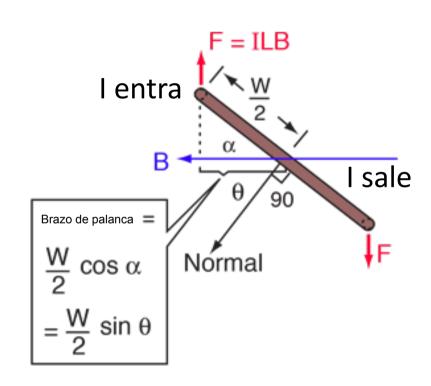

Magnetismo en la materia

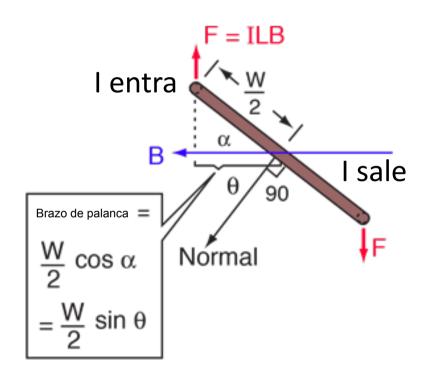
El campo lejano de una espira es dipolar


- La ausencia de monopolos magnéticos hace que un campo dipolar sea la forma más básica de un campo magnético.
- Es posible demostrar que el campo magnético lejos de cualquier espira plana es de tipo dipolar.
- En coordenadas esféricas y tomando $\vec{\mu} = IA\hat{z}$:

$$B_r = \frac{\mu_0 \mu}{2\pi r^3} \cos \theta \quad B_\theta = \frac{\mu_0 \mu}{4\pi r^3} \sin \theta \quad y \quad B_\phi = 0$$

 Ver deducción en documento en la página de la materia.

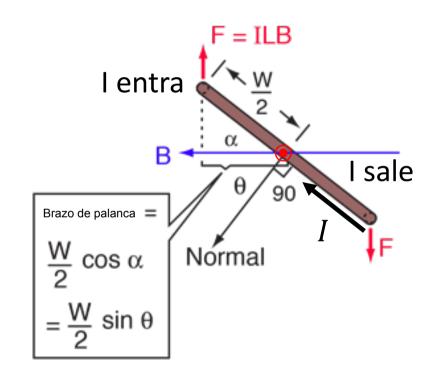
- Tomemos una espira rectangular de lados L
 y W por la que circula una corriente I.
- Coloquémosla en un campo uniforme \overrightarrow{B} que forma un angulo α con el lado de largo W.
- Nos interesa saber qué fuerzas aparecen y cómo se va a mover la espira.

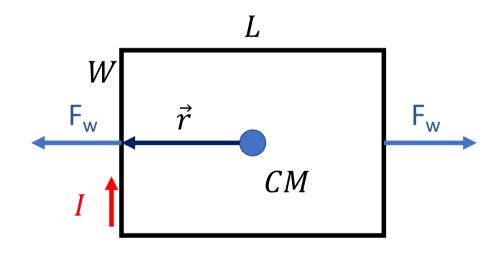

heta es el ángulo entre B y la normal a la espira

 Vimos en el caso de los dos hilos paralelos que la fuerza por unidad de distancia venía dada por

$$f = IB$$

 ullet Entonces los lados de largo L experimentan fuerzas opuestas de intensidad

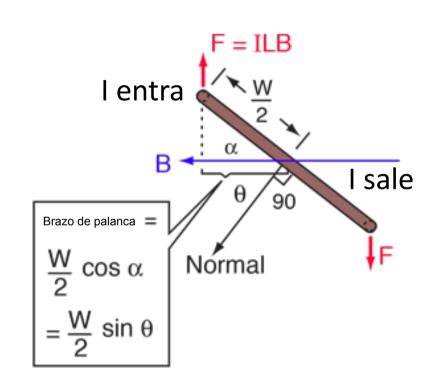

$$F = ILB$$


 Las fuerzas en los lados de largo W (salen y entran de la pantalla) también son iguales y opuestas, de valor

$$F_W = IWB \sin \alpha = IWB \cos \theta$$

• Entonces la suma total de fuerzas es cero y por lo tanto el centro de masa no se acelera.

