FiSICA TEORICA 1 — 2do. Cuatrimestre de 2025

GUIA 3: MEDIOS MATERIALES Y DESARROLLO MULTIPOLAR

Medios magnéticos: imanes permanentes, permeables y corrientes magnéticas

1. Imdn permanente cilindrico. Un cilindro de radio a y longitud L estd orientado segun la direccion
z, con sus tapas en z = +1/2, y estd caracterizado por una densidad de magnetizacién uniforme
M=M:.

(a) Calcular las fuentes del campo B. Mediante la integral de Poisson, calcular el potencial vector
A en coordenadas cilindricas desarrollado segtn las funciones de Bessel J,(kp), y a partir de ahi
calcular los campos B y H. (Ayuda: en la integral de Poisson, escribir [r — r/|~! segun el tipo de
desarrollo buscado.)

(b) Mediante la integral de Poisson, calcular el potencial vector A en coordenadas cilindricas desa-
rrollado como una integral de Fourier en z, y a partir de ahi calcular los campos B y H.

(c) Calcular las fuentes de H e identificar el problema eléctrico equivalente. Calcular los campos B
y H a partir de un potencial pseudo-escalar magnético ®y, continuo en todo el espacio y tal que
H = —V&g. Escribir $ como un desarrollo en las funciones de Bessel J,(kp) o como una
integral de Fourier en z. Comparar, segun el caso, con los items (a) y (b).

(d) (A qué distribucion de corriente es equivalente este iman? A partir del campo del imén, calcular
el campo B producido por un solenoide cilindrico, de radio a y longitud L, por el que circula una
corriente / y que tiene n espiras por unidad de longitud.

(e) Calcular explicitamente los campos B y H del iman cuando L — oo.

(f) Demuestre, por analogia, que el campo magnético de un solenoide infinito de seccidn arbitraria
€s Cero en su exterior y constante en su interior.

2. Imdn dipolar puro. Una esfera de radio a estd uniformemente magnetizada con una magnetizacion
permanente M = M, Z.

(a) Calcular las fuentes del campo B y el momento dipolar magnético m del imédn.

(b) Calcular el potencial vector A mediante la integral de Poisson y, a partir de ahi, B y H. Comparar
el potencial vector A en el exterior de la esfera con el que produciria un dipolo magnético puntual
igual al momento dipolar total del iméan.

(c) Calcular las fuentes de H e identificar el problema eléctrico equivalente. Calcular los campos B
y H usando la integral de Poisson para un potencial pseudo-escalar magnético ®g, continuo en
todo el espacio y tal que H = —VPy.

(d) Calcular g usando separacion de variables en esféricas.

(e) La misma esfera magnetizada estd ahora situada en un medio lineal, isétropo y homogéneo de
permeabilidad u, que se extiende entre r = a 'y r = b > a, concéntrico con la esfera.

i. Calcular los campos B y H y encontrar el momento magnético total m,, inducido en el
medio. Verificar que para ;© = 1 se obtienen los resultados de los items anteriores.
ii. Obtener las corrientes (fuentes de B) y las pseudo-cargas magnéticas (fuentes de H).

iii. Examinar los campos B y H, sus fuentes y el momento dipolar en los casos limites de
paramagnético perfecto ;1 — 0o, y de diamagnético perfecto u — 0 (superconductor).
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3. Corrientes libres y magnéticas. Una bola permeable de radio a se ubica entre dos placas infinitas
paralelas por las que circulan corrientes superficiales uniformes de direccion opuesta y magnitud g.
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Problemal[3]
(a) Analizar las fuentes de cada uno de los campos B y H. ;Por qué no es cierto que H = —V &y ?

(con @y el potencial pseudo-escalar magnético continuo en todo el espacio).

(b) Calcular el campo H = H, + H,, con fuentes en su rotor y fuentes en su divergencia para obtener
el campo magnético B en todo el espacio.

(c) Examinar los limites ¢ — ooy p — 0, y dibujar las lineas de campo de B.

4. Matriz de Halbach (o Imdn Borgeano, segiin el poeta). Para que no se acostumbren a pensar que todos
los imanes tienen una magnetizacién uniforme, aqui se les propone el caso de un imédn limitado por
los planos z = 0y 2 = d. En las direcciones = e y se extiende entre —oo y +o00. La densidad de
magnetizacion dentro del imén estd dada por

M(z) = my (sinqz & + cosqx 2)
con ¢ > 0. Es decir, segtin un corte en el plano xz, la magnetizacién va rotando como en la figura de

abajo.
z
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Problema 4]

Puesto que la magnetizacion es permanente y conocida en todo el espacio, el paso a un problema
electrostético equivalente es el camino més sencillo. Pero como M no es uniforme, puede haber cargas
superficiales y de volumen,

U:(MI—MQ)'I], p:—VM

(a) Calcular el potencial escalar para el campo H y el campo magnético en todo el espacio, pero
especialmente en las regiones por encima y por debajo del iman. Ayuda: Integrar la funcién de Green

para cada contribucioén.

