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Modern statistical mechanics directly acknowledges the indistinguishability of identical particles, a
characteristically quantum property. Under laboratory conditions such that classical physics ought to
suffice for most purposes, the indistinguishability is often incorporated by a judicious division by
N!. This paper explores a common justification for that procedure—and finds it wanting.
Nonetheless, the procedure is valid, but for a different reason. ©1997 American Association of Physics
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Identical particles are indistinguishable, and that quant
property plays a vital role in statistical mechanics. Nonet
less, when a monatomic gas has a temperature and nu
density like those of air under room conditions, mere di
sion byN! is widely believed to be a sufficient correction
a classical counting of states. In actual fact, the situatio
more subtle than that.
The issue arises most clearly when one seeks to eva

the partition functionZ,

Z5(
j
exp~2Ej /kT!, ~1!

for a monatomic ideal gas ofN atoms. The sum goes over
complete orthonormal set of energy eigenstates of the e
N-particle system. Each energyEj is a sum of single-particle
energies,

Ej5ea~1!1eb~2!1•••1eg~N!, ~2!

where ea~1! denotes the energy of the single-particle st
labeled by the subscripta and where the argument denot
the nominal label of one of the particles.
The key question is whether the ‘‘semi-classical’’ partitio

functionZsc, defined by

Zsc[
~Z1!

N

N!
, ~3!

is a good approximation toZ under realistic physica
conditions.1 The single-particle partition functionZ1 is given
by

Z15(
a

e2ea~1!/kT; ~4!

the sum goes over a complete orthonormal set of sin
particle energy eigenstates.
The numerator in Eq.~3! is a product of sums. Imagin

multiplying the factors out, so that the numerator become
sum of terms of the form

exp$2@ea~1!1eb~2!1•••1eg~N!#/kT% ~5!

for some values of the subscriptsa,b,...,g. If all the sub-
scripts are numerically different, the term is acceptable as
Boltzmann factor for anN-particle state; it arises in the sum
in Eq. ~1!; and we will call it an ‘‘all different’’ combination
of single-particle states. Any such set of subscripts arisesN!
times in the expansion of Eq.~3! but only once in Eq.~1!,
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and so the division byN! corrects exactly for the over
counting in the numerator.
If two or more subscripts in Eq.~5! are equal, then the

combination is not acceptable for fermions~because of the
Pauli exclusion principle!; it does not arise in the sum in Eq
~1!; and it should be excluded. For bosons, the term is
ceptable, but it does not arise as often atN! times in the
expansion of (Z1)

N. Thus division byN! deprives the term
of its proper weight in the sum in Eq.~1!.
To be sure, if ‘‘most’’ of the combinations of single

particle states in (Z1)
N are all-different combinations, the

Zsc ought to be a good approximation toZ. No less an au-
thority than Landau and Lifshitz give the impression th
such is the case.2 But is that really so?
Let n denote the total number of single-particle stat

taken in some practical, meaningful sense. The finitenes
n and its behavior as one scales up the system at fixed
perature are the only properties that we need. The sin
particle partition function itself gives a good estimate forn;
the reasoning goes as follows. The exponential in Eq.~4! is
essentially 1 for the states with energy up to orderkT and is
essentially zero for the states with energy much higher t
kT. Thus the sum approximates the number of single-part
states that are physically relevant.~The argument is put on
firmer, more quantitative ground in Appendix A.! Conse-
quently, let

n>Z15
V

h3
~2pmkT!3/2. ~6!

Here,V denotes the container volume, and any multiplic
arising from spin is ignored. Note thatn scales as the volume
V at fixed temperature. Let me emphasize that Eq.~6! is used
only for the scaling ofn with V at fixed temperature and fo
order-of-magnitude estimates. Thatn is of orderZ1 suffices.
Moreover, the ratio ofn to N is readily assessed. Usin

the estimate in Eq.~6!, one has

n

N
>
V

N

~2pmkT!3/2

h3
>63106, ~7!

where the numerical value pertains to air under typical ro
conditions. The ration/N is invariant under scaling at fixed
temperature and number density.
To generate an all-different combination in Eq.~5!, one

can assign numerical values to the subscripts in

n~n21!•••~n2@N21# ! ~8!
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different ways.~The expression includes all permutations
any given set of all-different subscripts.! Altogether—and
hence regardless of duplication among some subscripts—
can assign the values innN ways. Thus the fraction of all-
different combinations,f (n,N), is

f ~n,N!51S 12
1

nD S 12
2

nD •••S 12
@N21#

n D . ~9!

Is this fraction indeed close to one whenn/N563106 and
N51023?
A good analytic approximation is easily found. Take t

logarithm of Eq.~9! and then expand the individual loga
rithms:

ln f ~n,N!5 (
q51

N

lnS 12
q21

n D
>2 (

q51

N
q21

n
52

N~N21!

2n
. ~10!

Thus

f ~n,N!>expS 2
N2

2nD . ~11!

Inserting the valuesn/N563106 andN51023, one finds

f>exp~2831015!. ~12!

The fraction is embarrassingly small. Almostnone of the
terms in (Z1)

N are all-different combinations. Moreover, a
Eq. ~11! displays, if one scales the system to largerN at fixed
N/n, then the fraction becomes even smaller.
How can the semi-classical approximation retain any

lidity, especially for fermions? Using Eq.~6! to replaceZ1
by n, we find from Eq.~3! that

Zsc>
nN

N!
>S neN D N, ~13!

where the second step uses the dominant part of Stirlin
approximation forN!. We can see thatZsc is an immensely
large number. The product off (n,N) andZsc should give a
reasonable approximation to the correct partition function
fermions:

f ~n,N!Zsc>S e2N/2n
ne

N D N. ~14!

