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Capitulo 1

Introduccion

1.1. Objetivo de este cuaderno

El material presentado en este cuadernillo es de lectura obligatoria y previa a la
clase de laboratorio. Incluye conceptos aprendidos en Fisica 2 y conceptos sobre medicio-
nes que veremos en este laboratorio. No pretende ser un repaso teérico exhaustivo y debe
ser complementado con libros sobre ondas y éptica y técnicas de medicién. Ademaés se in-
corporan propuestas de mediciones o preguntas para pensar antes de la clase. Es decir,
es una invitacion a pensar en qué medir y cémo medir, pero no una guia de cémo hacerlo.
Al inicio de cada clase discutiremos lo que ustedes pensaron respecto al material y sobre
cémo hacer los experimentos. No se daran clases tedricas por lo que es obligatorio venir
al laboratorio con el material leido. Conocer el material de este texto: jes necesario? jSi!
Los conceptos son fundamentales para entender ondas en distintos medios y entender bien
los experimentos que estamos haciendo. ;jEs suficiente? jNo! Siempre podemos aprender

mas si hacemos nuestras propias btisquedas. Se recomienda fuertemente leer la bibliografia.

Dado que utilizaremos el mismo material durante todo el semestre, deben elegir el par
emisor-receptor cuyo nimero sea igual al nimero de tu cuarto y usar el mismo sistema

durante todo el laboratorio.

1.2. Generalidades sobre ondas

En esta materia realizaremos experimentos empleando ondas de distintos tipos: ondas
mecénicas transversales (vibraciones en cuerdas) y longitudinales (ondas acusticas), y

ondas electromagnéticas transversales. Todas ellas satisfacen la ecuacién de ondas (por
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simplicidad aqui tomamos el caso unidimensional). La ecuacién de ondas unidimensional

para un medio lineal, isétropo y homogéneo, esta dada por

PU(x,t) 2 O?W (x,t)

ot? or? ' (1.1)

donde W(x,t) representa a la perturbacién en el espacio (desplazamiento longitudinal de
particulas en un gas o liquido, presién o densidad para el caso de ondas actisticas en aire,
desplazamiento transversal en una cuerda o campo electromagnético para el caso de la
luz), x es la coordenada espacial y ¢ el tiempo. La velocidad de propagacién de las ondas
(v) depende de las caracteristicas del medio en que estas se propaguen y del tipo de onda.
En la tabla 1.1 se observa la dependencia de la velocidad de propagacion para las ondas

que seran estudiadas en este laboratorio.

Tabla 1.1: Velocidad de propagacién para ondas mecéanicas que se propagan en distintos medios
y ondas electromagnéticas.

Una posible solucién de la ecuacién de ondas es una onda que se propaga hacia la

derecha (z > 0) y puede escribirse como
U, (x,t) = A cos(kx — wt + pa), (1.2)

en donde A es la amplitud, ¢4 una fase inicial, w es la frecuencia y k el nimero de onda.

También se puede usar la notaciéon compleja para escribir a la funcién de onda

U () = Aehestion), (1.3)
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lo que hace mas fécil realizar ciertas operaciones, pero el verdadero significado fisico lo

tiene la parte real. Ademéas podemos definir a la fase de la onda como
O (x,t) = kx —wlt+ pa. (1.4)

Andlogamente, la onda que se propaga hacia la izquierda (x < 0) también es solucién

de la ecuacion de ondas, y puede escribirse como
U_(x,t) = B cos(kx + wt + pa). (1.5)

Supongamos que tomamos una foto instantanea de la onda, de modo que observamos
la dependencia con la coordenada espacial como se muestra en la figura 2.6. La amplitud
de la onda es la distancia entre la cresta y el valor cero de W¥(x,t). La fase inicial @4
corresponde al valor de fase del primer maximo, es decir, a cuanto se desplaza el primer
méximo respecto a la funcién patrén cos(kz). La longitud de onda, A, es la distancia en
que la onda cubre un ciclo completo, y es ademas la distancia entre dos puntos idénticos
en fase, es decir, puntos en el espacio en que la onda tiene igual amplitud y pendiente.
Observar que no es necesario comenzar a medirla desde un maximo. Podria medirse desde
cualquier punto en la onda, hasta el siguiente punto de igual fase. El niimero de onda esta

relacionado con la longitud de onda como k = 27 /\.

Figura 1.1: Propagacion en el espacio de la onda para un tiempo t.

Anélogamente, podemos pararnos en un punto del espacio y medir la evolucién tem-
poral de la onda, como se muestra en la figura 1.2. De esta forma podemos definir el
periodo 7 (cudndo dura un ciclo completo o el tiempo en que la fase tarda en tomar el
mismo valor), la frecuencia ¥ = 1/7 (nimero de oscilaciones por segundo) y la frecuencia

angular w = 27v.
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Figura 1.2: Propagacién de la onda en un punto del espacio z,.

Consideremos la relacién entre las propiedades espaciales y temporales. Una manera
sencilla de explorar esta conexion es sustituir la solucién de la ecuacion 1.5 en la ecuacion
de ondas. Esto nos permite obtener la relaciéon de dispersion de las ondas, que en el caso

de un medio no dispersivo (v independiente de w), es lineal:

w = vk. (1.6)

., Qué implica que la relaciéon entre w y k sea lineal? En una primera lectura podemos
decir que todas las ondas, independientemente de su frecuencia, se propagan con la misma
velocidad. Esto es especialmente importante porque significa que si tengo un paquete de
ondas (superposicién de ondas de distintas frecuencias) en un medio, este se propaga sin
deformarse. A los fines practicos esto es relevante, por ejemplo, porque puedo transmitir

informacion y no perderla.

Supongamos entonces que ahora observamos una onda monocromatica (es decir con
una unica frecuencia) propagandose y tomamos dos fotos en los tiempos t = 0s y t = 1s.
Considerando el esquema de la figura 1.3, y que la frecuencia es el nimero de veces que
la onda pasa por un mismo punto en el espacio por segundo, diriamos que la onda que
estamos observando tiene una frecuencia f = 1,75H z. Si la onda se propaga con velocidad
v, la distancia que recorre la onda en 1s es d = vt = v 1s. El ntimero de ciclos de la onda
que hay en esa distancia es d/\, que es igual al nimero de ciclos de la onda que pasan

por el punto del espacio indicado con linea entrecortada; es decir,

_’Ut_vls

d
f=5=5=5 (1.7)
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Entonces,

f:%—mg):vk:. (1.8)

Esto indica que en un periodo de oscilacién 7 la onda se propaga una longitud de onda.
Hallamos la relaciéon de dispersion solamente suponiendo que la velocidad de propagacion

es constante.

Figura 1.3: Propagacién de una onda monocromatica vista en los tiempos t =0sy t=1s.

Debido a que la ecuacion de ondas es lineal, es valido el principio de superposicion.
Por lo tanto, la soluciéon mas general es una suma de ondas como la de la expresién 1.5

con distintas frecuencias, fases y amplitudes.

U(x,t) = Xg[Ar cos(kx — wt + @ax) + By cos(kx + wt + vp )] (1.9)

Recordar que los valores de Ay, By, ¢ar ¥ ¥k se determinan a partir de las condi-
ciones iniciales, y que cuando las ondas se propagan en medios confinados los valores de
k (y por lo tanto w) se discretizan (solo algunas ondas pueden propagarse en el medio

confinado).

1.3. Guia de lectura

Se completard esta tabla a lo largo del cuatrimestre
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Capitulo 2

Ondas de ultrasonido

Las ondas de ultrasonido son ondas actuisticas cuyas frecuencias son mayores que el
umbral del oido humano (~20KHz). En la figura 2.1 se pueden observar las frecuencias
tipicas junto con algunas fuentes que las generan o aplicaciones. Como toda onda actstica,
es longitudinal y se propaga por colisiones entre particulas. Por lo tanto, la velocidad
de propagacién depende de la densidad de particulas y de la temperatura (no pueden

propagarse en vacio).

Figura 2.1: Espectro de las ondas actsticas y posibles fuentes y/o usos de estas ondas.

Empecemos estimando 6rdenes de magnitud de los distintos tipos de ondas acusticas.
Esto es importante sobre todo cuando queremos hacer experimentos; conocer el orden de
magnitud de las variables que uno espera medir permite definir cuales son los instrumentos
adecuados para realizar la medicion, en cuanto a precision, exactitud, rango, etc. En este

sentido, les sugerimos los siguientes ejercicios:
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Tarea:
a) Las ondas de ultrasonido, jse propagan en todos los medios? Buscar veloci-
dades tipicas en diferentes medios. Viajan mas rapido por sustancias calientes que

por sustancias frias, jpor qué? Buscar bibliografia para obtener datos medidos.

b) Completar la tabla 2.1 y pensar si las cantidades definidas pueden ser
medidas con los instrumentos conocidos. Calcular, para algunas frecuencias (v)
en el rango del sonido y del ultrasonido, la frecuencia angular (w), el periodo
(T'), el numero de onda (k), la longitud de onda (A) en las unidades indicadas.
Suponer que las ondas se propagan en un medio lineal cuya relacion de dispersién
es w = cgk, con ¢, la velocidad de propagacion de la onda en el medio. Tomar

valores para c, de bases de datos.

Cantidad\rango Ultrasonido de Ultrasonido
potencia diagnostico
]

v [Hz
w = 2mv [1/s]
T = 2n/v [s]
k [1/m]
A [em]

Tabla 2.1: Completar eligiendo distintas frecuencias en los rangos indicados y distintos materiales
en donde se propagan las ondas.

En la primera etapa de la materia trabajaremos con piezoeléctricos (PE), que son
materiales cristalinos o amorfos capaces de emitir y detectar ondas de ultrasonido jVeamos

comol!
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2.1. Los piezoeléctricos como transductores de ultra-
sonido

La piezoelectricidad es un fenémeno que ocurre en determinados cristales que, al ser
sometidos a tensiones mecanicas, adquieren una polarizacién eléctrica, es decir, una dis-
tribucion de carga eléctrica interna. Esto lleva a que entre sus superficies aparezca una
diferencia de potencial. Esto nos dice, por ejemplo, que es posible encender un LED co-
nectdndolo a un piezoeléctrico (PE) sobre el que se ejercen distintos tipos de fuerzas
mecanicas (presion, extension, torsién). En la figura 2.2(a)- linea superior- se observa es-
quematicamente como al ejercer deformaciones en un cristal PE se genera una diferencia
de tensién entre sus dos superficies. Ejemplos de PE cerdmicos o cristalinos (cuarzo) se
pueden observar en la figura 2.2(b). Los primeros pueden ser encontrados en los parlantes
speakers y normalmente su respuesta en frecuencia es ancha. Los cristalinos, en cambio,
son utilizados en relojes muy precisos o como senales de referencia con frecuencias muy

estables (pronto veremos por qué).

Este fenémeno también ocurre a la inversa: los PE se deforman bajo la accién de
fuerzas internas al ser sometidos a un campo eléctrico, como se esquematiza en la figura
2.2(a)- linea inferior-. Las deformaciones de los piezoeléctricos son tan pequenas (decenas
de nanémetros a centenas de micrones) que necesitamos de técnicas ultra-precisas para
poder medirlas. ;Se te ocurre cémo? jEn la ultima practica del curso vamos a aprender
estos temas! El efecto PE es normalmente reversible: al dejar de someter a los cristales a

un voltaje externo o campo eléctrico recuperan su forma.

Los cristales piezoeléctricos también se conocen como transductores piezoeléctricos.
Los transductores son dispositivos capaces de convertir algin tipo de energia en energia
eléctrica, y por eso se los utiliza para realizar mediciones. Por ejemplo, pueden convertir
energia mecanica, luminica, etc., en una senal eléctrica y viceversa. Existen muchos tipos
de transductores que iremos estudiando en el curso. Los transductores PE pueden convertir
presién o stress mecanico en una senal eléctrica (sensores de fuerza) o pueden convertir
una senal eléctrica en un movimiento fisico (actuador de movimiento).

Debido a que tipicamente el fenémeno de piezoelectricidad es lineal (a mayor tension,
mayor desplazamiento), cuando se alimenta al PE con una sefial arménica, las deforma-
ciones mecanicas en él también seran armoénicas, con una amplitud que dependera de la
frecuencia. Dado que esta oscilacion arménica estd confinada en el espacio (el PE tiene

un tamano finito), habra ciertas frecuencias para las cuales la transferencia de energia
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Figura 2.2: (a) Efecto piezoeléctrico directo: se mide una tensién en el voltimetro al comprimir,
expandir, tensionar al material. (b) Un piezoeléctrico tipico que se encuentra en los parlantes
(arriba), y uno tipico que se usa para generar senales precisas en frecuencia (abajo). (c¢) Efecto
piezoeléctrico inverso: al aplicar una diferencia de tensién con una fuente el material se deforma.
Figura adaptada de ref. [?].

eléctrica-mecanica sea maxima, y otras para las cuales ésta sea nula (;Como podremos
estimar estas frecuencias?). Entonces, el PE es un sistema resonante y, como para cual-
quier otro sistema resonante, se espera que la respuesta en frecuencias sea una “campana’,

jsera cierto?

Cuando el PE oscila, produce movimiento del aire en su entorno. La perturbacion
del aire se propaga como una onda acustica, con la misma frecuencia que la oscilacion
mecanica. ;Como es la amplitud de la onda generada en relacion a la amplitud de la
alimentacion? ;Y en relacién a la amplitud de oscilaciéon mecanica? ;Cémo harias un ex-

perimento que te permita responder a estas preguntas?

Debido al efecto PE estos pueden actuar tanto como emisores o como receptores. Sien-
do que usamos PE tanto para generar como para detectar a las ondas de ultrasonido, nos
referimos a los dos PE como par emisor-receptor. La medicién que realicemos va a estar

influenciada tanto por la respuesta del emisor como por la respuesta del receptor.

En cuanto a las aplicaciones, su capacidad de generar movimientos pequenos y con-
trolables por la tensién de alimentacién permite que estos sean utilizados, por ejemplo,

en posicionadores de gran precision que se utilizan en microscopia o para estabilizar vi-
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braciones en sistemas 6pticos. Su capacidad de generar y detectar ondas de ultrasonido

permite utilizarlos para detectar objetos y medir distancias (jcomo los murciélagos!).

Para pensar: Buscar en una hoja de datos (pedir en el panol el modelo del PE
disponible en el laboratorio) los tamanos tipicos de los PE que producen ondas de
ultrasonido y buscar la velocidad de propagacion de las ondas de ultrasonido en el
cuarzo. Tipicamente el PE tendra forma de disco de diametro d y altura h. Supo-
ner entonces que el PE oscila en el modo mas bajo, cuya frecuencia es igual a la del
modo fundamental de una cuerda con dos extremos fijos (;por qué?). ;A que fre-

cuencias se espera que el PE resuene? ;Su oscilacién es en el didametro o en el alto?

Experimental 1: De lo explicado se desprenden dos posibles caracterizaciones a
realizar sobre el par emisor-receptor:

a. Caracterizacién de la amplitud de la onda de ultrasonido (medida en el
receptor) en funcién del voltaje de alimentacién (provisto por el generador
de funciones). A partir de ella se puede determinar el rango en donde la
respuesta es lineal. ;Por qué es importante conocer el rango lineal?

b. La respuesta en frecuencias, conocida como campana de resonancia (ampli-
tud de la senal medida en el receptor en funcién de la frecuencia de la senal

de alimentacion).

El montaje experimental sugerido (para la mayoria de los experimentos de ultra-
sonido) es el que se observa en la figura 2.3, en donde se encuentra al emisor y
al receptor enfrentados, montados sobre un riel y a una distancia D entre si. El
emisor se conecta a un generador de funciones mediante un cable BNC. La senal
en el receptor se mide empleando un osciloscopio. De ser necesario utilizar una

senal de referencia para el trigger, se puede emplear la senal de alimentacion.

Pensar cudl es la mejor forma de implementar esta experiencia, en particular
para el item a.: ;Cudl es la distancia 6ptima entre el emisor y el receptor? ;En
qué frecuencia es conveniente realizar este estudio? ;Debo usar trigger en el os-
ciloscopio? jPor qué? ;Qué pruebas experimentales podria hacer para responder

estas preguntas?
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Figura 2.3: Esquema del dispositivo experimental propuesto. El par emisor-receptor se encuen-
tran situados en un riel. El emisor se alimenta con un generador de funciones, a su vez esta senal
se usa como trigger del osciloscopio. La senal en el receptor se mide empleando el osciloscopio.

2.2. Calibraciéon y regresion lineal

Las caracterizacién de la amplitud en el PE receptor en funcion del voltaje de ali-
mentaciéon del emisor, nos permite obtener una curva a partir de la cual conociendo la
alimentacion podemos predecir cual es la amplitud en el receptor. A esta curva la llamare-
mos calibracién. En particular, observamos que el comportamiento de las mediciones es
lineal al menos en un rango de voltajes de alimentacion, que es la calibracion mas simple
y conveniente que podemos obtener. Una calibracion lineal tiene una sensibilidad dada
por la pendiente. A mayor pendiente, mayor sensibilidad; es decir, pequenas variaciones en
voltaje ofrecen grandes variaciones en amplitud de la senal medida. Podria existir un valor
de saturacién que harfa que solo un rango de voltajes de alimentacién sea 1til (porque

donde satura no hay variacién de respuesta y por lo tanto a los efectos de calibrar no sirve).

Una vez determinado el rango donde el comportamiento es lineal, uno se puede propo-
ner obtener un ajuste lineal para usarlo como funcion de calibracién. Ajustar es encontrar
los valores de los parametros de la funcion que minimizan la distancia entre los datos y lo
esperado por el modelo propuesto. Ademas, estas distancias se pesan por el error asignado
a cada una, para darle mas importancia a los datos que estan mejor definidos. Es decir,

se busca minimizar el siguiente valor:

2
XQ _ Z (ymedido - ymodelo) .

yerror

A estas funciones que dependen de los datos y dan informacién de los parametros del
modelo se los conoce como “estadisticos”. Por ejemplo, en el caso del x?: si el modelo
propuesto se corresponde a los datos medidos, al calcularlo se obtienen resultados que
andan cerca de v, que es la cantidad de grados de libertad del ajuste (#datos - #pardme-

tros_ajuste - 1). Si x? > v, suele ser indicativo de un ajuste que no responde a los datos
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o de que los errores fueron subestimados. Si, en cambio, x? < v, es factible que el modelo

esté sobreajustado y que se esté ajustando el ruido, o que los errores hayan sido sobrees-
. «7 ’ . 2 . .

timados. A veces se utiliza el estadistico -, llamado “x? reducido” y se analiza su valor

respecto de 1.

Ahora supongamos que se miden de nuevo los datos: es esperable que vayan a ser le-
vemente distintos, aunque seguramente dentro de las incertezas experimentales. Entonces
también es esperable que al calcular x? vaya a dar levemente distinto. Bueno, resulta que
si el modelo elegido es el correcto, los x? que se van obteniendo en mediciones sucesivas no

valen cualquier cosa, sino que siguen una distribucién de probabilidades llamada x? (link):

=)
—
N
| | B
HHH OO0
o U N

Densidad de probabilidad
© o IS4
o o =
o [e+] o
T T T <« <

o
=}
B

o
o
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01 23456 7 8 9 101112 13 14 15 16 17 18 19 20 21 22 23 24 25
X

Figura 2.4: Distribuciones de probabilidad 2.

Entonces, por ejemplo, si se realiza un ajuste cuadratico (3 parametros) sobre 19 da-
tos, la curva a mirar es la de v = 15: la curva roja. Esta nos dice que, si es cierta la
hipétesis de que el modelo elegido es el correcto, lo més habitual es obtener x? = 13...

ipero también es muy probable obtener valores entre 8 y 20!

Sin embargo, si podemos decir que a medida que uno se aleja del maximo de la cam-
pana, se empieza a volver menos probable haber obtenido un determinado 2. Entonces,
el valor de x? obtenido no habla necesariamente de que el ajuste sea bueno o malo, sino
de qué tan probable es haber obtenido ese valor de x? en el caso de que el modelo elegido
para ajustar los datos es el que describe correctamente el fenémeno observado. Entonces,

podemos decir que:
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- Un x? muy bajo o muy alto indica que serfa muy extrailo obtener esos datos si el
modelo es el correcto. Es decir: o el modelo no es el correcto, o el modelo si es el correcto
pero se tuvo mucha mala suerte y justo lo medido no parece responder al modelo. En
estadistica se dice que se rechaza la hipotesis de que el modelo sea el correcto, a riesgo de
que quizas se esta en el caso de haber tenido mala suerte y que en realidad la hipotesis
no pueda ser completamente descartada.

- Un x? cercano a v indica que los datos obtenidos son esperables si el modelo es el
correcto. Es decir: o el modelo es el correcto, o las mediciones se parecen al modelo pro-
puesto por una cuestién de azar. Por lo tanto, un x? “bueno”no garantiza que el modelo
sea el correcto, sino simplemente que el modelo propuesto ajusta lo suficientemente bien
a los datos. En estadistica se dice que no se puede rechazar la hipdtesis de que el modelo

sea el correcto.

Lo habitual es tomar algtin criterio para determinar qué tan poco probable tiene que
ser el x? obtenido para rechazar la hipdtesis de que el modelo ajusta a los datos. Cada
disciplina suele usar criterios distintos, pero es habitual tomar un umbral de tolerancia del
5% de probabilidad de equivocacién. Y algo clave: jni un “buen” x? ni ningtin estadistico

asegura que el modelo sea el correcto!

En particular, el x% no distingue si el ajuste pasa por arriba o por abajo de los datos, o
cuadntas veces los cruza, o si falta algiin parametro en el ajuste, o si algiin parametro esta
de més, o una infinidad de otros posibles criterios para determinar si el ajuste es bueno
o malo. Entonces lo podemos complementar con algo que ya sabemos de Laboratorio 1:
los residuos (Ymedido — Ymodelo) deben ser aleatorios y no estar correlacionados con ninguna
otra variable, ni correlacionados entre si. Si presentan una distribucién no aleatoria, es

indicativo de que el modelo no esta ajustando bien a los datos.

2.3. Modelando la respuesta en frecuencias del par
emisor-receptor

Al ajustar mediciones es crucial que los modelos seleccionados estén respaldados por
fundamentos fisicos solidos. Esto garantiza que nuestras interpretaciones y predicciones
estén en linea con las leyes de la fisica y que los resultados sean confiables y significativos

para la comprension de los fenémenos estudiados.
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Propusimos que, debido al comportamiento lineal del PE con el voltaje de alimenta-
cién, si se alimenta a este con una senal armonica, sus oscilaciones mecanicas también
seran armonicas. El modelo mas sencillo que podemos pensar para el PE es entonces el
del oscilador arménico amortiguado sometido a una fuerza externa arménica (el campo
eléctrico generado por la alimentacién), cuya ecuacién de movimiento estd dada por

d*x dv F,
) + g +wir = Ecos(wt), (2.1)
en donde 7y, es la constante de amortiguamiento para el emisor, que en este caso

representa pérdidas mecéanicas por friccion, la fuerza externa representa la fuente de ali-

mentacion y el término lineal una fuerza restitutiva caracterizada por w,; = \/k/m.

Nos preocupamos ahora por la soluciéon particular porque, como sabemos, la ho-
mogénea decae con un tiempo caracteristico 1/7;. En notacién compleja, dicha solucién

esta dada por .
( t) Fo ezwt
rp(w,t) = — —.
s m (W — o) + iwn:

(2.2)

Recordemos que para que la solucién tenga sentido fisico, debemos tomar la parte real,

de modo que la solucién toma la forma z£(t) = Acos(wt + ¢), con tan(¢) = ﬁ y
ol

A= Bolm
V(2?2 e)?

Ahora bien, la ecuacién 2.2 predice el desplazamiento del PE emisor cuando es ali-
mentado por una fuente de tensiéon alterna, bajo un modelo muy simple que considera
una unica resonancia en w,;. Si el PE tuviera mas resonancias, podriamos plantear una
combinacion lineal de soluciones similares a la de la ecuacién 2.2 pero con distintas fre-
cuencias w,;. Por otro lado, hasta ahora consideramos unicamente al PE emisor. Como
mencionamos anteriormente las oscilaciones mecanicas del PE producen ondas de ultra-
sonido que se propagan con una amplitud proporcional a xg hasta llegar al receptor. El
receptor transforma a la onda de ultrasonido en vibraciones mecanicas y luego en una
tension. Idealmente el PE receptor tiene la misma frecuencia de resonancia que el emisor;

sin embargo, esto no siempre es cierto.

