Fisica Teérica 3 — segundo cuatrimestre de 2025

Guia 5: fermiones ultrarrelativistas]
m Problema 16. Para un gas ideal de fermiones ultrarrelativistas de espin s:

a) Escribir las ecuaciones paramétricas que determinan S, P, U y ¢y como funciones de T,
VyN.
b) Calcular estas cantidades para T = 0 y obtener sus primeras correcciones para T > 0.

c) Mostrar que, para z < 1, se recupera el limite clasico. Encontrar las primeras correc-

ciones cudnticas para la energia, el calor especifico y la ecuacién de estado.

d) Graficar PV/N y cy en funcién de T y verificar que se obtienen los comportamientos

esperados para temperaturas muy bajas y temperaturas muy altas.

m Solucién. Cuando las particulas son ultrarrelativistas, la energia de una particula con

impulso p es €(p) = pc. Entonces, la funcién de particién gran canénica esta dada por

Vv 4mg.V [ _Bpe
log Z = gh—3jd3p log(1 + ze #7¢) = %Jo dp p2log(1 + ze PPe), (1)

donde V es el volumen ocupado por el gas y gs = 2s + 1 es la degeneracién de espin.

Integrando por partes,

4mgsV © 3

3h3 z lePre 417
Con el cambio de variables x = $pc, queda

g,V [ x3
log2 = —9s¥ | g X 3
8% = 3(Bhe)? L X Tex 41 3)

Recordando la definicion de las funciones de Fermi—Dirac,

£.(2) _LJ'OOdXL (4)
M N r(V) 0 Zi]ex+1)

la funcién de particién se escribe como

4migsV 2\’
log Z = S(B’ﬁmmm - ﬂgsV(m) fa(2). (5)

La longitud de onda de de Broglie de una particula ultrarrelativista con una energia kT y

un impulso kT/c es

Aas = 1—: — phe. (6)
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De manera que, por analogia con el caso no relativista, podemos introducir una longitud
de onda térmica, del mismo orden de magnitud que la longitud de onda de de Broglie y

que haga que las ecuaciones se escriban de una forma méas simple. Es decir, definamos

1/ Bhc 3
3 P JRe—
vty .
Entonces,
sV
logZ = 9}\3 f4(z). (8)

Lo que hay que recordar es que A es proporcional a f3.

Pasemos ahora al célculo de las funciones termodinamicas que pide el problema. El
objetivo es obtener ecuaciones paramétricas que permitan definir estas magnitudes como
funciones de la temperatura. Para eso, necesitamos escribir primero la relacién entre el
namero de particulas y la fugacidad, que es el pardmetro natural:

dlogZ g5V gsV _ 8mgsV

oz s il =il =

N =z f3(z). (9)

(Bhe)*
Aqui hemos usado la siguiente propiedad: zf/,(z) = f,_;(z). La energia del gas es

KTfs(z) = 2(?37;%!/””(”' (10)

_0logZ 395V

E = =
op E

Usando la Ec. (9)), esto también puede escribirse como

fa(z)
E = 3NKkT . 11
f(2) -
Para la presién, obtenemos
OlogZ kTlogZ  gs 8mg; NKT f4(z)

Notar que vale la relacion PV = $E. Esto siempre ocurre cuando se consideran particulas
ultrarrelativistas, en especial, en el caso del gas de fotones. La entropia puede calcularse
de varias formas. Una posibilidad es usar la relacién termodindmica QO = E — TS — Ny,

donde () = —kTlog Z es el gran potencial. Asi,

S 4 4g.V
> = BE+logZ —Nlogz = BE —Nlogz = 9}]\3 fa(z) — Nlog z. (13)
Usando la Ec. (9), queda
S 4f4(2)
> ~logz. 14
Nk f3(z) &7 (14)

Con esto ya podriamos escribir las ecuaciones paramétricas que pide el problema, pero

de una manera muy poco civilizada. Es importante notar que no se necesita invertir
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ninguna funcién de Fermi-Dirac para graficar todas estas cantidades como funciones de la
temperatura. Lo tnico que hay que hacer es escribir T como funcién de z y, en cada caso, se
tendrad una funcién definida paramétricamente a través de z. Despejando kT de la Ec. (9),

tenemos

N 1/3
kT =hc|——| - 15

¢ {87195%%(2)} (15)
Entonces, por ejemplo, la definicién paramétrica de la energia como funcién de la tempe-

ratura es

N 1/3
KT=he|——
C{gﬂgsvﬁ(l)] ,

(16)
f4(z)

