - \overline{K}_{1}} c_{\overline{k} - \overline{K}_{1}} e^{-\varepsilon_{\overline{k}} - \overline{K}_{1$$

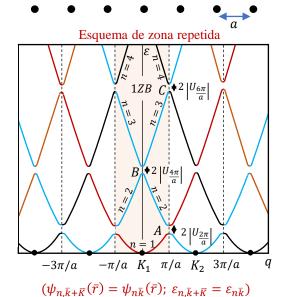


Tomamos \bar{k} y \bar{K}_1 , ..., \bar{K}_m tal que:

$$\varepsilon_{\overline{k}-\overline{K}_{1}}^{0},\ldots,\varepsilon_{\overline{k}-\overline{K}_{m}}^{0}\text{ se encuentran en }\mathcal{O}(U)\text{ entre si; }\left|\varepsilon_{\overline{k}-\overline{K}}^{0}-\varepsilon_{\overline{k}-\overline{K}_{i}}^{0}\right|\gg U,\ \ i=1,\ldots,m,\ \ \forall\overline{K}\neq\overline{K}_{1},\ldots,\overline{K}_{m}$$

$$\begin{split} & \underline{\overline{K}} = \underline{\overline{K}_i} \colon \left(\varepsilon - \varepsilon_{\overline{k} - \overline{K}_i}^0 \right) c_{\overline{k} - \overline{K}_i} = \sum_{j=1}^m U_{\overline{K}_j - \overline{K}_i} c_{\overline{k} - \overline{K}_j} + \sum_{\overline{K} \neq \overline{K}_1, \dots, \overline{K}_m} U_{\overline{K} - \overline{K}_i} c_{\overline{k} - \overline{K}_j} \approx \sum_{j=1}^m U_{\overline{K}_j - \overline{K}_i} c_{\overline{k} - \overline{K}_j} + \mathcal{O}^2 \\ & \underline{\overline{K}} \neq \underline{\overline{K}_i} \colon c_{\overline{k} - \overline{K}} = \sum_{j=1}^m \frac{U_{\overline{K}_j - \overline{K}} c_{\overline{k} - \overline{K}_j}}{\varepsilon - \varepsilon_{\overline{k} - \overline{K}}^0} + \sum_{\overline{K}' \neq \overline{K}_1, \dots, \overline{K}_m} \frac{U_{\overline{K}' - \overline{K}} c_{\overline{k} - \overline{K}_j}}{\varepsilon - \varepsilon_{\overline{k} - \overline{K}}^0} \approx \sum_{j=1}^m U_{\overline{K}_j - \overline{K}} c_{\overline{k} - \overline{K}_j} \\ & \underbrace{\sum_{j=1}^m U_{\overline{K}_j - \overline{K}} c_{\overline{k} - \overline{K}_j}}_{\text{tenemos correcciones de } \mathcal{O}(U) \end{split}$$

Potencial débil: RB 1D



$$\begin{cases} (\varepsilon - \varepsilon_{k-K_{1}}^{0})c_{k-K_{1}} = U_{K_{2}-K_{1}}c_{k-K_{2}} \\ (\varepsilon - \varepsilon_{k-K_{2}}^{0})c_{k-K_{2}} = U_{K_{1}-K_{2}}c_{k-K_{1}} \end{cases} \begin{pmatrix} K_{1} = 0; K_{2} = \frac{2\pi}{a} \end{pmatrix}$$

$$\Rightarrow \begin{vmatrix} \varepsilon - \varepsilon_{k-K_{1}}^{0} & -U_{K_{2}-K_{1}} \\ -U_{K_{2}-K_{1}} & \varepsilon - \varepsilon_{k-K_{2}}^{0} \end{vmatrix} = 0$$

$$\Rightarrow \varepsilon^{2} - \varepsilon \left(\varepsilon_{k-K_{1}}^{0} + \varepsilon_{k-K_{2}}^{0}\right) + \varepsilon_{k-K_{1}}^{0}\varepsilon_{k-K_{2}}^{0} - \left|U_{K_{2}-K_{1}}\right|^{2} = 0$$

$$\Rightarrow \varepsilon = \frac{\varepsilon_{k-K_{1}}^{0} + \varepsilon_{k-K_{2}}^{0}}{\varepsilon_{k-K_{1}}^{0} + \varepsilon_{k-K_{2}}^{0}} \pm \sqrt{\left(\frac{\varepsilon_{k-K_{1}}^{0} - \varepsilon_{k-K_{2}}^{0}}{2}\right)^{2} + \left|U_{K_{2}-K_{1}}\right|^{2}}$$