Entonces, podemos plantear ahora una ecuacion similar a la ecuacién 2.1, considerando
que la onda de ultrasonido que produce las oscilaciones mecanicas del PE receptor tiene

una amplitud proporcional al desplazamiento del PE emisor zp, es decir

dx dz
— + 'YQE + w32x = azrg(w,t), (2.3)
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en donde ahora consideramos que la constante de amortiguamiento v, y la frecuencia

caracteristica wyy son distintas a las del PE emisor.

La solucién particular de la ecuaciéon 2.3 es

Bet
.TER(w,t) = (( 3 (24)

wyy — w?) +iwyr) (w5 — w?) + iwye)’
donde B es una constante.
Como dijimos anteriormente, la solucion que tiene sentido fisico es la parte real de la

ecuacién 2.4, de modo que la solucién toma la forma z8,(t) = Cggcos(wt + ¢ggr), en
donde

Co — 5 163 = )y = ) — Pl 1 [y = Doy + (o —w2)eral?
(W = w?)? + (Mmw)?Pl(wd, —w?)? + (12w)?] o
Si ahora Suponemos que Wop = We2 = We Y VY1 = 72 = 7,
B
Cpr = (2.6)

[(wf —w?)? + ()]’

Para pensar: Las ecuaciones 2.5 y 2.6 consideran que los PE pueden ser mode-
lados por osciladores armoénicos simples con una unica frecuencia caracteristica,
y pueden ser utilizadas para intentar ajustar a las mediciones. ;Cémo se extiende
este modelo si los PE estan caracterizados por mas de una frecuencia caracteristi-

ca?

2.4. Caracteristicas de las ondas emitidas por los pie-
zoeléctricos

Como se menciond con anterioridad, al alimentar al emisor con una onda armonica
se producen ondas de ultrasonido que se propagan en el aire. Las ondas emitidas son
tridimensionales, y para caracterizarlas mediremos la forma del frente de ondas (es decir,
si es plano, esférico o cilindrico), la longitud de onda, el periodo, la frecuencia, el angulo

de divergencia, la distribucion de amplitud, etc.
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La ecuacion de ondas tridimensional para un medio lineal, isétropo y homogéneo, esta

dada por
(7 1)
ot?

donde W(7,t) representa a la perturbacion en el espacio (desplazamiento o presién para

= V*V2U(F 1), (2.7)

el caso de ondas acisticas en aire), 7 es el vector de coordenadas espaciales, t el tiempo
y v la velocidad de propagacién, que depende de las caracteristicas del medio y de la

frecuencia. Esta ultima cumple la relacion de dispersion lineal de las ondas

w = vk, (2.8)

donde £k = 27” es el nimero de onda y A la longitud de onda. La solucién de esta
ecuacion puede escribirse como

V(7 1) = A(F) cos(ki — wt + By), (2.9)

en donde A(7) es una amplitud dependiente de la posicién, ®; una fase inicial y k el vector

de ondas cuyo modulo es k. Podemos definir también a la fase de la onda como
O (7 1) = ki — wt + Pq. (2.10)

Nota: Se puede usar la notacién compleja para escribir a la funciéon de onda

U(7 1) = Apei(krwtto) (2.11)
lo que hace mas fécil realizar ciertas operaciones, pero el verdadero significado fisico lo

tiene la parte real.

Ademas, por el principio de suposicion, la solucién mas general es combinacién lineal
de todas las posibles soluciones de la ecuacién (una suma de ondas con distintas frecuen-

cias, amplitudes, vector de ondas).

Examinemos las soluciones de la ecuacion de ondas. Estas dependerén de la geometria
del problema y de las caracteristicas del medio, que por ahora supondremos lineal, isétro-
po y homogéneo. En esas condiciones las soluciones tipicas son las ondas planas, las ondas

esféricas y las ondas cilindricas, pero existen otros tipos, por ejemplo los vortices.

Para el problema en coordenadas cartesianas la solucién mas sencilla es una onda

plana. Supongamos que la onda se propaga en la direccién 2, por lo que k= k3 y estd
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polarizada en z. Por simplicidad también supondremos que la amplitud es constante,
A(T) = Ag ue la fase inicial es cero, ®, = 0, aunque estas dos consideraciones no son
9 Y

necesarias. De este modo, la solucién de la ecuacién de ondas es
U(rt) = Ag cos(kz — wt)z, (2.12)

siendo la fase ®(z,t) = kz — wt.

Ahora busquemos cudl es el conjunto de puntos en el espacio que oscilan con la misma
fase. Para eso suponemos una fase constante (®(z,t) = cte) y despejamos la variable z,
obteniendo

z = CEuzf—i-cte:vzf—i-cte.

Es decir, la fase es constante en planos perpendiculares a la direcciéon de propagaciéon
z. Decimos entonces que el frente de ondas es plano. Estos planos se propagan con la
velocidad de propagacion v (o velocidad de fase) hacia los z positivos. Ademés, por cémo
definimos inicialmente a la onda, la amplitud también es constante en esos planos. En la

figura 2.5 se puede observar un esquema de estos planos de fase y amplitud constante.

Figura 2.5: Esquema de planos de fase y amplitud constante de una onda ideal.

Nota: Andlogamente podemos definir una onda que se propaga hacia z negativos con un

solo cambio de signo en el vector de ondas k: W(7,t) = Agcos(—kz — wt)z.

En la figura se puede observar que para ® = 0 y para ® = 27 la onda tiene igual

amplitud y la misma pendiente. Lo mismo pasa para ® = —7/2 y & = 37/2 o para
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$ =7/2y & = 57/2. La diferencia de fase entre estos planos es 2. Es decir, existen dos
planos separados en una distancia Az, cuya distancia en fase es 27. Veamos cual es esa

distancia, resolviendo la siguiente ecuacién:
O(z + Az, t) — P(2,t) = 2m, (2.13)
o lo que es lo mismo
k.(z4+ Az) — k,z = 27. (2.14)

Despejando se obtiene que Az = \. Es decir que la distancia minima entre planos de
igual fase (solo difieren en 27), o la distancia entre planos consecutivos de igual fase, es la
longitud de onda \. Esta situacion se encuentra esquematizada en la figura 2.6, en donde
se muestran dos planos de igual fase (frente de ondas) consecutivos separados por una
distancia A. Entonces, medir la longitud de onda, es medir la distancia entre planos de

igual fase.

Figura 2.6: Se muestran dos planos de igual fase consecutivos separados por una distancia A.

En general podemos obtener cémo se mueve el frente de ondas derivando la expresion

de la fase y suponiendo que la fase es constante. Es decir:
O(x,t) = k,z — wt = Py,

y luego derivando

0P (x,t) dz
—_— kz— — = s
ot T
a partir de la cual podemos definir la velocidad de fase vy como
dz w
i 2.15
AL (2.15)
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Vimos que, en el caso de tener una onda plana, la fase es constante en planos de
extension infinita. Analogamente se puede ver que para problemas con simetria esférica
(fuentes puntuales) o simetria cilindrica (ranuras o lentes cilindricas), la fase se mantiene
constante en esferas o cilindros, respectivamente. De este modo encontramos frentes de

ondas esféricos o cilindricos. El primer caso se encuentra esquematizado en la figura 2.7.

Figura 2.7: Esquema de un frente de ondas esférico. Las lineas continuas corresponden a la
amplitud maxima de la onda (A/r), las lineas cortadas corresponden a la amplitud minima de
la onda (—A/r). La longitud de onda es la distancia entre esferas de igual fase.

Si resolvemos la ecuacion de ondas para problemas con distintas simetrias, podemos
obtener la dependencia de la fase y de la amplitud con la posiciéon para las ondas cilindri-
cas y esféricas. En la figura 2.8 se muestran las caracteristicas para distintos frentes de
onda, en donde se usa que la intensidad de la onda es I o |¥(7,¢)|%. Para cada tipo de
fuente se muestra un diagrama del frente de ondas, y la dependencia de la amplitud y de
la intensidad con la distancia. Por ejemplo, se puede observar que la amplitud no depende
de la distancia en el caso de la onda plana, es inversamente proporcional a la raiz de la
distancia en el caso de la onda cilindrica, y es inversamente proporcional a la distancia en

el caso de la onda esférica.

La dependencia de la intensidad con la distancia también se puede obtener empleando
argumentos sobre la geometria del problema. Por ejemplo, calculemos la intensidad para

una fuente puntual de potencia W que emite un frente de onda esférico como se esque-
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matiza en la figura 2.9. En primer lugar tomemos una superficie esférica de radio r en el
entorno de la fuente. La intensidad sobre la superficie es la potencia por unidad de area

S = 47r?. es decir que
)

LA SN S AL
S 4A7rr? r

Entonces, vemos que la amplitud es inversamente proporcional al radio. Ademas, se
observa como a medida que aumenta el radio, la intensidad (potencia por unidad de area)

disminuye.

Figura 2.8: Tabla con la descripcion esquematica de fuentes con un frente de ondas esférico,
cilindrico y plano. Se muestra ademas la dependencia de la amplitud y de la intensidad con la
distancia.

Apuntes Laboratorio 2, Catedra Prof. M.G. Capeluto 27



Figura 2.9: Esquema de la dependencia de la intensidad en funcién de la distancia radial para
una fuente con frente de ondas esférico.

Ahora bien, hasta ahora hablamos de situaciones idealizadas en donde no tenemos res-
triccion en la distribucién de amplitud (la onda plana tiene amplitud constante en planos
de extensién infinita, la onda esférica tiene amplitud constante en esferas). Sin embargo,
dijimos que la hipdtesis sobre la amplitud constante no era estrictamente necesaria. De
hecho, en los montajes puede haber aperturas que recorten al frente de ondas o que pro-
duzcan difraccién. En particular, los propios montajes de las fuentes hacen que estas no
puedan ser consideradas ideales (ver en la figura 2.10 un ejemplo de montaje para PE).
Ademas, si el haz se difracta en la apertura (comparar el tamano del PE con la longitud
de onda de la onda de ultrasonido) es probable que este sea divergente; es decir, que la

region en donde la amplitud es distinta de cero crece con la distancia de propagacion.

Figura 2.10: Un montaje posible para un PE. Se observa al PE montado dentro de una carcasa
metdlica. La linea punteada es una malla para proteger al PE. Se alimenta al PE con una senal
armonica que se amplifica con un pre-amplificador.
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Segun lo discutido, para caracterizar a la onda deberfamos medir la longitud de
onda, la dependencia de la amplitud con la distancia, determinar cudal es el frente
de ondas, la divergencia, la distribucién de amplitud en el plano transversal a la
direccién de propagacién. Vamos a dividir los experimentos segiin hagamos me-

diciones a lo largo de la direcciéon de propagacién o en la direccién transversal.

Experimental 2: Mediciones a lo largo de la direccién de propagacion:
a. Medir amplitud en funcién de la distancia A(7).

b. Medir la longitud de onda (distancia entre planos de igual fase)

Experimental 3: Mediciones en la direccién perpendicular a direccion de propa-
gacion:
a. Determinar cudl es el frente de ondas. Es decir, encontrar los planos, esferas
o cilindros (o cualquier otra superficie) en donde la fase constante.
b. Determinar cudl es la distribucién de amplitud en el plano perpendicular a
la direccién de propagacion.

c. Medir la divergencia del haz.

2.5. Repaso de ondas en gases y condiciones de borde

Recordemos que, dado que estamos tratando ondas actisticas que se propagan en un gas
(aire), normalmente nos interesan las ondas de desplazamiento W (x,t) (cémo se desplazan
las particulas en el gas), las ondas de presion P(x,t) (cuéles son las fluctuaciones de presién
ejercidas por las particulas en movimiento), y las ondas de densidad p(x,t) (cudles son
las fluctuaciones de densidad inducidas por el movimiento de las particulas del gas).
Recordemos que tanto la presién como la densidad se pueden obtener a partir de la onda
de desplazamiento. En el caso de la presion, esta se puede estimar como el modulo de
compresibilidad x (en unidades de presién, por ejemplo Pa) por la variacién de volumen

AV respecto al volumen medio V,, a partir de lo que se puede deducir que

AV (x,t)
dx
La presién esta relacionada con la compresion o expansion del gas: cuando se com-

P(z,t) = —k . (2.16)

prime en un volumen mas chico, aumenta la presion; cuando se expande a un volumen

mayor, disminuye la presion.
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En el caso de la densidad, se puede calcular como

p(r) = po—ri"7, (2.17)

donde p, es la densidad media.

Dado que el PE receptor puede medir variaciones de presion, escribamos las condiciones
de borde para el desplazamiento y la presién, para una condicién de borde cerrada como se
esquematiza en la figura 2.11. Si las particulas estan en el entorno de una pared, estas van
a estar quietas respecto a dicha pared. Recordar que la funcion de onda de desplazamiento
nos dice si las particulas se mueven a la derecha o a la izquierda, y cuanto lo hacen. Como
en este experimento la pared es donde se refleja la onda, y las particulas estan quietas,
entonces la condicién de borde es que la funcién de onda total (todas las ondas que viajan

hacia la pared U*(z,t) mds todas las ondas que se reflejan en la pared U~ (x,t) es nula.

Es decir

UH(0,t) + U (0,t) = 0. (2.18)

Esto implica que al reflejarse la onda de desplazamiento en dicha pared, hay un cambio
de fase de 7 radianes dado que ¥*(0,¢) = —¥~(0,¢). En cuanto a las ondas de presidn,
en la pared es en donde se ejerce la presiéon maxima. Pensar que si todas las particulas se
mueven hacia la pared, la presion es maxima. Esto es, que la derivada de la presién total

sea cero en la pared; es decir,

d[PT(z,t) + P~ (z,1)]
dz

= 0. (2.19)

=0
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Figura 2.11: Condicién de borde extremo cerrado. El desplazamiento total en la pared es nulo,
la presion es méaxima

Mas adelante veremos otras condiciones de borde.

2.6. Interferencia de ondas de ultrasonido

Habréan notado que, al medir la amplitud en funcién de la distancia, se observa una
serie de ondulaciones periédicas montada sobre “la senal esperada”. Discutimos en clase
sobre posibles explicaciones en base a la interferencia de ondas que se reflejan sucesiva-

mente entre el emisor y el receptor.

Supongamos que tenemos dos fuentes de ondas esféricas como las que se muestran en
la figura 2.7, situadas a una distancia d, tal como se esquematiza en la figura 2.12. Recor-
demos que las lineas continuas representan a la amplitud es maxima y las punteadas a la
minima. Podemos analizar cémo es la superposicién de las ondas sobre los frentes de ondas
y estimar cudl es la onda resultante. Supongamos por el momento que las amplitudes no
dependen de la distancia radial, y veamos qué sucede al superponer dos lineas continuas
o dos lineas punteadas. Las lineas continuas significan que la amplitud es maxima (A), de
modo que la amplitud total en la superposicion de dos lineas es 2A. En las lineas puntea-
das la amplitud es —A, por lo que la suma en donde se superponen dos lineas punteadas
es —2A. Dado que en la practica detectamos la amplitud pico a pico, en ambos casos la
medicién serd 2 x 2A (recordar que la amplitud pico a pico es el doble del médulo de la
amplitud en una senal periddica). Marcamos con puntos rojos a estos puntos en el esque-

ma de la figura 2.12. En cambio, si se superpone una linea punteada y una continua, la

Apuntes Laboratorio 2, Catedra Prof. M.G. Capeluto 31



amplitud total es A+ (—A) = 0; es decir, un minimo de amplitud. Observar que, dado que

la amplitud decae con la distancia, es probable que los minimos no sean nodos (;por qué?).

La figura que resulta de unir minimos y maximos forma hiperboloides. Si observamos
entonces la linea que une a las dos fuentes, vemos que para la situaciéon particular que
graficamos, observamos maximos de intensidad separados por A/2. Veamos en detalle qué
sucede con la superposicién de las ondas cuando medimos sobre una linea paralela a la

linea que une a las fuentes, o sobre la linea que une a las fuentes.

Figura 2.12: Superposicién de dos ondas esféricas. En linea continua se esquematizan las crestas
de cada onda de cada fuente, y en linea punteada los valles. Los puntos de encuentro de dos
maximos o dos minimos (en rojo) forman interferencia constructiva. Los puntos de encuentro
de un méximo y un minimo (cada uno de distinta fuente) forman interferencia destructiva. Esto
genera una onda estacionaria que cada % tiene un nodo (o antinodo).

2.6.1. Interferémetro de Fabry-Pérot acustico

En 6ptica, el interferémetro de Fabry-Pérot, también conocido como resonador (o cavi-
dad) éptico, consiste en dos espejos de alta reflectividad. Cuando la onda de entrada tiene
una frecuencia cercana a una de las frecuencias de resonancia de la cavidad se producira

una realimentacion positiva dentro de la misma. La contribucién de la onda de entrada
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se suma constructivamente a la onda circulante.

En el caso de las ondas de ultrasonido, la onda emitida se puede reflejar sucesivas veces
en el emisor y el receptor, de manera de formar una onda estacionaria. Para encontrar la
funcién de onda en este sistema se debe calcular la superposicién de ondas que se refleja
multiples veces entre las dos superficies reflectantes e imponer condiciones de contorno.

Podemos hacerlo tanto con las ondas de presion o con las de desplazamiento.

Podemos pensar al par emisor-receptor de ultrasonido como una cavidad resonante,
analoga a un interferometro de Fabry-Pérot, donde se produce una onda estacionaria,

producto de la reflexiéon de la misma en el par. Describimos la onda emitida como:

P+(z,t) =

cos(wt — k(z — x.)) (2.20)

Te
siendo x. la posicion del emisor. La onda reflejada por el receptor se describe a partir del
coeficiente de reflexion R y la posicién x, del receptor:

-1

r— 2z, — x.)

P_(x,t) = R cos (wt + k(z — (2z, — x.))) . (2.21)

Con el mismo razonamiento podemos definir la presion de las ondas reflejadas dos
(U, (z,t)) y tres (¥__(z,t)) veces:

P (z,t) = p (_2; n Bxe)R2 cos (wt + k(x — (—2x, + 3x.))) , (2.22)
P__(x,t) = o (4;1_ S%)R?’ cos (wt + k(x — (4, — 3x.))) . (2.23)

Podriamos estudiar las contribuciones de orden mayor, pero se vuelven despreciables
frente a la onda emitida inicialmente. Como resultado de estas reflexiones, el receptor me-
dira la suma de estas ondas, observando un efecto de interferencia entre las mismas. Para
entender mejor lo que sucede, pueden ver la simulacién en Colab “Cavidad_L2F.ipynb” (ver

Campus).

Responder usando las simulaciones:
a. (Estan de acuerdo con que las ondas tengan esa pinta? Corroboren que estén
bien calculadas.
b. ;Qué observan si ahora miden en distintos x, (que valores de z, es razonable
tomar)?

c. (Y para distintos R?
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d. jPuede el comportamiento de la amplitud en la cercania del emisor ser
explicado por interferencia de ondas reflejadas en el par emisor-receptor?
Comparando con el experimento
a. (Qué valor creen que podria tener R?
b. ;Bajo qué argumento se pueden despreciar las reflexiones de orden superior
P .., P __ etc?

c. (El receptor mide solo las ondas que inciden, o también las reflejadas?

2.6.2. Interferometro de Young acustico

Supongamos que se tienen dos emisores separados por una distancia h y un detector
que puede desplazarse en linea recta (eje y) sobre un plano situado a una distancia L
perpendicular a la recta de separacion de los emisores, como se ilustra en la Fig. 2.13.

Llamando d4 v dp a las distancias de las respectivas fuentes al detector, es decir:

da=|da| = /L2 + (y + h/2)2, (2.24)
dp = |dp| = /L + (y — h/2)2. (2.25)
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Figura 2.13: Esquema del experimento de Young acustico.
En el problema planteado en la Fig. 2.13, la expresién para la perturbacién de la
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presion detectada por el receptor R resulta
dA dB
p=Acos | —wat +wa— + Py, | + Beos | —wpt +wa— + Pp, | . (2.26)
Cs Cs

Consideremos el caso que las amplitudes, las frecuencias y la fases iniciales de las dos
ondas sean iguales (y sin pérdida de generalidad se puede poner ®,, = ®5, = 0, ya que

puedo elegir t = 0 cuando esto se cumpla), entonces

d d
p=A {cos (—wt + w—A) + cos (—wt + w—B) } . (2.27)
Cg Cs

Tarea: Escribiendo dy = d+ A y dg = d — A obtenga la expresién de p en

funcién de los parametros d y A que se muestra en las ecuaciones 2.28 y 2.29.

La perturbacién total se puede escribir como:

= men (o (1)) oon

po = 2A cos <wé> (2.29)

Cs

siendo la amplitud

Notar que las variaciones de d producen una variacién de fase en la senal, mientras que

las de A modifican la amplitud de la senal.

Franjas de interferencia. Teniendo en cuenta que la longitud de onda vale A =

27mcs/w, la Ec. (2.29) puede reescribirse como

po = 2A cos <27r%> (2.30)

lo que indica que la amplitud tendrda méximos y minimos a medida que se varia A (ya
sea variando y, o h, o L) y que, ademéds, depende de la longitud de onda. Habra méximos

de amplitud para algunos valores de A, que llamamos A,,, cuando

A
Ay =5m (2.31)

con m entero.

Apuntes Laboratorio 2, Catedra Prof. M.G. Capeluto 35



Si llamamos v, la posicién del detector en el maximo de orden m, se tiene que

Cda—dp 1

A 5 :5<VIW+@m+hﬂP—~¢LW+@m—hﬂP>. (2.32)

Como, en general, la distancia L es bastante mayor que la separacion entre los emisores,

un desarrollo en serie de A,, en funcién de h queda

h ym

m:i_zzaﬁ+om% (2.33)

Notar que estas aproximaciones van a ser razonables incluso cuando no se cumpla
h < L porque el término cuadratico se ha cancelado. Esto dice, por ejemplo, que si
h ~ 0,1L se tendrd un error del 1%.

Si, ademads, y,, < L (o sea, si se observan sélo los primeros érdenes de interferencia)

se puede escribir
_ Y

A, = 2.34
" 2L (2:34)
con lo cual la Ec. (2.31) resulta

AL

Es decir que los méaximos de interferencia estan equiespaciados. La distancia entre dos

maximos consecutivos, llamada interfranja 7, vale

. AL
= Ymil — Ym = o (2.36)

En esta aproximacién, para h y L fijos, la interfranja es constante y a partir de su

medicion se puede calcular la longitud de onda.

Medicion de la longitud de onda. Se propone una practica de laboratorio para
medir la longitud de onda en ultrasonido utilizando dos emisores y un receptor,
que es conceptualmente similar a la experiencia de Young en luz visible. En base
al esquema de la Fig. 2.13 se muestra el dispositivo experimental en la Fig. 2.14.
Para pensar: Juntando lo explicado en la Seccién 2.6.2, se te ocurre cémo medir

la longitud de onda en este experimento?
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Figura 2.14: Esquema del dispositivo experimental para el experimento de Young acustico.
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Capitulo 3

La respuesta del detector en las
mediciones

Pensemos acerca de algunas ideas sobre situaciones en que realizamos mediciones (ver
Fig. 7.1):

1. Interferometria. En el experimento de interferencia con dos emisores se produce
una senal periddica dependiente de la posicién. Si queremos medir la dependencia funcio-
nal debemos desplazar al detector a lo largo de la coordenada x mientras medimos la senal
en el PE receptor. Sin embargo, el detector no es puntual (su respuesta estd extendida en
el espacio y no es una delta ideal); por lo tanto, no se mide la senal en la posiciéon x sino

el promedio de la senal en un rango [z,  + Az].

2. Espectrometria. Un espectréometro permite separar la luz en distintos colores (fre-
cuencias o longitudes de onda) empleando redes de difraccién. De esta manera cada color
va a ocupar un lugar en una posicion diferente. Para medir la luz en cada color se utiliza
un detector que se lo desplaza a través de la figura de difraccién (espectro) mientras se
mide la intensidad. Sin embargo, no es infinitamente angosto (no es una delta), y lo que
en realidad mide es la intensidad de la luz para un rango de longitudes de onda cercanas

a las que se quiere medir ([A, A + A)]).

