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Física Teórica 3 − segundo cuatrimestre de 2025

Guía 5: fermiones ultrarrelativistas*

■ Problema 16. Para un gas ideal de fermiones ultrarrelativistas de espín s:

a) Escribir las ecuaciones paramétricas que determinan S, P, U y cV como funciones de T ,
V y N.

b) Calcular estas cantidades para T = 0 y obtener sus primeras correcciones para T > 0.

c) Mostrar que, para z ≪ 1, se recupera el límite clásico. Encontrar las primeras correc-
ciones cuánticas para la energía, el calor específico y la ecuación de estado.

d) Graficar PV/N y cV en función de T y verificar que se obtienen los comportamientos
esperados para temperaturas muy bajas y temperaturas muy altas.

■ Solución. Cuando las partículas son ultrarrelativistas, la energía de una partícula con
impulso p es ϵ(p) = pc. Entonces, la función de partición gran canónica está dada por

logZ =
gsV

h3

∫
d3p log

(
1+ ze−βpc

)
=

4πgsV

h3

∫∞
0

dp p2 log
(
1+ ze−βpc

)
, (1)

donde V es el volumen ocupado por el gas y gs = 2s + 1 es la degeneración de espín.
Integrando por partes,

logZ =
4πgsVβc

3h3

∫∞
0

dp
p3

z−1eβpc + 1
. (2)

Con el cambio de variables x = βpc, queda

logZ =
4πgsV

3(βhc)3

∫∞
0

dx
x3

z−1ex + 1
. (3)

Recordando la definición de las funciones de Fermi–Dirac,

fν(z) =
1

Γ(ν)

∫∞
0

dx
xν−1

z−1ex + 1
, (4)

la función de partición se escribe como

logZ =
4πgsV

3(βhc)3
Γ(4)f4(z) = πgsV

(
2

βhc

)3

f4(z). (5)

La longitud de onda de de Broglie de una partícula ultrarrelativista con una energía kT y
un impulso kT/c es

λdB =
h

p
= βhc. (6)
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De manera que, por analogía con el caso no relativista, podemos introducir una longitud
de onda térmica, del mismo orden de magnitud que la longitud de onda de de Broglie y
que haga que las ecuaciones se escriban de una forma más simple. Es decir, definamos

λ3 =
1

π

(
βhc

2

)3

. (7)

Entonces,

logZ =
gsV

λ3
f4(z). (8)

Lo que hay que recordar es que λ es proporcional a β.
Pasemos ahora al cálculo de las funciones termodinámicas que pide el problema. El

objetivo es obtener ecuaciones paramétricas que permitan definir estas magnitudes como
funciones de la temperatura. Para eso, necesitamos escribir primero la relación entre el
número de partículas y la fugacidad, que es el parámetro natural:

N = z
∂ logZ

∂z
=

gsV

λ3
zf ′4(z) =

gsV

λ3
f3(z) =

8πgsV

(βhc)3
f3(z). (9)

Aquí hemos usado la siguiente propiedad: zf ′ν(z) = fν−1(z). La energía del gas es

E = −
∂ logZ

∂β
=

3gsV

λ3
kTf4(z) =

24πgsV

(βhc)3
kTf4(z). (10)

Usando la Ec. (9), esto también puede escribirse como

E = 3NkT
f4(z)

f3(z)
. (11)

Para la presión, obtenemos

P = kT
∂ logZ

∂V
=

kT logZ

V
=

gs

λ3
kTf4(z) =

8πgs

(βhc)3
kTf4(z) =

NkT

V

f4(z)

f3(z)
. (12)

Notar que vale la relación PV = 1
3
E. Esto siempre ocurre cuando se consideran partículas

ultrarrelativistas, en especial, en el caso del gas de fotones. La entropía puede calcularse
de varias formas. Una posibilidad es usar la relación termodinámica Ω = E − TS − Nµ,
donde Ω = −kT logZ es el gran potencial. Así,

