Resumen

- El campo magnético \overrightarrow{B} es el campo vectorial a partir del cual se manifiesta la fuerza de Lorentz.
- A diferencia de \vec{E} , no es posible aislar monopolos magnéticos. En otras palabras:

$$\vec{\nabla} \cdot \vec{B} = 0$$

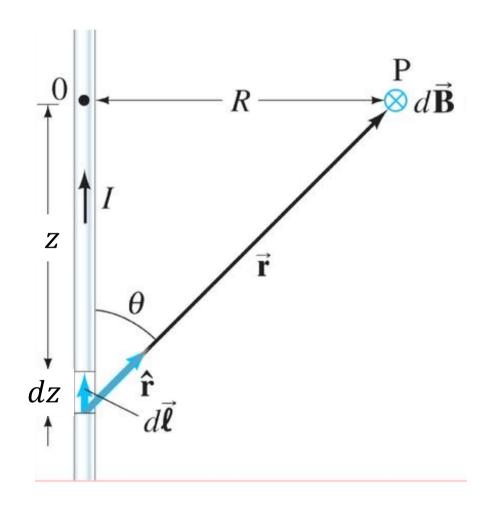
 Pese a esta restricción, Biot y Savart plantearon una herramienta para calcular el campo magnético generado por la integración de 'elementos de corriente'

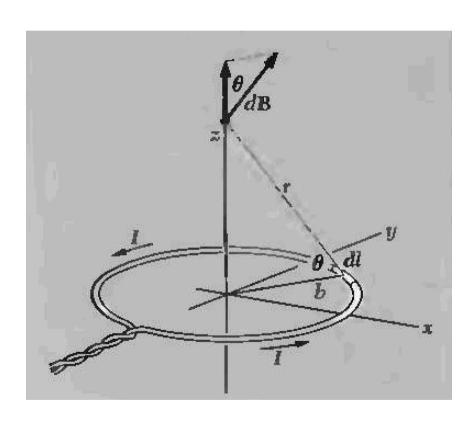
$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{I \vec{dl} \times \hat{r}}{r^2} \text{ o bien } \frac{\mu_0}{4\pi} \int \frac{I \vec{dl} \times \vec{r}}{r^3}$$

• Donde \vec{r} se toma desde el elemento de corriente hasta el punto de evaluación del del campo.

Campo magnético de un hilo infinito

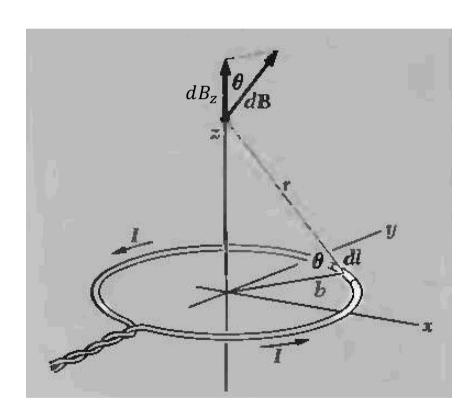
$$\vec{B} = \frac{\mu_0 I}{2\pi R} \hat{\phi}$$





- Espira plana circular de radio b por la que circula una corriente *I*.
- Vamos a calcular el campo en el eje de simetría z.
- Podemos esperar que el campo en el eje z será a lo largo del eje z.

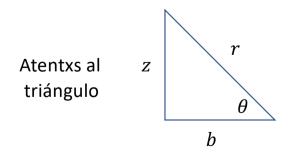
$$\vec{B}(0,0,z) = B(z)\hat{z}$$

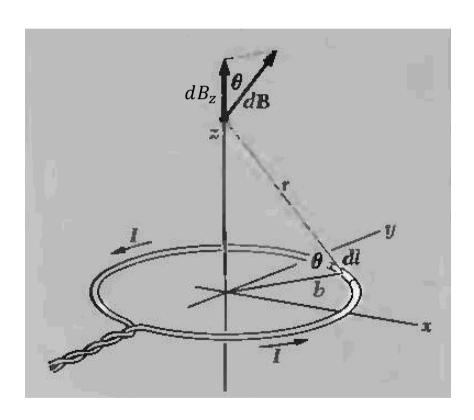


 Usando Biot-Savart calculemos el diferencial de la componente z del campo:

$$dB_z = dB \cos \theta = \frac{\mu_0}{4\pi} \frac{I \, dl}{r^2} \cos \theta$$

• Donde r es la distancia del elemento de corriente al punto de evaluación y θ es el ángulo entre r y el radio de la espira b.