3. Imagenes. Una fuente de luz produce sombras cuando ilumina un objeto. Si la
fuente de luz es puntual, la sombra que produce es la sombra “verdadera”. Sin embargo
las fuentes de luz reales no son puntuales. ;Cémo difiere la sombra producida por una
fuente real de la sombra producida por una fuente puntual? ; Qué pasa si el tamano de la

fuente es més grande?
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4. Microscopia. En un microscopio de fluorescencia se utiliza un haz laser enfocado
en una muestra y se mide la luz emitida por la muestra en el punto focal (tipicamente un
area de 1um de didmetro). La imagen de fluorescencia se construye barriendo el haz sobre
todos los puntos de la muestra mientras se adquiere la intensidad. Nuevamente, dado que
el punto focal no es un punto singular en el espacio (no es una delta), la fluorescencia que

se mide proviene de la pequena area en la que esta enfocado el haz.

Figura 3.1: Ejemplos de sistemas en los cuales se observa la influencia de tener un detector o
una fuente que no son puntuales. En el caso de las sombras, una fuente no puntual produce la
zona de penumbra, produciendo un efecto de borroneado respecto a lo que se obtendria con una
fuente puntual. En espectrometria, en lugar de medir una “tnica” longitud de onda, se mide un
rango A, A + AX. En interferometria, en lugar de medir en x integramos la sefial en un rango
x,z + Az. En microscopia, en lugar de medir en (z,y) integramos en un drea dada por el drea
del haz. Es decir: en la practica no es posible medir “un punto” del espacio, sino un intervalo
alrededor de ese punto.

En todos estos ejemplos, ;Como se relaciona lo que se estd midiendo con el fenémeno
fisico que se quiere caracterizar, si en cada punto que se mide se estd mezclando la senal

que se quiere medir con la senal en los puntos vecinos? ;Cémo depende la medicion del

40 Apuntes Laboratorio 2, Catedra Prof. M.G. Capeluto



tamano del detector?

Siempre que se mida una variable fisica, la respuesta del instrumento impacta en la
medicién. La respuesta del instrumento (usualmente descripta como filtros en la teoria de
sistemas lineales), en general reduce la resolucién de la medicién. En este caso se modela al
proceso de medicion como una convolucién matematica. La ventaja de conocer la respues-
ta del instrumento es que se pueden construir algoritmos computacionales para reducir el
impacto del instrumento y obtener resultados con mayor fidelidad. A estos algoritmos y

procesos se los conoce como deconvolucién.

Vamos a ver cémo se calcula una convolucién (nombre raro pero no te preocupes,
es sencillo). Luego vamos a hacer la analogia entre el experimento de interferencia y la
convolucién de la respuesta del detector y la senal que queremos medir. A continuacion

podremos cambiar algunos parametros para estudiar como afecta el tamano del detector.

3.1. Convolucién: operacion matematica

Nota: Los ejemplos que se muestran en esta secciéon estan acompanados de un
Jupyter notebook (convolucion.ipynb) que pueden bajar del campus, para apoyar

esta explicacion.

La convolucién se puede definir para funciones discretas (como seria una medicién
muestreada) o para funciones continuas. En primer lugar, consideremos la funcién mues-
treada que se observa en la Fig. 3.2(a). Para este tipo de funciones, la convolucién se

define como

D= D fou T (3.1)

m=—oo
en donde * en g significa complejo conjugado. Siendo que todas las senales medidas son
reales, vamos a omitir * de ahora en més. Observar que en esta cuenta no importa cual es
el eje de las ordenadas, sino la posicién de cada punto de la funcién. Luego veremos cémo
se calcula el eje de las ordenadas. Por tal motivo nos concentramos en las sucesiones de

nimeros que se encuentran a la derecha de la figura 3.2(a) .
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Pensemos qué hace esta operacion, fijando valores para n. Si n = 0, la expresién 3.1
nos indica que tenemos que multiplicar f,, con ¢g_,,, y luego sumar los productos para
todos los m. Observar que g_,, es la sucesién que resulta de espejar a g respecto de m = 0,
como se muestra en la Fig. 3.2(b). Multiplicamos entonces aquellos niimeros cuyos produc-

tos dan distinto de cero (gris) y sumamos, obteniendo que la convolucién vale (f*g), = 9.

La consecuencia de cambiar el valor de n es producir traslaciones de g_,,. Entonces
los distintos valores de la convolucién se obtienen desplazando a g_,, en el valor de n, y
para cada desplazamiento multiplicar y sumar los elementos de ambas sucesiones. Vea-
mos ejemplos concretos en las figuras 3.2(c-h). Por ejemplo, n = —4 significa que g_,, se

desplaza 4 veces hacia la izquierda, como se muestra en 3.2(c).

Ahora vamos a hacer las cuentas para aquellos valores de n para los cuales la con-
volucién no da cero. Vemos que n = —4 es el desplazamiento menor que me ofrece un
valor distinto de cero (ver que si n = —5 o menor, siempre algtin término del producto
es cero). Entonces solo tiene sentido aumentar n. Luego, vemos que podemos seguir este
procedimiento hasta que la convolucién vuelva a dar cero, si variamos n desde -4 hasta 2.
En el medio obtenemos valores distintos de cero, como se ve en 3.2(c-h). El resultado de

la convolucién se puede observar en la figura 3.3.

., Cémo cambia el resultado si las funciones son continuas? La expresién para la con-

volucién esta dada por la ecuacion

F(2) * g(x) = / ) g — € dr, (3.2)

en donde * significa complejo conjugado. Siendo que todas las sefiales medidas son reales,
vamos a omitir * de ahora en mas. En este caso la operacién es similar pero, en lugar
de hacer una sumatoria, calculamos el area bajo la curva que resulta de multiplicar a la

primera funcién por la segunda invertida y desplazada.
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Figura 3.2: Convolucién de las funciones f,, vy gm. En (a) se muestra un grafico del muestreo
realizado para estas funciones. En (b-h) se presenta una visualizacién del calculo de la convolu-
cién de estas funciones para distintos valores de n.
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Figura 3.3: Resultado normalizado de la convolucién entre las funciones f,, y ¢gm, variando n
entre -10 y 10. Se observa que toma valores no nulos cuando n se encuentra entre -4 y 2.

En la figura 3.4 se muestra un ejemplo para funciones ‘continuas’. Ver que el proce-
dimiento es el mismo: se invierte la funcién g(z) respecto de z = 0, se desplaza a g(—x)
a través de f(z) para distintos valores de £. Para cada desplazamiento ambas funciones
se multiplican y se calcula el drea bajo la funcién producto (color gris en la figura que

corresponde al punto rojo en la convolucion).
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Figura 3.4: Ejemplo de convolucién para dos funciones continuas f(x) y g(z). Las mismas se
encuentran graficadas en (a). Se observa el proceso de convolucién para diferentes desplazamien-
tos: (b) € =—=5,(c) £ =—-1,(d)t=0,(e) £=1, (f) £ =3,y (g) £ =5. En cada caso se detalla
el drea integrada (arriba en gris) y el valor resultante de la convolucién (abajo como un punto
rojo).

Nota: todo esto que pensamos en una coordenada espacial unidimensional, tam-

bién vale para la coordenada temporal y para miltiples dimensiones.

3.2. Convolucién: intrinseca en el proceso de medi-
cién

Si observamos ahora los ejemplos de mediciones que mencionamos en la Fig. 7.1 vemos
que, en casi todos los casos, hay ‘algo’ que se traslada a través de aquello que se desea
medir (detector o el haz de iluminacién). En cada posicién del detector o haz de barrido,
la medicion resulta de integrar o sumar todo aquello que se encuentre en el area de
interaccién del detector o haz con lo que uno quiere medir S(x). Es decir, el resultado

del proceso de medicién (M (z)) es la convolucién de lo que se desea medir S(z) con la
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respuesta del detector R(z). Re-escribiendo a la expresién 3.4 obtenemos

M(x) = /OO S(t) - R(x — 7)dr. (3.3)

o0

Supongamos que estamos en el caso ideal que la respuesta del detector sea una delta
(por ejemplo, el haz puede enfocarse en un drea infinitamente pequena o el detector (ya
sea piezoeléctrico, detector de luz, etc) tienen un area infinitamente pequena (sabemos
que eso no es posible). Entonces escribiendo R(z — 7) = d(xz — 7) y reemplazando en la

expresion 3.4, obtenemos
M(x):/ S(t)-d(x — 1) dr = S(x). (3.4)

Es decir, mateméaticamente en el caso de tener un detector ‘ideal’ la medicién resulta

idéntica a lo que uno quiere medir. Pero, fisicamente, ;qué es ideal?

3.3. El detector ideal y el real

Veamos un ejemplo de medicion, en donde queremos medir el doblete del sodio. Es de-
cir, queremos medir el espectro de una lampara de sodio, que emite dos lineas espectrales
muy angostas (ancho ~ 0,1 nm) centradas en las longitudes de onda 589.0 nm y 589.6
nm (doblete). Vamos a suponer que la forma o perfil de estas es lorentziano. En la figura
3.5 se pueden observar a estas lineas graficadas en color naranja. Supongamos entonces
que utilizando una red de difraccién separamos estas lineas y con un detector vamos a
barrer el espectro midiendo la intensidad, tal como se muestra en la Fig. 7.1. Para que
la resolucion en la deteccion sea buena, solidario al detector pondremos una rendija cuyo
tamano podemos cambiar con mucha precision, de manera que todo lo que este dentro de
la rendija puede ser capturado por el detector, y todo lo que esté afuera no. La funcién de
respuesta R(x) que caracteriza a la rendija junto con el detector es la funcién cuadrada
que esté graficada en la Fig. 3.5(a). En las Figs.3.5(b-c) se grafica en verde el resultado
de la medicién (simulado como la convolucién entre la respuesta del detector y las lineas
espectrales que se desean caracterizar). Vemos que cuanto mds chica es la rendija (més
parecida a una delta), mas se parece la medicién a las lineas espectrales; mientras que, al
aumentar el ancho de la rendija, dejamos de resolver al doblete para medir solo una linea

espectral.
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Desarrollando la intuicién: Usando la simulacién (Jupyter notebook (convo-
lucion.ipynb)), les sugerimos responder las siguientes preguntas (y disenar otras!)
para trabajar sobre nuestra intuicion acerca de la convolucién en el proceso de

medicion.

1. Cambiar la resolucién del espectrometro. Que pasa cuando la funcién resolucion
se aproxima a una delta?

2. Cambiar la distancia entre lineas espectrales manteniendo la misma resolucién
del espectrémetro.

3. Simular ruido de alta frecuencias sumando a las lineas espectrales algo como
0.1 sin(1000 x). Ver que la convolucién funciona filtro pasa bajos.

4. Como debe ser el ancho de la rendija para tener una medicion fiel?
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Figura 3.5: (a) Se observa la funcién que representa a la respuesta de la rendija y por lo tanto al
la regién donde puede medir el detector, donde 1 corresponde a deteccion total y 0 a deteccion
nula. (b) Se detalla la comparacién entre el espectro del doblete de sodio (linea sélida naranja)
y el espectro obtenido al medir (linea sélida verde) utilizando una rendija de ancho W = 0,2
nm, (¢c) W=0,5nmy (d) W= 1,0 nm.
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Capitulo 4

Ondas estacionarias

Una onda estacionaria se forma cuando se superponen dos ondas de igual frecuencia
que se propagan en sentido opuesto a través de un medio. Por ejemplo, en la figura 4.1,
se observa la superposicién de dos ondas contrapropagantes en distintos tiempos (¢ = 0,
t=T/4,t=23T/4,t =T, donde T es el periodo de la onda). La onda que se propaga a

la izquierda se puede expresar como

Uz, t) = Acos(wt + kx + ¢a) (4.1)

y una onda que se propaga a la derecha como

Up(z,t) = Beos(wt — kx + ¢p) (4.2)

En la figura 4.1c se observa la superposicién de ambas odas, formando la onda esta-
cionaria. Ver que la onda estacionaria cambia su amplitud en el tiempo, pero los puntos
indicados con la letra Q (conocidos como nodos) tienen amplitud nula en cualquier tiem-
po y los indicados con la letra P alcanzan la amplitud méxima (antinodos). La forma

funcional de estas ondas es

U(x,t) = Va(z,t)+ Up(z,t) = 2Asin(kz)cos(wt) (4.3)

en donde, para simplificar los calculos, se considerd, que las fases iniciales son nulas y las
amplitudes son iguales. Por el contrario a las ondas propagantes, las ondas estacionarias
no transportan energfa (en ninguno de los casos hay transporte de masa). Se puede ver
graficamente a partir de la figura 4.1c, que la distancia que separa dos nodos consecutivos
A
€S 9
Podriamos preguntarnos, ;jcémo es que generamos dos ondas que se propaguen en

direcciones opuestas a partir de una unica fuente de ondas? Los cambios en las carac-
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Figura 4.1: Dos ondas, una que se propagan hacia la izquierda (a) y otra hacia la derecha(b), se
superponen para formar una onda estacionaria (c)

teristicas de los medios en donde se propagan las ondas (cambios de seccién en tubos,
fijaciones en las cuerdas, cambio de indice de refraccién para la luz, etc), producen refle-
xiones. Por ejemplo, en la figura 4.2, se muestra la reflexion de una onda en una superficie
perfectamente reflectante. La onda W(xz,t) ahora estd compuesta por la superposicién de
una onda que incide en la pared V;(z,t) y una onda que se refleja Wg(z,t). Dado que la
onda no puede producir movimiento de los a&tomos o moléculas de la superficie, se tienen
que anular en la misma, es decir, la condicién de borde en una superficie perfectamente

reflectante o pared rigida es

U(z,,t) = Vi(zo,t) + YR(z,,t) = 0. (4.4)

Esto significa que la onda reflejada tiene igual amplitud que la onda incidente, pero
se desfasa en 7, puesto que W;(x,,t) = —Vg(z,,t). Nota: para dibujar la onda reflejada,
tuvimos que espejar respecto a la direccién horizontal y vertical, por qué?)

Las ondas estacionarias son m&s comunes de lo que tal vez nos imaginamos. Por
ejemplo, son esenciales para el funcionamiento de los instrumentos musicales. En la figura
4.3, se muestran dos ejemplos tipicos de un instrumento de viento (ondas longitudinales
en gases) y uno de cuerdas (ondas transversales en cuerdas). Los modos de oscilacién en
ambos casos determinan la nota o tono y las caracteristicas del sonido (dos notas iguales
no suenan perfectamente igual en instrumentos distintos, aun estos sean del mismo tipo).
La frecuencia del modo mas bajo, conocida como nota fundamental, los armonicos y
sobretonos son aquellos que le dan la riqueza la nota (su timbre, su color,etc). Tanto en
los instrumentos de viento como cuerdas, las vibraciones de las ondas estacionarias en ellos

producen vibraciones del aire en su entorno generando una onda longitudinal en el aire,
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Figura 4.2: Arriba: una onda incidente (en negro) incide sobre una superficie reflectante. Esto
produce una onda reflejada (marrén) que viaja en sentido contrario de igual amplitud. Esto
genera una onda resultante que es la superposicién de las ondas incidentes y reflejadas (abajo)
formando nodos y antinodos.

que se propaga hasta nuestros oidos, lo que permite que escuchemos a los instrumentos

musicales.

Figura 4.3: Las ondas de sonido provocan perturbaciones en el aire al desplazar las moléculas,
dando lugar a una onda longitudinal que permite la propagacién del sonido. En el caso de instru-
mentos de cuerdas, encontramos mayoritariamente ondas mecanicas transversales estacionarias
mientras que en instrumentos de viento ondas mecénicas longitudinales.

Para accionar a las notas, ambos sistemas deben ser forzados. En el caso de los ins-

trumentos de cuerda, los dos extremos de las cuerdas se encuentran fijos (condicién de
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borde extremos fijos) y el sistema se puede forzar por frotamiento (violin, viola, cello) o
por percusién (los tres anteriores, la guitarra, el piano). En el caso de los instrumentos de
viento, se fuerza soplando aire por un extremo y el otro extremo es abierto (condicién de
borde forzado-abierto).

En base a lo explicado previamente, nos interesa saber como se forman las ondas esta-
cionarias, como influyen distintas condiciones de borde y como son los sistemas forzados.

Intentemos responder a estas preguntas empleando dos sistemas tipicos: cuerdas y tubos.

4.1. Ondas estacionarias en cuerdas

4.1.1. Condiciones de contorno

Las condiciones de contorno en el caso de cuerdas, pueden ser que el extremo sea fijo,
o que el extremo sea libre o que el extremo esté forzado, como se esquematiza en la figura
4.4. Si el extremo de la cuerda esta fijo, el desplazamiento de la cuerda es nulo. Esto lo

expresamos matematicamente como

U(z,,t) =0, (4.5)

en donde zx, es la posicién del extremo fijo de la cuerda. Como explicamos anteriormente
esto significa que la incidente y reflejadas son iguales en magnitud pero estan desfasadas
en 7. En el caso de que el extremo se encuentre libre, la onda incidente y reflejada tienen

que ser iguales en amplitud y pendiente. Esto es

d¥(z,t)

- ~0. (4.6)

T=x,

Ver que en el caso del extremo fijo, tal como mencionamos anteriormente hay una inversién

de la onda, mientras que en el extremo libre la onda no se invierte.

Tarea: Escribir una superposicién de ondas armonicas propagantes que satisfagan
4.5y 4.6.

A partir de las condiciones de borde planeadas podemos proponer varias situaciones
esquematizadas en la figura 4.5: que la cuerda tenga dos extremos fijos, que la cuerda
tenga dos extremos libres, que la cuerda tenga un extremo fijo y uno libre. Para analizar

que sucede podemos plantear la forma de la onda estacionaria genérica

U(x,t) = Acos(kx + ¢)cos(wt + @) (4.7)
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Figura 4.4: Arriba: una onda incide sobre un extremo fijo (izquierda). Esto genera una onda
reflejada invertida (derecha), es decir, desfasada en m. Abajo: una onda incide en un extremo
libre (izquierda) y produce una reflexién de igual amplitud y pendiente, sin invertirse.

donde ¢ es la fase inicial temporal y ¢ la fase inicial espacial. Luego proponemos las

condiciones de borde adecuadas segun el problema particular.

4.1.2. Cuerda con dos extremos fijos

Tarea: Probar que imponiendo las condicién de borde de la ecuacién 4.5 en ambos

extremos para todo tiempo, se obtienen los resultados de esta seccién.

Si la cuerda tiene dos extremos fijos en las posiciones x = 0 y x = L, y se proponen
las condiciones de borde
U(0,t) =0;U(L,t) =0

en la ecuacién 4.7, se obtiene que ¢ = m/2 y que A y k pueden tomar varios valores.
En particular se obtiene kK = mz/L con m un entero positivo (m = 1,2,3....) por lo que
Am = 2L/m. Es decir la onda entra un ntmero entero de veces en la distancia 2L. Las

posibles soluciones toman la forma
U, (x,t) = Apsin(k,z)cos(wpt + pn) (4.8)
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Figura 4.5: Ejemplo de dos configuraciones con distintas condiciones de contorno. Arriba, una
onda con sus dos extremos fijos (puntos rojos). Medio:una onda con un extremo fijo y el otro
extremo libre. Abajo: una cuerda con un extremo fijo y otro forzado

con A, v ¢, parametros a determinar a partir de las condiciones iniciales y w, v k,
relacionados a partir de la relacién de dispersién de la cuerda w,, = vk,, con v = /T/u
donde T es la tensién de la cuerda y p su densidad lineal (en unidades de kg/m). Esto
significa que solo algunas frecuencias podran excitar a la cuerda. En la figura 4.6, se
observa un esquema en donde se observan graficados los primeros modos normales, sus
frecuencias (f, = w,/27) y longitudes de onda. A la primer frecuencia f; se la conoce
como frecuencia fundamental o primer armonico. Las demas frecuencias son multiplos de

esta y se las lama simplemente armonicos.

4.1.3. Cuerda con un extremo libre y uno fijo

Tarea: Probar que imponiendo las condiciéon de borde de la ecuaciéon 4.5 y 4.6
en cada uno de los extremos para todo tiempo, se obtienen los resultados de esta

sececion.

De manera anéloga a la secciéon anterior, si ahora la cuerda tiene un extremo fijo en

x = 0 y uno libre en x = L, y se proponen las condiciones de borde

AV (x,t)

dx =0

v(0,t) =0;

r=L
en la ecuacién 4.7, se obtiene que ¢ = 7/2 y que A y k pueden tomar varios valores. En

este caso se obtiene k = (2m — 1)7/2L con m un entero positivo (m = 1,2,3....) por lo
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Figura 4.6: Primeros cinco modos de oscilacion de una cuerda con dos extremos fijos. A la
derecha se puede observar el nimero de modo (n), su longitud de onda ()\,) y su frecuencia
(fn)- En el esquema las N marcan las posiciones de los nodos y las A la de los antinodos (puntos
de méxima amplitud).

que A\, =4L/(2m — 1). Es decir la onda entra un nimero entero de veces en la distancia

4L. De manera analoga al inciso anterior, las posibles soluciones toman la forma
U, (x,t) = Apsin(k,x)cos(wit + ) (4.9)

En la figura 4.7 se pueden observar graficados los primeros modos normales, sus frecuencias
y longitudes de onda.
4.1.4. Cuerda con un extremo fijo y otro forzado

Supongamos que ahora tenemos una cuerda con un extremo fijo en = 0 y uno forzado
armonico en x = L (D cos(wt)). El extremo fijo serd un nodo, pero el extremo forzado se

vera obligado a moverse como el forzante, esto es

W(0,) =0
U(L,t) =D cos(wt)
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Figura 4.7: Primeros cinco modos de oscilacién de una cuerda con dos un extremo fijo y uno libre.
A la derecha se puede observar el nimero de modo (n), su longitud de onda (\,,) y su frecuencia
(fn)- En el esquema las N marcan las posiciones de los nodos y las A la de los antinodos (puntos
de méxima amplitud).

Luego de aplicar estas dos condiciones a la ecuacién 4.7, se obtiene que

U(x, t) = ﬁ sin(kz)cos(wt) (4.10)

En donde se uso que dado que la solucién transitoria decayo, la cuerda debe oscilar
con la misma frecuencia y fase que el forzante.

El dominador de la ecuacién 4.10 se anula cuando kL = nmw con n = 1,2, 3... (que son
los mismos valores que se obtienen para extremos fijo-fijo o libre-libre). De este modo si
el forzante tiene frecuencia w = w,, = vk,, la solucién diverge (es un sistema resonante).

Por otra parte, en las frecuencias de resonancia D/ sin(kL) > D, por lo tanto la ampli-
tud del forzante es despreciable respecto a la amplitud de la onda, por ello consideramos
al extremo forzado como un nodo.

., Qué pasa si forzamos con una frecuencia que no sea de un modo normal? Al forzar
generamos una onda progresiva que al llegar a un extremo se refleja generando una onda

regresiva (que viaja en el sentido contrario). Cuando la onda regresiva llegue al otro
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extremo volverda a reflejarse generando una nueva onda progresiva que se superpone con
la onda progresiva original. En general, debido al tiempo de viaje, la nueva onda progresiva
no estara en fase con la original. En cada reflexién, la onda adquiere una A¢;, de manera

que la perturbacion total progresiva sera la suma de todas las ondas con distintas fases

Uiop = Y (Acos(kz — wt + ¢ + Ady)). (4.11)

(2
La suma de ondas con defasaje aleatorio tiende a cero para una cantidad suficiente de
ondas. La tinica manera que no se anule la suma es que la diferencia de fase sea cero. Esto
se logra para algunas relaciones entre A y L que son precisamente las condiciones bajo las

cuales aparecen los modos normales. Lo mismo pasa con las regresivas.