S

k
= βE+ logZ−N log z =

4

3
βE−N log z =

4gsV

λ3
f4(z) −N log z. (13)

Usando la Ec. (9), queda

S

Nk
=

4f4(z)

f3(z)
− log z. (14)

Con esto ya podríamos escribir las ecuaciones paramétricas que pide el problema, pero
de una manera muy poco civilizada. Es importante notar que no se necesita invertir
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ninguna función de Fermi–Dirac para graficar todas estas cantidades como funciones de la
temperatura. Lo único que hay que hacer es escribir T como función de z y, en cada caso, se
tendrá una función definida paramétricamente a través de z. Despejando kT de la Ec. (9),
tenemos

kT = hc

[
N

8πgsVf3(z)

]1/3
. (15)

Entonces, por ejemplo, la definición paramétrica de la energía como función de la tempe-
ratura es 

kT = hc

[
N

8πgsVf3(z)

]1/3
,

E = 3NkT
f4(z)

f3(z)
.

(16)

Estas ecuaciones son prácticamente inútiles. Si quisiéramos graficar E como función de kT

deberíamos elegir valores de N y de V , y lidiar con las constantes h y c. ¿Cómo podemos
extraer algo útil de una ecuación que depende de tantos detalles? La clave está en introducir
una escala característica de energía y graficar la energía por partícula, medida en esta
escala, en función de la temperatura medida en la misma escala. La escala característica
en los problemas de fermiones es la energía de Fermi, esto es, el potencial químico cuando
T = 0. Este es un parámetro intensivo que caracteriza al sistema, independientemente de
que esté o no a temperatura cero, así como la masa de una partícula caracteriza su energía
en reposo, independientemente de si la partícula está en reposo o se mueve al 99% de la
velocidad de la luz.

La energía de Fermi está determinada a través del impulso de Fermi que, a su vez, está
definido mediante la condición

N =
4πgsV

h3

∫pF

0

dp p2
F =

4πgsVp
3
F

3h3
=

4πgsVϵ
3
F

3(hc)3
. (17)

La energía de Fermi en términos de la densidad es

ϵF = hc

(
3N

4πgsV

)1/3

. (18)

La energía de Fermi depende sólo de la densidad del gas y define una escala típica de
energía. Cuando hablemos bajas o altas temperaturas, lo que determina cuándo una
temperatura es baja o alta es su comparación con al energía de Fermi.

Usando la Ec. (18), la Ec. (15) puede escribirse en una forma adimensional que compara
explícitamente las dos escalas de energía características del problema:

kT

ϵF
=

1

[6f3(z)]
1/3

. (19)
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Entonces, las ecuaciones paramétricas que definen E y S son
kT

ϵF
=

1

[6f3(z)]
1/3

,

E

NϵF
=

3f4(z)

f3(z)

kT

ϵF
;


kT

ϵF
=

1

[6f3(z)]
1/3

,

S

Nk
=

4f4(z)

f3(z)
− log z.

(20)

Esta manera escaleada de escribir las ecuaciones paramétricas tiene la ventaja de que define
funciones universales que no dependen de los parámetros de ningún sistema en particular.

Para completar nuestra lista de funciones, tenemos que calcular el calor específico a
volumen constante,

cV =
1

N

(
∂E

∂T

)
V,N

. (21)

Hemos demorado este cálculo porque no es tan directo como los otros. Puesto que la
función que conocemos no es E(T, V,N) sino E(T, V, z), aplicando la regla de la cadena,

cV

k
=

1

Nk

(
∂E

∂T

)
V,z

+
1

Nk

(
∂E

∂z

)
T,V

(
∂z

∂T

)
V,N

. (22)

Este es el único caso en donde es necesario derivar la fugacidad respecto de la temperatura.
Todas las otras relaciones involucraban derivadas a z constante o derivadas respecto de z.
A partir de la Ec. (10), obtenemos

1

Nk

(
∂E

∂T

)
V,z

=
4E

NkT
=

12f4(z)

f3(z)
. (23)