• Simplificando:

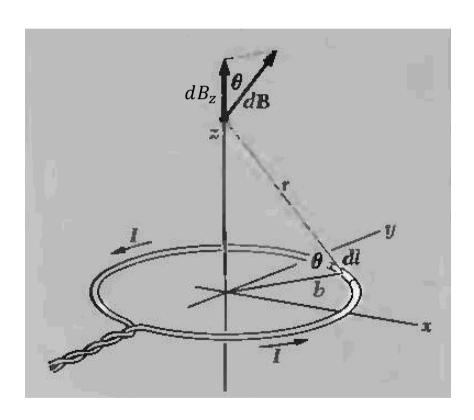
$$B_z = \frac{\mu_0}{2} \frac{I b^2}{r^3}$$

• Donde r es función de z :

$$r = \sqrt{b^2 + z^2}$$

• Entonces en el eje z:

$$\vec{B}(0,0,z) = B_z \hat{z} = \frac{\mu_0}{2} \frac{I b^2}{\left[\sqrt{b^2 + z^2}\right]^3} \hat{z}$$



• Simplificando:

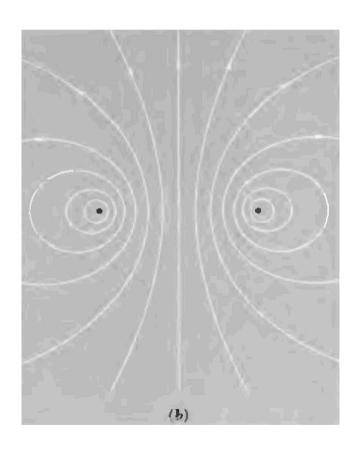
$$B_z = \frac{\mu_0}{2} \frac{I b^2}{r^3}$$

• Donde r es función de z :

$$r = \sqrt{b^2 + z^2}$$

• Entonces en el eje z:

$$\vec{B}(0,0,z) = B_z \hat{z} = \frac{\mu_0}{2} \frac{I b^2}{\left[\sqrt{b^2 + z^2}\right]^3} \hat{z}$$



Campo magnético de una espira circular en el plano que contiene al eje de simetría

Ley de Biot Savart para densidad de corrientes

• Si la posición de cada elemento de corriente y la posición en donde se evalúa \overrightarrow{B} desde un punto fijo es $\overrightarrow{r'}$ y \overrightarrow{r} respectivamente, la Ley de Biot-Savart puede reescribirse como:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{I \vec{dl'} \times (\vec{r} - \vec{r'})}{\left| \vec{r} - \vec{r'} \right|^3}$$

Ley de Biot Savart para densidad de corrientes

- Si consideramos un diferencial de volumen cilíndrico dv' de área transversal da' y largo dl' en el que se tiene una densidad de corriente \vec{J} paralela a \overrightarrow{dl} y a \overrightarrow{da} entonces $I=\int j\;da'$
- Con lo cual, si la corriente está distribuida en un volumen, podemos escribir Biot Savart en función de la densidad de \vec{J} como:

$$\vec{B}(\vec{r}) = \frac{\mu_0}{4\pi} \iiint \frac{\vec{J}(\vec{r'}) \times (\vec{r} - \vec{r'})}{\left| \vec{r} - \vec{r'} \right|^3} dv'$$
Volumen donde hay corrientes

Esto vale en el caso de corrientes acotadas

Ley de Biot Savart y potencial vector

• Recordemos la ley de Gauss para el campo magnético:

$$\vec{\nabla} \cdot \vec{B} = 0$$

- Un campo vectorial de divergencia nula puede escribirse como el rotor de otro campo.
- En el caso de \vec{B} , definimos el potencial vector \vec{A} tal que:

$$\vec{B} = \vec{\nabla} \times \vec{A} \quad con \quad \vec{\nabla} \cdot (\vec{\nabla} \times \vec{A}) = 0$$

• \vec{A} está definido a menos de un gradiente de una función (pues el rotor de un gradiente es cero)

El potencial vector a partir de Biot-Savart

- El campo potencial vector \vec{A} puede obtenerse de la Ley de Biot Savart.
 - Por ejemplo, para una espira con corriente estacionaria *I* resulta:

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{I \ \overrightarrow{dl'}}{\left| \vec{r} - \overrightarrow{r'} \right|}$$

• Y para el caso de una densidad de corriente \vec{J} en un volumen:

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \iiint \frac{\vec{J}(\vec{r'})}{\left|\vec{r} - \vec{r'}\right|} dv'$$
Volumen donde
hay corrientes