4.1.5. Experimento: ondas estacionarias en cuerdas.

En esta experiencia se estudiaran ondas estacionarias en cuerdas. El dispositivo ex-
perimental se observa en la figura 4.8. En uno de los extremos de la cuerda se sujeta un
portapesas y se la posiciona sobre una polea. En el portapesas se pueden colocar distintas
masas para tensionar la cuerda. Se debe tener particular cuidado durante el montaje de
que la cuerda este correctamente nivelada. Se excita a la cuerda en el otro extremo em-
pleando un wave driver (un parlante con membrana). El wave driver tiene una pieza con
una ranura para sujetar a la cuerda. Se alimenta al wave driver utilizando el generador
de funciones y un amplificador de senales. Ademés se puede emplear un osciloscopio para
medir la senal de alimentacion. En el laboratorio se cuenta con cuerdas de distinta densi-
dad, masas de distinto peso, balanza, micrémetro. Advertencia: el wave driver posee una
traba para bloquear su accionamiento mecénico cuando no estan en uso. No te olvides de

retirar la traba antes de comenzar a usarlos. ;Qué voltaje maximo soporta?

Figura 4.8: Esquema experimental para la experiencia con cuerdas.
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Experimental:

a) Como se genera un punto fijo del lado de la polea?

b) Caracterizar las cuerdas que se van a utilizar midiendo su densidad lineal.
;,Cémo?

c¢) Como genero tension en la cuerda? que rango de tensiones es razonable emplear?
d) Calcular la velocidad de propagacién esperada en base a la densidad lineal y
la tension.

e) Buscar los modos normales del sistema. Caracterizar la frecuencia, la longitud
de onda, etc. Como determino la velocidad de la propagacién a partir de las
mediciones realizadas.

f) Medir la velocidad de propagacién para distintas tensiones de la cuerda. Cuan-
tos valores de tension es razonable tomar?

g) Repetir para una cuerda con otra densidad.

4.2. Ondas estacionarias en tubos

Ya hemos estudiado ondas que se propagan en gases cuando hicimos el experimento
de ultrasonido. Deciamos que la onda se propaga en el aire a través de compresiones y
expansiones del mismo, pero que no hay un movimiento neto de las particulas de aire
(aun estas puedan oscilar localmente).

Supongamos que el gas se encuentra en equilibrio en un tubo cuya seccién tiene area
A, a una presion de equilibrio P,, con una densidad p, (ver figura 4.9). Llamemos entonces
U(z,t) al desplazamiento longitudinal de las moléculas de aire respecto de la posicién de
equilibrio, y consideremos un volumen inicial V, = AxA. Cuando la onda se propaga
en el tubo, el volumen de aire sufre un desplazamiento o deformaciéon y por lo tanto
hay variaciones de presiéon en su entorno. La presién estd relacionada con la compresion
o expansion del gas. Cuando se comprime a un volumen més chico, la presién aumenta.
Cuando se expande a un volumen mas grande la presién disminuye. La variacién de presion

(Ap) se puede expresar como

(4.12)

donde k es el modulo de compresibilidad en unidades de Pa. De este modo, nos queda

calcular la variacién de volumen a partir de la funcién desplazamiento como AV = U (z +
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Ax,t) — WU(x,t). A partir de esta expresién y en el limite de Az muy chiquito, se obtiene

0V (x,t)
Ap = —k———2. 4.13
p % (4.13)
Equilibrio
P, presion atmosférica
P, P, p, densidad del gas
e V, = AAx volumen inicial

Si se propaga la onda
P(x,t) WY(x+Axt)
= —

p(x,t) —>

P

Figura 4.9: Esquema de un gas en equilibrio (arriba) y un gas en el que se propaga una onda
(abajo)

Por otra parte, se puede ver que la variacién de densidad es

plz,y) = po%. (4.14)

con p, la densidad media del gas.

4.2.1. Condiciones de borde en tubos

Las condiciones de borde en los tubos pueden ser extremo cerrado, extremo abierto
o extremo forzado (también existen otras como los cambios de seccién, pero por ahora
tomamos estas tres). Miremos primero que pasa con el extremo cerrado que estd a la
derecha de la figura 4.10. Las particulas muy cercanas a la pared se encuentran quietas,

de modo que la condicién de borde se puede expresar como

U(z,,t) =0, (4.15)

donde x, es la posicion del extremo. En el momento de la foto, la particulas cercanas a
la pared se mueven hacia la pared, por lo que la presién en ese extremo es maxima.
En el caso de un extremo abierto, como el que se muestra en la figura 4.11, la condicion

que hay que pedir, es que la presién inmediatamente antes e inmediatamente después del
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Figura 4.10: Condiciones de borde Forzado- cerrado. Arriba: Esquema de la distribucién de
moléculas o atomos en el gas. Medio: Desplazamiento de las moléculas (positivo es hacia la
derecha, negativo es hacia la izquierda). Abajo: Presién en el tubo.

extremo sea la misma. De este modo, la variacion de presiéon es nula, por lo que la condicion

es que

= 0. (4.16)

Figura 4.11: Condiciones de borde cerrado- abierto. A la derecha, el extremo estd abierto y las
presiones en el interior y exterior se igualan. Arriba: Esquema de la distribucién de moléculas o
atomos en el gas. Medio: Desplazamiento de las moléculas (positivo es hacia la derecha, negativo
es hacia la izquierda). Abajo: Presién en el tubo.

Analicemos ahora el extremo forzado. Podemos suponer que las particulas se mueven
igual que el forzante (igual que el piezoeléctrico o igual que el parlante), en cuyo caso

la condicién serda que W(L,T) = C cos(wt), suponemos al extremo forzado en z = L.
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Utilizando esta condicién obtenemos los mismos resultados que para la cuerda: kL = nmw

y la funcién de onda

U(z,t)

= (kL) sin(kx)cos(wt) (4.17)

Es decir, el extremo forzado se comporta como un extremo cerrado para desplaza-
miento. Sin embargo, también podriamos pensar que en el extremo forzado las presiones

se igualan. Entonces

Hé?\I/(:B, t)

Ap= - Ox

= (' cos(wt). (4.18)

z=L

A partir de esta condicion se obtiene que la amplitud de la onda es

e
A= ———— 4.19
K cos(kl) (4.19)
que se maximiza cuando k, = (2m — 1)m/2L, es decir, un extremo abierto para

desplazamiento.

4.2.2. Modos normales en tubos

A partir de las condiciones de borde mencionadas, se puede probar que los modos en
los tubos con condicién abierto-abierto, abierto-cerrado o cerrado-cerrado, son similares

a los de las cuerdas. Los resultados se encuentran en la Figura 4.12.

Figura 4.12: Modos normales en tubos, para las condiciones cerrado-cerrado (izquierda), cerrado-
abierto (medio), abierto-abierto (derecha)

Tarea: Nunca confien en lo dicho, pruébenlo ustedes mismos!
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4.2.3. Experimentando con tubos: el tubo de Kundt

El dispositivo experimental que se empleara en la practica se muestra en la figura
4.13. Consiste en un tubo de longitud L, que incorpora una regla para medir posiciones
dentro del mismo. En un extremo del tubo hay un pistéon mévil que actiia como extremo
cerrado y permite variar la longitud del mismo. Este se puede remover dejando al tubo
con una longitud fija con aquel extremo abierto. Dentro del tubo hay un micréfono con el
cual se mide la perturbacién (de desplazamiento o presién) dentro del tubo. El micréfono
se conecta a un amplificador y luego al osciloscopio para poder medir la senal. El otro
extremo del tubo se encuentra abierto y a una distancia d, (d, < L) de un parlante con el
cual se emitira la senal. El parlante estd conectado a un generador de funciones mediante
un cable BNC-banana. El generador de funciones a su vez esta conectado al osciloscopio
para medir la senal emitida. Todas las conexiones salvo las que se indica lo contrario son
con cables BNC-BNC. No superar los 2 Vpp que se mandan al parlante, sino se distorsiona

la senal.

Figura 4.13: Dispositivo experimental que se empleara en la practica de ondas estacionarias en
tubos

Experimental:

a) Determinar que mide el micréfono: Presion o desplazamiento. ;Cémo lo hago?
.Donde mido? ;Qué espero medir?

b) Disefiar un experimento para determinar si el parlante fuerza al extremo en

presién o desplazamiento. (es decir si el extremo estd abierto o cerrado).

En todas las experiencias siguientes, repetir el experimento con pistén (cerra-

do), sin pistén (abierto).
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a) Medir las variaciones de presién o desplazamiento en los modos a lo largo del
tubo. ;Cuantos modos puedo observar? ;Puedo definir la posicion de los nodos?
.Y de los méximos? ;Que error le asigno? ;Cudl tiene menor error?

b) Dejando L fijo, estudiar la dependencia entre la frecuencia v, la longitud de
onda de los modos A y el nimero de modos. Pensar como es conveniente medir
A. Usando estos datos, medir la velocidad de propagacion del sonido y el largo
efectivo del tubo.

c¢) Disenar un experimento para medir la velocidad de propagacién variando la
longitud del tubo.

d) Determinar la velocidad de propagacién a partir del retardo entre una senal
impulsiva y la senal medida. Adquirir una sefial completa y guardar los datos (Los
vamos a usar pronto!).

e) Comparar la velocidad del sonido obtenida por los distintos métodos.
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Capitulo 5

Composicion de senales

En Fisica 2 estudiamos propagacion de ondas imponiendo condiciones iniciales arbi-
trarias en sistemas que soportan modos normales, y vimos que en esos casos la onda que
se propaga en el medio es una superposicién de modos normales (jlos modos forman una
base de el espacio de soluciones!). Esto es factible debido al principio de superposicién:
dado que la ecuacién de ondas es lineal, una combinacion lineal de soluciones también es

solucién.

En lineas generales, para hallar la solucién se propone que la solucién general a tiem-
po inicial es una superposicién (combinacién lineal) de modos normales. Luego, para
hallar las amplitudes y fases de cada término de la superposiciéon usamos la condicion
inicial expresada en una base Fourier (que, elegida apropiadamente, coincide con la de los

modos normales), e igualamos la solucién general en el tiempo inicial a la condicién inicial.

jAtencién! Si no recordas esto que acabas de leer, leé primero la seccién 5.1 en
donde comentamos brevemente un ejemplo que vieron en Fisica 2 y luego retoma

desde aqui. Si recordas todo, te lo podés saltear.

Si el sistema que estamos estudiando soporta un continuo de frecuencias, en lugar de

usar sumatorias usamos integrales: la transformada de Fourier.
Este concepto lo podemos extrapolar a muchas situaciones, mas alla de las ondas.

Se utiliza muchisimo en casi cualquier rama de la fisica, como la electrénica y la dptica.

Veamos algunos ejemplos.
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La mayoria de los dispositivos electronicos que usamos hoy en dia manejan senales
digitalizadas. Un ejemplo que ya usamos es la senal cuadrada que genera el generador
de funciones. Para generar esa senal, el generador no hace mas que superponer senales

armonicas de distintas frecuencias. ;Se te ocurre cudles?

Otro ejemplo es como se transmite la informacién en los circuitos légicos. En ge-
neral esta estd codificada en 8 bits, es decir base binaria de 8 digitos (por ejemplo, si
quiero transmitir una senal de 2 V, su codificacién en base binaria es 00000010 ya que
2=0Xx284+0x2"4+0x204+0x294+0x2'+0x22+0x22+0x224+1x2"4+0x2%).
Al conjunto ordenado de 8 bits lo conocemos como byte. Esta informacion ademaés se
trasmite como pulsos con cierta frecuencia (bits por segundo), conocida como bit rate. Es
decir que, a fines practicos, en los circuitos légicos la informacion se transmite en cédigo
binario, donde cada digito es un pulso de amplitud 0 V si quiero transmitir el cero binario,
y 3 V o5V para el 1 binario. En otras palabras: para transmitir la informacion de que
la sefial tiene 2 V, se transmite una serie de pulsos ordenados en el tiempo (byte) de
amplitud (0000 0 0 1 0). Y asi, cualquier informacién que quiera transmitir necesito
codificarla en cédigo binario y transmitirla como 1 y 0, es decir como pulsos de 5 Vy 0 V.
Para transmitir estos pulsos, necesito que la electronica que uso tenga suficiente ancho de
banda como para que estos pulsos de los bits se propaguen en los circuitos sin deformarse

demasiado (es decir, que no pierdan sus componentes de Fourier al propagarse).

Notar que, en cualquiera de los ejemplos mencionados anteriormente, para que los
pulsos o senales estén bien conformados, es decir que tengan la forma que quiero que
tengan, mateméticamente deberia tener infinitas frecuencias (infinitas componentes del
espectro en la serie de Fourier). Sin embargo, ningtin dispositivo electrénico puede manejar
infinitas frecuencias (ya que su ancho de banda es limitado), por lo que las series estan
truncadas. Entonces podemos ver una de las razones por las cuales es importante el ancho
de banda de los dispositivos electrénicos (las frecuencias que pueden sintetizar o medir).
Para sintetizar senales cuya forma no es armoénica necesito que el ancho de banda sea
suficiente para poder sintetizar la fundamental de la senal y un nimero adecuado de

armonicos.

Analicemos todo lo dicho haciendo experimentos!
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5.1. Recordando algunas cosas vistas en Fisica 2

5.1.1. La serie y la transformada de Fourier

La base de Fourier {1, cos(2mnv,z), sin(2rnv,x)} nos permite escribir cualquier fun-

cion periddica como una combinacion lineal de senos y cosenos:

S(x) = % + Z ancos(knx) + bysen(k,x) (5.1)

donde las frecuencias k, = nk, son miltiplos de la frecuencia fundamental v, y A,, B,

amplitudes que pueden ser halladas a partir de las siguientes expresiones:

ap = %/OL S(x) cos (27;”:6) dz (5.2)
b= /0 " () sin (%;;;;) dz (5.3)

En la Fig. 7.1 se pueden observar las series de Fourier de diversas ondas periédicas.

Figura 5.1: Series de Fourier de ondas periddicas cuadrada, diente de sierra y triangular.

Nota: Todo esto vale también para el tiempo, alcanza con cambiar z — t y

k, = w, = 27U,.
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Tarea: Usando algtin lenguaje de programacién, graficar las series de Fourier de
la Fig. 7.1, para un nimero finito de términos N,,.

-Que sucede cuando N, aumenta?

-Cuantos términos necesito para que la serie se parezca a la funcién?

-Como puedo definir un error?

Asi como existe una base de senos y cosenos, dado que la exponencial compleja es una
combinacién lineal de senos y cosenos (e~ = cos(kx) — isin(kz)), también podemos

definir la serie de Fourier en una base exponencial

S(z) = f: C, e (5.4)

En donde los coeficientes (), pueden ser hallados a partir de la siguiente expresion

. 1 —ikx
C, = L/LS(x) e "dx

Mas aun, si el sistema admite un continuo de frecuencias (por ejemplo cuando no
es un sistema acotado, por lo que las frecuencias no se discretizan), en lugar de usar
una sumatoria discreta podemos usar una integral (por ejemplo haciendo el limite al
continuo empleando la serie en base exponencial), obteniendo la transformada de Fourier.

La expresién para la transformada directa es

FU0)} = F(v) = / T r) e gy

y para la transformada inversa
oo

FUFW) =10 = [ Fo)-ea

—0o0

En la Fig. 5.2 se pueden observar las transformadas de algunas funciones que solemos

usar.
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Figura 5.2: Transformadas de Fourier de distintas senales no periédicas.

Pensar: Podrias asociar las transformadas de la Fig. 5.2 a fenémenos que estu-

diaste en Fisica 27

Veamos ahora ejemplos en donde usaron transformadas y series en Fisica 2.
5.1.2. Ejemplo del uso de la serie de Fourier en el problema de
condiciones iniciales en sistemas acotados

Vamos a comentar someramente un ejemplo, pero si necesitds mas detalles podés
consultar el apunte de la materia Fisica 2 [?]. Tomemos como ejemplo para recordar, el
de una cuerda de longitud L con extremos fijos. Tal como se mencion6 en la seccion 4.1.2,

una posible solucién es

U, (x,t) = Apsin(k,z)cos(wpt + pn) (5.5)
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con k, = nm/L. La solucién més general es una superposicién de modos normales

U(z,t) =X, A.sin <n%x) cos (wnt + gon) (5.6)

en donde las constantes A, v ¢, estan determinadas por las condiciones iniciales. Vamos
a suponer que la cuerda parte del reposo, es decir ¥(z,0) = 0, de una posicién inicial

dada por la expresion

0 si0<z<Z

U(z,0) =491, sit<z<it (5.7)

0 si%<m<L

Si pedimos que la cuerda parta del reposo en la expresion 5.6, obtenemos que
YA sin(k,z) sin(p,) =0 (5.8)
para toda posicion, por lo que la tnica posibilidad es que ¢,, = 0 para todo valor n.
La condicién inicial para la deformacién implica poder igualar ¥(z, 0) = ¥(z,0). Nos
encontramos con el problema de que la forma general para la deformacién estd escrita
en una base de senos, mientras que la condicién inicial es una funcién cuadrada. De este

modo lo primero que tenemos que hacer es escribir a la condiciéon inicial en una base de

senos y cosenos (la de Fourier):

oo
U(z,t) = EpApsin(p%x) = U(2,0) = a/2+ Y ancos(nkoz) + busen(nk,e)  (5.9)

n
Dado que las series de Fourier permiten escribir funciones peridédicas como super-
posicion de senos y cosenos, para poder expresar a la condicion inicial como una serie
de Fourier necesitamos convertirla en una funcién periédica. Pero, ;cual seria el periodo,
y que condiciones tienen que cumplir? En primer lugar, se tienen que cumplir las con-
diciones de borde en x = 0 y = L. En segundo lugar, querriamos interpretar la serie
de modos como otro desarrollo Fourier para igualar término a términos los coeficientes.
Esto es posible s6lo si ambos desarrollos son de funciones con la misma periodicidad. Los

periodos espaciales de los modos normales (longitudes de onda de los modos) son

2 2L
Ay = — = —, 5.10
P kp D ( )
es decir que la longitud de onda del modo fundamental (p = 1) es \; = 2L, y todos los otros

son fracciones enteras de este. Por lo tanto, en analogia, vamos a pedir que el periodo A
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de una extension periddica de \Tf(x, 0), sea la longitud de onda fundamental: A = A\; = 2L.
Entonces, siendo que k, = 27/A, reemplazando A = 2L se obtiene k, = w/L, en cuyo

caso la igualdad entre series quedara

U(x,t) = EpApsm(p%x) = U(z,0) = a,/2 + Z ancos(n%x) + bnsen(n%w) (5.11)

Entonces ya sabemos cudl es el periodo de la extension. Para terminar de determinar
cual es la funcién extendida correcta, notemos que en la igualdad anterior entre desarrollos,
del lado de modos normales solamente tenemos senos, mientras que para Fourier tenemos
senos y cosenos. Por lo tanto, necesitaremos que a,, = 0 para todo n. Esto lo logramos si
extendemos a \T/(x, 0) de forma impar. En la Fig. 5.3 encontramos la extensién impar de

U(z,0), con periodo A = 2L y que ademds cumple las condiciones de borde (en este caso

dos extremos fijos).

Figura 5.3: Extensién impar de ¥(z, 0).

Solo queda ahora resolver las integrales de las ecuaciones 5.3 tomando como periodo
2L, es decir:

a, = % 02L f(z) cos (22296) dr = 1 /02L f(z) cos (%) dx (5.12)

9 2L 9 1 2L
b, = i/o f(z)sin < ;Zw> dr = —/0 f(z)sin (%) dx, (5.13)

a partir de las que se obtiene

b(

h

= 90 [ (D) (M)
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Es decir que solo sobreviven los términos impares, al igual que la expansién en modos
normales, por lo que podemos igualar los coeficientes by,—; = A, en la expresién 5.11. De

modo que la solucion para todo tiempo es

U(z,t) = zﬁ: {% {cos (@) — cos (@)] sin (n%x) cos (wnz(f + go)n)}
5.17

5.1.3. Ejemplo del uso de la transformada de Fourier en 6ptica

Observando la Fig. 5.2, es facil recordar muchos problemas que resolvimos en éptica
en Fisica 2:
1) Difraccién en una rendija: la difracciéon en campo lejano es la transformada de Fourier
de la rendija. Observar en la figura 5.2 que la transformada de la funcién cuadrada es la

funcién seno cardinal.

2) La interferencia de N fuentes puntuales (campo lejano), es la transformada de Fou-
rier de un peine de deltas como el tltimo ejemplo de la figura 5.2. Esto da como resultado
méximos (puntos brillantes) centrados en multiplos de 27 /T (los ordenes de difraccion).

Estos maximos son mas angostos cuanto mas fuentes puntuales tenga.

3) En el caso mas general, la difracciéon por una red se calcula como la interferencia
de N fuentes puntuales (N es el nimero de rendijas iluminadas), multiplicado por la di-

fraccién en una de las rendijas (la transformada de Fourier de una de las rendijas).

5.2. Sintonizando senales con los piezoeléctricos

Vimos que, al alimentar al emisor con una senal sinusoidal de amplitud A,, en el
receptor se mide una senal de la misma frecuencia pero cuya amplitud depende de la misma
(A(v)). Entonces podemos definir a la funcién transferencia del par emisor-receptor PE
como T'(v) = A(v)/A,. Vemos entonces que, si la frecuencia de alimentacion esta cerca del
méximo de la funcién transferencia (curva azul en la figura 5.4), la respuesta serd mucho
mayor que para una senal cuya frecuencia esté en las colas de la misma (curva verde).
Podemos definir al factor calidad o de mérito como @ = v,/Av, donde v, es la frecuencia
central y Av el ancho a mitad de altura de la campana de resonancia. Para el caso tipico

de los piezoeléctricos que se encuentran en el laboratorio, ) ~ 0,1. Ver que cuanto mas
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grande es la frecuencia de resonancia y mas angosta la respuesta en frecuencias, () se hace

mas grande.

Figura 5.4: Izquierda: dos ejemplos de senales sinusoidales con distinta frecuencia con las cuales
se alimenta un par ER. Medio: Curva de transferencia para el par ER. Notar que la frecuencia
de la onda azul es un maximo en la funcién de transferencia, mientras que la verde no. Derecha:
senal respuesta de cada excitacién. Notar que en el caso de la onda azul la amplitud es mucho
mayor que la verde.

Para pensar
;Podemos pensar al piezoeléctrico como un filtro en frecuencias? (ver Fig. 5.4)

Explicar. ;Cémo deberia ser () para sintonizar las frecuencias con precisién gran-
de?

5.3. Sintonizando senales peridédicas

Vamos ahora a estudiar la capacidad del piezoeléctrico de sintonizar senales. Sabemos
que, en general, si la senal es periddica podemos escribirla como una suma de senales
armonicas a partir de la serie de Fourier. Tomemos el ejemplo particular de la senal
cuadrada (ustedes en clase pueden tomar la que maés les interese). Una senal periédica
cuadrada de amplitud A cuya frecuencia es v, como la que se muestra en la figura 5.5,
puede ser representada por la serie de Fourier cuyos términos corresponden a multiplos

impares de la frecuencia fundamental:

S(t) = %{sin(%ﬂ/o) + %Sin(Qﬂ'(?)Vo)t) + %3@'n(27r(5u0)t) + ...} (5.18)
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Figura 5.5: Senal periédica cuadrada de amplitud A y frecuencia v,,.

Importante: Observar que no importa qué valor tome v,, los coeficientes de Fourier

son siempre iguales ya que responden a la forma funcional de la senal.

En la figura 5.6(a) se puede observar la dependencia temporal de la sefial y los primeros
términos de la serie de Fourier. En la figura 5.6(b) se observa el espectro de frecuencias
de la senal; es decir, la relacién de los coeficientes de la serie de Fourier en funciéon de la
frecuencia. Se observa que, a medida que aumenta el nimero de armonico, la amplitud se
hace cada vez mas chica: esto hace pensar que, si bien la serie es una sumatoria infinita
de términos, no necesitamos infinitos términos en la aproximacién para tener una buena
representacion de la senial. En la figura 5.7 se puede observar la aproximacién tomando

N=1 y N=10 términos de la serie de Fourier.

Figura 5.6: (a) Senal cuadrada (en azul) y los primeros tres términos de su serie de Fourier
correspondientes al modo fundamental (amarillo), tercer (verde) y quinto (rojo) arménico. (b)
Espectro de frecuencias de la senial cuadrada.
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Ejercicio previo a la clase: Programar la serie de Fourier y graficarla para
distintos valores de N. Estimar numéricamente el error de aproximacion y definir
cuantos términos es razonable tomar para tener una buena aproximacién de la

senal. Describir el criterio elegido.