Aquí el truco está en notar que E ∝ T4, y que, entonces, la derivada respecto de la
temperatura se obtiene multiplicando a la energía por 4 y dividiendo el resultado por T .
También hay un manejo juicioso de la Ec. (11) en el último paso. Por otro lado,(

∂E

∂z

)
T,z

=
3gsVkT

λ3
f ′4(z) =

3gsVkT

λ3

f3(z)

z
=

3NkT

z
. (24)

Luego,

1

Nk

(
∂E

∂z

)
T,z

=
3T

z
. (25)

El punto más problemático sigue siendo el cálculo de (∂z/∂T)V,N en la Ec. (22). Para eso,
podemos diferenciar la Ec. (9), ayudados por la modesta observación de que, si F =

∏
i fi,

entonces

dF

F
=

∑
i

dfi

fi
. (26)

Esto puede verse directamente, pero hay una manera más elegante, conocida como dife-
renciación logarítmica, muy usada en la propagación de errores. Tomando el logaritmo
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de la ecuación F =
∏

i fi, tenemos log F =
∑

i log fi. Luego, el resultado (26) es evidente.
Aplicando esta relación a la expresión (9), queda

dN

N
= 3

dT

T
+

dV

V
+

f2(z)

f3(z)

dz

z
. (27)

De aquí leemos que (
∂z

∂T

)
V,N

= −
3z

T

f3(z)

f2(z)
. (28)

Ya tenemos todo lo necesario para calcular cV . Sustituyendo nuestros resultados en la
Ec. (22), vemos que

cV

k
=

12f4(z)

f3(z)
−

9f3(z)

f2(z)
. (29)

La ecuación paramétrica para cV en función de T es
kT

ϵF
=

1

[6f3(z)]
1/3

,

cV

k
=

12f4(z)

f3(z)
−

9f3(z)

f2(z)
.

(30)

La figura muestra los gráficos de las magnitudes termodinámicas adimensionalizadas en
función de la temperatura adimensional. Las líneas de trazos corresponden al gas ul-
trarrelativista clásico. Basta que sea kT ≳ ϵF para que el comportamiento del gas de
fermiones difiera muy poco del comportamiento del gas clásico. Es notable el apartamiento
de la función entropía cuando se considera la estadística correcta. La entropía del gas de
fermiones es cero cuando T = 0. En cambio la entropía del gas ultrarrelativista de partículas
clásicas se vuelve negativa para temperaturas suficientemente bajas.
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El problema ahora pide calcular las mismas cantidades de antes pero a T = 0, y también
sus primeras correcciones para T > 0. El caso de la energía es especial, porque podemos
hacer el cálculo en T = 0 de manera independiente. Es decir, no necesitamos analizar
el límite de las funciones E y z cuando T tiende a cero, sino que podemos directamente
calcular E a T = 0. Esto es posible porque a T = 0 la función de distribución de Fermi–
Dirac es un escalón, entonces

E =
4πgsV

h3

∫pF

0

dp p2ϵ(p) =
πgsVcp

4
F

h3
=

πgsVp
3
F

h3
ϵF. (31)

Comparando con la Ec. (9), vemos que

E

N
=

3

4
ϵF. (32)

Conociendo la energía, sabemos que la presión está dada por P = 1
3
E/V . Usando el

resultado anterior y las relaciones (17) y (18) podemos escribir P en varias formas:

P =
1

3

E

V
=

1

4

N

V
ϵF =

πgsϵ
4
F

3(hc)3
=

1

4

(
3

4πgs

)1/3

hc

(
N

V

)4/3

. (33)

Cuando la temperatura tiende a cero, la fugacidad debe tender a infinito. En efecto,
cuando la temperatura tiende a cero, el potencial químico tiende a la energía de Fermi,
que es una cantidad finita, entonces z → eβϵF → ∞. Para analizar lo que sucede en este
límite, debemos emplear el desarrollo asintótico de las funciones de Fermi–Dirac cuando
z → ∞. Este desarrollo se conoce como lema de Sommerfeld. En general, vamos a con-
formarnos con los primeros dos términos del desarrollo, que corresponden a la siguiente
aproximación:

fν
(
eξ
)
≃ ξν

Γ(ν+ 1)