 Respecto al centro de masa, el momento de las fuerzas sobre los lados de largo W son nulos

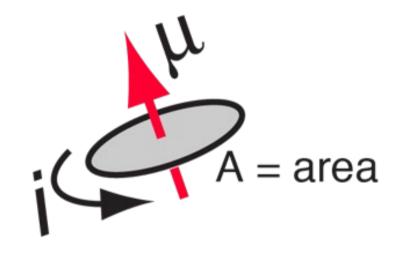


Vista de arriba

- Respecto al centro de masa, el momento de las fuerzas sobre los lados de largo W son nulos
- Mientras que los lados de largo L contribuyen con torques respecto al centro de masa

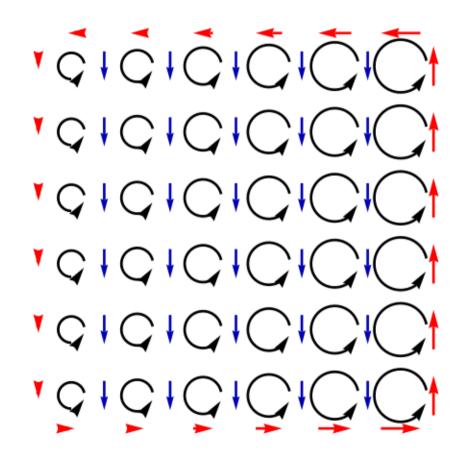
$$\tau = 2F \frac{W}{2} \cos \alpha = ILBW \cos \alpha$$
$$= B I Area \sin \theta$$

• El torque apunta hacia adentro de la pantalla y tiende a alejar la 'espira' de \overrightarrow{B} o acercar la normal al campo.

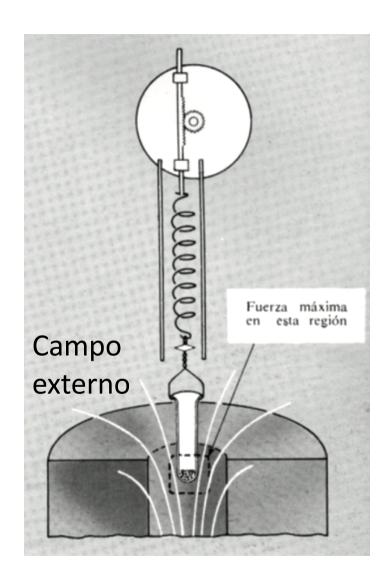

• Entonces el torque $\vec{\tau}$ se define como el producto vectorial del campo magnético y el vector momento magnético dipolar $\vec{\mu}$:

$$\vec{\tau} = \vec{\mu} \times \vec{B}$$

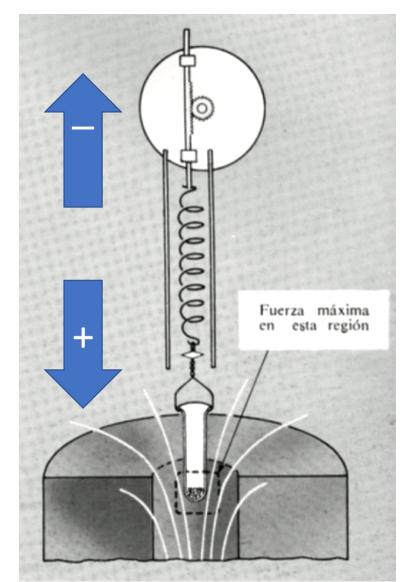
• Donde:


$$\vec{\mu} = IA\hat{n}$$

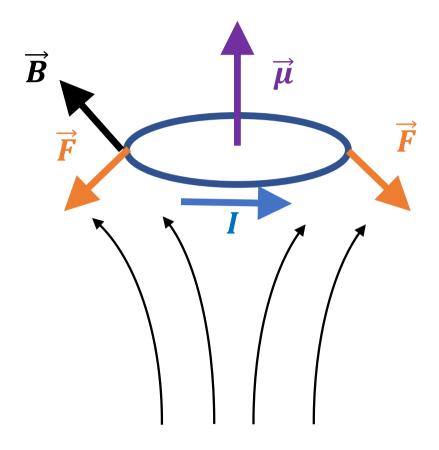
 \hat{n} es la normal a la espira obtenida mediante la regla de la mano derecha.