(b) La solucién es una expresion cerrada que no incluye sumatorias ni integrales. Cuando la obtengan,
hagan un poco de ingenieria inversa: analicen a posteriori qué tipo de cosas podrian haber
deducido a priori. Esto, en algunos dmbitos, recibe el nombre de mixtificacion, o también trampa,
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pero en fisica suele ser el camino normal cuando uno se enfrenta a problemas nuevos. Con
la solucién a la vista, sibitamente se vuelven triviales varias cosas, y entonces pueden dar una
solucién mds compacta y razonada.

Si el resultado no les parece desconcertante, es que hicieron algo mal o que no tienen corazon.
Por fin, ;d6nde estd lo borgeano de este imdn? Descubran ustedes en qué linea del poema La
cierva blanca se esconde una referencia borgeana al iman que acabamos de describir.

5. El imdn Saturno Saturnito. Una bola magnetizable lineal isétropa y homogénea, de radio a y con

permeabilidad i, estd centrada con una espira de radio b > a por donde circula una corriente /, como

muestra la figura.

(a)
(b)

Indicar todas las fuentes de cada uno de los campos B y H.

Calcular el campo magnético en todo el espacio en términos del campo H = H,. +H,, con fuentes
en su rotor y fuentes en su divergencia.

Problemal[5]

Dieléctricos, electretes y conductores.

6. Una céscara esférica de radio b con densidad superficial de carga eléctrica o (6) = o cos 8, produce un
campo uniforme Ey = Ej Z en el interior, con Ey = —47o(/3, y 0 el dngulo cenital medido desde el
eje z. Dentro de la cdscara se ubica una esfera concéntrica de radio a < b con un material dieléctrico

L.I.H. de permitividad ¢ en su interior.

(a)

(b)

(c)

Calcular el potencial y el campo eléctrico en todo el espacio. Hallar la distribucion de cargas de
polarizacion en el medio y el momento dipolar del dieléctrico.

Asumir que la susceptibilidad eléctrica x. = % es muy baja y obtener el campo dentro del

dieléctrico utilizando el siguiente método de aproximaciones sucesivas: Como punto de partida

asumir que dentro del dieléctrico se tiene sélo Ey y que el medio se polariza, como primer

aproximacion, con el campo P; = x. E,. Las cargas de polarizacién asociadas a P, producen un

campo eléctrico E;. Luego, la polarizacion se modifica en una cantidad Py, = . E; que, a su vez,

genera un campo Eo, y asi sucesivamente. Repetir el procedimiento para obtener la correccién E;
o0

y corroborar que la suma E = ) E; coincide con el campo interior (r < a) del item (a).
i=0

Analizar por qué el campo P en el interior preserva la direccién de las lineas del campo externo
E,. (Es esta una caracteristica general de la polarizacién en un M.L.ILH.? ;Qué pasa en el caso
limite € — 00?



7. Una esfera conductora de radio a estd a potencial cero. Entre » = a y r = b hay un dieléctrico de
permitividad ¢, y ubicada a una distancia " del origen hay una carga gq. Considerar separadamente los
doscasosa <b<r'ya<r <b.

(a) Identificar donde se encuentran las cargas y hallar el potencial electrostatico en todo punto del
espacio.

(b) Calcular las densidades de carga de polarizacidon en volumen y superficie, y las densidades de
carga libre en todo el espacio.

(c) Analizar los casos € = 1y ¢ — oo. (Cudl es la interpretacion fisica de los resultados?

Ayuda: usar la forma genérica del potencial de una cdscara cargada frente a una esfera (que puede deducirse en una linea), y
bastard plantear una sola ecuacién con una sola incognita. En otro caso tendrd que plantear 5 ecuaciones con 5 incognitas.

8. (a) En un medio de constante dieléctrica € se sumerge una esfera conductora de radio a cargada con
una carga total (). Hallar los campos E y D en todo punto del espacio y las distribuciones de
carga libre en el conductor y de polarizacién en el dieléctrico.

(b) Calcular E y D si en lugar de fijar (), la esfera conductora se conecta ahora a un potencial V.

(c) Si bien existe una analogia formal entre ambos casos, hay una diferencia esencial entre ellos: la
dependencia de los campos con €. Explicar las causas de esta diferencia.

