
FÍSICA TEÓRICA 1 − 2do. Cuatrimestre de 2025

GUÍA 3: MEDIOS MATERIALES Y DESARROLLO MULTIPOLAR

Medios magnéticos: imanes permanentes, permeables y corrientes magnéticas

1. Imán permanente cilíndrico. Un cilindro de radio a y longitud L está orientado según la dirección
z, con sus tapas en z = ±L/2, y está caracterizado por una densidad de magnetización uniforme
M = M ẑ.

(a) Calcular las fuentes del campo B. Mediante la integral de Poisson, calcular el potencial vector
A en coordenadas cilíndricas desarrollado según las funciones de Bessel Jν(kρ), y a partir de ahí
calcular los campos B y H. (Ayuda: en la integral de Poisson, escribir |r− r′|−1 según el tipo de
desarrollo buscado.)

(b) Mediante la integral de Poisson, calcular el potencial vector A en coordenadas cilíndricas desa-
rrollado como una integral de Fourier en z, y a partir de ahí calcular los campos B y H.

(c) Calcular las fuentes de H e identificar el problema eléctrico equivalente. Calcular los campos B
y H a partir de un potencial pseudo-escalar magnético ΦH, continuo en todo el espacio y tal que
H = −∇ΦH. Escribir ΦH como un desarrollo en las funciones de Bessel Jν(kρ) o como una
integral de Fourier en z. Comparar, según el caso, con los ítems (a) y (b).

(d) ¿A qué distribución de corriente es equivalente este imán? A partir del campo del imán, calcular
el campo B producido por un solenoide cilíndrico, de radio a y longitud L, por el que circula una
corriente I y que tiene n espiras por unidad de longitud.

(e) Calcular explícitamente los campos B y H del imán cuando L→∞.

(f) Demuestre, por analogía, que el campo magnético de un solenoide infinito de sección arbitraria
es cero en su exterior y constante en su interior.

2. Imán dipolar puro. Una esfera de radio a está uniformemente magnetizada con una magnetización
permanente M = M0ẑ.

(a) Calcular las fuentes del campo B y el momento dipolar magnético m0 del imán.

(b) Calcular el potencial vector A mediante la integral de Poisson y, a partir de ahí, B y H. Comparar
el potencial vector A en el exterior de la esfera con el que produciría un dipolo magnético puntual
igual al momento dipolar total del imán.

(c) Calcular las fuentes de H e identificar el problema eléctrico equivalente. Calcular los campos B
y H usando la integral de Poisson para un potencial pseudo-escalar magnético ΦH, continuo en
todo el espacio y tal que H = −∇ΦH.

(d) Calcular ΦH usando separación de variables en esféricas.

(e) La misma esfera magnetizada está ahora situada en un medio lineal, isótropo y homogéneo de
permeabilidad µ, que se extiende entre r = a y r = b > a, concéntrico con la esfera.

i. Calcular los campos B y H y encontrar el momento magnético total mµ inducido en el
medio. Verificar que para µ = 1 se obtienen los resultados de los ítems anteriores.

ii. Obtener las corrientes (fuentes de B) y las pseudo-cargas magnéticas (fuentes de H).

iii. Examinar los campos B y H, sus fuentes y el momento dipolar en los casos límites de
paramagnético perfecto µ→∞, y de diamagnético perfecto µ→ 0 (superconductor).
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3. Corrientes libres y magnéticas. Una bola permeable de radio a se ubica entre dos placas infinitas
paralelas por las que circulan corrientes superficiales uniformes de dirección opuesta y magnitud g.

Problema 3.

(a) Analizar las fuentes de cada uno de los campos B y H. ¿Por qué no es cierto que H = −∇ΦH?
(con ΦH el potencial pseudo-escalar magnético continuo en todo el espacio).

(b) Calcular el campo H = Hr+Hd, con fuentes en su rotor y fuentes en su divergencia para obtener
el campo magnético B en todo el espacio.

