Appendix B

Angular Momentum in Spherical
Coordinates

In this appendix, we will show how to derive the expressions of the gradient %, the Laplacian
V2, and the components of the orbital angular momentum in spherical coordinates.

B.1 Derivation of Some General Relations

The Cartesian coordinates (x, y, z) of a vector 7 are related to its spherical polar coordinates
(.0, 9) by
x =rsinfcosg, y =rsinfsing, z =rcosd. (B.1)

The orthonormal Cartesian basis (£, 7, 2) is related to its spherical counterpart (7, 8, ¢) by

% = Fsinfcosg + 0 cosfcosp — §sing, (B.2)
$ = Fsinfsing + 0 cosOsing + ¢ cos g, (B.3)
2 = FcosO — O sinb. (B.4)

Differentiating (B.1), we obtain

dx = sinfcosodr +rcosfcospdf —rsinfsingdy, (B.5)
dy = sin@singp dr +rcosfsing df + rsinf cosp dop, (B.6)
dz = cos@dr —rsinfdo. (B.7)

Solving these equations for dr, d9, and dgp, we obtain

dr = sinfcospdx +sinfsingp dy + cosf dz, (B.8)
1 1 1

df = —cosfcospdx + —cosOsinpdy — —sinf dz, (B.9)
r r r

dp = sing cos g (B.10)

—— X - y.
7sin@ 7 sin@
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We can verify that (B.5) to (B.10) lead to
or 0 1 dp  sing

— = sinf , —=- g, — = —, B.11
ox SImucosy ox r cosgcos ox 7 sind ( )
0 00 1 0
T sinf sin ¢, — = —singp cosd, %@ _ CO.S(p , (B.12)
oy oy r oy  rsinf
0 060 1 0
- cosd, — = ——siné, @ _ 0, (B.13)
oz oz r oz
which, in turn, yield
0 o or 0 00 0 0p
_ = —— 4 —— 4 ——=
ox orox 000x  0p Ox
. 0 1 0 sing 0
= 0 — 4+ —cost — — —, B.14
sin cos¢6r+rcos cosgaae rsind g ( )
o or 000 0 0p
_ = ——— 4 —— 4+ ——
oy ordy 000y 0O dy
0 1 0 cosp 0O
= sinf sing— + — cosd sinp — —_, B.15
gZ)ar_i_r ¢60+rsin06<p ( )
0 oor 000 0 op 0 sinf 0
— = ——+=—+——=cosl0— — —. (B.16)
0z oroz 000z O¢ oz or r o0

B.2 Gradient and Laplacian in Spherical Coordinates

We can show that a combination of (B.14) to (B.16) allows us to express the operator V in
spherical coordinates:

-, (B.17)

and also the Laplacian operator V2:

- o 6o ) o o 0o p o
V=vV=(ictoeo L)y L) BaS)
or ro0 rsing dp or ro0 rsinf dgp

Now, using the relations

or a0 ¢

A Z oo, 2 _o, (B.19)
or or or

oF A 00 09

a— Z_ < 0, B.20
20 0 20 (B.20)
oF a0 o6 .

a - ¢ sin0, — =¢cosb, @ _ —7sin@ — 6§ cos O, (B.21)
op op op

we can show that the Laplacian operator reduces to

1o b 1 o o 1 82
Vie — | — (2= —(sino—= ) + ——|. B.22
) |:6r (V ar) t o o0 (Sm 69) e 8q)2:| (B:22)




B.3. ANGULAR MOMENTUM IN SPHERICAL COORDINATES 659

B.3 Angular Momentum in Spherical Coordinates
The orbital angular momentum operator L can be expressed in spherical coordinates as
6 o ¢ 0

=Y Y > 0
—RxP=(—ibrV xV = (—ibir)f x | +2— <
% (=ihr)r (=ihr)F |:r8r+r89+rsin08go

~w»

} ) (B.23)

or as .
I—_infsl -9 2. (B.24)
00  sinf op

Using (B.24) along with (B.2) to (B.4), we express the components Ly, L Vs L. within the con-
text of the spherical coordinates. For instance, the expression for L, can be written as follows:

Ly

- ) a é a
1o s etions i) (5 - 552
3 ih (rsmnfcosp +6cosfcosp —¢@sing ((0 80  sinf op )

0 0
ifi | sing— to — ). B.25
i (smgo69+co cosgoa(p) ( )
Similarly, we can easily obtain

A 0 0
Ly, =ik (—cosgoa—e +cot65in¢£), (B.26)

—inl (B.27)

L
z aw

From the expressions (B.25) and (B.26) for L » and L y, we infer that

~

. e )
r=Ly+ily,=+he*? (@ + zcotH%). (B.28)

B~

The expression for L? is

” . . 1
L? = =% 2(F x V) - (7 x V) = —h?r? [v2 — —23 (rzi):| ; (B.29)
r< or or

it can be easily written in terms of the spherical coordinates as

> 1 0 0 1 82
L? = —h*| —— (sin6— — . B.30
[sin@ 00 (sm 69) * sin® 0 a;ﬂ] (B:30)

This expression was derived by substituting (B.22) into (B.29).
Note that, using the expression (B.29) for L %, we can rewrite V2 as

1o 0 1 - 182 I -
v2 2 [ 2 [ 2 B
¥2 or (r ar) B2 ror? n2r2 (31