Expansión multipolar de \vec{A} y \vec{B}

• Como vimos en electrostática, si, hacemos

$$R = |\vec{r} - \vec{r'}|$$

• A grandes distancias podemos aproximar $^{1}/_{R}$ por

$$= \frac{1}{r} \left[1 + \frac{r'}{r} \cos \theta + \left(\frac{r'}{r} \right)^2 (3 \cos^2 \theta - 1) + \left(\frac{\text{términos de}}{\text{grado superior}} \right) \right]$$

• Obteniendo así los momentos multipolares

• El momento dipolar magnético $\vec{\mu}$ es el primero no nulo (por la no existencia de monopolos) y queda definido como:

$$\vec{\mu} = \frac{1}{2} \iiint \vec{r'} \times \vec{J}(\vec{r'}) \ dv'$$

• En el caso de una corriente unidimensional tenemos

$$\vec{\mu} = \frac{1}{2} \int \vec{r'} \times I \ \vec{dl}$$

• Para una espira circular de radio a con corriente uniforme I tenemos, si ponemos un sistema de coordenadas cilíndricas (r', φ', z') centrada en el centro de la espira.

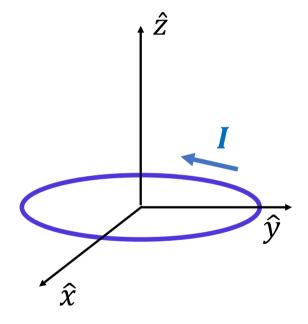
$$\overrightarrow{r'} = a\hat{r}$$

$$\overrightarrow{dl'} = a \, d\varphi' \, \hat{\varphi}$$

Entonces

$$\vec{\mu} = \frac{1}{2} \int a\hat{r} \times Ia \ d\varphi' \ \hat{\varphi}$$

• Como $\hat{r} \times \hat{\varphi} = \hat{z}$



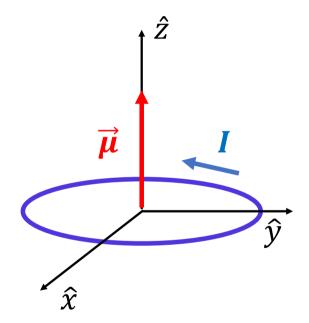
• Como $\hat{r} \times \hat{\varphi} = \hat{z}$, tenemos

$$\vec{\mu} = \frac{Ia^2}{2} \hat{z} \int d\varphi'$$

• Entonces, como $\int d \varphi' = 2\pi$

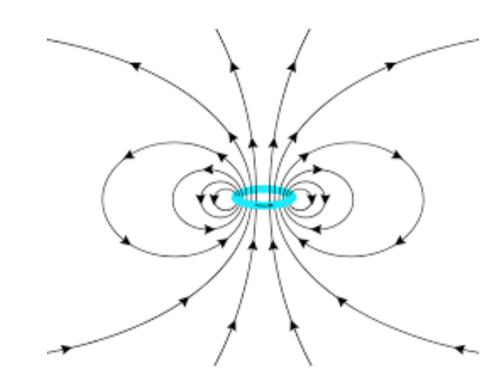
$$\vec{\mu} = I\pi a^2 \hat{z}$$

• El momento dipolar magnético de una espira es la corriente por el área de la espira con la dirección proveniente de la regla de la mano derecha



• El campo resultante en esféricas será

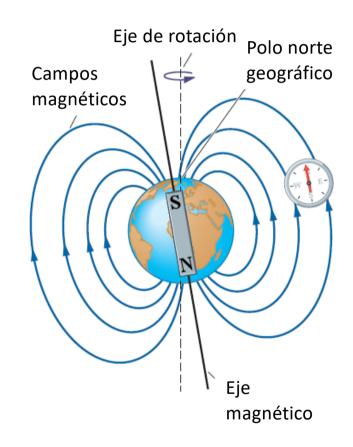
$$\vec{B} = \frac{\mu_0}{4\pi} \frac{3\hat{r}(\hat{r} \cdot \vec{\mu}) - \vec{\mu}}{r^3}$$