Magnetismo en la materia

 En particular Ampère formuló la hipótesis más simple sobre el magnetismo en la materia y era que un material puede aproximarse como un conjunto de pequeñas espiras distribuidas dentro del material


Materiales magnéticos

- Los materiales reaccionan de manera diferente a un campo magnético externo.
- Supongamos un campo magnético que llamaremos de vacío generado por un solenoide finito.
- Coloquemos una muestra conectada a un dinamómetro e introduzcamosla en el solenoide.



. 2			
Substancia	Fórmula	Fuerza*, Newton · 10 ⁻⁵	
Diamagnéticas			
Agua	H_2O	 22	
Cobre	Cu — 2,6		
Plomo	Pb	 37	
Cloruro sódico	NaCl	— 15	
Cuarzo	SiO ₂	 16	
Azufre	S	— 16	
Diamante	C	—16	
Grafito	C	 110	
Nitrógeno líquido	N_2	—10 (78 K)	
Paramagnéticas			
Sodio	Na	+ 20	
Aluminio	Al	+ 17	
Cloruro de cobre	$CuCl_2$	+ 280	
Sulfato de níquel	NiSO ₄	+ 830	
Oxígeno líquido	O_2	+ 7500 (90 K)	
Ferromagnéticas			
Hierro	Fe	+ 400 000	
Magnetita	Fe_3O_4	+ 120 000	

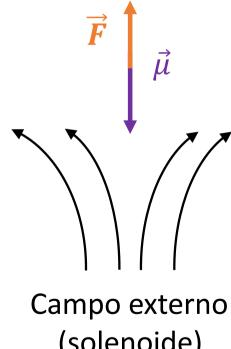
^{*} Sentido de la fuerza: hacia abajo +, hacia arriba -, Todas las medidas se han efectuado a 20 °C excepto cuando se indica.



Fuerza sobre un dipolo en campo no uniforme

Campo externo (solenoide)

Fuerza sobre un dipolo en campo no uniforme

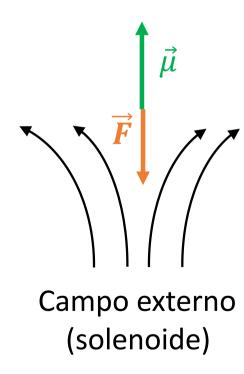


Campo externo (solenoide)

Ζ

Diamagnetismo

- En los elementos diamagnéticos, el campo exterior induce a nivel atómico y molecular momentos dipolares magnéticos microscópicos en la dirección opuesta.
- Se trata de un efecto descripto por la mecánica cuántica.
- En consecuencia el campo en el interior del material es menor que el campo externo.
- La fuerza resultante sobre el dipolo inducido tiende a alejarlo del solenoide

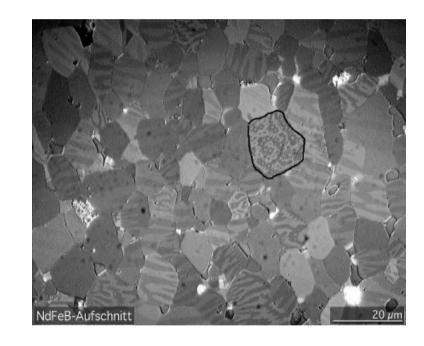


(solenoide)

• Estructura formada por átomos que poseen dipolos magnéticos permanentes normalmente distribuidos al azar.

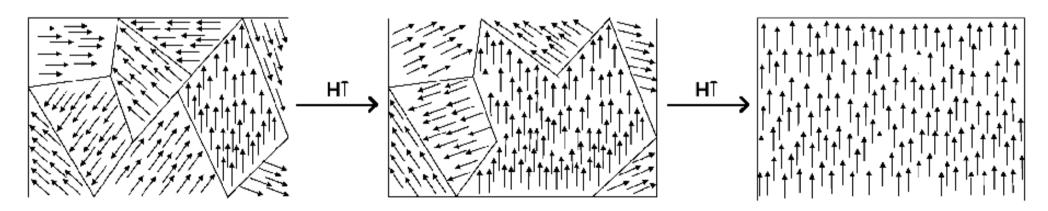
- Estructura formada por átomos tienen que poseen dipolos magnéticos permanentes normalmente distribuidos al azar.
- Dipolos atómicos se alinean con el campo externo.
- Es atraido hacia donde el campo externo aumenta

- Estructura formada por átomos tienen que poseen dipolos magneticos permanentes normalmente distribuidos al azar.
- Dipolos atómicos se alinean con el campo externo.
- Es atraido hacia donde el campo externo aumenta
- Al dejar de exponer el material al campo externo, los dipolos se vuelven a desordenar.

