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Modern statistical mechanics directly acknowledges the indistinguishability of identical particles, a
characteristically quantum property. Under laboratory conditions such that classical physics ought to
suffice for most purposes, the indistinguishability is often incorporated by a judicious division by
N!. This paper explores a common justification for that procedure—and finds it wanting.
Nonetheless, the procedure is valid, but for a different reason199® American Association of Physics
Teachers.

Identical particles are indistinguishable, and that quantunand so the division byN! corrects exactly for the over-
property plays a vital role in statistical mechanics. Nonethecounting in the numerator.
less, when a monatomic gas has a temperature and numberlf two or more subscripts in Eq5) are equal, then the
density like those of air under room conditions, mere divi-combination is not acceptable for fermioftsecause of the
sion byN! is widely believed to be a sufficient correction to Pauli exclusion principlg it does not arise in the sum in Eq.
a classical counting of states. In actual fact, the situation i$l); and it should be excluded. For bosons, the term is ac-

more subtle than that. ceptable, but it does not arise as oftenNdttimes in the
The issue arises most clearly when one seeks to evaluasxpansion of Z;)". Thus division byN! deprives the term
the partition functiorz, of its proper weight in the sum in Eql).
To be sure, if “most” of the combinations of single-
z=>, exp(—E;/KT), (1) particle states inZ;)" are all-different combinations, then
J

Zs. ought to be a good approximation #o No less an au-

L thority than Landau and Lifshitz give the impression that
for a monatomic ideal gas & atoms. The sum goes over a gch is the caseBut is that really so?

complete orthonormal set of energy eigenstates of the entire | ¢t n denote the total number of single-particle states,
N-particle system. Each enery is a sum of single-particle  taken in some practical, meaningful sense. The finiteness of
energies, n and its behavior as one scales up the system at fixed tem-
Ei=ea(1)+eg(2)+---+ e (N), ) perature are_the only prqperties that we need.. The single-
particle partition function itself gives a good estimate fipr
where €,(1) denotes the energy of the single-particle statethe reasoning goes as follows. The exponential in (BRis
labeled by the subscript and where the argument denotes essentially 1 for the states with energy up to od€rand is

the nominal label of one of the particles. essentially zero for the states with energy much higher than
The key question is whether the “semi-classical” partition kT. Thus the sum approximates the number of single-particle
function Z., defined by states that are physically relevafithe argument is put on
N firmer, more quantitative ground in Appendix )JAConse-
_ (Z1) quently, let
sc N' ’ (3)
Y
is a good approximation t&Z under realistic physical N=Z,=i3(2mm k%2, (6)
conditions® The single-particle partition functio, is given
by Here,V denotes the container volume, and any multiplicity
arising from spin is ignored. Note thatscales as the volume
Z,= >, e VKT, (4) V atfixed temperature. Let me emphasize that(Bgis used
@ only for the scaling of with V at fixed temperature and for

corder-of-magnitude estimates. Thats of orderZ, suffices.
Moreover, the ratio oh to N is readily assessed. Using
the estimate in Eq6), one has

the sum goes over a complete orthonormal set of singl
particle energy eigenstates.

The numerator in Eq(3) is a product of sums. Imagine
multiplying the factors out, so that the numerator becomesa [, (27mkT)3?2
sum of terms of the form =~ =6x10°, (7)

exp{—[eq(1)+eg(2)+ -+ €, (N)J/KT} ©) _ . . :

) where the numerical value pertains to air under typical room
for some values of the subscriptsg,...,y. If all the sub-  conditions. The ratio/N is invariant under scaling at fixed
scripts are numerically different, the term is acceptable as theemperature and number density.

