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GUÍA 7: RADIACIÓN

1. Una partícula no relativista de carga Ze, masa m y energía cinética inicial E incide frontalmente desde
el infinito sobre un centro de fuerzas fijo en el origen. La interacción es repulsiva y está descripta por
un potencial V (r) que es mayor que E a distancias suficientemente cercanas al origen.

(a) Mostrar que la energía total radiada está dada por
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donde rmin es la distancia de mínimo acercamiento al centro de fuerzas.

(b) Si la interacción es Coulombiana, V (r) = ZZ ′e2/r, mostrar que la energía total irradiada es
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,

donde v0 es la velocidad de la carga incidente en el infinito.

(c) Como caso particular, considerar un positrón que incide sobre un protón. Si la velocidad inicial
del positrón en el infinito es v0, estimar su velocidad final como resultado de la perdida de energía
por radiación, despreciando el movimiento del protón. ¿Cómo está polarizada la radiación?
Despreciando ahora los efectos de la pérdida de energía por radiación, pero teniendo en cuenta la
masa finita del protón, estimar la velocidad final del positrón. Compare los dos resultados para la
velocidad final.

2. Este problema es la versión relativista del anterior. Una partícula relativista de carga q y masa m que
se mueve sobre el eje x incide sobre una partícula de carga Q fija en el origen. Las dos cargas tienen
el mismo signo. Inicialmente, en x→∞ y t→ −∞, la partícula de masa m está caracterizada por un
factor relativista γ0.

(a) Demuestre primero que para una partícula de masa m y carga q

mγ(v)v̇ = q
[
E + β ×B− (β · E) β

]
.

Esta fórmula se usa mucho en los problemas relativistas para obtener v̇.

(b) Encuentre x como función de γ. ¿Cuál es la distancia de mínimo acercamiento?

(c) Encuentre v̇ como función de γ.

(d) Encuentre γ̇ como función de γ.

(e) Escriba la potencia radiada como función de γ.

(f) Escriba la energía total radiada como una integral, ∆W =
∫ γ2
γ1
dγ f(γ), dando los valores de γ1,

γ2 y la función f en términos de los datos del problema.
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3. Una partícula relativista de carga q y masa m pasa a través de un capacitor de placas paralelas de
longitud l. El campo E en el interior del capacitor es homogéneo y constante. La partícula ingresa
al capacitor con una velocidad v0 perpendicular a E y paralela a las placas, y viaja tan rápido que su
desviación puede despreciarse.

(a) Calcule la energía total irradiada durante el paso de la partícula por el capacitor.

(b) Escriba la expresión del campo eléctrico de radiación y grafíquelo cualitativamente en función
del tiempo para los puntos −x0 y x0, que se encuentran sobre la línea que sigue la partícula,
simétricos respecto del centro del capacitor y muy alejados de éste. Tenga especial cuidado en el
cálculo de los intervalos temporales en que ese campo es distinto de cero.

4.∗ Una partícula de carga −e y masa m gira alrededor de otra mucho más pesada de carga Ze. El radio de
la órbita circular es inicialmente R.

(a) Calcular el tiempo que tarda la partícula más liviana en caer al centro debido a la pérdida de
energía por radiación, y calcular el número de vueltas que realiza antes de caer. Asumir que el
movimiento es no relativista y que la energía radiada por ciclo es mucho menor que la energía
potencial de la partícula en movimiento circular. Recordar que para una órbita circular en un
potencial atractivo de la forma −α/r, la energía total (sin considerar la energía en reposo mc2) es
igual a 1/2 de la energía potencial.

(b) Calcular el tiempo de caída y el número de vueltas en el caso de un electrón orbitando alrededor
de un protón. Inicialmente el electrón se mueve en una órbita circular correspondiente al radio de
Bohr. Datos: mec

2 = 511 keV, energía de ionización = 13.6 eV, radio de Bohr = 5.29×10−11 m,
c = 3× 108 m/s. ¿Qué falla primero, la aproximación no relativista o la aproximación de energía
radiada por ciclo mucho menor que la energía potencial?

5. Para todos los sistemas que se enumeran más abajo:

• Calcular los campos de radiación E y B hasta orden dipolar magnético y cuadrupolar eléctrico.

• Graficar cualitativamente E y B sobre la superficie de una esfera.

• Calcular la potencia por unidad de ángulo sólido y graficar su promedio temporal en función de
la dirección.

• Calcular la potencia total emitida en todas las direcciones y su promedio temporal.

• Indicar la frecuencia angular de la radiación emitida.

(a) Una carga q que gira en una órbita circular de radio a y frecuencia angular ω.
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(b) Dos cargas q y −q que giran en el plano xy con frecuencia angular ω, separadas una distancia d.

(c) Ídem al anterior pero ahora para dos cargas iguales de valor q.

(d) Un anillo circular cuyo radio es una función del tiempo a(t) = r0 cos2 ωt. El anillo tiene carga q
distribuida uniformemente.

(e) Un dipolo magnético m que rota con velocidad angular ω. El ángulo entre m y ω es α.

6.∗ Relación entre la aproximación multipolar y las correcciones relativistas. Una partícula cargada
efectúa un movimiento circular uniforme con frecuencia angular ω y radio a. Los campos de radiación
se observan desde un punto R tal que R � a. Entiéndase por campo de radiación la expresión
1
R

limR→∞R E(R, t), y lo mismo para B, manteniendo tR = t−R/c constante. (¿Cuál es la lógica de
esta definición?)

(a) A partir de las fórmulas generales de los campos E y B de una carga en movimiento arbitrario,
calcular los campos de radiación hasta orden ω3. Tenga en cuenta que necesitará calcular el
tiempo retardado hasta orden a/c en el límite en que R→∞.

(b) Encontrar los campos de radiación hasta el mismo orden en ω, pero esta vez calculando las
contribuciones de los términos de radiación multipolares hasta el orden que sea necesario.

(c) Comparar los dos resultados.

(d) A partir de los campos de radiación, calcular la potencia radiada y comparar con las fórmulas
generales del desarrollo multipolar [por ejemplo, Landau ec. 71.5].

7. Se tiene un conductor recto y delgado de longitud L alimentado por una fuente de frecuencia ω

localizada en su centro. Se desprecia la resistencia. Calcular la potencia irradiada por unidad de ángulo
sólido y la potencia total irradiada. Determinar en qué dirección es mínima la radiación, y cómo es la
polarización de la radiación en esa dirección.

8. Resuelva el problema anterior pero en el caso de tener una espira circular de radio a con corriente
I = I0 sinωt.
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