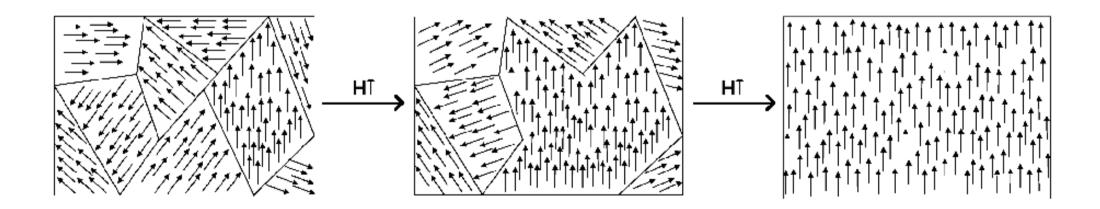


- En general son fuerzas débiles, pero en el caso de algunos líquidos, la fuerza es capaz de compararse al peso
- La figura muestra oxígeno líquido siendo vertido entre los polos de un imán

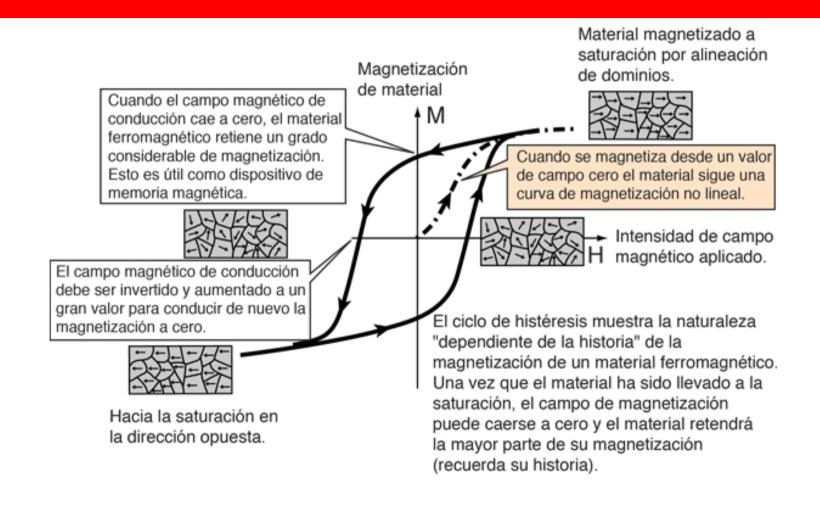
Ferromagnetismo


- Atomos tienen dipolos magnéticos permanentes.
- Por razones cuánticas, estos materiales poseen zonas llamadas dominios magnéticos.
- Los dominios tienen un tamaño de algunos $\mu m = 10^{-6} m$.
- En estos dominios, los dipolos magnéticos de los átomos/moléculas están 100% alineados.

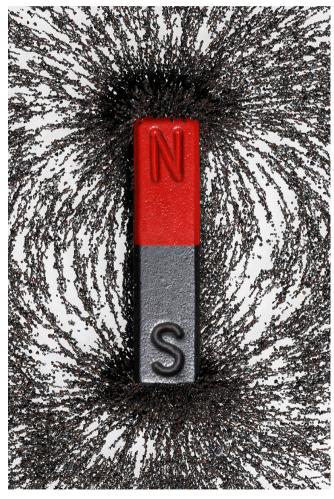
Vista de dominos magnéticos (rayas oscuras y claras) en una aleación usada para hacer imanes


