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Uno de los objetivos declarados:

8" +sinf@ =0

Vr

counter—clockwise rotations

H=2se

ratrix

clockwise rotations



Variedades invariantes

Existen trayectorias particulares que ordenan al resto.
Vr

counter—clockwise rotations

H=2se

ratrix

clockwise rotations

Son variedades invariantes ante la dinamica, que
incluyen (tocan) a puntos estacionarios

Y se conocen como las variedades estables, inestables o centrales de los puntos fijos.
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Son elementos importantisimos de la descripcion de un sistema no lineal, porque

ayudan a ordenar lo global!
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Existen trayectorias particulares que ordenan al resto.
Vr

counter—clockwise rotations

H=2 separatrix

. 0s Mations

clockwise rotations

Esto es irse un poquito mas alla de los
puntos fijos, para explorar lo global.

Y uno comienza a alejarse del punto fijo,
mirando la dinamica linealizada alrededor

de los puntos fijos



Un breve repaso de lo que uno puede aprender linealizando

(arrae) = rron o) G)=4()

Si existen V] y V, autovectores de A con autovalores reales y distintos

7 4 V2 Vi(t) = V1(0)eht
" Vo () = Vo (0)e?t
>
X Y como. V; y V, son linealmente independientes,

cualquier punto en el plano puede escribirse en terminos de
esos vectores, y entonces su evolucion sera:



Un breve repaso de lo que uno puede aprender linealizando

(dX/dt) _ (afl/ax 5f1/®) (x) _ 2 (x>
dy/dt df2/0x 0f,/0y) \y y
Si existen V] y V, autovectores de A con autovalores reales y distintos

Y 4 V2 Vi(t) = Vyett
Vl VZ (t) - Vzelzt

Si x(O) = (1 V]_ + Cy VZ

x(t) = ¢, VieMt 4 ¢, Vyet2t




Un breve repaso de lo que uno puede aprender linealizando

(arrae) = rron o) G)=4()

Supongamos autovalores complejos

s o)

Que tiene autovalores +ifs



Un breve repaso de lo que uno puede aprender linealizando

(arrae) = rron o) G)=4()

Supongamos autovalores complejos

(5 0 C)=-5()

l

X —By = —ipx v, = (1>

e (1 [ cos(Bt) —isin(Bt) \ [cos(Bt) _(—sin(ft)
X(@) =" (l) B (i(cos(ﬁt) — isin(,Bt))> B (sin(ﬁt)) i ( cos(ft) >



Un breve repaso de lo que uno puede aprender linealizando

(dX/dt) _ (afl/ax 5f1/63’) (X) _ 2 (x>
dy/dt df2/0x 0f,/0y) \y y
Supongamos autovalores complejos

y A

/ 4} V;
>

x — —

e (1 cos(ft) _[—sin(Bt)
X() = e ( ) (sin(ﬁt)) ik ( cos(ft) )

l



Un breve repaso de lo que uno puede aprender linealizando

=Grox of0y) ) =4C)

Supongamos autovalores complejos

y A

-

Y como antes, para cualquier condicion inicial,
proyectamos en V,(0), V;(0), y evolucionamos

Vi V

A

g (1 [cos(Bt) _[—sin(Bt)
X() = e (l) B (sin(ﬁt)) ik ( cos(ft) )



Un breve repaso de lo que uno puede aprender linealizando

=Grox of0y) ) =4C)

Supongamos autovalores complejos

y A

-

Y como antes, para cualquier condicion inicial,
proyectamos en V,(0), V;(0), y evolucionamos

Vi V

A

g (1 [cos(Bt) _[—sin(Bt)
X() = e (l) B (sin(ﬁt)) ik ( cos(ft) )



Un breve repaso de lo que uno puede aprender linealizando

(arrae) = rron o) G)=4()

Supongamos autovalores complejos

X Al=a+ip V1_(1>

X(t) = e(“+iﬁ)t (]l-) — e(“)t< COS(’Bt) ) + l'e(a)t<

—sin(ft)

sin(ft)
cos(ft)

)
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Vr

counter—clockwise rotations

H=2 separatrix

. osCMations

clockwise rotations

(aysa) = (oosr 0)(a) =4 ()
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Existen trayectorias particulares que ordenan al resto.

Un poco mas formalmente, una variedad de dimension n es un espacio
que se parece localmente a R". Una variedad puede ser vista como un
objeto compuesto de parches n-dimensionales pegados
topolégicamente (ver variedad diferenciable).

'\

Son variedades invariantes ante la dinamica, que
incluyen (tocan) a puntos estacionarios

Y se conocen como las variedades estables, inestables o centrales de los puntos fijos.

Son elementos importantisimos de la descripcion de un sistema no lineal, porque
ayudan a ordenar lo global!
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Existen trayectorias particulares que ordenan al resto.