9. Un medio dieléctrico de permitividad € ocupa el semiespacio con z < 0. A una altura d > 0 sobre el
dieléctrico hay una carga q.

(a) Encuentre el potencial electrostético en todo el espacio: (i) usando separacion de variables en
coordenadas cartesianas, y (ii) usando separacion de variables en coordenadas cilindricas.

(b) Para cada una de las expresiones obtenidas en (a), identifique la contribucién al potencial asociada
exclusivamente a la carga ¢. Es decir, escriba ¢ = ¢, + ¢,, donde ¢, es el potencial de la carga
original. ;A qué simple distribucion de cargas puntuales puede atribuirse, en cada region, la parte
restante del potencial, ¢,.?

(c) (A qué se reduce la solucion cuando € — oo? ;Cudl es la interpretacion fisica de este resultado?

(d) Generalice los resultados anteriores al caso en que el semiespacio superior estd ocupado por un
medio con permitividad ¢; y el inferior por un medio con permitividad ;. En términos de las
permitividades, ;cudl es la magnitud que caracteriza al problema?

10. Hallar el potencial electrostético en todo el espacio producido por la configuracién de la figura: un
disco de radio a y densidad superficial uniforme ¢ ubicado dentro de una esfera dieléctrica del mismo
radio y permitividad e.

11. Una carga puntual ¢ se ubica en el centro de un cilindro conductor cuyo interior esta relleno con un
material dieléctrico de constante uniforme e. El cilindro tiene seccion circular de radio R y altura L, se
encuentra centrado en el origen y conectado a tierra (sus 2 tapas y su cara lateral).

(a) Encontrar el potencial electrostitico @ en todo el espacio.

(b) Calcular todas las distribuciones de carga libres de polarizaci(’)n e indicar donde se ubican.
g y
(;Cuénta carga sc induce en el conductor?



(c) El dispositivo se enfria de forma tal que el dieléctrico se vuelve un material de polarizacién per-
manente, un electrete. Posteriormente se remueve el caparazon conductor sin alterar al electrete,
quedando la carga ¢ en el centro del cilindro macizo de polarizacién permanente: ;Cémo es el
campo eléctrico en la region exterior del conjunto electrete y carga g?

= . . N

Problema[I0] Problema[IT]

Momentos multipolares.

12.

13.

(a) Probar que los momentos multipolares de una distribucion de carga con simetria esférica son
nulos salvo el monopolar.

(b) Probar que el momento dipolar de una distribucién de carga neutra no depende del origen. En
general, probar que el primer momento multipolar no nulo es independiente del origen.

(c) Encontrar las expresiones para los momentos multipolares (en esféricas) de una distribucién con
simetria azimutal y escribir la expansion correspondiente.

Analizar los momentos multipolares, hasta el cuadrupolar, de las siguientes distribuciones de carga, y
en el caso de tener momento cuadrupolar determinar sus ejes principales:

(a) Un anillo de radio a cargado uniformemente con carga total ().
(b) Un disco cargado con una distribucién cilindricamente simétrica respecto de su eje.

(¢) Un cubo uniformemente cargado en volumen. Estimar el error en el campo eléctrico si a un cubo
de 10 cm de lado se lo considera como una carga puntual a distancias del orden de 1 m de su
centro. /A qué distancia el error es del orden del 1 %?

14. Calcule todos los momentos multipolares del problema del anillo de la Guia 2 (anillo de radio b,

15.

cargado uniformemente, concéntrico con una esfera a tierra de radio @ < 0.), y del problema del
disco uniformemente cargado, de radio a, de la misma Guia.

J Es lo mismo tener una gran distribucion de carga lejos que una pequeria distribucion cerca? Calcular
la densidad p,, de una distribucion de carga p que se ha expandido o contraido uniformemente un factor
«. Expansién significa o > 1, y contraccion, 0 < o < 1. Geométricamente, la transformacion lleva
el punto r al punto ar, y la carga contenida en el elemento de volumen dr al elemento de volumen
d®(ar). (Cudl es el potencial ®, de la distribucién transformada en términos del potencial original
®? ;Coémo se relacionan entre si los momentos multipolares de orden [, ng), de la distribucion
transformada y los momentos Q"™ de la original? Volviendo a la pregunta inicial: ;en qué sentido es
equivalente ver una distribucion desde una distancia L = aud, con «« > 1, a verla desde una distancia d
pero contraida un factor 1/a?
0

0P = (00 ‘(B> H;_0 = (1)°P ‘<;> de_0 = (1)°d :seysondsoy