Figura 5.7: Aproximacién a la sefal cuadrada (azul) tomando N=1 (amarillo) y N=10 (verde)
términos de la serie de Fourier.

Tal como se menciond en la introduccién de este capitulo, en cualquier instrumento
para construir una senal se superponen ondas arménicas y, dado que el ancho de banda de
los instrumentos es finito, no se pueden considerar infinitos términos en la superposicion
de las senales. Entonces, supongamos que el ancho de banda de nuestro instrumento es
800 kHz: en el caso del ejemplo podriamos tomar solo 10 términos de la serie, y por lo

tanto mediriamos en el osciloscopio la senal que se muestra en la figura 5.7.

Para pensar y experimentar:

Observar en el osciloscopio el detalle de una onda cuadrada generada por el ge-
nerador de funciones.

- (Cudl es el ancho de banda del generador de funciones? (estd impreso en el
mismo)

- (Cuadl es el ancho de banda del osciloscopio? (estd impreso en el mismo)

- iCual es el contenido espectral de la senal que estamos midiendo?

- /Quién lo limita: el osciloscopio o el generador de funciones?
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Pensemos ahora el siguiente experimento. Alimentamos al piezoeléctrico emisor con
una senal cuadrada. La frecuencia fundamental de la senal cuadrada la podemos cam-
biar libremente. ;Qué se espera medir en el piezoeléctrico receptor? ;Qué pasa cuando
cambiamos la fundamental? Para responder esto podemos hacernos algunas preguntas
que motiven el experimento. Aqui van algunos ejemplos, pero ;qué otras preguntas se te

ocurren?

Para pensar (antes de la clase) y experimentar (en clase):

Elegir la frecuencia de la senal con que se alimentara al piezoeléctrico. ;Cémo es
la separacién entre las frecuencias los arménicos de la cuadrada respecto al ancho
de la campana de resonancia?

., Qué se mide en el receptor si se alimenta al emisor con una senal cuadrada de

frecuencia:

igual a la de resonancia del PE?
- igual a la de resonancia sobre un nimero entero impar?

igual a la de resonancia sobre un nimero entero par?

distinta a cualquiera de esas opciones?

., Cémo utilizarias el piezoeléctrico para medir los coeficientes de la serie de Fou-
rier?
. Puedo reconstruir la senal empleando esos coeficientes de Fourier?

Explicar... jy hacerlo!

5.4. Respuesta impulsiva de un sistema

En todos los casos que vimos hasta ahora, el par ER fue alimentado con una onda
periddica, y, por lo tanto, con un espectro de frecuencias discreto. Supongamos ahora que
alimentamos al PE con una senal cuyo contenido espectral es continuo y coincidente con
la funcién transferencia T'(v). Ademds supongamos que idealmente esta senal tiene un
espectro plano, es decir, todas sus componentes espectrales tienen la misma amplitud. En
la figura 5.8 se muestran algunas de las senales incluidas en la senal de alimentacién en
este experimento imaginario. Por lo que vimos hasta el momento, al medir en el receptor
solo aquellas senales cuyas frecuencias coincidan con la campana de resonancia ofrecen

una senal apreciable. Las senales con frecuencias coincidentes con la de resonancia tendran
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mayor amplitud y las que estan hacia las colas de la funcién transferencia tendran menor
amplitud. En el receptor se mide entonces la superposicion de todas esas senales. Es decir
que, analizando el espectro de la senal medida, podemos medir la funciéon transferencia

del sistema piezoeléctrico ER.

Figura 5.8: Esquema de la accién del par ER cuando se alimenta al emisor con ondas arménicas
de igual amplitud cuyas frecuencias se encuentran en el rango donde la funcion transferencia
T'(v) no es nula. La respuesta del par ER es la superposicién de todas las ondas que se encuentran
a la derecha.

Nos preguntamos ahora: jes posible excitar al PE simultaneamente en todo el rango
en que este puede responder? Es decir, ;jexiste alguna senal cuyo espectro sea continuo y

se superponga con la funcién transmision 7'(v) del PE? ;Cudl serd esta senal?

Para responder esa pregunta necesitamos pensar en cudles son las senales con mayor
contenido espectral, y nos vamos a ayudar con situaciones que ya conocemos (jy la figura
5.21).

Analizar las siguientes situaciones con intuicién y conocimiento:

- Un aplauso, un golpe en una mesa, un chasquido con los dedos, la explosién de
un chaskiboom (todos lo conocemos no? :) ): jcudnto dura el evento en el tiempo?
.qué contenido espectral necesito para que suceda tan rapido?

- Hacer un experimento en casa grabando alguna de estas senales y utilizar la
transformada de Fourier para analizar su contenido espectral.

- La difracciéon en una rendija en campo lejano: jcémo se relacionan la ‘funcion
rendija’ y la ‘funcién difraccién’? ;Cuanto espacio ocupa la rendija? ; Cuanto es-
pacio ocupa la difraccién? ;Cémo se relaciona la difracciéon con la transformada

de Fourier de la rendija?
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Nota: Recordar la definicion de la transformada de Fourier explicadas anterior-

mente.

5.4.1. Respuesta al impulso

Todas las situaciones que describimos anteriormente estan relacionadas con seniales del
tipo impulsivas. Es decir, senales muy cortas en el tiempo y de amplitud muy grande. El
impulso ideal es una §(t) de Dirac, cuya transformada de Fourier (TF) es una constante
(Fig. 5.2), por lo que su contenido espectral es infinito. Sin embargo, experimentalmente
no podemos tener una senal que sea una delta (ya vimos que los dispositivos electrénicos
tienen un ancho de banda limitado). Entonces, veamos cudl es la mejor senal impulsiva

que podemos generar.

En la figura 5.9 se observa un pulso cuadrado de ancho At y altura 1/A(t) (es decir
drea A = 1). Llamaremos a esta funcién x(t) = rect(t). En el limite de At — 0, el
pulso cuadrado se parece cada vez méas a la delta de Dirac. La TF del pulso cuadrado de
ancho At es la funcién seno cardinal sinc(v/Av), que tiene su maximo en la frecuencia
v = 0, y el ancho de la regiéon maés significativa es (~ 1/At). Vemos que a medida que
disminuye At el ancho de la funcién sinc aumenta, es decir, el contenido espectral aumenta.
Entonces, generando el pulso més angosto posible obtendremos el mayor ancho espectral,

pero centrado en la frecuencia v = 0.

Experimental: ;Cual es el pulso mas angosto que se puede generar empleando

el generador de funciones del laboratorio? ;Qué contenido espectral tiene?

Todavia podriamos hacer un truco mas para correr el centro del espectro a donde
nosotros querramos. Supongamos que, en lugar de emplear una funcién cuadrada, em-
pleamos una funcién armoénica (portadora) modulada por una funcién cuadrada, z(t) =
rect(t)sin(2nv,t). Para calcular la TF vamos a usar una propiedad de la transformada,

cuya deduccién van a aprender mas adelante, pero es tan bueno que se los muestro ahora:

Propiedad: Dadas las funciones f y g, la transormada del producto se calcula asi:

F{Wg)} = FUO} « Flo)} = Fv) x G(v)

Es decir: la transformada de un producto, es la convolucion del producto de la trans-
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Figura 5.9: Esquema de un pulso cuadrado de ancho At y altura 1/At (izquierda) y su transfor-
mada de Fourier (derecha). A medida que At — 0, el pulso se parece cada vez més a una delta
y la transformada a una constante.

formada ‘

Entonces, la TF de z(t) se puede expresar como (la cuenta que sigue va para quienes

hayan hecho Matemaética 4, quienes aun no hayan cursado vean directamente el resultado):

F(v) = F{z(t)} = F{rect(t)sin(2nv,t)} = F{sin(2nv,t)} « F{rect(t)} = (5.19)
F(v) =0(v —v,) * sinc(v/Av) = sinc((v — v,)/ Av) (5.20)

en donde usamos los resultados de la tabla 5.2 para calcular las transformadas. Es decir,
agregar la portadora nos permitio correr el espectro a la frecuencia que querramos. En la
figura 5.10 podemos ver un ejemplo de la senal y su transformada para una portadora de
frecuencia v, = 10 kHz. Sin embargo, cuanto més angosto es el pulso, menos oscilaciones

entran, y cada vez menos se parece la senal a una modulacién y una portadora.

Figura 5.10: Ejemplo de una senal arménica modulada por una funcién cuadrada y su transfor-
mada de Fourier
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Volvamos ahora al caso del pulso cuadrado, y analicemos un ejemplo hipotético senci-
llo para ver como es la evolucién temporal para distintos anchos de impulsos, o a medida
que el pulso cuadrado se acorta para parecerse mas a un impulso ideal. El caso que se
muestra podria ser el de un oscilador amortiguado. Queremos analizar qué sucede cuando,
luego de recibir el impulso, el sistema evoluciona. Vemos que el ancho del pulso fija la
condicién inicial para la evoluciéon posterior. Cuanto mas corto, menos importante lo que
suceda dentro del pulso; es decir, se lleva al sistema a la condicion inicial instantanea-
mente. La evolucion posterior depende de las frecuencias que se hayan activado, hasta
que el sistema decae completamente. Si el sistema tiene asociadas varias frecuencias o
un ancho de frecuencias, cada senal asociada a una frecuencia individual decaera con el
tiempo caracteristico propio, pero la senal total serd la superposicién de todas las senales.
Es decir, estamos dando un impulso al sistema, y este reaccionard activando todas sus
frecuencias que coincidan en rango espectral con las del impulso (idealmente un rango
infinito), y la evolucién posterior sera que cada componente espectral decaerd con su
tiempo caracteristico. La respuesta total es la superposicién de las respuestas individuales
en cada frecuencia. Seguiremos trabajando con el concepto de frecuencias activadas en la

siguiente seccién.

LT 1At
1/At 1/At \
/—\ X X
At t At t At t
Impulso largo Impulso acortado Impulso muy corto

Figura 5.11: Dependencia temporal de una sefial ante distintos impulsos. Cuanto mas corto el
impulso, es menos importante lo que pase durante At, la evolucién posterior depende de las
frecuencias activas del sistema.

5.4.2. Respuesta al escalén

En los experimentos de tiempo de vuelo en ultrasonido (piezoeléctricos) y en sonido
(tubo de Kundt) usamos una senal cuadrada de baja frecuencia (~ 10H z) para medir con
qué velocidad se propaga el flanco de la senal en el aire. Para eso medimos el retardo At
entre la senial medida en el receptor (PE receptor o micréfono) y la senal de alimentacién

en funcién de la distancia entre el emisor y el receptor d, y usamos que d = ¢,At, donde ¢,
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es la velocidad de propagacion de las ondas. Como ejemplo de las senales medidas, en la

figura observamos la senial que resulta de alimentar a un piezoeléctrico con dicho flanco.

Figura 5.12: Respuesta del par ER (naranja) cuando se alimenta al emisor con una senal cuadrada
de baja frecuencia (azul). At es el retardo entre que la senal es enviada por el emisor y recibida
por el receptor.

Tratemos de entender ahora, por qué la senal adquiere esa forma. En primer lugar
vemos que, para las escalas temporales que estamos manejando, podemos pensar que la
senal cuadrada es simplemente una senal constante nula (frecuencia cero), un flanco ver-
tical (ahora veremos que significa vertical) y nuevamente una senal constante (frecuencia
cero). Sabemos que el piezoeléctrico no tiene respuesta en v = 0, entonces si lo estamos
excitando, es porque el flanco tiene al menos una porcién de su contenido espectral que

coincide con al funcién transferencia del PE, T'(v).

Comencemos analizando conceptualmente al flanco, luego daremos descripciones mas
matemadticas. En la figura 5.13(a) vemos un flanco tipico que podriamos medir con un
osciloscopio. Podemos caracterizar al flanco midiendo el tiempo de subida de la sefial (o
rise time) t, que se suele caracterizar midiendo el tiempo que tarda la senal en subir
del 10% al 90 % del valor estable. En el ejemplo de la figura 5.13(b) se observa cémo
el flanco de una senal cuadrada se va ajustando por una serie de Fourier que considera
cada vez mds términos. Vemos que si solo consideramos el primer arménico (una onda
sinusoidal con la frecuencia fundamental) la subida de la senal es muy suave. También
vemos que su flanco es mas vertical cuanto mas términos de la serie se consideran. Lo
que estamos diciendo es que para tener un flanco vertical se necesita mucho contenido

espectral. Pero jcudnto es mucho? Se puede ver, analizando la transformada de Fourier,
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que el tiempo de subida de la senal es inversamente proporcional al ancho de banda
t, = 0,35/BW (bandwidth). Entonces por ejemplo, si el tiempo de subida es 10 ns, el
ancho de banda es aproximadamente 35 MHz, que es 3 ordenes de magnitud mayor que

la frecuencia que necesitamos para excitar al PE.

Figura 5.13: (a) Flanco de una senal cuadrada y medicién del tiempo de subida (¢,). (b) Ejemplo
de como la suma de més arménicos (o términos en la sumatoria) en la serie de Fourier reconstruye
cada vez mejor una onda cuadrada.

Para experimentar

- Caracterizar el flanco de una senal producida en el generador de funciones em-
pleando el osciloscopio. ;Cudl es el tiempo de subida? ;Cual es el contenido es-
pectral? ;Quién lo limita: el generador, el osciloscopio o ambos?

- Comparar el ancho del pulso més angosto con el tiempo de subida. ;Cual de las

dos senales es mas rapida? ;Cudl tiene mayor contenido espectral?

Nota: Si bien se comparo el flanco con términos de una serie de Fourier, todo este
analisis de puede realizar empleando la transformada de Fourier de la funcién Heaviside:

su comportamiento con la frecuencia, al igual que los términos de la serie, va como 1/v [?].

Entonces tenemos ancho de banda suficiente para excitar al PE, y lo estamos excitando
en todas sus frecuencias. {Cémo entendemos entonces la senal de respuesta? En primer
lugar, se observa que hay un retardo At entre que la senal es emitida y el PE receptor la
recibe. Luego, de todas las posibles frecuencias contenidas en el flanco, solo aquellas que

coinciden con T'(v) tienen una amplitud significativa. La senal total es la superposicién de
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todas las senales cuyas frecuencias estan contenidas en 7'(v), con amplitudes dadas por
T(v). Como todas las frecuencias estdn muy juntas, el resultado de dicha superposicién

es un batido.

Si entonces realizamos la transformada de Fourier de la senal medida, obtendremos la

funcion transmisién del par ER.

Pensar y experimentar

Pensar cudles son las diferencias y similitudes que hay entre el par ER piezo-
eléctrico y el micréfono-parlante en el tubo de Kundt.

- ,Cémo se comparan los anchos de banda de sus respuestas?

- ,Coémo se comparan las frecuencias que se pueden propagar entre ellos?

- ; Qué se espera obtener si se realiza el experimento de la respuesta impulsiva en
el tubo de Kundt?

5.5. Frecuencia de muestreo y transformada de Fou-
rier

Cuando medimos con un instrumento en el laboratorio, a pesar de que la variable de
interés sea continua, obtenemos una muestra discreta de esa variable. Por ejemplo, cuando
medimos la amplitud de la onda en funcion del tiempo, estamos de acuerdo que tanto la
amplitud como el tiempo son variables continuas; sin embargo, el osciloscopio nos entrega

una senal que es digitalizada y muestreada.

La digitalizacion depende de los bits que tenga la placa de adquisicion del osciloscopio
o del instrumento que estemos usando. Por ejemplo, si nuestra placa es de 12 bits, significa
que todo el rango dinamico que puede medir nuestro instrumento AV, va a estar dividido
en valores digitales AV/2!12,

El muestreo de una senal dependiente del tiempo corresponde a tomar datos equies-
paciados en un tiempo dt o a una frecuencia de muestreo f; = 1/dt determinada. La
frecuencia de muestreo define el niimero de muestras que se obtienen de la senal por
segundo, y esta limitada por el instrumento de mediciéon. En este proceso hay que ser

cuidadosos en no perder informacion de la senal. En la Figura 5.14 se muestra un ejemplo
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de una senal muestreada (medida) utilizando una frecuencia més chica que la de la senal a
medir, por lo que se obtienen puntos discretos sobre la senal. Sin embargo, se observa que
la senal muestreada (puntos azules) poco tiene que ver con la senal que se desea medir.
Si la frecuencia de muestreo no es adecuada, la senial medida puede resultar en una senal

completamente distinta a la original. Este efecto se lo conoce como aliasing.

El teorema de Nyquist, establece que una senal estara correctamente muestreada si la

frecuencia de muestreo f, es al menos el doble de la frecuencia mas alta de la senal f,,4..

fy>2f,. (5.21)

Figura 5.14: Senal continua periddica de frecuencia fy (en rojo) y senal medida (en azul) con
una frecuencia de muestreo fs; < fy tal que la senal que se obtiene es una onda armonica con
una frecuencia distinta a fp.

Si, por ejemplo, se desea muestrear una senal que contenga frecuencias de hasta 8 kHz,
se necesita una frecuencia de muestreo de al menos 16 kHz. La mitad de la frecuencia de

muestreo (equivalente a f,,4.), en este ejemplo 8 kHz, se denomina frecuencia de Nyquist,

Jo-
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Veamos cémo se desprende este teorema observando el espectro en frecuencias (espa-
cio transformado) de la senal. En la Figura 5.15 se observa una senal continua g(t) en el
espacio de tiempos y su transformada G(f) en el espacio de frecuencias. Consideremos

que la senal tiene un espectro de frecuencias acotado.

La senal muestreada g4(t) resulta de hacer el producto entre la senal continua y el

muestreo, que esta representado por el peine de deltas
s(t) =Y 6(t —ndt) (5.22)

La transformada del peine de deltas es también un peine de deltas que estan a una

distancia f, entre si:

S(f)=>_6(f—nfs) (5.23)

Es decir que, cuanto mas chico sea dt, mas van a estar separadas las deltas del peine

en el espacio de las frecuencias.

Figura 5.15: Medicién de una senal continua en el tiempo y su representacién en el espacio
transformado de frecuencias.

La senal muestreada resulta entonces
g:(t) = g(t) > 6(t — ndt) =Y g(ndt)s(t — nét).
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Ahora tenemos que ver cémo es el espectro de esta funcién, y para eso hacemos la
transformada. Podemos usar una propiedad muy interesante de las transformadas y la
convoluciéon que dice que la transformada del producto de funciones, es igual a la convo-

lucién de las transformadas. Es decir:

Flgh(t)y = Flg)} = F{h(t)} (5.24)

Entonces podemos calcular el espectro de la funcion muestreada como

Ga(f) = F{g(t) *f{zat—nét} Za f=nf) =) G(f—nf).

donde G(f) es la transformada de la funcién sin muestrear (es decir el espectro de la
senal original). No hace falta entrar en el detalle de como se calcula la convolucién pero,
en esencia, lo que implica la expresiéon més a la derecha es que tenemos una réplica
de G(f) centrada en cada posiciéon f = nf;. Veamos como se ve la sefial en el espacio
transformado cuando cambia la frecuencia de muestreo, o lo que es lo mismo, el dt en
el espacio de tiempos. En la Fig. 5.17 se ven dos ejemplos: se observa que al aumentar
dt (y por lo tanto disminuir f;), en el espacio transformado comienzan a solaparse las
réplicas vecinas. Esto da lugar al efecto de aliasing que mencionamos antes (la aparicién
de frecuencias que previamente no existian). Fijense que ahora la condicién de Nyquist
surge naturalmente, ya que f, tiene que ser por lo menos mayor que 2 f,,.., para que las

réplicas no se solapen.

Ahora nos preguntamos jcémo esta muestreada la transformada? De hecho, tiene que
estar muestreada, porque no podemos obtener una transformada continua si la funcion
original es discreta. Si se realizan N mediciones (muestras) sobre la senal g(t), la duracién
total de la senal estd dada por At = Ndt. Mediante la transformada de Fourier discre-
ta (DFT) en el espacio transformado obtendremos N valores de G4(f) en el intervalo
(—fs/2, fs/2) (ancho fs). Por lo tanto, dado que en en el espacio transformado tenemos
también N muestras, el espaciado de frecuencias serda Af = f,/N = 1/(Ndt) = 1/At (ver
Fig. 5.16). Es decir: la resolucién de la transformada estd dada por el largo total

de la medicion.
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Figura 5.16: Esquema de la relacion entre el tiempo en el espacio de coordenadas y las frecuencias
en el espacio transformado.

Figura 5.17: Ejemplo de una senal medida con dos frecuencias de muestreo diferentes, tanto en
el espacio de coordenadas (tiempo) como en el espacio transformado (frecuencias).

Para pensar: Supongamos que se quiere medir la campana de resonancia del par
PE a partir de la transformada de su respuesta. ; Cuanto tiempo tengo que medir?
.Qué frecuencia de muestreo debo usar para que no haya aliasing si la campana
estd centrada en 40kHz y tiene una ancho de 5kHz? Piensen en cudntos puntos se

necesitan minimo para medir bien la campana.
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Capitulo 6

Ondas electromagnéticas

Hasta ahora hemos trabajado con ondas mecénicas transversales (vibraciones en cuer-
das) y longitudinales (ondas acisticas). En este capitulo, y durante la segunda mitad de la
materia, trabajaremos con ondas electromagnéticas. Este tipo de ondas son esenciales en
diversas aplicaciones cotidianas, desde la transmision de senales de radio y televisién hasta
el funcionamiento de dispositivos de comunicacién inalambrica y la luz que percibimos.
En el espectro electromagnético (Fig. 6.1) se encuentran diversas categorias de radiacién
como radiofrecuencias, microondas, infrarrojo, visible, ultravioleta, rayos X y rayos gam-
ma. Cada una de estas categorias tiene aplicaciones especificas y propiedades particulares
que las hacen adecuadas para distintos usos tecnologicos, médicos, de comunicacion y
de investigacién cientifica. En particular, en esta materia vamos a realizar experimentos
empleando luz en el la parte visible del espectro (o luz visible por los humanos), formada
por la radiacién electromagnética cuyas longitudes de onda se encuentran entre 400 y 700
nm.

Las ondas electromagnéticas son generalmente ondas transversales que se caracterizan
por la propagacion de energia a través del espacio, sin requerir un medio material para
su transmisién, propagandose en vacio con una velocidad ¢ ~ 3 x 108m/s. El vector de
campo eléctrico puede oscilar de diversas formas en el plano perpendicular al vector de
propagacion, definiendo el estado de polarizacién (luz polarizada lineal, circular, eliptica,
luz natural o luz parcialmente polarizada).

Las propiedades de propagacién de la luz en materiales, estan determinadas por la res-
puesta de los electrones en los mismos. En esta materia estudiamos solamente la respuesta
lineal, pero también existen otros fenémenos muy interesantes asociados a la respuesta no
lineal. El campo electromagnético que constituye a la onda interactia con los electrones
en los materiales ejerciendo fuerzas sobre estos. Los electrones en los d&tomos se ponen en

movimiento en el campo oscilatorio de luz, desplazandose respecto a los niicleos que son

89



muy pesados y se mantienen quietos. El movimiento oscilatorio de los electrones genera
dipolos (un desbalance de carga) oscilantes que re-irradian luz. La magnitud fisica que
caracteriza macroscopicamente la interaccion lineal con los electrones es el indice de re-
fraccién (por lineal se entiende que la polarizacién del material es lineal con el campo,
y eso se traduce en que el desplazamiento de los electrones es proporcional al campo
eléctrico de la luz).

Las propiedades de propagacién més bésicas son la absorcién (A), transmisién (T),
reflexién (R) y scattering (S), como se esquematiza en la Fig. 6.2. En general vale, por
conservaciéon de energia que I = R+ T + A+ S, donde [ es la intensidad incidente.