Ferromagnetismo

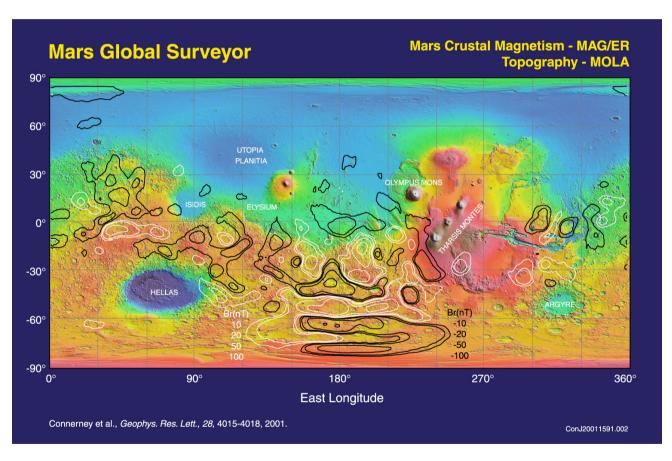
- Al ser expuestos a un campo externo los dominios se alinean más o menos con él dependiendo de la intensidad de aquel, y la temperatura.
- Son materiales atraidos al campo externo con una fuerza mayor a los paramagnéticos.
- Dentro del material el campo puede ser varios órdenes de magnitud más grande que el campo externo.



Ferromagnetismo


- Al quitar el campo externo algunos dominios pueden desorganizarse, otros no, quedando el material magnetizado permanentemente.
- Para desmagnetizar hay que calentarlo mucho o alterarlo mecánicamente.

Ferromagnetismo: ciclo de Histéresis



Imanes permanentes

Datación del dínamo marciano

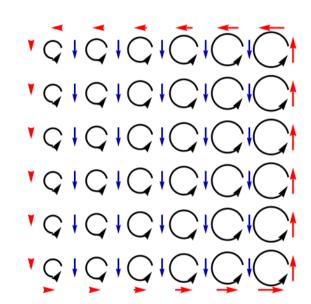
- Marte presenta magnetización cortical principalmente concentrada en el hemisferio sur.
- Las cuencas de impacto Argyre y Hellas de una edad de 4 10⁹ años están desmagnetizadas.
- En el momento de formación de ambas ya no había un campo magnético global

• Para algunos materiales el campo generado por el material \vec{B}_{mat} es proporcional al campo externo \vec{B}_{ext}

$$\vec{B}_{mat} = \chi_m \vec{B}_{ext}$$

 χ_m es la susceptibilidad magnética del material

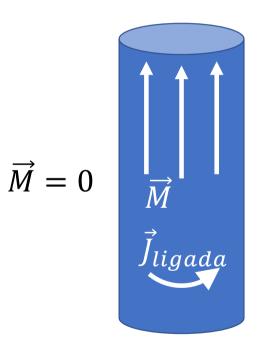
• Entonces el campo total en el material es la suma del campo generado por el material y el campo externo.


$$\vec{B} = \vec{B}_{ext} + \vec{B}_{mat} = \vec{B}_{ext} + \chi_m \vec{B}_{ext} = (1 + \chi_m) \vec{B}_{ext}$$

Tipo de material	Material	Susceptibilidad Magnética (χ) [aprox.]	Comportamiento y Aplicaciones Clave
Diamagnéticos	Bismuto (Bi)	-1.6 × 10 ⁻⁴	Más diamagnético. Repelido fuertemente por imanes; demostraciones de levitación.
	Oro (Au)	-3.4×10^{-5}	Repelido débilmente. Joyería, electrónica donde se evita interferencia magnética.
	Agua (H₂O)	-9.0×10^{-6}	Repelida. Base para la levitación diamagnética (ej.: un imán sobre agua).
	Carbono (Grafito)	-1.6×10^{-5}	Repelido y capaz de levitar. Lubricante seco, electrodos.
	Aluminio (Al)	+2.1 × 10 ⁻⁵	Atraído débilmente. Embalajes, estructuras, cables eléctricos.
Paramagnéticos Ox	Titanio (Ti)	+1.8 × 10 ⁻⁴	Atraído débilmente. Aleaciones ligeras y resistentes (aeroespacial, médica).
	Oxígeno Líquido (O₂)	+3.7 × 10 ⁻³	Fuertemente paramagnético. Combustible para cohetes, demostraciones científicas.
	Aire (a 1 atm)	+3.0 × 10 ⁻⁷	Muy débilmente paramagnético (por el O₂). Medio gaseoso omnipresente.
Ferromagnéticos	Hierro (Fe)	~200 a 5,000	El más común. Núcleos de transformadores, motores, imanes permanentes, núcleos electromagnéticos.
	Níquel (Ni)	~100 a 600	Aleaciones magnéticas, baterías recargables, blindaje magnético.
	Cobalto (Co)	~70 a 250	Imanes de alta resistencia (con Samario y Neodimio), aleaciones para herramientas de corte.
	Acero al Silicio	~500 a 4,000	Núcleos de transformadores y motores (reduce pérdidas por corrientes parásitas).
	Permalloy (80%Ni, 20%Fe)	Hasta ~100,000	Alta permeabilidad magnética. Núcleos de transformadores de audio, cabezales de grabación magnética.