Boltzmann factor for amN-particle state; it arises in the sum  To generate an all-different combination in E§), one
in Eq. (1); and we will call it an “all different” combination ¢an assign numerical values to the subscripts in

of single-particle states. Any such set of subscripts afides

times in the expansion of E¢3) but only once in Eq(1), n(n—1)---(n—[N—-1]) (8)
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different ways.(The expression includes all permutations of Appendix A provides additional mathematical detail and
any given set of all-different subscriptsiltogether—and includes the correction factor for bosons. Appendix B gives
hence regardless of duplication among some subscripts—oraalditional qualitative reasoning: why the correction factor
can assign the values im" ways. Thus the fraction of all- f(n,N) scales withN as it does, and why the factor is so

different combinationsf(n,N), is small and hence the correction so large.
What should one tell an undergraduate student about all
f(n,N)= 1( 1— E) ( 1— E) . -_(1_ [N- 1])_ (9) this? Probably, the less said, the better. Perhaps one remarks
n n n that a logarithm is remarkably insensitive to changes in its

argument. For example, 1650x 10'°%=log(10'%), to within
1 percent. And then one notes that, as an approximafign,
is good enough for all practical purposes.

Is this fraction indeed close to one whaniN=6x10° and
N=107?

A good analytic approximation is easily found. Take the
logarithm of Eq.(9) and then expand the individual loga-

rithms:
N APPENDIX A
q-1
In f(”:'\”:; Inj 1—— ) The quantum distribution functions provide another way
to evaluate the correction factor. The estimated occupation
N q-1 N(N—1) numbers are
=- =— . (10
g=1 n 2n 1
Thus (ng)= (e KT 1 (A1)
N2 where, here and henceforth, the upper sign applies for fermi-
f(n,N);exp( — —) (1) ons and the lower sign, for bosons. The sundrof) over all
2n a must equalN, a constraint that determines the chemical
Inserting the values/N=6x10° andN=10%, one finds potentialu. In broad outline, the procedure is this: First use
Eq. (A1) to get the chemical potential; then ugen a recur-
f=exp —8x10"). (12)  sion relation for the partition function, iterating the relation

from Z(N) downward to the knowrzZ(1), where the argu-
ment indicates the number of gas atoms in the system.
When the physical system behaves nearly like a classical
gas, the exponential in EA1) must be much larger than
|=1] for all @, so that the distinction between fermions and
bosons is relatively insignificant. One can expa¢m,)
through its first correction term beyond the classical term and
impose the constraint that determines the chemical potential:

nN [ne\N
ZSCEWE ~/ (13 e/.L/kTE e—ea/kTIeZ,u/kTZ e 26 /KT N (A2)

where the second step uses the dominant part of Stirling
approximation forN!. We can see thaZ is an immensely
large number. The product é{n,N) andZ,. should give a
reasonable approximation to the correct partition function fo

The fraction is embarrassingly small. Almosbne of the
terms in ;)N are all-different combinations. Moreover, as
Eq. (11) displays, if one scales the system to larlyeat fixed
N/n, then the fraction becomes even smaller.

How can the semi-classical approximation retain any va
lidity, especially for fermions? Using Ed6) to replaceZ,
by n, we find from Eq.(3) that

¥he first sum is simplyZ, . Equation(6) showed thaZ, is
proportional toT%2 For the second sum, think of it as like
the first sum but withT/2 in place of T. That view implies
that the second sum equals‘32221. Solving Eq.(A2) for

fermions: exp(u/kT), one finds
N
“nn € N 1 N N 1 N
f(n,N)Z E(e N/zn—) : (14) PT— [ = = Pl
* N e =z |17, z, PN =227 )
For most—if not all—calculations in statistical mechanics, (A3)
the logarithm of the partition function suffices. So consider providedN/Z;<1. (Additional steps in the algebra are dis-
played in Ref. 1, pp. 303—305.
ne . -
IN(fZ)=N |n(eN/2nW)_ (15) A recursion relation,
Z(N)=e #KTZ(N-1), (A4)

In the argument of the logarithm on the right-hand side, th%
correction factor has dwindled to virtually 1 and is to be
compared witme/N, which is of order 10 Surely, one may
ignore the correction factor hefe.