Supongamos que un haz de luz incide con un angulo 6#; sobre una interfaz entre dos
medios. Parte del haz se refleja en la superficie con un angulo 6, y parte se transmite con

un angulo ¢,. El valor de los angulos 6; y 6, se obtienen a partir de las leyes de Snell

ny sin(6;) = nesin(6;) (6.1)
0, = 6,. (6.2)

Figura 6.1: Esquema de los tipos de ondas y frecuencias que abarca el espectro electromagnético,
donde solo una pequena porcién es visible para el ojo humano. Se muestran ejemplos de fuentes
que generan esas ondas

Las ondas reflejadas y transmitidas se generan en respuesta a la oscilacion de los elec-

trones en el medio, que irradian luz al oscilar (dipolo oscilante) en presencia del campo
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incidente. Al transmitirse, la luz incidente cambia de direccién porque su velocidad de
propagacién es menor segundo medio. Las las ondas con polarizacion paralela o perpendi-
cular al plano de incidencia, se reflejan y transmiten con distinta eficiencia, que esta dada
por los coeficientes de Fresnel.

La absorcion esta relacionada con las transiciones electronicas en los atomos. La luz
puede promover electrones de un nivel energético inferior a otro de mayor energia. Luego
de absorber fotones, los electrones en los atomos pueden decaer naturalmente a estados
de menor energia (como siempre es conveniente), y lo pueden hacer emitiendo luz en una
frecuencia distinta a la incidente (fluorescencia) o transformando esa energia en calor (o
vibraciones en el material).

La dispersion de luz (scattering) sucede cuando en el medio hay particulas o moléculas
cuyo tamano es chico comparado con la longitud de onda, que provocan que la luz cambie
su direccion. En el modelo microscépico de dipolos, cuando los dipolos son iluminados
estos oscilan con la misma frecuencia que la luz, al estar oscilando estos emiten luz en
todas las direcciones.

La luz transmitida es aquella que pudo atravesar el material, sin absorberse ni disper-

sarse.

Figura 6.2: Un haz que incide en el material con un angulo 6;, puede reflejarse, refractarse en
su superficie. La luz refractada, puede dispersarse, absorberse o transmitirse.

6.1. Polarizacion de la luz

La luz es una onda electromagnética compuesta por campos eléctricos £/ 'y magnéticos

H que oscilan perpendicularmente entre si y, a su vez, éstos son perpendiculares a la
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direccién de propagacion, dada por el vector de ondas k. Si la onda es monocromatica
(una tnica frecuencia) y se propaga en la direccién Z, podemos escribir al campo eléctrico

CcOomo

E = Eq, cos(kz — wt)# + Eo, cos(kz —wt + ¢)7. (6.3)
En notacién compleja, la ecuacion anterior se puede re-escribir como

—

E = Ege" 0 4 Fy elbz-vthdlg — pilbz—wt) (g 4 4 B e®p). (6.4)

Otra manera de visualizar esta ecuacién es escribiendo las componentes cartesianas de

manera vectorial, de la siguiente manera

B (B} = Foo ) citheun, (6.5)

E, FEy, e
Una propiedad relacionado con la luz es su polarizacion, que se refiere a la orientacién
preferencial de las oscilaciones del campo eléctrico. Ver que segin las ecuaciones anterio-
res, las componentes en Z e ¢ del campo eléctrico pueden oscilar con distintas amplitudes
y fases. Al vector que representa la forma en que oscila el campo eléctrico, se lo llama po-
larizacién . Si fijamos valores para las amplitudes y fases en valores particulares, podemos

encontrar distintos tipos de polarizacién, como se muestra en la figura 6.3:

Figura 6.3: Onda electromagnética polarizada lineal, circular y eliptica, y sus respectivos vectores
de polarizacion escritos en forma genérica.

= Polarizacién lineal: En la polarizacion lineal las oscilaciones eléctricas se realizan en

un solo plano, lo que resulta en una onda que vibra en una direccién especifica.
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Polarizacién circular: El vector de polarizacion oscila girando (en sentido horario o
antihorario) describiendo un patrén helicoidal a medida que se propaga. En el plano

perpendicular a k, el vector de polarizaciéon describe un circulo.

Polarizacion eliptica: La polarizacién eliptica es una combinacién de la polarizaciéon
lineal y circular. Las oscilaciones siguen una trayectoria eliptica a medida que se
propagan. Este tipo de polarizacién puede ser tanto eliptica derecha como eliptica
izquierda, dependiendo del sentido de giro. En el plano perpendicular a E, el vector

de polarizacion describe una elipse.

Luz naturalmente polarizada (o no polarizada): Una onda electromagnética no po-
larizada se caracteriza por la vibracion aleatoria del campo eléctrico, de manera que
en los tiempos caracteristicos de deteccién, no se puede determinar una direccion de
oscilacion particular. Ejemplos de luz naturalmente polarizada son el sol, el fuego,
las lamparas de filamento y tungsteno, lamparas de gas, entre otras (ver Fig. 6.4).
Por que sucede esto? porque las fuentes estan compuestas por un nimero enorme
de 4tomos que emiten luz. Cada dtomo emite por un tiempo del orden de 1078s, y
el campo eléctrico emitido no tiene ninguna direccién de oscilacion ni de propaga-
cién preferencial (es decir, difiere entre distintos dtomos). La emision de la fuente
estd formada por la superposicion de las ondas emitidas por todos los dtomos, con
polarizaciones que cambian cadticamente, dando a lugar a un campo total que varia
también aleatoriamente y se emite en todas las direcciones. Si la luz es parcialmente

polarizada la amplitud en una direccion es significativamente mayor que en la otra.

Figura 6.4: Elemplos de fuentes que producen luz natural

6.2.

Fenémenos que polarizan la luz

La luz natural no esta polarizada, pero hay ciertos fenémenos y materiales en la

naturaleza que polarizan la luz. Un ejemplo son los materiales anisétropos, como la calcita.
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La reflexion polariza la luz (esto es siempre cierto?). El scattering o dispersién de la luz

también es un fenémeno polarizante.

6.2.1. Polarizacion por reflexion

Cuando las ondas de luz se reflejan en una superficie, pueden polarizarse parcial o
totalmente segin el angulo de incidencia y las propiedades de la superficie. Supongamos
que un haz de luz natural incide sobre una superficie con un angulo de incidencia 6;

respecto a la normal a la superficie, como se indica en la Fig.6.5a.

Figura 6.5: a) Esquema del plano de incidencia, indicando los dngulos intervinientes y la pola-
rizacién de los haces. b) Esquema similar cuando el angulo incidente es el de Brewster 6p. c)
coeficientes de reflexion para las polarizaciones perpendicular y paralelas al plano de incidencia

El dngulo de Brewster (fp) es el dngulo de incidencia para el cual la luz reflejada se
polariza completamente, como se muestra en la Fig. 6.5b. La polarizacion de la luz refleja-
da en ese caso es paralela a la superficie. Esto sucede debido al peculiar comportamiento
de las ondas de luz y su interaccion con los atomos en el material, que se ve manifestada
en los coeficientes de reflexién de Fresnel (Fig. 6.5¢).

En general los campos eléctricos de las ondas luminosas incidente, reflejada y trans-
mitida, se pueden descomponer en componentes paralelas (E!l) y perpendiculares (E+) al
plano de incidencia. En el angulo de Brewster, la componente del campo eléctrico reflejado
paralela al plano de incidencia EL'B se anula, dando como resultado una luz reflejada com-
pletamente polarizada. Por que sucede esto? Dijimos anteriormente que la luz incidente
produce la oscilacion de los electrones que forman dipolos en el segundo medio. Estos
mismos dipolos oscilantes son los que generan la luz reflejada. Los dipolos oscilaran en la
direccién de la polarizacion de la luz transmitida. Si la polarizacién de la luz transmitida

EF‘_‘F es paralela a la direccién de propagacién de la onda reflejada, estos dipolos no podran
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generar campo eléctrico reflejado con esa polarizacién (como veremos més abajo, los di-
polos no generan radiacién en la direccién de oscilacién), por lo que la luz reflejada sera
polarizada E3.

Entonces el efecto de polarizacion estd influenciado por las propiedades del medio en
que se propagan los haces, como su indice de refraccion. En el angulo de Brewster, el haz
reflejado y transmitido forman un angulo de 90°, y, esta condiciéon junto a las leyes de

Snell, permiten obtener

Op = arctan(ns/nq), (6.6)

donde n; es el indice de refraccién del medio desde donde se incide (por ejemplo, aire)
hacia el segundo medio de indice ny (mayor que np), en donde se transmiten los haces

(por ejemplo, un superficie de vidrio o agua).

6.2.2. Polarizacion por dicroismo

Los materiales dicroicos tienen la propiedad de absorber la luz de forma selectiva
segun sea su estado de polarizacién, permitiendo que solo pase la luz con una polarizacion
especifica. Principalmente existen dos tipos de materiales dicroicos segin la polarizacion
de la luz que manipulan: lineales (cuando hay una direccién lineal preferencial de absorcién
o transmision) y circulares (cuando reaccionan diferente segin sea la polarizacién circular
izquierda o derecha).

Los materiales (polarizador lineal), en general, estdn formados por moléculas alineadas
(mediante procesos de fabricacién o propiedades inherentes del material) que absorben
selectivamente la luz con una orientacién particular del campo eléctrico (ver Fig. 6.6).
La luz incide con polarizacién paralela al eje mayor de las moléculas es absorbida, por
lo que la luz que emerge del material estd polarizada en la direccion perpendicular a
la de las moléculas. Quedan entonces definidos los ejes de absorcién y transmisién del
material. En la Fig. 6.7 se muestra el efecto de un polarizador lineal cuando sobre el
incide luz natural. La luz que emerge, independientemente de la polarizacién incidente,
es polarizada linealmente en la direcciéon del eje de transmision.

En este contexto, cuando sobre el polarizador lineal incide luz linealmente polariza-
da (Fig. 6.8), es posible describir la relacién entre la intensidad de la luz incidente y

transmitida utilizando la ley de Malus

I = I cos*(0) (6.7)
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Figura 6.6: Al estirar una lamina de polyvinyl alcohol, sus moléculas se alinean generando una
direccién preferencial para la absorcién

Figura 6.7: La luz naturalmente polarizada emerge del polarizador con polarizacion lineal, en la
direccién perpendicular a la direccién de absorcién

donde la intensidad de la luz transmitida (/) es directamente proporcional a la intensidad
de la luz incidente (Iy), y un factor igual al coseno al cuadrado del angulo (6) entre la
direccién de polarizacién del haz incidente y el eje rapido del polarizador (ver Fig.6.8).
Esta ley demuestra como un material dicroico lineal permite seleccionar y controlar
la polarizacién de la luz. Por ejemplo, si el angulo es # = 0, la intensidad se reduce a
cero, bloqueando toda la luz que no esta alineada con el polarizador. Del mismo modo, se
pueden usar lentes de sol de polarizadores para anular las reflexiones que estan polarizadas
(aquellas cuyo angulo de incidencia es cercano al de Brewster), como se esquematiza en

la Fig. 6.9. Con este mismo truco, podes salvarte de un ataque de cocodrilo (ver link).

Para pensar: Al expresar la ley de Malus, consideramos que los polarizadores
son ideales, de modo que la absorcién solo se da por el efecto dicroico. Como
modificamos esta expresién para considerar un polarizador real? Quien deberia

ser 1,?
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Figura 6.8: El haz incidente sobre el analizador, estd linealmente polarizado en la misma direccién
que el eje de transmision del polarizador. El analizador esta rotado en un angulo ¢ respecto del
eje del polarizador.

Figura 6.9: Los anteojos con vidrios polarizados permiten anular los reflejos polarizados

6.2.3. Polarizacién por dispersién (scattering)

Cuando la luz se propaga por un medio se dispersa. Si las particulas del medio tienen
un tamano comparable a la longitud de onda de la luz, este proceso se denomina dispersion
o scattering de Rayleigh. Esencialmente cuando la luz incide sobre una molécula/atomo,
los electrones que los constituyen oscilan con el campo electromagnético externo formando
un dipolo oscilante. Este dipolo re-irradia luz, tal como lo haria una antena dipolar. Los
medios en donde se dispersa la luz estan compuestos por un niimero elevado de particulas.
Debido a que las particulas estan distribuidas en posiciones aleatorias, la luz dispersada
por cada particula llega al punto particular de observacion con fases aleatoreas, por lo
tanto la radiaciéon es incoherente y la intensidad resultante es la suma de las amplitudes al
cuadrado de luz dispersada en cada particula (sin término de interferencia). El scattering
de Raileigh es inelastico, porque por las leyes de conservacion la frecuencia de las ondas
emitidas es igual a las incidentes. La expresion que corresponde al vector de Poynting

(vector cuya direccién dice hacia donde fluye la energia, y su magnitud la intensidad) de
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un dipolo oscilante es

(S) ~ (uop3w4> SiHQ(G)ﬁ (6.

32m2c r?
donde p, es el momento dipolar y ¢ la velocidad de la luz en vacio. Observemos algunas
cuestiones importantes. En primer lugar, el modulo del vector de Poyinting es directa-
mente (inversamente) proporcional con la frecuencia (longitud de onda) a la cuarta. En
segundo lugar, depende inversamente de la distancia al cuadrado y tiene simetria asimutal
(no depende del d4ngulo asimutal polar). Ademds, depende del sin?(theta), o sea tiene una
direccién de emisién preferencial:la emisién es maxima cuando ¢ = 7/2, minima cuando
6 = 0, o sea en la direccién de oscilacion del dipolo. En la Fig. 6.10 se observa el patron
de radiacién de un dipolo, que se obtiene a partir de los campos electromagnéticos. Notar
que, la emisién tiene simetria asimutal, y en la direccién de oscilacién del dipolo (flechita)

no hay emision.

Figura 6.10: Simulacién de el campo electromagnético irradiado por un dipolo. Se observa que
no emite en la direccién de oscilacion, tiene simetria acimutal, y emite preferencialmente en la
direccién perpendicular a la de oscilacién. Gréafico adaptado de este video.

A partir de estos conceptos, podemos entender por ejemplo, cual es el color del cielo
y cual es su polarizacion.

La dependencia de la longitud de onda (~ 1/\*) de este tipo de dispersién es respon-
sable de los cielos azules y los atardeceres rojos, como se esquematiza en la Fig.6.11. Las

longitudes de onda més cortas (azules) se dispersan mucho més que las largas (rojas). El
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sol emite luz blanca (en todo el espectro visible) y la luz tiene que atravesar la atmosfera
para llegar a nosotres. Cuando el sol esta alto (por ejemplo al medio dia) la luz recorre
una capa relativamente angosta en la atmosfera. La mayor parte del espectro visible puede
recorrer mayor distancia sin desviar su recorrido, pero las ondas en el espectro azul se
dispersan en todas las direcciones. Por ese motivo vemos al sol casi blanco, y alrededor
vemos al cielo celeste. En cambio al atardecer, el sol esta en su posicién baja, por lo que
la luz recorre una distancia mucho mayor en la atmosfera. Los haces azules se disper-
san cambiando su recorrido, pero la distancia que tienen que recorrer es tan grande, que

practicamente no llegan al observador. De este modo, vemos el cielo anaranjado.

Figura 6.11: La dispersién de Raileigh es responsable de que veamos el cielo azul durante el dia
y naranja al atardecer

Consideremos ahora la polarizacién de la luz del sol (no polarizada) entrando a la
atmosfera terrestre. La fuente esta tan lejos que podemos considerar a los haces incidentes
sobre la tierra paralelos, o casi paralelos (una onda plana no polarizada). Nuevamente
consideremos dos situaciones esquematizadas en la Fig. 6.12. Los haces que entran a la
atmosfera por el camino 1, inciden normalmente sobre el observador (gorro rojo). Como
ya vimos lo haces azules se dispersan mas que los rojos, pero en lo que respecta a la
polarizacion, la luz continua siendo no polarizada. Los haces que recorren el camino 2,
son observados perpendicularmente a su vector de propagacion. Podemos descomponer a
la polarizacién en dos direcciones, paralela a la direccién de observacion (linea punteada
roja) o perpendicular a la misma. Ahora recordemos, que al inicio de esta seccién se
mostré que la emision dipolar es simétrica alrededor del dipolo, y que no hay emision

en la direccion del dipolo. Por ese motivo, la componente de polarizacion paralela a la
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linea roja, no puede generar emision de luz, mientras que la otra si. De este modo, la luz
dispersa, observada normal a la direccién de propagacién del haz incidente, es polarizada.
Estrictamente, la intensidad de la onda dispersada con la polarizacion indicada con al
flechita (paralela al papel), disminuye como cos*(, donde 6 es el angulo de observacién
. Ademas, como hay un sin fin de centros de scatering, en realizad la luz sera siempre

parcialmente polarizada.

Figura 6.12: Analisis de la polarizacién de la luz dispersada. En incidencia normal sobre nuestros
ojos, la luz tiene polarizacion natural. Si miramos perpendicular a la direcciéon de propagacion,
la luz es polarizada.

6.2.4. Polarizacion por birrefringencia

La birrefringencia, o doble refraccion, es un fenémeno que se presenta en cristales
no cubicos como la calcita o en plasticos sometidos a tension. Debido a su estructura
atémica estos materiales son anisétropos y la velocidad de la luz depende de su direccion
de propagacién a través del material. El rayo incidente al pasar por la calcita se separa
en dos rayos, llamados ordinario (0) y extraordinario (e), el rayo e se desvia mas que el o
(Fig. 6.13a).

El eje 6ptico en cristales uniaxiales esta dado por el eje de simetria del cristal. El plano
principal es el plano que contiene al eje éptico (Fig. 6.13a en gris). Supongamos un haz
que incide perpendicular a la superficie del cristal. Podemos separarlo por polarizacion
segln sea paralela o perpendicular al plano principal, como se muestra en la Fig. 6.13a,b.
El haz ordinario, viaja con su polarizacién perpendicular al plano principal (y por lo tanto
perpendicular al eje éptico), no se desvia y viaja con velocidad v; = ¢/n,. En cambio

el haz extraordinario, tiene polarizacion paralela al plano principal. Entonces, el campo
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Figura 6.13: Esquema de la lamina birefringente uniaxial, en donde se observa el plano principal
(a), y la refraccién de los haces ordinario y extraordinario (b), mostrando ademés los casos
separados para el haz ordinario (c) y extraordinario (d).

eléctrico se puede descomponer segin sea paralelo o perpendicular al eje dptico. Si es
perpendicular al eje éptico, viaja con v, = ¢/n,. Si es paralelo al eje 6ptico viaja con
v = ¢/ne. Por ello, se desvia. Como consecuencia, al colocar una calcita sobre un papel

escrito, se producen imagenes dobles, polarizadas perpendicularmente (Fig. 6.14).

Para pensar antes de la clase: En la clase vas a tener disponibles calcitas y
polarizadores y algunos objetos por descubrir. Te proponemos pensar en algunos

experimentos:

- Que experimento podés hacer para estudiar la polarizacién por reflexiéon? -
Como determinarias cual es el eje de transmisiéon del polarizador?
- Que experimento podes hacer para estudiar si la luz dispersada es parcialmente
polarizada?.

- Como estan polarizados los haces ordinario y extraordinario en la calcita?
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Figura 6.14: Dobles refracciones en la calcita

6.3. Detectores de luz

Existen numerosos dispositivos capaces de detectar luz, y convertirla en senales eléctri-
cas. Entre ellos encontramos a los fotodiodos, fotoresistencias, fototransistores, camaras
CCD/CMOS, etc (Fig. 6.15). En la segunda parte de la materia usaremos fotodiodos y
CCDs (detectores 2D que contienen NxM fotodiodos).

Figura 6.15: Elemplos de distintos detectores de luz

Los fotodiodos son detectores que se basan en la tecnologia de los semiconductores.
Al absorber un fotén de luz con determinada energia, electrones que estan en la banda
de valencia del material son promovidos a la banda de conduccion. Esos electrones pue-
den ahora transportarse en el circuito eléctrico de medicién generando de una corriente
que es posible medir. La relacién R = P/I entre la potencia luminica absorbida P[W]
(energia/tiempo) y la corriente generada I[A] se conoce como responsividad, fotosensiti-
vidad, respuesta espectral, etc, depende de la longitud de onda (energia de los fotones)
y del material del fotodiodo (Fig. 6.16). Como se puede observar en la figura, existen
fotodiodos con respuesta en diversos rangos espectrales segtin el material del que estén

constituidos.
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Figura 6.16: Responsibidad tipica en A/W para distintos materiales en funcién de la longitud
de onda

La minima corriente que puedo medir, se conoce como corriente de oscuridad (Zzq,k), ¥
estd generada esencialmente por el movimiento térmico de los electrones. Por otra parte,
la relacién entre la potencia luminica P(W) o la intensidad I(Wem™2) y la sefial medida
en el fotodiodo, depende del circuito al que este esté conectado, pero tipicamente tiene

un comportamiento lineal y una saturacion (Zs,) (6.17.

Figura 6.17: Esquema de la corriente (en A) tipica medida en un fotodiodo, en funcién de la
potencia o intensidad incidente

Pensar un experimento: Si queremos hacer experimentos con los fotodiodos
detectando variaciones de intensidad y queremos hacer estudios comparativos, ne-
cesitamos saber como es la calibracion de corriente en funcion de intensidad de luz.

Para esto necesitamos generar variaciones conocidas de intensidad. Que fenémeno
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o elementos 6pticos podés usar para variar la intensidad controladamente? Como

harias entonces el experimento?

6.4. Caracteristicas de los laseres

En esta parte de la materia vamos a estudiar algunas caracteristicas de los laseres. La
palabra léser es en realidad un acrénimo que significa Light Amplification by Stimulated
Emission Of Radiation. En lineas generales, un laser esta compuesto por un medio activo
o de amplificacién, un bombeo y una cavidad resonante, como se esquematiza en la Fig.
6.18. El bombeo, puede ser eléctrico (como en los punteros ldser) u éptico (una lampara
flash u otro ldser). Su funcién es proveer energia al medio activo. El medio activo es
tipicamente un material que es capaz de amplificar luz. La conservacién del momento de
los fotones hace que las ondas que se generan en el medio estén en fase con las ondas
incidentes, por lo que la radiacién ldser resulta coherente. Ademas, como solo algunos
niveles de energia del material son capaces de generar amplificacién, la emision es muy
monocromatica.

La cavidad resonante, es una cavidad 6ptica, como por ejemplo una cavidad de Fabry
Perot que estd formada por dos espejos (uno de ellos tiene alta reflectividad, el otro
deja salir un porcentaje pequeno de la luz presente en la cavidad). La cavidad se usa
principalmente para acumular energia hasta que las condiciones de laseo se cumplan y el
laser empiece a funcionar: esto es que la ganancia que provee el medio activo, supere las
pérdidas dentro de la cavidad (reflectividad en los espejos, absorcién en los materiales).
La luz puede reflejarse sucesivas veces solo en la direccion perpendicular a los espejos, un
haz que estd desviado respecto a esa direccion, va a salir de la cavidad luego de algunas
reflexiones. Es por esto, que la amplificacién se da principalmente en esa direccion, y
por lo tanto el laser sale de la cavidad colimado, con una divergencia muy pequena
(< 10mrad). En la Fig. 6.19a, podemos ver un esquema de un ldser en donde se observa
que el haz laser y se va expandiendo a medida que se propaga. La polarizacion en los
laseres tipicamente se obtiene poniendo una ventana (vidrio con gran calidad 6ptica y
transparente) en angulo de Brewster dentro de la cavidad o usando como bombeo un
laser polarizado.

Tal como vimos en las précticas de ondas estacionarias (cuerdas y tubos), en una
cavidad optica también tenemos modos porque la luz estd confinada entre dos espejos;
en este caso hablamos de modos longitudinales. Los modos longitudinales que pueden

propagarse en la cavidad son aquellos que ademas tengan frecuencias en el espectro de
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Medio activo

(ganancia)

Cavidad resonante optica (dos espejos): realimentacion

Figura 6.18: Esquema simplificado de un laser, en donde se muestra una cavidad 6ptica formada
por dos espejos, un medio activo o amplificador. El haz ldser emerge de la cavidad colimado.

ganancia del medio activo, las ondas con frecuencias fuera del espectro de ganancia no
son amplificadas. Ademads, como los espejos tienen un tamano finito, la luz también esta
confinada en la direcciéon perpendicular a la de la cavidad. Por tal motivo, aparecen
también los modos transversales, que son quienes le dan la estructura a la distribucion de
intensidad en el plano perpendicular a la direcciéon de propagacion. El modo més bajo,
se conoce como T'EM,, y tiene forma de una funcién gaussiana (modo gaussiano). Por
esta razon, si ponemos un papel en frente del laser vemos una distribucién espacial de
intensidad como la que se observa en la Fig. 6.19b. Si graficamos la intensidad sobre un
corte de esa figura (linea blanca), observamos que la forma funcional es gaussiana, como

se muestra en la Fig. 6.19c.