(c) Examinar los límites µ→∞ y µ→ 0, y dibujar las líneas de campo de B.

4. Matriz de Halbach (o Imán Borgeano, según el poeta). Para que no se acostumbren a pensar que todos
los imanes tienen una magnetización uniforme, aquí se les propone el caso de un imán limitado por
los planos z = 0 y z = d. En las direcciones x e y se extiende entre −∞ y +∞. La densidad de
magnetización dentro del imán está dada por

M(x) = m0 (sin qx x̂+ cos qx ẑ) ,

con q > 0. Es decir, según un corte en el plano xz, la magnetización va rotando como en la figura de
abajo.

Problema 4.

Puesto que la magnetización es permanente y conocida en todo el espacio, el paso a un problema
electrostático equivalente es el camino más sencillo. Pero como M no es uniforme, puede haber cargas
superficiales y de volumen,

σ = (M1 −M2) · n, ρ = −∇ ·M.

(a) Calcular el potencial escalar para el campo H y el campo magnético en todo el espacio, pero
especialmente en las regiones por encima y por debajo del imán. Ayuda: Integrar la función de Green

para cada contribución.

(b) La solución es una expresión cerrada que no incluye sumatorias ni integrales. Cuando la obtengan,
hagan un poco de ingeniería inversa: analicen a posteriori qué tipo de cosas podrían haber
deducido a priori. Esto, en algunos ámbitos, recibe el nombre de mixtificación, o también trampa,
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pero en física suele ser el camino normal cuando uno se enfrenta a problemas nuevos. Con
la solución a la vista, súbitamente se vuelven triviales varias cosas, y entonces pueden dar una
solución más compacta y razonada.

(c) Si el resultado no les parece desconcertante, es que hicieron algo mal o que no tienen corazón.
Por fin, ¿dónde está lo borgeano de este imán? Descubran ustedes en qué línea del poema La
cierva blanca se esconde una referencia borgeana al imán que acabamos de describir.

5. El imán Saturno Saturnito. Una bola magnetizable lineal isótropa y homogénea, de radio a y con
permeabilidad µ, está centrada con una espira de radio b > a por donde circula una corriente I , como
muestra la figura.

(a) Indicar todas las fuentes de cada uno de los campos B y H.

(b) Calcular el campo magnético en todo el espacio en términos del campo H = Hr+Hd, con fuentes
en su rotor y fuentes en su divergencia.

para r < a, encontramos:

Bµ

��
a+ · r̂ =

1X

l=0

Pl(cos ✓)
(l + 1)Al

a2

Bµ

��
a� · r̂ = (µ � 1)B0 cos ✓ � µ

1X

l=0

Pl(cos ✓)
lAl

a2
.

(33)

Igualando término a término en l, queda Al = 0 si l 6= 1, y

A1 =

✓
µ � 1

µ + 2

◆
B0a

2. (34)

A partir de aquí el problema continúa igual que antes.

Ventajas del segundo método

Si reven el primer método, notarán que una de las primeras condiciones pedidas fue que jlibre fuera cero,
porque nuestro objetivo era definir un campo H cuyo rotor fuera cero. Ahora bien, consideren el mismo
problema de la esfera magnetizable pero ahora en lugar de un campo externo uniforme, supongan que hay
una espira con corriente, como muestra la figura.

Se trata sólo de un ejemplo representativo de un problema más general en el que un medio magnetizable
convive con corrientes libres.

Si intentasen aplicar el primer método, enseguida se encontrarían con el obstáculo que representa no poder
definir un campo H con rotor cero. Adiós, potencial escalar � y adiós, problema electrostático equivalente.⇤

El segundo método, en cambio, sigue funcionando. Con el segundo método, lo que uno hacía era separar de
entrada el campo total B en una contribución B0 conocida y otra Bµ debida a la magnetización. Fue sólo un
accidente que B0 haya sido un campo uniforme. Así hubiera sido el campo producido por ciertas corrientes
estáticas, externas a la esfera magnetizable, el método hubiera seguido funcionando. No es difícil ver por
qué.