El campo magnético terrestre

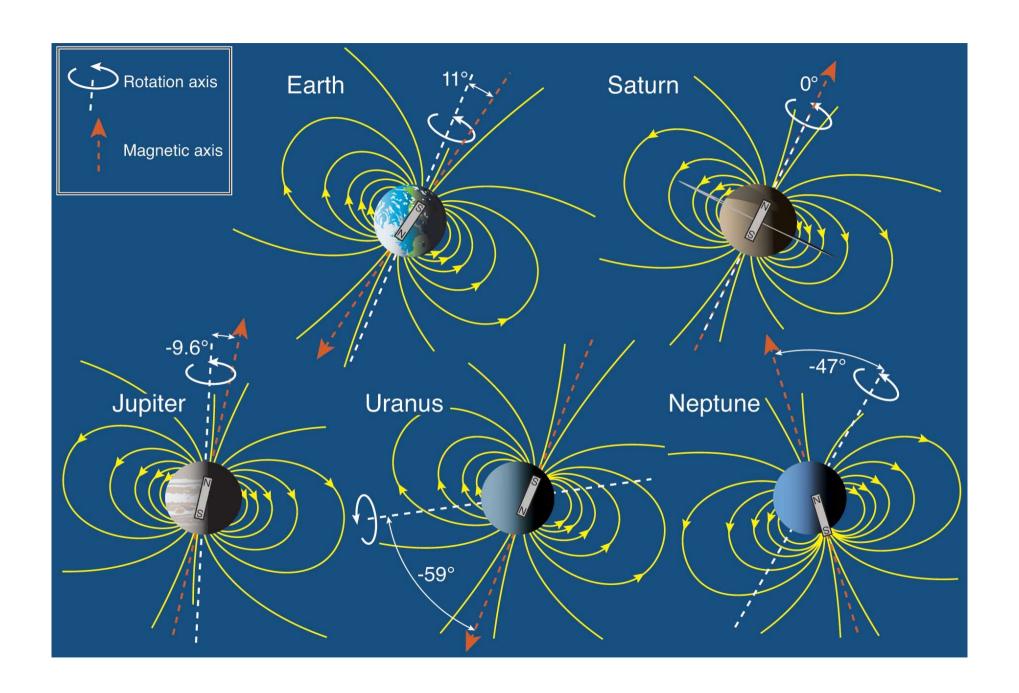
https://www.ngdc.noaa.gov/geomag/calculators/magcalc.shtml#igrfwmm

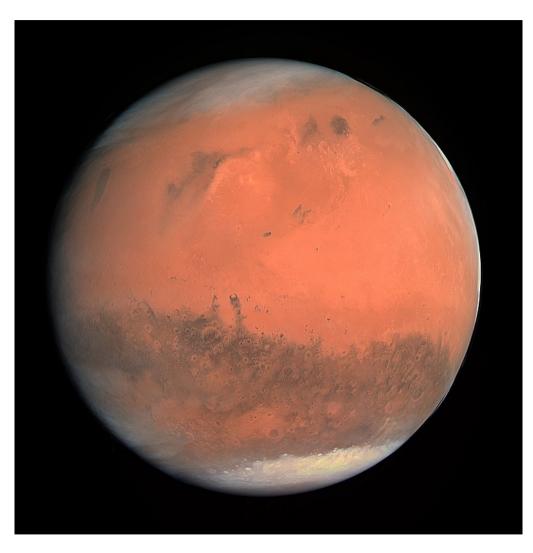
Model Used:	WMM-2020						
Latitude:	34° 36' 32" S						
Longitude:	58° 22' 23" W						•
Elevation:	0.0 km Mean Sea Level						
Date	Declination (+ E - W)	Inclination (+ D - U)	Horizontal Intensity	North Comp (+ N - S)	East Comp (+ E - W)	Vertical Comp (+ D - U)	Total Field
2024-10-07	-10° 4' 15"	-41° 10' 56"	17,021.9 nT	16,759.7 nT	-2,976.5 nT	-14,892.2 nT	22,616.9 nT
Change/year	-0° 9' 55"/yr	-0° 13' 41"/yr	-81.9 nT/yr	-89.2 nT/yr	-34.0 nT/yr	-48.1 nT/yr	-30.0 nT/yr
Uncertainty	0° 25'	0° 13'	128 nT	131 nT	94 nT	157 nT	145 nT

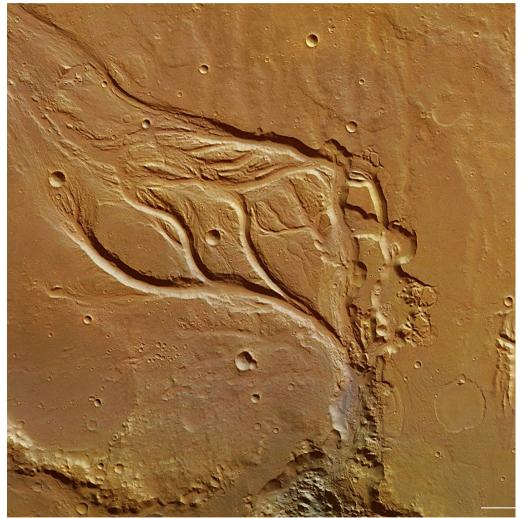


La magnetósfera terrestre

Tormentas geomagnéticas y auroras







Erosión de la atmósfera de Marte