E = 3NkT
f3(z)

Estas ecuaciones son practicamente inttiles. Si quisiéramos graficar E como funcién de kT
deberiamos elegir valores de N y de V, y lidiar con las constantes h y c¢. ;Cémo podemos
extraer algo ttil de una ecuacién que depende de tantos detalles? La clave esta en introducir
una escala caracteristica de energia y graficar la energia por particula, medida en esta
escala, en funcién de la temperatura medida en la misma escala. La escala caracteristica
en los problemas de fermiones es la energia de Fermi, esto es, el potencial quimico cuando
T = 0. Este es un pardmetro intensivo que caracteriza al sistema, independientemente de
que esté o no a temperatura cero, asi como la masa de una particula caracteriza su energia
en reposo, independientemente de si la particula esta en reposo o se mueve al 99% de la
velocidad de la luz.

La energia de Fermi estd determinada a través del impulso de Fermi que, a su vez, estd
definido mediante la condicién

N

_ 4mtgV JPF ,  A4mg Vpi  4mgVe; (17)

oy PPET T3 T 3(he)s

La energia de Fermi en términos de la densidad es

3N\
eF:hc(4ﬂg V> . (18)

La energia de Fermi depende sélo de la densidad del gas y define una escala tipica de

energia. Cuando hablemos bajas o altas temperaturas, lo que determina cuando una
temperatura es baja o alta es su comparacion con al energia de Fermi.
Usando la Ec. (18), la Ec. puede escribirse en una forma adimensional que compara
explicitamente las dos escalas de energia caracteristicas del problema:
kT 1

L — 19
er  [6f5(z)]"° (19)
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Entonces, las ecuaciones paramétricas que definen E y S son

KT_ 1 M___1
er [6f3(2)"% er  [6f5(z)])"3
(20)
(B 3falz) kT S M),
Ner  f3(z) €5’ Nk f3(z) &2

Esta manera escaleada de escribir las ecuaciones paramétricas tiene la ventaja de que define
funciones universales que no dependen de los pardmetros de ningtin sistema en particular.
Para completar nuestra lista de funciones, tenemos que calcular el calor especifico a

volumen constante,

1 /0E
——(=) . 21
v=xi(5),, oy
Hemos demorado este cdlculo porque no es tan directo como los otros. Puesto que la
funcién que conocemos no es E(T, V,N) sino E(T,V, z), aplicando la regla de la cadena,

cv 1 (oE +L ot 0z _ (22)
kT Nk\aT),, " NKk\az ) \aT

Este es el tinico caso en donde es necesario derivar la fugacidad respecto de la temperatura.
Todas las otras relaciones involucraban derivadas a z constante o derivadas respecto de z.
A partir de la Ec. (10)), obtenemos

1 (6E> L 4E 12f4(2)
V,z

(9t _ , p
Nk \dT NKT  f3(z) (23)

Aqui el truco estd en notar que E o T?, y que, entonces, la derivada respecto de la
temperatura se obtiene multiplicando a la energia por 4 y dividiendo el resultado por T.
También hay un manejo juicioso de la Ec. en el daltimo paso. Por otro lado,

ot 39, VKT , 395 VKT f3(z)  3NKT
— — f = = . 24
( az>T)Z A3 a(2) A3 z z (24)
Luego,
1 (0o 3T
— = ==, 2
Nk ( 0z ) 1. Z (25)

El punto mds problematico sigue siendo el calculo de (0z/0T)v N en la Ec. . Para eso,
podemos diferenciar la Ec. @, ayudados por la modesta observaciéon de que, si F =[], fi,
entonces

dF df;
=2 (26)

i
Esto puede verse directamente, pero hay una manera maés elegante, conocida como dife-

renciacién logaritmica, muy usada en la propagacién de errores. Tomando el logaritmo
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de la ecuaciéon F = [[; fi, tenemos logF = ) . log f;. Luego, el resultado (26) es evidente.
Aplicando esta relacion a la expresion (9), queda
dN dT dV fy(z)dz

=3 — =, 2
N 3T—i—V—ng,(z)z (27)

De aqui leemos que

0 3zf
0z)  __3hlD), o
oT )y N T fa2(z)

Ya tenemos todo lo necesario para calcular cy. Sustituyendo nuestros resultados en la

Ec. (22), vemos que
Cv . 12f4(Z) o 9f3(2)

A ) 29
KT RE R 2
La ecuacién paramétrica para cy en funciéon de T es
K__ T
e [6f3(2)]'?
(30)

cv 1214(2) B 913(z)
k  f3(z) fa(z)