ollows from the definition of the chemical potential as the
change in the Helmholtz free enerfgyhich can be written as
—kTIn Z(N)] when one atom is added to the system. For
In short, because I& or, better yetN~1InZ play the the factor exp—u/kT), use the reciprocal of EQA3) and

major role in statistical mechanics, the correction factor has 4€rate the recursion relation downward:
negligible influence under the physical conditions where a N Z, 1

semi-classical analysis ought to be valid. This happy situa- Z(N)EZ(l)H - ex;{ 1—3,5—)
tion arisesdespitethe fact thatalmost noneof the combina- =2 | 2777,

tions of single-particles states ify. are legitimate combina- (Z)N 1 N
tions or are properly counted. Once again, the logarithm =Y oxd F il A5
comes to the rescife. N! +23”221]§=“2 : (A5)
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Because the sum over equals N%/2 (plus insignificant to n written in a tall column. Further, imagind such col-

termg, the outcome is umns, arranged left to right. You are to pick a number—at
(Z)N NZ 1 random—from each column, star_ting with the_ column on the

Z(N)= ! exp( T —372—) (A6) left end. When you reach the middle, you will have picked
N! 2 277, N/2 numbers. Suppose, they are all different. Then the prob-

The correspondence between the estimate in (Eg). and ~ @Pility that your next random choicgn the next column
this result is excellent. The equivalent “total number” of Will be one of those numbers iN(2)/n and is small. The
single-particle states is=2%%7, . probability of your choosmg a numbenot already picked is
For bosons, the correction factor is greater than one and~ N/2n=exp(=N/2n) and is very close to unity.
compensates for thendercounting inZ. of N-particle states ~_NOW adopt expt-N/2n) as the “average” probability of

with multiole occupancy of single-particle states. choosing a number not already picked. The probability of
P pancy giep neverduplicating is then th&l-fold product of exp N/2n),

APPENDIX B at least approximately. The ensuing product has the structure
of Eq. (B1), reproduces Eq11), and is remarkably small. In
Why does the correction factdfn,N) scale withN as it ~ short, it is hard to achieve a perfect record.
does, and why isN it so small? Let us remain with fermions.1R oh Baierlein At din tion TheorfF New York
1 H H alp aleriein,Atoms an nrormation eory-reeman, New YOrK,
The product Z;)"/N! certainly contains some terms that 1971, pp. 307—308.

have repeated ,SUbSC“pt,S,on the energy exprer_ssmn and henq_e. D. Landau and E. M. LifshitzStatistical Physic§Addison-Wesley,
do not belong in a partition function for fermions. Conse- Reading, MA, 1958 pp. 119-120, especially the second footnote on p.

quently, there must be a correction factemaller than L 120.
The factor may depend on the extensive variditland the  *Calculations of the correction date from at least 1932: G. E. Uhlenbeck
intensive variableN/n. Because—kT In Z gives the Helm- and L. Gropper, “The equation of state of a non-ideal Einstein—Bose or

Fermi—Dirac gas,” Phys. Revil, 79-90(1932. Other pertinent papers
are D. I. Ford, “A note on the partition function for systems of indepen-
dent particles,” Am. J. Phys39, 215-220; A. G. McLellan, “The classi-

holtz free energy, which is extensive and proportionaNto
the correction factor must have the form

f(n,N)=[g(N/m)]" (B1) cal limit of the partition function in statistical mechanicsipid. 40, 704—
' ) ] 709(1972; H. Kroemer, “How incorrect is the classical partition function
for some functiong(N/n). BecauseN/n is of order 10 for the ideal gas?,’ibid. 48, 962-963(1980; F. Hynne, “Quantum sta-

under typical room conditions, the functigriN/n) ought to tistics of an ideal molecular gas,bid. 49, 125-127(1981); F. Hynne,
be less than one by 0n|y a modest amount. Nonetheless“The population structure of an ideal boson gaspid. 50, 806—807

i i —1023 {1982; and R. L. Ingraham, “When can we treat identical particles as
wheng(N/n) is raised to the powel =107, the result may distinguishable? An unfamiliar classical limitjbid. 53, 119—122(1985.

be tiny indeed. . L. . The present paper is intended to complement those earlier treatments.
The structure in Eq(Bl) suggests a graphlc |IIust_rat|on of “R. H. Romer, “Editorial: Strong inequalities ll—Logarithms,” Am. J.
the formal calculation in Eqgs. 8—11. Imagine the integers 1 Phys.64, 111-112(1996.
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