Invariante ante la dinamica es que
Como conjunto, se mapea sobre si mismo.
Una trayectoria, bah.

J—

Son variedades invariantes ante la dinamica, que
incluyen (tocan) a puntos estacionarios

Y se conocen como las variedades estables, inestables o centrales de los puntos fijos.

Son elementos importantisimos de la descripcion de un sistema no lineal, porque
ayudan a ordenar lo global!
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. dx_ b2
ac Y
dy 3
ac



Vamos a hacer algo “muy poco nld”
(buscar soluciones analiticas)

\\> Sabemos que y(t) = yoe~ " es solucién de la segunda ecuacién. Por lo

tanto,

dx
—_=x+4 Ze—Zt'
dt Yo

por lo que, si proponemos x(t) = Ce ™

dx
rrim —2Ce %t = Ce " + yle %,

de donde C queda definido, al despejar de la dltima igualdad en la

ecuacion anterior:
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de donde € queda definido, al despejar de la altima igualdad en la
ecuacion anterior:
2
~Yo
C = .
3

De este modo, sumando la solucién de la ecuacion homogénea con esta
particular, tenemos que

2

x(t) = ae' —y?oe'z‘,

de manera tal que, en términos de las condiciones iniciales (X, ¥p), la

solucion queda:
2 2
- Yo\ ¢ Yo 2
x(t)—(x0+3) 3e ,

t

y(t) = ype".
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Con esta solucion explicita, notemos que existe una trayectoria muy : b o d
especial. Supongamos que tenemos una condicion inicial tal que _ La oratquo e
sistemas dinamicos
2
Yo
+—=—=0

3

Entonces, como se cumple que x(t) = -y—;’ ety que y(t) = y e, se
cumple para todo tiempo que: '

y*(t) Yo Yo\ o
= (-2 422 )e-2t =,
x(t) + 3 ( 3+3 e

Por lo tanto, la condicién inicial que hemos elegido nos coloca en una >

variedad invariante, es decir que la curva es mapeada por el flujo en si
misma (figura 1).

Notar que x(t) = —(yo/3)e™*", y(t) = (yo)e™

X va a cer mucho mas rapido que y, o sea que cerca de cero, va tangente al eje y



Notar que la tangente de la variedad invariante estable,
es la variedad lineal estable!

)




Notar que la tangente de la variedad invariante estable,
es la variedad lineal estable!

ﬁ

i) =(622)()

Auto vector 1= ((1)) con autovalorA =1

Auto vector 2= (2) con autovalor A = —1




Definicién. Sea x* el punto fijo del sistema x'= F(x), generador del flujo
¢¢(x), es decir, del conjunto de trayectorias del problema. Llamamos

variedades estables e inestables locales WSStPte (x*) y wlnestable vy

del punto fijo a los siguientes conjuntos:

westable(x*y = {x € Ul¢(x) —x", con ¢(x) € U para todo t}

W inestable (y+y = {x € Ulp,(x) —— X", con ¢.(x) € U para todo t}

Esto es, los puntos del entorno U del punto fijo (de ahi el adjetivo “lo-
cal”) que convergen a (divergen de) este, para todo tiempo, sin escapar
del entorno.
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Definicion. Llamamos variedades globales estable e inestable del punto
fijo x* a los conjuntos

Westablc e 9 ¢t(wlzt'wble (x-))'
ts0
Wlncstable - _ ¢t(W‘f0ncestable (x‘)),
tz0

lo cual quiere decir que si conocemos, por ejemplo, las variedades lo-
cales estables, podemos iterarlas hacia atrds para obtener las variedades
estables globales (esto es, reconstruimos hacia atris lo que terminard
convergiendo en la variedad estable local). De ahi la condicion de “t< 0"
en la definicion. Equivalentemente, integrando hacia adelante la variedad
local inestable, tenemos la variedad inestable.

Estos pasos constituirin un procedimiento algoritmico, una vez pres-
cripto el modo de calcular las variedades locales estables o inestables.
Lo logramos gracias a un teorema que afirma que en el entorno del
punto fijo x*, las variedades locales inestables son tangentes a la varie-

dad inestable del problema linealizado Einestable y las estables, a las

E®St@Pt¢ (en la medida en que el punto x* sea hiperbélico).

Modelado del continuo
G. M

Laboratorio de
sistemas dinamicos



Teorema. Sea x* un punto fijo hiperbélico de x'=F(x). Entonces
existen las variedades locales estables e inestables, de dimensiones
Nestabtes: Ninestapie Uas dimensiones de las variedades estable e ines-
table del problema linealizado Eestable pinestabley N4 ain, en el

punto fijo hiperbélico, las variedades locales estables e inestables son

tangentes a Ecstable' Elncsmblc.