[
1+

π2

6
ν(ν− 1)ξ−2

]
. (34)

La idea es escribir todas las funciones que nos interesan no como funciones de z sino como
funciones de la temperatura. Para eliminar z en términos de T , recurrimos a la Ec. (9),

N =
8πgsV

(βhc)3
f3(z), (35)

que, cuando z → ∞, usando el lema de Sommerfeld, se aproxima como

N ≃ 4πgsV

3(hc)3
µ3

[
1+ π2

(
kT

µ

)2
]
. (36)

Conviene reescribir esta relación como una ecuación de punto fijo para µ, es decir, algo de
la forma µ = f(µ):

µ = hc

(
3N

4πgsV

)1/3
[
1+ π2

(
kT

µ

)2
]−1/3

. (37)



Guía 5. Fermiones ultrarrelativistas. 7

Cuando T = 0, deberíamos obtener µ = ϵF. En verdad, comparando con la Ec. (18), vemos
que eso es cierto. Entonces, podemos reescribir la ecuación anterior como

µ ≃ ϵF

[
1+ π2

(
kT

µ

)2
]−1/3

. (38)

Si sólo nos interesa la primera corrección de temperatura finita, podemos obtener una
fórmula cerrada para µ reemplazando µ por ϵF en el miembro de la derecha y escribiendo
el resultado hasta orden (kT/ϵF)

2:

µ ≃ ϵF

[
1−

π2

3

(
kT

ϵF

)2
]
. (39)

A partir de esta relación, usando el lema de Sommerfeld, podemos escribir el resto de
las funciones que nos interesan hasta orden cuadrático en kT/ϵF. Por ejemplo, según la
Ec. (10), la energía es

E =
24πgsV

(βhc)3
kTf4(z) ≃

πgsV

(hc)3
µ4

[
1+ 2π2

(
kT

µ

)2
]
. (40)

En el término proporcional a (kT)2, podemos reemplazar µ por ϵF y, por otro lado, para
escribir µ4 usamos el resultado (39),

E ≃ πgsV

(hc)3
ϵ4

F

[
1−

π2

3

(
kT

ϵF

)2
]4[

1+ 2π2

(
kT

ϵF

)2
]
. (41)

Conservando términos de hasta orden (kT/ϵF)
2, resulta

E ≃ πgsV

(hc)3
ϵ4

F

[
1+

2π2

3

(
kT

ϵF

)2
]
. (42)

Entonces, usando la Ec. (17),

E

N
=

3

4
ϵF

[
1+

2π2

3

(
kT

ϵF

)2
]
. (43)

Esto nos permite verificar el resultado de la Ec. (32).
A partir de la Ec. (43) podemos calcular el calor específico hasta orden (kT/ϵF)

2, sin
necesidad de hacer el desarrollo de la función de la Ec. (29), lo que sería muy tedioso:

cV

k
=

1

Nk

(
∂E

∂T

)
V,N

=
π2kT

ϵF
. (44)

Para escribir el desarrollo de la entropía, podemos usar la expresión (13) que muestra que,
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en general,

S

Nk
=

4βE

3N
− log z. (45)

Reemplazando aquí la expresión (43),

S

kN
≃ βϵF

[
1+

2π2

3

(
kT

ϵF

)2
]
− βµ. (46)

Usando el resultado (39), queda

S

kN
≃ βϵF

[
1+

2π2

3

(
kT

ϵF

)2
]
− βϵF

[
1−

π3

3

(
kT

ϵF

)2
]
=

π2kT

ϵF
. (47)

Tanto el calor específico como la entropía son cero cuando la temperatura es cero. Esto
completa el ítem b) del problema.