⇤Hay una forma de salvar estas dificultades, pero es un poco artificiosa. Les dejo como propuesta que la encuentren. La clave
está en el siguiente inciso: PROBLEMA ESTACIONARIO. Espero sus respuestas a vuelta de correo.
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Problema 5.

Dieléctricos, electretes y conductores.

6. Una cáscara esférica de radio b con densidad superficial de carga eléctrica σ(θ) = σ0 cos θ, produce un
campo uniforme E0 = E0 ẑ en el interior, con E0 = −4πσ0/3, y θ el ángulo cenital medido desde el
eje z. Dentro de la cáscara se ubica una esfera concéntrica de radio a < b con un material dieléctrico
L.I.H. de permitividad ε en su interior.

(a) Calcular el potencial y el campo eléctrico en todo el espacio. Hallar la distribución de cargas de
polarización en el medio y el momento dipolar del dieléctrico.

(b) Asumir que la susceptibilidad eléctrica χe = ε−1
4π

es muy baja y obtener el campo dentro del
dieléctrico utilizando el siguiente método de aproximaciones sucesivas: Como punto de partida
asumir que dentro del dieléctrico se tiene sólo E0 y que el medio se polariza, como primer
aproximación, con el campo P1 = χeE0. Las cargas de polarización asociadas a P1 producen un
campo eléctrico E1. Luego, la polarización se modifica en una cantidad P2 = χeE1 que, a su vez,
genera un campo E2, y así sucesivamente. Repetir el procedimiento para obtener la corrección Ei

y corroborar que la suma E =
∞∑
i=0

Ei coincide con el campo interior (r < a) del ítem (a).

(c) Analizar por qué el campo P en el interior preserva la dirección de las líneas del campo externo
E0. ¿Es esta una característica general de la polarización en un M.L.I.H.? ¿Qué pasa en el caso
límite ε→∞?
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7. Una esfera conductora de radio a está a potencial cero. Entre r = a y r = b hay un dieléctrico de
permitividad ε, y ubicada a una distancia r′ del origen hay una carga q. Considerar separadamente los
dos casos a < b < r′ y a < r′ < b.

(a) Identificar dónde se encuentran las cargas y hallar el potencial electrostático en todo punto del
espacio.

(b) Calcular las densidades de carga de polarización en volumen y superficie, y las densidades de
carga libre en todo el espacio.

(c) Analizar los casos ε = 1 y ε→∞. ¿Cuál es la interpretación física de los resultados?

Ayuda: usar la forma genérica del potencial de una cáscara cargada frente a una esfera (que puede deducirse en una línea), y
bastará plantear una sola ecuación con una sola incógnita. En otro caso tendrá que plantear 5 ecuaciones con 5 incógnitas.

8. (a) En un medio de constante dieléctrica ε se sumerge una esfera conductora de radio a cargada con
una carga total Q. Hallar los campos E y D en todo punto del espacio y las distribuciones de
carga libre en el conductor y de polarización en el dieléctrico.

(b) Calcular E y D si en lugar de fijar Q, la esfera conductora se conecta ahora a un potencial V .

(c) Si bien existe una analogía formal entre ambos casos, hay una diferencia esencial entre ellos: la
dependencia de los campos con ε. Explicar las causas de esta diferencia.

9. Un medio dieléctrico de permitividad ε ocupa el semiespacio con z < 0. A una altura d > 0 sobre el
dieléctrico hay una carga q.

(a) Encuentre el potencial electrostático en todo el espacio: (i) usando separación de variables en
coordenadas cartesianas, y (ii) usando separación de variables en coordenadas cilíndricas.

(b) Para cada una de las expresiones obtenidas en (a), identifique la contribución al potencial asociada
exclusivamente a la carga q. Es decir, escriba φ = φq + φr, donde φq es el potencial de la carga
original. ¿A qué simple distribución de cargas puntuales puede atribuirse, en cada región, la parte
restante del potencial, φr?