For most—if not all—calculations in statistical mechanic
the logarithm of the partition function suffices. So consid

ln~ f Zsc!>N lnS e2N/2n
ne

N D . ~15!

In the argument of the logarithm on the right-hand side,
correction factor has dwindled to virtually 1 and is to
compared withne/N, which is of order 107. Surely, one may
ignore the correction factor here.3

In short, because lnZ or, better yet,N21 ln Z play the
major role in statistical mechanics, the correction factor ha
negligible influence under the physical conditions where
semi-classical analysis ought to be valid. This happy sit
tion arisesdespitethe fact thatalmost noneof the combina-
tions of single-particles states inZsc are legitimate combina
tions or are properly counted. Once again, the logarit
comes to the rescue.4
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Appendix A provides additional mathematical detail a
includes the correction factor for bosons. Appendix B giv
additional qualitative reasoning: why the correction fac
f (n,N) scales withN as it does, and why the factor is s
small and hence the correction so large.
What should one tell an undergraduate student abou

this? Probably, the less said, the better. Perhaps one rem
that a logarithm is remarkably insensitive to changes in
argument. For example, log~10310100!>log~10100!, to within
1 percent. And then one notes that, as an approximationZsc
is good enough for all practical purposes.

APPENDIX A

The quantum distribution functions provide another w
to evaluate the correction factor. The estimated occupa
numbers are

^na&5
1

e~ea2m!/kT61
, ~A1!

where, here and henceforth, the upper sign applies for fe
ons and the lower sign, for bosons. The sum of^na& over all
a must equalN, a constraint that determines the chemic
potentialm. In broad outline, the procedure is this: First u
Eq. ~A1! to get the chemical potential; then usem in a recur-
sion relation for the partition function, iterating the relatio
from Z(N) downward to the knownZ(1), where the argu-
ment indicates the number of gas atoms in the system.
When the physical system behaves nearly like a class

gas, the exponential in Eq.~A1! must be much larger than
u61u for all a, so that the distinction between fermions a
bosons is relatively insignificant. One can expand^na&
through its first correction term beyond the classical term a
impose the constraint that determines the chemical poten

em/kT(
a

e2ea /kT7e2m/kT(
a

e22ea /kT5N. ~A2!

The first sum is simplyZ1 . Equation~6! showed thatZ1 is
proportional toT3/2. For the second sum, think of it as lik
the first sum but withT/2 in place ofT. That view implies
that the second sum equals 223/2Z1 . Solving Eq.~A2! for
exp~m/kT!, one finds

em/kT5
N

Z1
S 16

1

23/2
N

Z1
1••• D>

N

Z1
expS 6

1

23/2
N

Z1
D ,

~A3!

providedN/Z1!1. ~Additional steps in the algebra are di
played in Ref. 1, pp. 303–305.!
A recursion relation,

Z~N!5e2m/kTZ~N21!, ~A4!

follows from the definition of the chemical potential as th
change in the Helmholtz free energy@which can be written as
2kT ln Z(N)] when one atom is added to the system. F
the factor exp~2m/kT!, use the reciprocal of Eq.~A3! and
iterate the recursion relation downward:

Z~N!>Z~1!)
j52

N
Z1
j
expS 7

1

23/2
j

Z1
D

5
~Z1!

N

N!
expS 7

1

23/2Z1
(
j52

N

j D . ~A5!
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Because the sum overj equalsN2/2 ~plus insignificant
terms!, the outcome is

Z~N!>
~Z1!

N

N!
expS 7

N2

2

1

23/2Z1
D . ~A6!

The correspondence between the estimate in Eq.~11! and
this result is excellent. The equivalent ‘‘total number’’ o
single-particle states isn523/2Z1 .
For bosons, the correction factor is greater than one

compensates for theundercounting inZsc of N-particle states
with multiple occupancy of single-particle states.

APPENDIX B

Why does the correction factorf (n,N) scale withN as it
does, and why is it so small? Let us remain with fermio
The product (Z1)

N/N! certainly contains some terms th
have repeated subscripts on the energy expression and h
do not belong in a partition function for fermions. Cons
quently, there must be a correction factor~smaller than 1!.
The factor may depend on the extensive variableN and the
intensive variableN/n. Because2kT ln Z gives the Helm-
holtz free energy, which is extensive and proportional toN,
the correction factor must have the form

f ~n,N!5@g~N/n!#N ~B1!

for some functiong(N/n). BecauseN/n is of order 1027

under typical room conditions, the functiong(N/n) ought to
be less than one by only a modest amount. Nonethe
wheng(N/n) is raised to the powerN51023, the result may
be tiny indeed.
The structure in Eq.~B1! suggests a graphic illustration o

the formal calculation in Eqs. 8–11. Imagine the integer
316 Am. J. Phys., Vol. 65, No. 4, April 1997
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to n written in a tall column. Further, imagineN such col-
umns, arranged left to right. You are to pick a number—
random—from each column, starting with the column on t
left end. When you reach the middle, you will have pick
N/2 numbers. Suppose, they are all different. Then the pr
ability that your next random choice~in the next column!
will be one of those numbers is (N/2)/n and is small. The
probability of your choosing a numbernot already picked is
12N/2n>exp(2N/2n) and is very close to unity.
Now adopt exp(2N/2n) as the ‘‘average’’ probability of

choosing a number not already picked. The probability
neverduplicating is then theN-fold product of exp(2N/2n),
at least approximately. The ensuing product has the struc
of Eq. ~B1!, reproduces Eq.~11!, and is remarkably small. In
short, it is hard to achieve a perfect record.
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