En el otro extremo, debemos estudiar el régimen en el cual λ3N/V ≪ 1, es decir, el
régimen en donde los efectos cuánticos son pequeños. Es fácil demostrar que esta condición
equivalente a asumir que kT ≳ ϵF. Para ver esto, a partir de las Ecs. (7) y (17), tenemos

λ3N

V
=

(βhc)3N

8πV
=

gs

6
(βϵF)

3. (48)

Esto implica que, si bien es una condición suficiente, no necesitamos, estrictamente hablando,
que βϵF sea mucho menor que uno para que λ3N/V sea mucho menor que uno. Basta con
que βϵF sea un poco menor que uno. Esto explica por qué en la figura de la pág. 5 el
comportamiento del gas de fermiones se vuelve tan próximo al comportamiento del gas
clásico cuando kT es apenas mayor que ϵF.

Hemos visto que la ecuación que determina la fugacidad puede escribirse como

N =
gsV

λ3
f3(z), (49)

o, de una forma que será más útil,

λ3V

gsN
= f3(z). (50)

Entonces, si estamos diciendo que el Nλ3/V ≪ 1, debe ser f3(z) ≪ 1. Las funciones de
Fermi–Dirac son funciones crecientes de z. Su desarrollo de Taylor alrededor del origen es

fν(z) =

∞∑
ℓ=1

(−1)ℓ+1 z
ℓ

ℓν
= z−

z2

2ν
+

z3

3ν
− . . . (51)

Esto pone de manifiesto que, si fν(z) es mucho menor que 1, también debe ser z ≪ 1. El
límite clásico, por lo tanto, corresponde a z ≪ 1. No es la primera vez que encontramos
este resultado. Ahora bien, si z ≪ 1, podemos aproximar f3(z) por sus primeros términos
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del desarrollo en potencias de z y escribir

λ3N

gsV
≃ z−

z2

8
, (52)

o, escrita como ecuación de punto fijo,

z ≃ Nλ3

V
+

z2

8
. (53)

A primer orden en el parámetro pequeño Nλ3/V , resulta

z ≃ Nλ3

gsV
. (54)

La primera corrección puede obtenerse reemplazando este resultado en el segundo miem-
bro de la Ec. (53),

z ≃ λ3N

gsV
+

1

8

(
λ3N

gsV

)2

. (55)

Ahora lo único que tenemos que hacer es reemplazar este desarrollo en las expresiones de
la energía, de la presión, etc. que dedujimos en las primeras páginas. Así, por ejemplo,

E

N
=

3gsV

λ3N
kTf4(z) ≃

3gsV

λ3
kT

(
z−

1

16
z2
)

≃ 3gsV

λ3N
kT

[
λ3N

gsV
+

1

8

(
λ3N

gsV

)2

−
1

16

(
λ3N

gsV

)2
]

= 3kT

(
1+

1

16

λ3N

gsV

)
= 3kT

[
1+

1

96

( ϵF

kT

)3
]
. (56)

El calor específico que se obtiene de aquí es

cV

k
≃ 3

(
1−

1

8

λ3N

gsV

)
= 3

[
1−

1

48

( ϵF

kT

)3
]
. (57)

Por otro lado, la relación general entre la densidad de energía y la presión da

PV

NkT
≃ 1+

1

16

λ3N

gsV
= 1+

1

96

( ϵF

kT

)3

. (58)

La presión es mayor que la del gas ideal ultrarrelativista clásico en las mismas condiciones.
Esto puede verse como una consecuencia del principio de exclusión de Pauli, que obliga a
las partículas a ocupar estados de mayor impulso. Por último, para la entropía encontramos

S

Nk
=

4βE

3N
− log z ≃ 4

(
1+

1

16

λ3N

gsV

)
− log

[
λ3N

gsV
+

1

8

(
λ3N

gsV

)2
]

≃ 4+ log

(
gsV

λ3N

)
+

1

8

λ3N

gsV
= 4+ log

[
6

(
kT

ϵF

)3
]
+

1

48

( ϵF

kT

)3

.

(59)

Los dos primeros términos corresponden a la entropía del gas ultrarrelativista clásico.