Figura 6.19: Esquema de un laser que se propaga (a), y como lo observariamos cuando este
incide normalmente sobre una pantalla b). c¢) Perfil sobre la linea blanca de la figura b)

La expresion de la intensidad de un haz gaussiano que se propaga en la direccién z se

puede escribir como
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I(r,2) =1, (J;):Jfﬁf (6.9)

donde 1, la intensidad méxima cuando z = 0, w, es el tamano de la cintura del haz (el
tamano transversal méas chico del haz), r? = 2%+ es la distancia medida desde el centro

del haz, y w(z) el tamano del haz a medida que este se propaga, y viene dado por la

w(z) = /1 +% (6.10)

donde z, = mw,/\ se conoce como parametro de Rayleigh o confocal, que es la distancia

expresion

longitudinal en la que el haz se mantiene enfocado. En la Fig. 6.20a se observa un corte a
lo largo de la direccion z, en donde se esquematizan los parametros mencionados. Ademas
se observa en los perfiles de intensidad en distintas posiciones a lo largo del eje z (Figs.
6.20b-d) que a medida que nos alejamos de la posicién en donde se encuentra la cintura
(Fig.6.20b), el haz gaussiano se achata en intensidad y se ensancha. Se puede hallar una
expresion para la divergencia dada por = \/7mw,, pero experimentalmente conviene usar
otras formas de medir, como se vera mas adelante.

Podemos definir algunos pardmetros para caracterizar el ancho de la distribuciéon de
intensidad. Una forma es a partir de medir el ancho de la gaussiana a la mitad de su
altura (ancho mitad altura (FWHM)), es decir el ancho cuando I(r, z) = I'max/2, donde

Imax es la intensidad maxima, obteniéndose

1
Otra forma puede ser medir el ancho cuando la intensidad cae en 1/e?, que representa

aproximadamente el 86 % de la intensidad, es decir cuando I(r,z) = I'maz/e?, a aprtir

de lo que se obtiene que

Apje = 2w(z) (6.12)

En resumen, los laseres se caracterizan por ser:

- Direccionales

- Colimados (divergencia 1-10 mrad)
- Monocromaéticos

- Coherentes

- Polarizados (la mayor parte de los casos)
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Figura 6.20: a) Corte longitudinal de un haz gausiano, en donde se muestra la cintura de tamano
~ 2w,, divergencia # y parametro de Raileigh z,. b-d) Perfil del haz para posiciones que se alejan
de la cintura.

- Tipicamente gaussianos.

- Estabilidad temporal (esta es nueva :) )

En consecuencia de la direccionalidad y colimacién, toda su potencia (P), estd con-

centra en un area A pequena, y en un angulo sélido €2 que es también muy pequeno. Por

W ] | (6.13)

ese motivo, tiene gran brillo
P

B=
AQ

cm?2sr

Veamos como caracterizar algunas de las magnitudes descriptas anteriormente: colima-
cioén, polarizaciéon, distribucién espacial de intensidad, estabilidad temporal, divergencia.

Dejamos para més adelante la coherencia y monocromaticidad (espectro).

6.4.1. Polarizacion

Para estudiar la polarizacion del laser, podemos emplear un polarizador lineal y ca-
racterizar el contraste o grado de polarizaciéon. Supongamos que tenemos una fuente
de luz, cuya polarizacién es quasi lineal (una elipse con su eje mayor mucho més grande
que el menor). Si usamos al analizador podemos determinar dos intensidades:

1. La intensidad méaxima [,,,, que corresponde al eje del analizador paralelo al eje mayor.
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Figura 6.21: Medicién tipica de la potencia del laser en funcién del tiempo
2. La intensidad minima I,,,;,, que corresponde aleje del analizador paralelo al eje menor.

A modo de cuantificar la linealidad en la polarizacién, definimos como contraste de

polarizacion a

Ima:p - ]mm
= 6.14
[maz + Imm ( )

Cuanto mas cercano a 1 sea ese nimero, mas lineal es la polarizacién.

6.4.2. Estabilidad Temporal

La estabilidad temporal en un laser continuo, significa que su potencia o intensidad
se mantiene estable en el tiempo. Las causas de falta de estabilidad del laser pueden ser
externas como las variaciones de temperatura, humedad, vibraciones, fluctuaciones de la
fuente de alimentacion; como internas, como la competencia de modos, la realimentacion,
el desgaste por anos de uso.

Si tenemos un detector de luz con resolucién temporal adecuada, simplemente pode-
mos medir en el tiempo como fluctia la senal medida durante un tiempo determinado.
Supongamos que medimos algo similar a lo que se observa en la Fig. 6.21. Podemos carac-
terizar estas fluctuaciones con su amplitud rms (AVgarg) respecto a la amplitud media.
La estabilidad pico a pico se refiere a la diferencia porcentual entre el valor méximo y
minimo de la potencia o energia de salida y el valor promedio de la potencia o energia.
También podemos caracterizar las fluctuaciones de la senal AV en comparacion con el

valor medio V/, para saber si estas son importantes o no, definiendo la relacién senal-ruido
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\%
NR= — 1
SNR AV (6.15)

6.4.3. Distribucién espacial de intensidad

Para caracterizar como es la distribuciéon de intensidad en la direccion transversal a la
propagacién, podemos usar varios técnicas. Ambas necesitan de detectores calibrados en
intensidad.

Camara. Se puede usar una camara para tomar una foto de la distribucion espacial de
intensidades. Se puede sacar la foto del laser incidiendo sobre un papel y tomar una escala
para calibrar pixel en distancia. Si quiero hacer mediciones comparativas en intensidad,
ademas necesito hacer una calibracion en intensidades. Como lo harias?

Método de la gillete o del borde filoso. Se puede determinar como varia la inten-
sidad en una direccién empleando un dispositivo como el que se muestra en la Fig. 6.22.
Un borde filoso interrumpe el haz, dejando pasar otra parte del mismo que es colectada
en un detector. Para asegurar que toda la luz sea colectada, también se puede usar una
lente entre el borde filoso y el detector. El borde filoso se encuentra ubicado sobre un
posicionador con tornillo micrométrico (unidad de traslacién), de manera que es posible

desplazarlo a través del haz y medir la intensidad en cada posicion.

Figura 6.22: Esquema experimental para la medicion del perfil del haz empleando la técnica del
borde filoso.

La cuestién esta ahora en entender cual es el resultado de esa medicion. En primer lugar
observamos que si tenemos totalmente tapado el haz, no medimos senal. A medida que
vamos destapando el haz cada vez medimos una senal mayor, hasta que esta totalmente
destapado y medimos la senal maxima. Este procedimiento, por el cual se va sumando
acumulativamente la intensidad para posiciones en aumento del borde filoso, es justamente
lo que hace la operacién integral. Es decir, lo que estamos midiendo, es la integral del
perfil de intensidad. Por lo tanto podemos escribir a la senal medida como la integral de

una gaussiana

Apuntes Laboratorio 2, Catedra Prof. M.G. Capeluto 109



Pa) = " (1~ er f(Vr /) (6.16)

y tomando la derivada dP(z)/dx obtenemos I(x) = I,aexp(—22%/w)

Pensar: Desde el punto de vista del analisis de datos, conviene derivar los datos

o ajustar por la expresién integral? Por que?

6.4.4. Divergencia

La divergencia es el angulo con el cual el haz se abre a medida que se propaga. Como
vimos anteriormente este angulo se relaciona con el tamano de la cintura del haz: cuanto
més chica la cintura, mayor divergencia (te suena difraccién?). El problema que tenemos
con los laseres, es que es dificil determinar en donde esta la cintura, ya que el parametro
confocal es muy largo (sino no estarfa casi colimado por distancias muy largas). Para
determinar la divergencia, entonces necesitamos realizar dos mediciones muy distantes

del tamano del haz y emplear argumentos geométricos. Como lo harias?

Resumen de la clase 1 éptica:

- Tendras disponibles polarizadores, cristales birrefringentes, polimeros deforma-
dos, filtros, etc.

- Podrés analizar con dichos elementos los fenémenos que polarizan la luz.

- Caracterizaras la respuesta de detectores de luz en funcién de la intensidad in-
cidente.

- Caracterizaras un laser: polarizacién, distribucion espacial de intensidad, esta-

bilidad temporal, divergencia.
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Capitulo 7

Difraccion

El fenémeno de difraccion se observa con gran frecuencia en la naturaleza, por ejem-
plo, cuando los haces del sol atraviesan las nubes, el arco iris que se forma en un CD.
Las estrellas no tienen naturalmente puntas, las puntas son la difraccién en los distintos
diafragmas de las camaras. En los ojos tenemos lo que se conoce como lineas de suturas,
que hace que veamos fuentes lejanas con difraccién (Fig. 7.1). Por supuesto que la difrac-
cién no solo es atributo de ondas electromagnéticas, sino de cualquier tipo de ondas, por
ejemplo, las que se ven en las playas de Tel Aviv (Fig. 7.1). Por otra parte, el fenémeno de
difraccion tiene muchisimos usos en la ciencia, por ejemplo se usa para medir particulas de
cientos de nanémetros a algunos micrones, en medicina para hacer “delivery de drogas”,
para medir tamano de gotas (asi se midieron los sprays pulmonares o nasales durante la
pandemia debida al COVID!).

En este capitulo, vamos a estudiar entre otras cosas como uso la difraccién para medir
tamanos de objetos muy pequenos? cuales son las ventajas de usar difraccion y de donde

surgen dichas ventajas?

A continuacién revisaremos algunos conceptos sobre difraccion, si los tenes claros podes
saltar al experimento directamente. El objetivo es entender los conceptos mas alld de
resolver las cuentas, y entender cudles son las aproximaciones importantes que se hacen

para entender la difraccion.

7.1. La integral de Kirchhoff

Kirchhoff (1882) encontré la solucién de la ecuacién de Maxwell para un frente de

ondas plano que atraviesa una apertura
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Figura 7.1: Ejemplos de la naturaleza en donde observamos difraccién

U(P) = //S ()f) U(P’)e;,ré (cos(n,7) 4+ 1)ds (7.1)

Mediante esta ecuacion, si conocemos la distribucién de campo U(P’) en los punto P’
de una superficie, podemos calcular el campo U(P), luego de que la onda se propagé hasta
un punto P = (x,y, z) arbitrario del espacio. También podemos calcular como la luz se
propaga a través de distintos objetos. En particular podemos calcular como se difracta
en una apertura de geometria arbitraria, como la que se esquematiza en la Fig. 7.2. Se
ilumina una apertura de manera que se genera una distribucién de intensidad U (P’) sobre
la apertura. Es decir el campo valdra U(P’) en los puntos P’ = (2/,%/,0) sobre la apertura
y cero fuera. Queremos calcular la distribucion de intensidad en un punto P sobre el plano
xy que se encuentra a una distancia d de la apertura. La coordenada r va desde el punto
el punto P’ en la méscara al punto P, y podemos escribir su médulo en funcién de las

coordenadas cartesianas como

r=\d+ (z—2)2+ (y —y)? (7.2)

Analicemos primero el significado de la parte de la ecuacion pintada de rojo. En primer

lugar podemos identificar una onda esférica emitida desde el punto P’, e*" /r. La amplitud
de esta onda es la intensidad de la onda incidente en el punto P’ reducida en A: U(P’)/A

y desfasada en —90° (—1).
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Si esquematizamos el término pintado en azul, vemos que es 1 cuando el angulo entre
7y la normal n es 0° y nulo cuando ese angulo es 180°. Lo que nos dice este término
entonces, es que esta ondita esférica que parte del punto P’ en realidad emite mas hacia
adelante. A este término se lo conoce como factor de oblicuidad.

Si ahora hacemos la integral, lo que estamos diciendo es que de cada punto en la
apertura, parte una onda esférica que emite preferentemente hacia adelante. Al realizar
la integral, estamos superponiendo (interferencia) todas esas onditas que parten de la

apertura. No estamos diciendo otra cosa, que la difraccién es un fenémeno de interferencia.

Figura 7.2: Esquema de una ranura de forma arbitraria en donde se indican los distintos sistemas
de coordenadas. Arriba a la derecha, se observa un esquema de la superposicién de onditas
esféricas y abajo a la derecha un esquema del factor de oblicuidad.

Esto justamente constituye el principio de Huygens-Fresnel (1818): El campo en cual-
quier punto del espacio se obtiene como la superposiciéon (es decir, interferencia)
de las “onditas esféricas secundarias” generadas en cada punto de la apertura. Solo que
Kirchhoff agregd que estas onditas se emiten preferentemente hacia adelante (el factor de
oblicuidad)

La integral de la ecuacién 7.1 es muy dificil de resolver, pero se simplifica si hacemos

algunas aproximaciones, como se muestra a continuacion.

7.1.1. Aproximacion de Fresnel

La primera aproximacion que podemos hacer es la paraxial. En esta aproximaciéon se

considera que las distancias involucradas en el plano donde se mide p son mucho més
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chicas que la distancia de propagacién d (es decir que los haces son casi paralelos al eje
éptico). Esto se cumple si estamos observando en posiciones cercanas a la rendija, en
donde los haces aun no se desviaron demasiado. Ver que en términos de p, r se puede

escribir como

= &+ p? (7.3)

siendo p?* = (z — 2')? + (y — v/)? (ver Fig. 7.2). Si p < d entonces podemos hacer un

desarrollo de Taylor en r,

r=dy|1+ (g) d<1+2p—;>+0(2)- (7.4)

Para implementar esta aproximacion, en primer lugar, vamos a reescribir la ecuacién

7.1 usando que cos(n,7) = d/r

Uz, y) // <_Z> k; (ngl) ds (7.5)

Luego, dado que los términos con 1/r varfan mucho més lento que los términos expo-

nenciales de fase, vamos a aproximar r ~ d (Taylor orden 0) en el numerador, y vamos
a considerar Taylor orden 1 en la exponencial. De esta manera, usando la definicién para

p? dada anteriormente, obtenemos lo que se conoce como integral de Fresnel

Ulz,y) = (;—;) et / /S U,y )esa@=aVP+=v)? 4o/ gy (7.6)

Hacemos un poquito mas de cuentas para llegar a un resultado importante y termina-
mos con Fresnel :). Ahora vamos a desarrollar el cuadrado en la potencia, con el objetivo

de dejar dentro de la integral solamente las variables primadas, obteniendo

U(I,y) = (d}\) deegz 2 +y7) // %l /ZJFU/Z)e*%(m”Uryy') diEldy/ (77)

Este resultado es muy interesante, porque si observamos el término que depende de
xx' e yy', notamos que se parece mucho al factor de una trasformada de Fourier. Entonces
vemos que podemos escribir a la integral de Fresnel como una transformada de Fourier de
la funcién U'(2’,y') (que es la que estd pintada en rojo en la ecuacién anterior), evaluada
en las variables z/A\d e y/A\d
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—Z : i 24,2 ;N Ak (202 X
U(:v,y) _ (a>ezkd62’;(a‘ +y )J—")\d{U(ZE LY )GQ(,(., +y )} — F(m’ %) (78)

Esta ecuacion me dice entonces que en la aproximacién Fresnel, puedo calcular el
campo haciendo la trasformada de Fourier de la distribuciéon de campo en la apertura,
agregando una fase cuadratica. Notar que si quiero calcular la intensidad, los factores
de fase fuera de la transformada dejan de tener relevancia, ya que desaparecen al tomar
modulo cuadrado.

A modo de ejemplo, en la Fig. 7.3 se observan simulaciones numéricas de la difraccion
por distintas aperturas, en la aproximacién de Fresnel y en la aproximacién de Fraunhofer
(que veremos pronto).

En las dos secciones siguientes vamos a intentar deshacernos de la fase cuadratica de

dos maneras.

Figura 7.3: Difraccién por fistintas rendijas mostrando las como luce en la aproximacién de
Fresnel y Faunhoffer.

7.1.2. Aproximacion de Fraunhofer

. 12 /2 .
Queremos lograr que e (@ 4y /2d goq aproximadamente 1, para eso vamos a hacer que

€l exponente sea muy cnico, 1o que 1umplica > X +y . Lomo [os puntos (r ,y ) son
1 ¢ hico, lo que implica d > k(22 +y2) /2. Como los puntos (2, y/')
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posiciones en la apertura, podemos acotarlos por un tamano caracteristico, por ejemplo
(2"? + y?) ~ A donde A es el drea de la apertura. Entonces obtenemos d > kA/2, y la

integral de Fresnel se reduce a

U(z,y) ~ }"Ad{U(x’,y’)} (7.9)

en donde omitimos todos los factores de fase y constantes para no perder de vista nuestro
objetivo.
Arribamos a una conclusiéon importante, en la aproximacién de Fraunhofer (campo

lejano), el campo no es més que la trasformada de Fourier del campo de la apertura.

7.1.3. El truco de la lente

Supongamos ahora que queremos calcular el campo que atraviesa la apertura y a
continuaciéon una lente convergente. La funcién transmisién de la lente es simplemente

una variacion de fase cuadratica, por lo que la podemos escribir como

ik

T(x,y) = ¢~ 27 (@) (7.10)

en donde f es la distancia focal. Para escribir el campo en un punto arbitrario (z,y,d)

agregamos T'(z,y) en la Eq. 7.8

Ulz,y) ~ FAd{U($/7 y/)e_;’:’(x/2+y,2)6i£z(:”l2+yl2)} (7.11)

en donde para no perder de vista nuestro objetivo, obviamos todos los factores multiplica-
tivos. Si ahora queremos calcular el campo en el plano focal de la lente, basta con tomar

f = d en la ecuacion anterior. En ese caso,los factores de fase se cancelan, obteniendo

U(z,y) ~ fxd{U(x’,y’)} (7.12)

Arribamos ahora a una segunda conclusién muy importante:

la difraccién de Fraunhofer se encuentra tanto en el campo lejano (Eq. 7.9) como
en el foco de una lente (Eq. 7.12). Esta situacién se encuentra esquematizada en
la figura 7.4
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Figura 7.4: Esquema que muestra que la difraccién en campo lejano es equivalente al campo en
el foco de la lente

7.2. Difracciéon por una rendija rectangular

Vamos a estudiar en la materia, la difraccion por una rendija rectangular de tamano

a, que se encuentra esquematizada en la figura 7.5.

Figura 7.5: Difracciéon por una rendija rectangular en donde se muestran las variables de interés
para el problema: 6 angulo de difraccién, D distancia entre la pantalla y la rendija, y posicién
medida en la pantalla

Ya estudiaron en Fisica 2 que la expresion analitica de la intensidad 7(0) de la figura

de difraccion en funcién del dangulo 6 es

sin(d)?
62
siendo § = mwasin(f)/A = may/DA. En la figura 7.6 se puede observar una foto de una

1(6) = Io (7.13)

figura de difraccién, y el resultado de la expresion anterior, que, experimentalmente equi-
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Figura 7.6: Figura de difraccion y perfil de la misma tomado sobr la linea punteada blanca

vale a medir la intensidad en los puntos sobre la linea blanca. La figura de difraccién tiene
minimos situados en donde se encuentran los ceros de la funcién seno, es decir, cuando
d = nm con n un entero, es decir cuando sin(f) = y/D = n\/a

A partir de esta expresion podemos hacer observaciones importantes (y bastante ge-
nerales). En primer lugar, podemos observar que haces con menor longitud de onda,
difractan mas. En la figura 7.7, podemos observar la figura de difraccion producida por
una fuente de luz blanca, y las figuras de difraccion que resultan de filtrar longitudes de

onda en la misma figura.

Figura 7.7: Difraccion de luz blanca por una rendija rectangular y su descomposicién en colores
RGB

Pensar: En la figura de difraccion de la fuente de luz blanca se observan colores
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cian, magenta y amarillo (CMY). Sin embargo los colores originales son rojo,
verde y azul (RGB). Porque se ve CMY?

En segundo lugar podemos relacionar el tamano de la rendija con la extensiéon de la
figura de difracciéon: vamos que cuanto mas chica es la rendija, la figura de difraccién es
mas extensa. Esto tiene mucha logica si pensamos que la difracciéon de Franhofer es una
transformada de Fourier de la rendija, y las coordenadas relacionadas por la transformada
(x y & = 2’ /\d en este caso) siempre cumplen una relacién de incerteza AzA£ > cte: si

la rendija es muy chica, A¢ es muy chico, entonces Az es muy grande.

Experimental: En la experiencia de difraccion, vamos a medir el tamano de la
rendija a partir de la figura de difracciéon y vamos a comparar el tamano obtenido
con el que midamos con un microscopio. Hay muchas maneras de medir y carac-

terizar a la figura de difracciéon:

1) Marcar en un papel la posicién de los minimos y medir la posicién del minimo
en funciéon del nimero de minimo. Obtener a a partir de la pendiente de la recta

(necesito ademds \).

2) Sacar una foto de la figura de difraccién, para determinar la posicién de los
minimos (y seguir como en el item anterior). Necesito ademads, obtener una escala
para calibrar pixeles de la camara en distancia. Las camaras miden las senales
en unidades discretas conocidas como niveles de gris. Para medir intensidad ne-
cesitamos saber primero cual es la calibracion de la intensidad en nivel de gris,
o al menos saber si la relacion es lineal. Si obtenemos esta informacién ademas

podriamos medir el perfil de intensidades. Como podemos calibrar la camara?
3) Desplazando al Fotodiodo a través de la figura de difraccién, relevar la inten-
sidad en funcién de la distancia. Las consideraciones que necesitamos tener en

cuenta para la medicién del perfil de intensidad con el fotodiodo son:

- Linealidad de la senial en el fotodiodo con la intensidad (ya lo probaron la

clase anterior)

- Muestreo espacial adecuado requiere conocer aproximadamente lo que se
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quiere medir. Se debe cumplir Nyquist (como minimo). Cual es el detalle mas

chico que quiero medir?

- Influencia de la respuesta del detector: La medicion es la convolucién de
la funcién respuesta del detector y la magnitud a medir. (Revisar capitulo de
mediciones).

Pensar como realizarian cada uno de estos experimentos, ustedes ya tienen las

herramientas!

7.3. Mascaras complementarias

Nos preguntamos ahora ;Como se comparan las figuras de difracciéon producida a
partir de dos objetos complementarios, como las de la Fig. 7.8a y b? ;Cudles son sus
similitudes y sus diferencias?

Puedo conocer el tamano de las células rojas (Fig. 7.8e) a partir de conocer la difraccién

por una apertura circular (Fig. 7.8d)?7

Figura 7.8: Esquema de méscaras complemetarias (a y b son complementarias, y d y e también
lo son.

En primer lugar escribamos la funciéon transmision de ambas méscaras, diciendo que
la funcién transmisién T'(P’) es 1 si la méscara es transparente y 0 si la mascara es opaca,
como se esquematiza en la Fig. 7.9. Luego notamos que la suma de las transmisiones de
ambas méscaras es 1, por lo que podemos escribir T4 (P") = 1—T4/(P’). Ahora escribamos
la integral de Kirchhoff (Eq. 7.1)
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Figura 7.9: Funcién transmisién para dos méascaras complementarias y su suma.

/ U(P)f(P) ds—// VT + Tan) f(P)ds (7.14)

T

://A U(P')f( ds—// POYTa f( ds+// PYTanf(Pds  (7.15)

usando las definiciones de la funcién transmision podemos escribir

_ / /A U(P')f(P')ds / / U(P)F(P)ds + / / PPy (716)

En la aproximacién de Fraunhofer, podemos aproximar las integrales por transforma-

en donde llamamos f(P') = (%) ﬂ% (cos(n, ) + 1) . Luego, distribuyendo la integral

das de Fourier

U(P) = Fra{Ua(P")} = Faa{Ua(P")} + Fra{Uar(P')} (7.17)

Observando que A es un cuadrado por donde pasa luz, sabemos que su transformada
es una funcién sinc. Si ese cuadrado es muy muy grande, la sinc es muy angosta, de modo
que Fra{Ua(P')} = 0 salvo en el punto donde incide el laser o sobre la funcién sinc que

es muy angosta (casi una delta). De este modo resulta que

Es decir, las intensidades de ambas figuras de difraccién son idénticas en la aproxima-
cién de Frounhofer (salvo en el centro de la figura de difraccién en el caso de la mascara

m4és transparente, ya que tiene un punto muy luminoso).
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Capitulo 8

Lentes y sistemas formadores de
imagenes

El mundo de la fotografia y la videografia ha sido revolucionado por los intrincados
componentes dentro de las lentes de la camara. Mas alla de aparentar ser solo un accesorio,
las lentes son la puerta de entrada para capturar imégenes impresionantes. Los arreglos
de lentes también permiten tener otros dispositivos de gran calidad, como los telescopios.
El rol fundamental de una lente o sistema de lentes en estos dispositivos es proyectar la

imagen de un objeto sobre el elemento sensible de la cdmara (Fig. 8.1).