• El segundo término del segundo miembro es el campo debido al material. Se define un vector polarización magnética \vec{M} tal que

$$\vec{M} = \frac{\chi_m}{\mu_0} \vec{B}_{ext} = \frac{\chi_m}{\mu_0 (1 + \chi_m)} \vec{B}$$


• El vector \overrightarrow{M} es la densidad volumétrica de momento magnético. Es el producto del número de dipolos orientados por unidad de volumen por el momento magnético $\overrightarrow{\mu}$ de cada átomo o molécula (debidos a movimiento orbital y spin).

• A partir de un análisis similar al que realizamos con dieléctricos es posible llegar a la relación entre \overrightarrow{M} y la densidad de corriente asociada a los momentos magnéticos del material polarizado, es decir, $\overrightarrow{J}_{ligada}$

$$\vec{\nabla} \times \vec{M} = \vec{J}_{ligada}$$

• En el caso de un material con \overrightarrow{M} uniforme, $\overrightarrow{J}_{ligada}$ corre sobre la superficie del material.

- Usando la definición de \vec{M} tenemos que el campo total $\vec{B} = \vec{B}_{ext} + \chi_m \vec{B}_{ext} = \vec{B}_{ext} + \mu_0 \vec{M}$
- Es decir, el campo total en el material es la suma del campo externo más una contribución de los dipolos magnéticos inducidos por el mismo campo externo.
- Ahora definimos el campo \vec{H} tal que considera el campo total menos la contribución del material:

$$\vec{H} = \frac{\vec{B}}{\mu_0} - \vec{M} = \frac{\vec{B}}{\mu_0} - \frac{\chi_m \vec{B}}{\mu_0 (1 + \chi_m)} = \frac{\vec{B}}{(1 + \chi_m)\mu_0} = \frac{\vec{B}}{\mu_m}$$

• Se define así la **permeabilidad magnética del material** μ_m .

• Entonces,

$$\vec{\nabla} \times \vec{B} = \vec{\nabla} \times (\vec{B}_{ext} + \mu_0 \vec{M}) = \vec{\nabla} \times \vec{B}_{ext} + \mu_0 \vec{\nabla} \times \vec{M}$$

• Como $\vec{\nabla} \times \vec{B}_{ext} = \mu_0 \vec{J}_{libre}$, entonces:

$$\vec{\nabla} \times \vec{B} = \mu_0 (\vec{J}_{libre} + \vec{J}_{ligada})$$

$$\vec{\nabla} \times \vec{B} - \mu_0 \, \vec{J}_{ligada} = \mu_0 \, \vec{J}_{libre}$$

$$\frac{1}{\mu_0} \vec{\nabla} \times \vec{B} - \vec{J}_{ligada} = \vec{J}_{libre}$$

• Entonces:

$$\frac{1}{\mu_0} \vec{\nabla} \times \vec{B} - \vec{\nabla} \times \vec{M} = \vec{\nabla} \times \left[\frac{\vec{B}}{\mu_0} - \vec{M} \right] = \vec{J}_{libre}$$

• Y recordando la definición de \vec{H} :

$$\vec{\nabla} \times \vec{H} = \vec{J}_{libre}$$

$$\oint_{\mathbf{C}} \overrightarrow{H} \cdot \overrightarrow{dl} = \iint_{libre} \overrightarrow{J}_{libre} \cdot \overrightarrow{da}$$

Ley de Ampère para medios magnéticos.