 $\varepsilon_{k-K_1}^0 = \varepsilon_{k-K_2}^0 \longrightarrow \varepsilon = \varepsilon_{k-K_1}^0 \pm |U_{K_2-K_1}| \quad \text{[Se abre un } gap!]$

Potencial periódico débil

Potencial débil: RB 1D

$$\left(\varepsilon - \varepsilon_{\overline{k} - \overline{K}_{i}}^{0}\right) c_{\overline{k} - \overline{K}_{i}} = \sum_{j=1}^{m} U_{\overline{K}_{j} - \overline{K}_{i}} c_{\overline{k} - \overline{K}_{j}} \quad (m = 2)$$
 Ejemplo
$$\left(\varepsilon - \varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{i}} = U_{K_{j}-K_{i}} c_{k-K_{j}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon - \varepsilon_{k-K_{j}}^{0}\right) c_{k-K_{j}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon - \varepsilon_{k-K_{j}}^{0}\right) c_{k-K_{j}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{j}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{j}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{j}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{j}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{j}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{j}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{j}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{i}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{i}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{i}} = U_{K_{i}-K_{j}} c_{k-K_{i}} \quad \forall i, j \text{ tal que } \varepsilon_{k-K_{i}}^{0} \quad \mathbf{y}$$

$$\left(\varepsilon_{k-K_{i}}^{0}\right) c_{k-K_{i}} = U_{K_{i}-K_{i}} c_{k-K_{i}} c_{k-K_{i}$$

Potencial periódico débil: Niveles de energía cerca de un (único) plano de Bragg

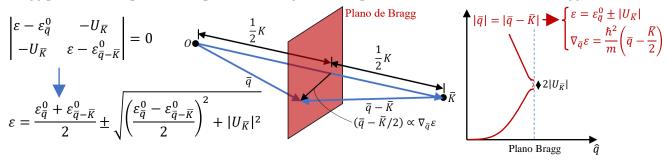
Tomamos
$$\bar{k}$$
, \bar{K}_1 y \bar{K}_2 tal que $\varepsilon_{\bar{k}-\bar{K}_1}^0 - \varepsilon_{\bar{k}-\bar{K}_2}^0 \leq \mathcal{O}(U) \wedge \left| \varepsilon_{\bar{k}-\bar{K}_{1,2}}^0 - \varepsilon_{\bar{k}-\bar{K}}^0 \right| \gg U \ \forall \bar{K} \neq \bar{K}_1$, \bar{K}_2 .

$$\left(\varepsilon - \varepsilon_{\overline{k} - \overline{K}_{i}}^{0}\right) c_{\overline{k} - \overline{K}_{i}} = \sum_{j=1}^{2} U_{\overline{K}_{j} - \overline{K}_{i}} c_{\overline{k} - \overline{K}_{j}} \quad \begin{cases} \left(\varepsilon - \varepsilon_{\overline{k} - \overline{K}_{1}}^{0}\right) c_{\overline{k} - \overline{K}_{1}} = U_{\overline{K}_{2} - \overline{K}_{1}} c_{\overline{k} - \overline{K}_{2}} \\ \left(\varepsilon - \varepsilon_{\overline{k} - \overline{K}_{2}}^{0}\right) c_{\overline{k} - \overline{K}_{2}} = U_{\overline{K}_{1} - \overline{K}_{2}} c_{\overline{k} - \overline{K}_{1}} \end{cases} = V_{\overline{K}_{2} - \overline{K}_{1}} c_{\overline{k} - \overline{K}_{2}} \left(\varepsilon - \varepsilon_{\overline{q}}^{0}\right) c_{\overline{q}} = U_{\overline{K}} c_{\overline{q} - \overline{K}} c_{\overline{q} - \overline{K}} c_{\overline{q} - \overline{K}} \right)$$

$$\left(\varepsilon - \varepsilon_{\overline{k} - \overline{K}_{2}}^{0}\right) c_{\overline{k} - \overline{K}_{2}} = U_{\overline{K}_{1} - \overline{K}_{2}} c_{\overline{k} - \overline{K}_{1}} c_{\overline{k} - \overline{K}_{1}} c_{\overline{k} - \overline{K}_{2}} c_{\overline{q} - \overline{K}} c_{\overline{q} - \overline{$$

$$\varepsilon_{\overline{q}}^0 = \varepsilon_{\overline{q}-\overline{K}}^0 \leftrightarrow |\overline{q}| = |\overline{q}-\overline{K}|$$
 La punta de \overline{q} debe caer en el plano de Bragg que biseca la linea que une el origen con \overline{K} (y en ningún otro).

Para tener solo 2 niveles cuasi-degenerados, el e debe estar cerca de satisfacer la condición de dispersión de Bragg para un único plano. Múltiples niveles degenerados aparecen al tratar reflexiones de Bragg simultáneas.