(c) ¿A qué se reduce la solución cuando ε→∞? ¿Cuál es la interpretación física de este resultado?

(d) Generalice los resultados anteriores al caso en que el semiespacio superior está ocupado por un
medio con permitividad ε1 y el inferior por un medio con permitividad ε2. En términos de las
permitividades, ¿cuál es la magnitud que caracteriza al problema?

10. Hallar el potencial electrostático en todo el espacio producido por la configuración de la figura: un
disco de radio a y densidad superficial uniforme σ ubicado dentro de una esfera dieléctrica del mismo
radio y permitividad ε.

11. Una carga puntual q se ubica en el centro de un cilindro conductor cuyo interior está relleno con un
material dieléctrico de constante uniforme ε. El cilindro tiene sección circular de radio R y altura L, se
encuentra centrado en el origen y conectado a tierra (sus 2 tapas y su cara lateral).

(a) Encontrar el potencial electrostático Φ en todo el espacio.

(b) Calcular todas las distribuciones de carga libres y de polarización e indicar dónde se ubican.
¿Cuánta carga se induce en el conductor?

4



(c) El dispositivo se enfría de forma tal que el dieléctrico se vuelve un material de polarización per-
manente, un electrete. Posteriormente se remueve el caparazón conductor sin alterar al electrete,
quedando la carga q en el centro del cilindro macizo de polarización permanente: ¿Cómo es el
campo eléctrico en la región exterior del conjunto electrete y carga q?

Problema 10.
Problema 11.

Momentos multipolares.
12. (a) Probar que los momentos multipolares de una distribución de carga con simetría esférica son

nulos salvo el monopolar.

(b) Probar que el momento dipolar de una distribución de carga neutra no depende del origen. En
general, probar que el primer momento multipolar no nulo es independiente del origen.

(c) Encontrar las expresiones para los momentos multipolares (en esféricas) de una distribución con
simetría azimutal y escribir la expansión correspondiente.

13. Analizar los momentos multipolares, hasta el cuadrupolar, de las siguientes distribuciones de carga, y
en el caso de tener momento cuadrupolar determinar sus ejes principales:

(a) Un anillo de radio a cargado uniformemente con carga total Q.

(b) Un disco cargado con una distribución cilíndricamente simétrica respecto de su eje.

(c) Un cubo uniformemente cargado en volumen. Estimar el error en el campo eléctrico si a un cubo
de 10 cm de lado se lo considera como una carga puntual a distancias del orden de 1 m de su
centro. ¿A qué distancia el error es del orden del 1 %?

14. Calcule todos los momentos multipolares del problema del anillo de la Guía 2 (anillo de radio b,
cargado uniformemente, concéntrico con una esfera a tierra de radio a < b.), y del problema del
disco uniformemente cargado, de radio a, de la misma Guía.

15. ¿Es lo mismo tener una gran distribución de carga lejos que una pequeña distribución cerca? Calcular
la densidad ρα de una distribución de carga ρ que se ha expandido o contraído uniformemente un factor
α. Expansión significa α > 1, y contracción, 0 < α < 1. Geométricamente, la transformación lleva
el punto r al punto αr, y la carga contenida en el elemento de volumen d3r al elemento de volumen
d3(αr). ¿Cuál es el potencial Φα de la distribución transformada en términos del potencial original
Φ? ¿Cómo se relacionan entre sí los momentos multipolares de orden l, Q(lm)

α , de la distribución
transformada y los momentos Q(lm) de la original? Volviendo a la pregunta inicial: ¿en qué sentido es
equivalente ver una distribución desde una distancia L = αd, con α > 1, a verla desde una distancia d
pero contraída un factor 1/α?

Respuestas:ρα(r)=α−3ρ(r
α

)
,Φα(r)=α−1Φ(r

α

)
,Q

(lm)
α=αlQ(lm).
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