La figura muestra los graficos de las magnitudes termodindmicas adimensionalizadas en
funciéon de la temperatura adimensional. Las lineas de trazos corresponden al gas ul-
trarrelativista cldsico. Basta que sea kT 2 ep para que el comportamiento del gas de
fermiones difiera muy poco del comportamiento del gas clasico. Es notable el apartamiento
de la funcién entropia cuando se considera la estadistica correcta. La entropia del gas de
fermiones es cero cuando T = 0. En cambio la entropia del gas ultrarrelativista de particulas
clasicas se vuelve negativa para temperaturas suficientemente bajas.

1.2 1.4
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El problema ahora pide calcular las mismas cantidades de antes pero a T = 0, y también
sus primeras correcciones para T > 0. El caso de la energia es especial, porque podemos
hacer el célculo en T = 0 de manera independiente. Es decir, no necesitamos analizar
el limite de las funciones E y z cuando T tiende a cero, sino que podemos directamente
calcular E a T = 0. Esto es posible porque a T = 0 la funcién de distribucién de Fermi-

Dirac es un escalén, entonces

AmgsV (P* . ngsVepy _ mgsVpi
E= 3 L dp pTe(p) = T s oF (31)
Comparando con la Ec. (9), vemos que
E 3
Conociendo la energfa, sabemos que la presién estd dada por P = 1E/V. Usando el

resultado anterior y las relaciones y podemos escribir P en varias formas:

4 1/3 4/3
leEzlﬂeF: 195 €r :1 3 hc E . (33)
3V 4V 3(he)® 4\ 4mg, \'

Cuando la temperatura tiende a cero, la fugacidad debe tender a infinito. En efecto,
cuando la temperatura tiende a cero, el potencial quimico tiende a la energia de Fermi,
que es una cantidad finita, entonces z — eP¢F — oco. Para analizar lo que sucede en este
limite, debemos emplear el desarrollo asintético de las funciones de Fermi-Dirac cuando
z — oo. Este desarrollo se conoce como lema de Sommerfeld. En general, vamos a con-
formarnos con los primeros dos términos del desarrollo, que corresponden a la siguiente

aproximacion:

& 2 _
fy(e") ~ orm] 1+ %V(‘V— NEZ2. (34)

La idea es escribir todas las funciones que nos interesan no como funciones de z sino como

funciones de la temperatura. Para eliminar z en términos de T, recurrimos a la Ec. @D,

_ fgf;;ﬁfs(z), (35)

que, cuando z — oo, usando el lema de Sommerfeld, se aproxima como

+ 72 (%) 2] : (36)

Conviene reescribir esta relacién como una ecuacién de punto fijo para u, es decir, algo de

~1/3
3N \'3 KT\ ?
“:hc(47[9 V) [1 + 72 <E) : (37)

N 4”95Vp3
~ 3(hc)3

la forma p = f(u):
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Cuando T = 0, deberiamos obtener 1 = €g. En verdad, comparando con la Ec. (18], vemos

que eso es cierto. Entonces, podemos reescribir la ecuacién anterior como

1+ nz(%)zl _]/3. (38)

Si s6lo nos interesa la primera correcciéon de temperatura finita, podemos obtener una

H=€p

férmula cerrada para p reemplazando p por er en el miembro de la derecha y escribiendo

el resultado hasta orden (kT/eg)?:

L~ e [1 f‘;(g)zl (39)

A partir de esta relaciéon, usando el lema de Sommerfeld, podemos escribir el resto de

las funciones que nos interesan hasta orden cuadratico en kT/er. Por ejemplo, segin la
Ec. (10), la energia es
KT\ ?
1 +27r2<—) ] (40)
H

En el término proporcional a (kT)?, podemos reemplazar p por €f y, por otro lado, para

_ 24mngsV
~ (Bhe)?

_mgsV
~ (he)?