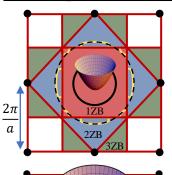
Autoestados sobre un plano de Bragg

$$\begin{cases} (\varepsilon - \varepsilon_{\overline{q}}^{0})c_{\overline{q}} = U_{\overline{K}}c_{\overline{q}-\overline{K}} \\ (\varepsilon - \varepsilon_{\overline{q}-\overline{K}}^{0})c_{\overline{q}-\overline{K}} = U_{\overline{K}}c_{\overline{q}} \\ \varepsilon = \varepsilon_{\overline{q}}^{0} \pm |U_{\overline{K}}| \\ \varepsilon = \varepsilon_{\overline{q}}^{0} \pm |U_{\overline{K}}| \\ \varepsilon_{\overline{q}}^{0} = \varepsilon_{\overline{q}-\overline{K}}^{0} \end{cases} \qquad \psi_{n\overline{q}}(\overline{r}) = \sum_{\overline{K'}} c_{\overline{q}-\overline{K'}} e^{i(\overline{q}-\overline{K'})\cdot\overline{r}} = c_{\overline{q}} \left(e^{i\overline{q}\cdot\overline{r}} + e^{i(\overline{q}-\overline{K})\cdot\overline{r}} \right) \\ \psi_{n+1,\overline{q}} = c_{\overline{q}} \left(e^{i\overline{q}\cdot\overline{r}} - e^{i(\overline{q}-\overline{K'})\cdot\overline{r}} \right) \\ \psi_{n+1,\overline{q}} = c_{\overline{q}} \left(e^{i\overline{q}\cdot\overline{r}} - e^{i(\overline{q}-\overline{K'})\cdot\overline{r}} \right) \\ \psi_{n\overline{q}}(\overline{r})|^{2} \propto \left| e^{i\overline{q}\cdot\overline{r}} + e^{i(\overline{q}-\overline{K})\cdot\overline{r}} \right|^{2} = 2 + e^{i\overline{K}\cdot\overline{r}} + e^{-i\overline{K}\cdot\overline{r}} = 2(1 + \cos\overline{K}\cdot\overline{r}) \end{cases} \qquad \psi_{n+1,\overline{q}}(\overline{r})|^{2} \propto \cos^{2}\left(\frac{\overline{K}}{2}\cdot\overline{r}\right) \\ |\psi_{n}|^{2} |\psi_{n+1,\overline{q}}(\overline{r})|^{2} \propto \sin^{2}\left(\frac{\overline{K}}{2}\cdot\overline{r}\right) \\ |\psi_{n}|^{2} |\psi_{n+1,\overline{q}}(\overline{r})|^{2} \propto \sin^{2}\left(\frac{\overline{K}}{2}\cdot\overline{r}\right) \\ |\psi_{n}|^{2} |\psi_{n+1}|^{2} \end{cases}$$

El nivel con menos energía es aquel que presenta mayor densidad de carga en la posición de los iones.

Potencial periódico débil – Comportamiento eléctrico

Potencial periódico débil en 2D: Red cuadrada



$$N_e = 2(\pi k_F^2) \left(\frac{A}{4\pi^2}\right) = k_F^2 \left(\frac{Na^2}{2\pi}\right) = N_{ec} N \longrightarrow k_F = \frac{1}{a} \sqrt{2\pi N_{ec}}$$

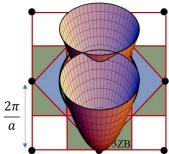
Si cada CP aporta 1e-, la "esfera" de Fermi de e- libres queda contenida en la 1ZB.

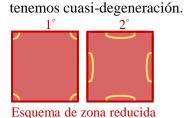
Si cada CP aporta 2e⁻, la "esfera" de Fermi cruza a la 2ZB ($k_F = 3.55/a$), y

Las correcciones a la energía son solo de $\mathcal{O}(U^2)$: $\varepsilon = \varepsilon_{\overline{k}}^0 + \sum_{\overline{k}} \frac{|U_{\overline{k}}|^2}{\varepsilon_{\overline{k}}^0 - \varepsilon_{\overline{k}-\overline{k}}^0}$

→ Tenemos esencialmente e⁻ libres.

Para ningún \overline{k} ocupado tenemos niveles cuasi-degenerados





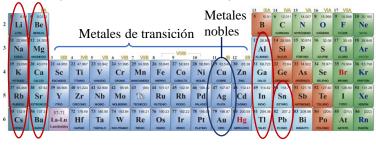
Las correcciones a la energía son de $\mathcal{O}(U)$:

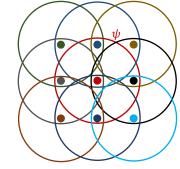
$$\left(\varepsilon - \varepsilon_{\overline{k} - \overline{K}_i}^{0}\right) c_{\overline{k} - \overline{K}_i} = \sum_{j=1}^{m} U_{\overline{K}_j - \overline{K}_i} c_{\overline{k} - \overline{K}_j}$$

La superficie de Fermi deja de ser esférica, y pueden abrirse *gaps*.

