
Appendix B

Angular Momentum in Spherical
Coordinates

In this appendix, we will show how to derive the expressions of the gradient ��, the Laplacian
�

2, and the components of the orbital angular momentum in spherical coordinates.

B.1 Derivation of Some General Relations

The Cartesian coordinates �x� y� z� of a vector �r are related to its spherical polar coordinates
�r� �� �� by

x � r sin � cos�� y � r sin � sin�� z � r cos �� (B.1)

The orthonormal Cartesian basis � �x� �y� �z� is related to its spherical counterpart (�r� ��� ��) by

�x � �r sin � cos� � �

� cos � cos� � �� sin�� (B.2)

�y � �r sin � sin� � �

� cos � sin � � �� cos�� (B.3)

�z � �r cos � � �

� sin �� (B.4)

Differentiating (B.1), we obtain

dx � sin � cos� dr � r cos � cos� d� � r sin � sin� d�� (B.5)

dy � sin � sin� dr � r cos � sin� d� � r sin � cos� d�� (B.6)

dz � cos � dr � r sin � d�� (B.7)

Solving these equations for dr , d� , and d�, we obtain

dr � sin � cos� dx � sin � sin� dy � cos � dz� (B.8)
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We can verify that (B.5) to (B.10) lead to
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which, in turn, yield
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B.2 Gradient and Laplacian in Spherical Coordinates

We can show that a combination of (B.14) to (B.16) allows us to express the operator �� in
spherical coordinates:
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and also the Laplacian operator �2:
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Now, using the relations
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we can show that the Laplacian operator reduces to
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B.3 Angular Momentum in Spherical Coordinates

The orbital angular momentum operator �L can be expressed in spherical coordinates as

�

�L � �

�R � �

�P � ��i
�

hr��r � �

� � ��i
�

hr��r �

�

�r
�

�r
�

�

�

r

�

��

�

��

r sin �

�

��

�

� (B.23)

or as
�
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Using (B.24) along with (B.2) to (B.4), we express the components �Lx � �Ly� �Lz within the con-
text of the spherical coordinates. For instance, the expression for �Lx can be written as follows:
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Similarly, we can easily obtain
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From the expressions (B.25) and (B.26) for �Lx and �Ly , we infer that
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The expression for �L2 is
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it can be easily written in terms of the spherical coordinates as
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This expression was derived by substituting (B.22) into (B.29).
Note that, using the expression (B.29) for �L 2, we can rewrite �2 as
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