E kTf4(z) ut

escribir u* usamos el resultado (39),

4
]_7'[2 KT\ ?
3 €F

Conservando términos de hasta orden (kT/ep)?, resulta

gsV 4

E~
(he)? F

2
ngsV , 27 (KT
Er~r —— 14+ — | — . 42
(hc)3eF + 3 \er (42)
Entonces, usando la Ec. (17)),
E 3 2m (KT’
— =—¢p|1+—|(— . 4
N 4€F[ 3 (ep>] (43)

Esto nos permite verificar el resultado de la Ec. ([32]).
A partir de la Ec. podemos calcular el calor especifico hasta orden (kT/eg)?, sin
necesidad de hacer el desarrollo de la funcién de la Ec. (29), lo que seria muy tedioso:

2
ev _ T (oY kT (44)
kK NK\OT)yn er

Para escribir el desarrollo de la entropia, podemos usar la expresion (13) que muestra que,
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en general,

S 4BE
— =—— —logz. 4
Nk~ 3N %% (45)
Reemplazando aqui la expresion (43)
S 2m? (KT ?
m_ﬁep [1 —|—T(€—F) ] —E)LL. (46)
Usando el resultado (39), queda
S 2m? (KT ? KT kT
=~ = (= (=) | = . A7

Tanto el calor especifico como la entropia son cero cuando la temperatura es cero. Esto
completa el item [b)| del problema.

En el otro extremo, debemos estudiar el régimen en el cual A*N/V < 1, es decir, el
régimen en donde los efectos cuanticos son pequefios. Es facil demostrar que esta condicién

equivalente a asumir que kT 2 er. Para ver esto, a partir de las Ecs. (7)) y (L7), tenemos

AN (th)3N
\Y4 8V

(BeF) : (48)

Esto implica que, si bien es una condicién suficiente, no necesitamos, estrictamente hablando,
que Ber sea mucho menor que uno para que A*N/V sea mucho menor que uno. Basta con
que Ber sea un poco menor que uno. Esto explica por qué en la figura de la pég. 5| el
comportamiento del gas de fermiones se vuelve tan préximo al comportamiento del gas
clasico cuando kT es apenas mayor que €g.

Hemos visto que la ecuaciéon que determina la fugacidad puede escribirse como

sV
N = 97\—3f3(2)> (49)
o, de una forma que serd més til,
A3V
N f3(z2). (50)
S

Entonces, si estamos diciendo que el NA®/V < 1, debe ser f3(z) < 1. Las funciones de

Fermi-Dirac son funciones crecientes de z. Su desarrollo de Taylor alrededor del origen es

> z z z
e M AT (51)
=1
Esto pone de manifiesto que, si f,(z) es mucho menor que 1, también debe ser z < 1. El
limite cldsico, por lo tanto, corresponde a z < 1. No es la primera vez que encontramos

este resultado. Ahora bien, si z <« 1, podemos aproximar f3(z) por sus primeros términos



GuiA 5. FERMIONES ULTRARRELATIVISTAS. 9

del desarrollo en potencias de z y escribir

AN z?
g V ~Z— g, (52)

0, escrita como ecuacién de punto fijo,

N7\3 2
2o T+Z§' (53)

A primer orden en el pardmetro pequefio NA?/V, resulta

NN
~ v

z (54)

La primera correccién puede obtenerse reemplazando este resultado en el segundo miem-
bro de la Ec. (53),

MN O T/A3N)?
~ — . 5%5)
- 95V+8<95V) (55)

Ahora lo tinico que tenemos que hacer es reemplazar este desarrollo en las expresiones de

la energia, de la presion, etc. que dedujimos en las primeras paginas. Asi, por ejemplo,

E 39,V 3g,V T\ 39V [A3N 1T /A3NN 1 /8N
— = KTf4(z) ~ KT(z— —22 ) ~ KT — ——
4(z) (‘7‘ z oV 3\ g.v 16\ g.V

NERIPEIN e 16° ) = MN
1 ASN 1 /epy3
3 T< +1693v) 3 T{ +5¢(ier) } (56)

El calor especifico que se obtiene de aqui es

cy TANY 1 /epy3
?_3(]_§95V)_3[]_48(kT>]' (57)

Por otro lado, la relacién general entre la densidad de energia y la presién da

PV o 1?\3N_1 1<ep>3.

16 KT

NKT O T 769V T T 96 (58)

La presién es mayor que la del gas ideal ultrarrelativista clasico en las mismas condiciones.
Esto puede verse como una consecuencia del principio de exclusién de Pauli, que obliga a

las particulas a ocupar estados de mayor impulso. Por dltimo, para la entropia encontramos

S 4BE 1 A3N AN 1 /AN
2 TP ogz 414 — —1 —
0gz ( + ) og gSV+8<gsV

Nk ~ 3N 16 9.V
(59)
gsV) TAN KT\?| 1 /epy3
~ 441 LA T (Y
* 0g(7x3N> Tggv ATleslel ) g (i)

Los dos primeros términos corresponden a la entropia del gas ultrarrelativista cldsico.