¿Para qué elementos funciona bien la aproximación de electrones cuasi-libres?

Describe adecuadamente propiedades de metales de la columna I, II, III, IV, que cuentan con electrones s y p externos a capas cerradas de gases nobles. En menor medida la aproximación funciona también para metales nobles (monovalentes en orbitales s).





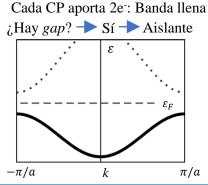
¿Por qué funciona bien esta descripción?

- Las funciones de onda de e⁻ de valencia se superponen ampliamente entre átomos vecinos y se forman estados (casi) completamente deslocalizados. Los e⁻ de conducción tienen prohibido acercarse demasiado a los iones positivos debido a la presencia de e⁻ en torno al núcleo que ocupan los estados disponibles (PEP).
- Los e de conducción mismos reducen el potencial atractivo neto que un e percibe, puesto que apantallan los campos producidos por los iones positivos, dando lugar a un potencial efectivo menor.

¿Metal o aislante?

En cada banda podemos acomodar 2N e⁻ (N: N° de CP en el cristal).

Cada CP aporta 1e⁻: N e⁻
Banda semi-llena Metal $\begin{array}{c|cccc}
 & \varepsilon & & \\
 & & \ddots & \\
 & & & & \\
\hline
 & & &$



Cada CP aporta $2e^-$, pero las bandas se solapan \longrightarrow Metal ε $-\pi/a \qquad \qquad k \qquad \pi/a$

Si cada CP aporta un N° impar de e → Metal Si cada CP aporta un N° par de e → Metal o aislante

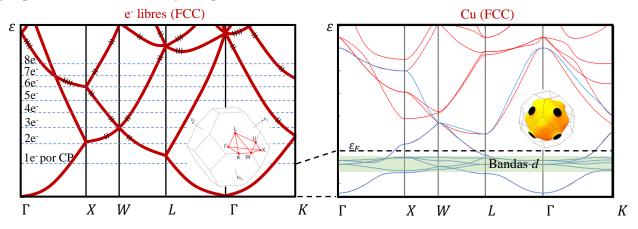
Si el material es aislante → Cada CP aporta un N° par de e-

Relación de dispersión en 3D - Densidad de estados

Relación de dispersión para redes en 3D

En el caso de e⁻ libres, se grafican los valores de $\varepsilon_{\overline{k}-\overline{K}}^0 = \frac{\hbar^2}{2m}(\overline{k}-\overline{K})^2$ para recorridos específicos de \overline{k} dentro de la 1ZB, considerando vectores \overline{K} en torno al origen.

Ejemplo: e- libres en red FCC y comparación con el caso del Cu



Densidad de estados

La densidad de estados $g(\varepsilon)$, se define tal que $g(\varepsilon)d\varepsilon$ es el número total de estados de 1e⁻ con energías entre ε y $\varepsilon + d\varepsilon$, por unidad de volumen del cristal.

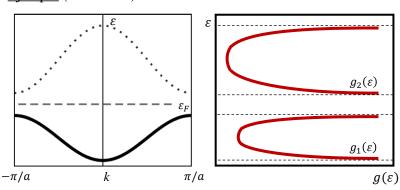
$$g_{s}(\omega) = \int \delta(\omega - \omega_{s}(\bar{k})) \frac{d\bar{k}}{(2\pi)^{3}}$$

$$g_{s}(\omega) = \int_{A_{s}(\omega)} \frac{1}{|\nabla \omega_{s}(\bar{k})|} \frac{dA}{(2\pi)^{3}}$$

$$\int_{A_{s}(\omega)} \frac{1}{|\nabla \omega_{s}(\bar{k})|} \frac{dA}{(2\pi)^{3}}$$
De fonones a electrones
$$g_{n}(\varepsilon) = \int \delta(\varepsilon - \varepsilon_{n}(\bar{k})) \frac{d\bar{k}}{4\pi^{3}}$$

$$g_{n}(\varepsilon) = \int_{A_{n}(\varepsilon)} \frac{1}{|\nabla \varepsilon_{n}(\bar{k})|} \frac{dA}{4\pi^{3}}$$

Ejemplo (cualitativo)



Densidad de estados total: $g(\varepsilon) = \sum_{n} g_n(\varepsilon)$