YA
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Ahora estamos equipados para calcular las variedades estables e ines-
tables de un punto fijo hiperbélico. Una vez linealizado el problema,
calculamos las variedades estables e inestables. Luego, en el caso de la
variedad inestable, tomamos una condicién inicial en el entorno del
punto fijo, en la direccién de E'™e5@P¢ T yego, integramos el campo
vector. La trayectoria serd cercana a la WS*@P1 Pary yna integracion
que se llevé a cabo por un tiempo dado, nos garantizamos que hemos
elegido una condicién inicial adecuada asegurindonos de que, con una
condicion inicial mds préxima ain al punto fijo, obtenemos una curva
que se superpone con la original. Un procedimiento anidlogo, pero eli-

y A
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Puntos fijos. 6 = 0, 0 =n(=—-mn)
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clockwise rotations
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do
= 2=f6.9
d() _
i —sin(0) = £,(6,Q)
Puntos fijos. 6 = 0, 0 =1n(=—m)
9h 94
a0

%(Z): % % CZ) (—Co(l(@) (1))(;2)
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40 _ Q=f(06,0)
dt - - fl )
d() _
i —sin(0) = £,(6,Q)
Puntos fijos. 6 = 0, 0 =1n(=—m)

9h Oh
96 90

42 )6 e



()= )6)
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Omega

2.0 A

1.5 1

1.0 4

0.5 A

0.0 1

-1.0 1

—1.5 A

-2.0 1

Phase Portrait of Pendulum

0" +sin(6) =0

—— Trajectory 1
— Trajectory 2
® (0,0)
® (pi,0)
(-pi, 0)
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1. Encuentro el punto fijo
Verde (m, 0)

2. Linealizo, y encuentro
Las variedades locales estable
E inestable (autovectores
del problema linealizado)

3. Tiro una trayectoria
Numerica, cerquita del punto
Fijo, y de la variedad estable
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8" +sing =0

Phase Space of Pendulum

— Trajectory 1
—— Trajectory 2

theta'

1.5 1

1.0 1

0.5 -

0.0 -

—0.5 1

_1_0 -

_1_5 -

—2.0 1

—— Trajectory 3
o
L
]

(0, 0)
(pi, 0)
(-pi, 0)
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En algunos casos, es posible demostrar la existencia de tal trayecto-
ria, aunque no la podamos calcular. Supongamos que estamos tratando
con un sistema que presenta simetria de reversion temporal, esto es, si

Laboratorio de
sistemas dinamicos

t = —t
dx dx
—— en) o= e )
dt dt

las ecuaciones no cambian —como ejemplo: X" = F(x)-. Esto quiere
decir que si (x(t), ¥(t)) es solucion, entonces (X(—t), y(—t)) también
lo serd.

Un ejemplo de sistema dinimico que presenta esa simetria es:

dx_
a7

d
—y=x—x3.

dt

Consideremos entonces la variedad inestable del punto ensilladura que
posee el sistema en el origen. Esta trayectoria abandona al origen tan-



gente al vector (1,1). Asi, partimos por el primer cuadrante. Tal tra-
yectoria comienza creciendo en X, y por lo tanto también en y. Hasta
que, por supuesto, llegamos a x = 1. A partir de alli, x sigue creciendo,
pero v decrece. No queda otra cosa que eventualmente llegar al eje
y = 0. Ahora bien, tenemos un fragmento de trayectoria en el semi-
plano superior. Si reflejamos el segmento y cambiamos el sentido de la
flecha (de derecha a izquierda), la propiedad de simetria de reversion
temporal del sistema nos da otro fragmento que también es solucion
del problema por la simetria de reversién temporal. Ambos fragmentos se
cierran en el punto fijo. De modo que construimos una trayectoria que
empieza en el entorno (arbitrariamente cerca) del punto fijo y tiende a
llegar (arbitrariamente cerca) a ese mismo punto. Esto no es otra cosa
que una trayectoria homoclina.

v

Modelado del continuo
G. M

Laboratorio de
sistemas dinamicos



1

0.6

0.4

0.2 1

> 0.0 1

-0.2 7

_04 -

—0.6 1

— trajectory
(0,0)

0.0

0.2

0.4 0.6 0.8 1.0
X

Conexion homoclinica

1.2

1.4
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OEC—>»
~
GIot@?<

Trachea >

,,,,,, )

Pour(t)

W ~ Pi(1)
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Si exploramos este sistema dinamico para distintos valores de p; y k

dx

dt

dy Aa+ 277
1o = /M) —k(x)x —b(y)y - oy + a.abps( o1 +X+ W)] |

tenemos...



Modelado del continuo
G. M

| Laboratorio de
S sistemas dinamicos




Modelado del continuo
G. M

| Laboratorio de
S sistemas dinamicos

3 - 4. Hopf




Modelado del continuo
G. M

Laboratorio de
sistemas dinamicos

4 — 5, Homoclinic
connection
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1-2 Hopf
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5 - 2. SNLC