Figura 8.1: Mediante un sistema de lentes, se forma una imagen de-magnificada del objeto en el
sensor de la cAmara

8.1. Sistemas de lentes simples

Las propiedades opticas que definen una lente estan originadas en su composicién
estructural, especificamente en su distancia focal, angulo de campo de vision y apertura
relativa.

Podemos clasificar a las lentes como convergentes o divergentes, como se esquematiza
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en la Fig. 8.2. En el caso de las lentes convergentes (convexas), los haces que inciden
paralelos al eje 6ptico convergen en el plano focal de la misma. En cambio, en la lente
divergente, los haces que inciden paralelos al eje optico divergen, pareciendo provenir de

un punto focal virtual, localizado detras de la lente.

Figura 8.2: El foco de las lentes convergentes (a) y divergentes (b)

8.1.1. La ecuacion de la lente, las bases de la optica geométrica

En el caso de que las lentes sean delgadas, se puede encontrar una relaciéon entre la
distancia focal (f), la posicién del objeto (u) y la posicién de la imagen (v), conocida

como la ecuacién de la lente

T-i=7 (8.1)

A la relacién entre el tamano de la imagen (h') y el tamafio del objeto (h) se la conoce
como aumento y esta también se relaciona con la posiciéon objeto e imagen como
now
M=_"== 8.2
y = (8.2)
En base a la ecuacién de la lente, se puede definir el trazado de ciertos haces de luz
a partir de los cuales se puede obtener la descripcion geométrica de las lentes, como se

esquematiza en la Fig. 8.3. Las reglas basicas son:

» El haz de luz que incide paralelamente al eje principal sobre una lente convergente
pasa por el foco real, mientras que en una lente divergente, dicho haz parece provenir

del foco virtual.

= El haz de luz que pasa por el centro optico de la lente sigue su trayectoria sin

desviarse.
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» El haz de luz que incide sobre la lente pasando por el foco real de una lente conver-
gente sale de la lente de manera paralela al eje principal. En una lente divergente,
el haz de luz que se dirige hacia el foco virtual sale de la lente paralelamente al eje

principal.

Figura 8.3: Trazado de haces principales en lentes delgadas

8.1.2. Apertura numérica, profundidad de foco y resolucion

La apertura numérica (NA) de una lente es una medida de su capacidad para colectar

luz y resolver detalles pequenos. La apertura numeérica se define como:

NA = nsin(6)

donde n es el indice de refraccién del medio en el que se encuentra la lente y 6 es el
angulo medio de aceptacion de la lente. La apertura numérica puede relacionarse con los

parametros de la lente usando que

sin(f) = %

donde D es el didmetro de la apertura de la lente (o pupila de entrada) y f es la distancia
focal.

Una mayor apertura numérica indica que la lente puede colectar méas luz y tiene una
mayor capacidad para resolver detalles pequenos, lo cual es crucial en aplicaciones como
la microscopia y la fotografia de alta precision.

La capacidad de coleccién de luz aumenta porque una lente con una mayor NA puede
aceptar luz de un angulo mas amplio, lo que significa que mas rayos de luz pueden entrar

en la lente. Esto resulta en una imagen mas brillante y mejor iluminada.
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Figura 8.4: Esquema de una lente y como determina el diagragma a la apertura numérica

Ademas, la resoluciéon aumenta con una mayor apertura numérica. La resolucion de
una lente se refiere a su capacidad para distinguir entre dos puntos muy cercanos. Segun
el criterio de resolucion de Rayleigh, la resoluciéon R es inversamente proporcional a la

apertura numeérica
0,61\
NA
donde A es la longitud de onda de la luz utilizada. Una mayor NA reduce el valor de

R:

R, permitiendo a la lente resolver detalles mas finos.

El concepto de profundidad de foco también esta relacionado con la apertura numeérica.
La profundidad de foco es la distancia sobre la cual el sistema 6ptico puede mantener un
enfoque aceptable. La profundidad de foco esta inversamente relacionada con la apertura

numérica:

) A
Profundidad de foco ~ Ay
Una mayor apertura numérica reduce la profundidad de foco, lo que significa que el
rango de distancias en el que la imagen permanece nitida es méas pequeno. Esto puede ser
una ventaja o una desventaja, dependiendo de la aplicacion: en microscopia, una menor
profundidad de foco permite enfocar en detalles muy especificos dentro de una muestra
tridimensional. En fotografia una menor profundidad de foco permite resaltar el objeto
principal enfocado mientras que el resto de los objetos en otros planos estan borroneados.
En resumen, una mayor apertura numérica mejora la capacidad de coleccién de luz
y la resolucién, permitiendo a la lente captar imagenes méas brillantes y detalladas. Sin
embargo, también reduce la profundidad de foco, restringiendo el rango de distancias a lo

largo de las cuales la imagen permanece enfocada.

Experimental 1:En la experiencia de lentes vamos a estudiar primero lenes del-

gadas. En particular van a disponer de una fuente LED, una mascara para usar de
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objeto, un diafragma, dos lentes de distinta distancia focal y una pantalla. Para
ambas lentes:

1) Disenar un experimento para determinar la distancia focal de las lentes.

2) Formar una imagen de un objeto. En que cambia la imagen si cambio el didme-
tro de la lente? Hint: usar un diafragma.

3) Como cambia la intensidad en el foco si cambio el drea del diafragma?

3) Como varia la intensidad en la direccién longitudinal al atravesar el foco? y en
la direccién transversal? Que detector usarias para medir la variacion de intensi-

dad en funcién de la posicién?

., Qué lente elijo para tener un foco mas chico y con mas intensidad?

8.2. Sistemas formados por varias lentes

En éptica, los sistemas formados por varias lentes son comunes y ofrecen diversas
ventajas y funcionalidades que una sola lente no puede proporcionar. Estos sistemas pue-
den incluir combinaciones de lentes convergentes y divergentes para corregir aberraciones,
mejorar la resolucién, ajustar el campo de vision y controlar la magnificacién.

Por ejemplo, las aberraciones 6pticas, como la aberraciéon cromatica y la aberracién
esférica, pueden ser corregidas mediante la combinacion de diferentes tipos de lentes. Por

ejemplo:

» Lentes Apocromaticas: Utilizan al menos tres lentes de diferentes materiales para

corregir la aberracién cromatica en tres colores.

» Lentes Acromaticas: Combinan dos lentes, generalmente una convergente y una

divergente, para corregir la aberracién cromética en dos colores.
Un microscopio compuesto es un buen ejemplo de un sistema éptico con varias lentes:

= Objetivo: Lente o sistema de lentes cercano a la muestra que produce una imagen

real y ampliada.

» Ocular: Lente o sistema de lentes a través del cual se observa la imagen real am-

pliada, produciendo una imagen virtual aiin mas ampliada.

La magnificacion total del microscopio compuesto es el producto de las magnificaciones

del objetivo y el ocular.
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Experimental 2: Armar algun sistema compuesto de lentes. Proponemos uno
como ejemplo, pero pueden probar cualquier otro.

Telescopio. El esquema del telescopio se puede observar en la Fig. 8.5. De-
terminar el aumento, registrar distancias objeto, imagen, focos, distancia entre
lentes. Utilizarlo para aumentar el tamano de un laser. Como medirias el tamano
del haz?

Ahora podes usar el telescopio para iluminar un par de rendijas. Podremos
ver la difraccién de Fresnel y la de Fraunhoffer? Recordemos que en el foco de la
lente, podemos encontrar la figura de difraccion de Fraunhoffer. Podemos usar una
segunda lente para aumentar lo que se observa en el foco? Como elegir S, y S de

manera que pueda observar la imagen, la difraccion de Fresnel, y de Fraunhofer.

Figura 8.5: Esquema de un telescopio simple

Figura 8.6: Ejemplo de montaje para observar la difraccién de Fresnel y Fraunhoffer
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Capitulo 9

Espectrometria

La espectrometria es un campo amplio y versatil de la ciencia que abarca una serie de
técnicas destinadas a analizar la composicién en frecuencia del espectro electromagnéti-
co. Estas técnicas se utilizan para obtener informacion detallada sobre las propiedades
estructurales de los materiales mediante su interaccion con la luz. A través de la espec-
trometria, es posible estudiar transiciones atéomicas y moleculares, asi como propiedades
cristalinas, proporcionando una comprension profunda de la materia a nivel microscépico
y molecular. A continuacién se mencionan algunos ejemplos de tipos de espectrometria y
sus aplicaciones:

Espectrometria de Absorcién

= Descripcion: Esta técnica mide la cantidad de luz absorbida por un material a
diferentes longitudes de onda. Cuando la luz pasa a través de una muestra, algunas
longitudes de onda son absorbidas mas que otras, creando un espectro de absorcién

caracteristico.

= Aplicaciones: Determinacion de bandas de absorcion de materiales, identificacién

de compuestos quimicos, andlisis cuantitativo de concentracion de sustancias.
Espectrometria de Fluorescencia

= Descripcion: Se basa en la emisién de luz por una sustancia que ha absorbido pre-
viamente luz o radiacion electromagnética. La muestra es excitada con una longitud

de onda especifica, y la luz emitida (fluorescencia) es medida.

= Aplicaciones: Analisis de elementos traza en materiales, estudios de proteinas y

acidos nucleicos, investigacién de materiales biologicos y farmacéuticos.
Espectrometria Infrarroja (IR)
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= Descripcion: Esta técnica estudia los niveles de energia vibracionales de las molécu-
las. La radiacion infrarroja interactia con las moléculas, causando transiciones en

sus niveles vibracionales.

= Aplicaciones: Identificacion de grupos funcionales en compuestos orgénicos, estu-

dio de estructuras moleculares, analisis de contaminantes ambientales.
Espectrometria de Resonancia Magnética Nuclear (RMN)

= Descripcion: Utiliza la interaccion de ntcleos atomicos con un campo magnético
externo y radiacién electromagnética en el rango de radiofrecuencia para estudiar

las propiedades de los nicleos en una molécula.

= Aplicaciones: Determinacién de estructuras tridimensionales de moléculas organi-
cas e inorganicas, estudio de dindmicas moleculares, analisis de metabolitos en bio-

logia.
Espectrometria de Masas

» Descripcién: Mide la relaciéon masa/carga de los iones. Una muestra es ionizada,

y los iones resultantes son separados segiin su masa y carga.

= Aplicaciones: Identificacion de compuestos quimicos, determinacién de la estructu-

ra molecular, analisis de mezclas complejas, estudios de proteémica y metabolémica.
Espectrometria de Rayos X

= Descripcion: Utiliza la interaccion de rayos X con la materia para estudiar la
estructura atéomica y molecular. Los rayos X pueden ser absorbidos o dispersados,

proporcionando informacién sobre la estructura interna.

» Aplicaciones: Andlisis de materiales cristalinos (difracciéon de rayos X), estudios
de composicién elemental (fluorescencia de rayos X), investigacién de defectos en

materiales.

Cada tipo de espectrometria ofrece ventajas especificas y es adecuado para diferentes
aplicaciones cientificas y tecnologicas. La eleccién de la técnica adecuada depende de la
naturaleza de la muestra y la informacion que se desea obtener. La espectrometria es una
herramienta esencial en quimica, fisica, biologia y muchas otras disciplinas cientificas, y

continua evolucionando con el desarrollo de nuevas tecnologias y métodos analiticos.
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9.1. Espectrometros

Un espectrémetro es un sistema formador de imagenes, que mapea imagenes mono-
cromaticas de la rendija de entrada en el plano del detector. Existen diversas configu-
raciones de espectréometros; en particular, el que ustedes estuvieron usando en la ma-
teria (espectrémetro de Thorlabs) tiene una configuracién experimental conocida como
Czerny-Turner, que es robusta y no tiene partes méviles. En la Fig 9.1 se muestra este

espectrometro ademas de otras dos configuraciones posibles.

Figura 9.1: Ejemplo de montajes de distintos espectrometros

Como se puede observar en la figura, todos coinciden en que poseen algunos elementos
en comun: una fuente de luz, una rendija y un elemento que dispersa luz (un prisma o
una red de difraccién). Ademds se usan lentes y espejos para formar imagenes y colimar
haces. En esta materia utilizaremos como elemento principal a la red de difraccion, quien
determina el rango de longitudes de onda que se puede medir y, de manera parcial, la

resolucion del espectréometro.

9.2. La deteccion en espectrometria

La medicién del espectro (intensidad en funcién de la longitud de onda) se puede
realizar de dos maneras, que se encuentran esquematizadas en la Fig. 9.2. Una opcién es
usar una rendija para seleccionar un rango de longitudes de onda y un detector puntual a
continuacion para medir la intensidad. Luego se hace un barrido en longitud de onda ya

sea moviendo el detector en conjunto con la rendija o cambiando la posicién angular de
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la red para dirigir porciones distintas del espectro a la rendija. La otra opcion es usar una
camara (CCD, CMOS), en ese caso, lo que determina el rango espectral de longitudes de

ondas medidas en cada pixel, es el tamano del pixel.

Figura 9.2: Posibles sistemas de deteccién en espectrometria

Nuevamente, lo que medimos resulta de la convolucién entre lo que queremos medir
(el espectro) y la funcién respuesta de deteccién, determinada en este caso por el tamano
de la rendija o del pixel. En este caso, podriamos pensar que la funcién respuesta de cada
elemento de deteccién (pixel o rendija junto a detector) vale 1 en el drea de deteccién
y cero en otro lugar. Vemos entonces mas adelante que un factor importante para la
resolucion del espectrometro va a ser el tamano del detector (tamano de la rendija o del

pixel).

9.3. Redes de difraccion

Una red de difraccién es un arreglo periddico de estructuras (rendijas, espejos, etc)
que tienen tamanos similares a la longitud de onda. Estas redes pueden ser de reflexion
o de transmision. En la Fig. 9.3 se muestran algunas de ellas y los métodos mas comunes
de fabricaciéon. Las conocidas como ruled gratings, son redes de reflexién y esencialmente
estdn compuestas por surcos (que se graban mecénicamente) en una superficie espejada.
Las holograficas, son exactamente hologramas que se graban en un polimero y luego se
transfieren a una superficie (traslicida o espejada) mediante técnicas como etching.

La red mas sencilla es la red de rendijas, que estd compuesta por un arreglo de N
rendijas de ancho a y separacién d (medida entre centros). Supongamos que iluminamos
a la red con luz coherente monocromatica de longitud de onda A\ en incidencia normal
(Fig. 9.4). La difraccién se puede analizar utilizando los principios de la interferencia y la

difraccién de Fraunhofer.
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Figura 9.3: Ejemplo de distintos tipos de redes y los métodos de fabricacién

Figura 9.4: La red de rendijas y un esquema de la figura de difraccién producida por la misma.

La intensidad de la luz difractada en un dngulo 6 esta dada por

-1 (=41 (3623

donde [ es la intensidad méxima 3 = 5t sinf y v = %d sin f. Recordemos la interpretacion

de la figura de difraccién: el término que contiene § (la envolvente en linea punteada en la
figura) describe la difraccién por una sola de las rendijas. Las caracteristicas de la figura
de difraccién por una rendija cuadrada ya fueron estudiadas en el capitulo de Difraccion

por lo que no lo repetimos aqui. El término que contiene v describe la interferencia entre

Apuntes Laboratorio 2, Catedra Prof. M.G. Capeluto 133



N fuentes puntuales, que genera una distribucion de intensidad de maximos principales

y secundarios, cuyas caracteristicas generales se muestran el la Fig. 9.5.

Figura 9.5: Esquema de la interferencia de N fuentes puntuales y caracteristicas principales (el
dibujo corresponde a N=6).

La condicién para obtener maximos de interferencia en un arreglo de rendijas se da
cuando la diferencia de camino 6ptico entre las ondas que pasan por rendijas adyacentes

es un multiplo entero de la longitud de onda (Fig. 9.4). Esto se expresa como

dsinf® = mA donde m=0,+1,£2,... (9.2)

donde m es el orden del maximo. Ver que esto resulta equivalente a pedir que v sea

multiplo entero de . La intensidad de estos méximos es

,sin?
32

Es decir, los maximos principales que se encuentren cerca del maximo de difraccién

I,=I,N (9.3)

tendran una intensidad N2 veces mayor que la intensidad de la fuente I,. Cuanto mayor sea

el numero de rendijas iluminadas (/N), mayor es la intensidad en los maximos principales.
. 2

Maximizando la funcién (%) , se pueden obtener también la posicién de los maxi-

mos secundarios, que se encuentran en aquellos valores de v que cumplen con la ecuacion

trascendental tan(N+y) = N tan(y). Sin embargo, su intensidad

— 1y
~ 14 (N2 —1)sin(y)?

es mucho menor que la de los maximos principales, por lo que normalmente no los obser-

I,

(9.4)

vamos facilmente.
La posicién de los minimos es importante calcular porque eso nos va decir cuan angosto
es un maximo. Los minimos se encuentran en los ceros de la figura de interferencia de N

fuentes puntuales, es decir cuando sin(N+) = 0. Esto ocurre si Ny = wdsin(f)/\ = mn
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o dsin(d) = mA/N. Se puede ver en entre dos maximos principales hay N — 1 minimos,
N — 2 méximos y que el primer minimo se encuentra a una distancia dsin(f) = A\/N del
méximo correspondiente (ver detalles sobre este tema en cualquier libro de 6ptica que
hayan usado en F2). Esto significa que el méaximo principal tendra un ancho 2A/N, y

entonces cuanto mas lineas ilumine de la red, mas angosto seran los 6rdenes de difraccion.

Nota: En general, si la luz incide en un angulo 6,, podemos reescribir la Eq. 9.2

de manera que la expresion adopta la forma de la conocida ecuacién de la red

d(sinf —sinf,) = mA donde m =0,+1,42,... (9.5)

donde m indica la posicién de los maximos principales, los ordenes de difraccion.

Experimental 1: En el laboratorio vas a recibir una red de transmision ho-
lografica. Como podrias corroborar que la densidad de lineas por milimetros es la

indicada en la etiqueta? que experimento realizarias?

9.4. La difraccion de una fuente no monocromatica

Si queremos determinar el espectro de una fuente que no es monocromatica empleando
una red, vamos a encontrar que los maximos principales van a tener una posicién distinta
para cada longitud de onda. Por ejemplo, en la Fig. 9.6 se muestra un ejemplo de los
ordenes 2, 1, 0, -1 y -2 de una fuente de luz blanca.

Aqui se hace evidente la posibilidad de crear un instrumento para medir espectros:

solo basta medir un orden de difraccién y realizar la calibracién de:

= la longitud de onda en funcién de posicion,

» ]a senal en el detector en funcién de intensidad.

Observemos que, segtin lo visto en la seccién anterior, el orden va a estar mas expandido
cuanto mas grandes sean el nimero de orden, la densidad de lineas de la red, y la distancia
a la pantalla. Entonces podemos pensar intuitivamente (y luego confirmaremos) que la
resolucién (capacidad de detectar longitudes de onda distintas), va a aumentar con el

nimero de orden. El costo a pagar por tener mayor resolucién es que tenemos menos
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Figura 9.6: izquierda: Esquema de la difraccién en un orden particular, mostrando posiciones ¥/,
v Y¥m que corresponden a longitudes de onda diferentes en el mismo orden. Derecha: Esquema
de la difraccién de una fuente de luz blanca.

intensidad (recordar que la intensidad disminuye con el aumento del orden porque la
intensidad estd modulada por la campana de difraccién).

Observemos ademas que el rango del longitudes de onda que vamos a poder medir, va
a estar determinado por el tamano del orden en el plano de deteccién (que a su vez esta
determinado por la densidad de lineas, el nimero de orden y la distancia a la pantalla),
respecto al tamano del detector. Si el detector es més chico que la expansion del orden,
vamos a poder medir un rango espectral menor.

Entonces para disenar el espectrémetro, necesitamos conocer cuél es la dispersién que
introduce la red, para saber también que distancia a la pantalla elegir, o como esta limi-

tado lo que puedo medir segin el tamano del detector que tenga.

Dispersién angular
Podemos analizar cuél es la capacidad de dispersar de una red angularmente, diferen-

ciando la Eq. 9.5 para obtener

dby,,  m
d\  dcosb,,

(9.6)

Vemos que la dispersiéon aumenta con la disminucién del periodo (mayor densidad de
lineas) y el nimero de orden. Esto significa que voy a tener mayor resolucién con ordenes

mayores y con redes de mayor densidad de lineas.

Dispersion lineal
La dispersion lineal o dispersion reciproca de la red es cuanto se dispersa la longitudes
de onda por unidad de longitud en el detector. Para simplificar cuentas vamos a suponer

que los dngulos de difraccién son pequenos de manera que 6,, ~ y,,/D (Nota, si usaramos
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una lente para producir la condiciéon de Franhofer, en lugar de D usariamos la distancia

focal). Entonces, a partir de la Eq. 9.6 obtenemos

dym  mD
d\  dcosb,, (97)
Luego, invirtiendo esta relacion encontramos
d\ cos 6,
- 9.8
dYym  dmD (98)

que representa la diferencia de longitud de onda por unidad de distancia en el detector.
En particular, si consideramos que el detector esta compuesto por pixeles de tamano W),
(0 usamos una rendija a la salida del espectrémetro y un detector puntual, entonces consi-
derarfamos el tamano de la rendija W), encontramos a partir de la Eq 9.8, una expresién

para la resolucion multiplicando la dispersién reciproca por el tamano del pixel.

d\ cos B,
=W =W amD

Rango de longitudes de onda (bandpass)
Supongamos que el tamano del detector mide yp, el rango de longitudes de onda que

es posible medir se puede estimar como

mD
Yo dcosb,,

observando que este depende del tamano del detector, el orden de difraccion y del

AN = Amaz — Amin = (9.10)

periodo de la red. A menor periodo d (mayor densidad de lineas), la red dispersa mas,

pero el rango de longitudes de onda que puedo medir en un area definida disminuye.

A menor periodo (més densidad de lineas):
= La resolucién aumenta
» La dispersiéon aumenta

» El rango de longitudes de onda (en el detector o rendija de salida) disminuye
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9.5. Resolucion

La resolucién espectral es la minima separacion A\ en longitudes de onda entre dos

lineas espectrales que el instrumento puede resolver. Generalmente se expresa como
A

R= NS (9.11)

Por ejemplo, si R = 10000, significa que la minima separacién en \ que se puede medir

es AN = 0,0001\. También podriamos intentar estimar cual es el poder resolvente que

necesitamos para poder resolver dos lineas espectrales cercanas. Por ejemplo, tomemos el

caso del doblete del sodio cuyas lineas espectrales se encuentran en 589.00 nm and 589.59

nm. Resolver estas lineas significa que tengo que tener una red cuyo poder resolvente sea

como minimo

A 58nm
AN 0,59 nm

Para caracterizar la resolucion, se puede hacer un experimento tipo respuesta impul-

= 1000

siva: se usan fuentes con lineas espectrales muy angostas (mas angostas que la resolucién
normal de los espectrémetros), por ejemplo, ldseres muy monocromaticos, lamparas atémi-
cas. Por ejemplo, en la Fig.9.7 se muestra el espectro del mercurio gaseoso, cuyas lineas
espectrales son mas angostas que ~ 1 nm. Luego se mide cual es el ancho de la linea

espectral adoptando algun criterio (por ejemplo el ancho mitad altura).

Comentario: en los tubos de luz, se genera una descarga eléctrica ionizando
atomos de mercurio. Luego de la ionizacion suceden diversos fenémenos como el
decaimiento de electrones a niveles de menor energia o la recombinacion de los
iones con electrones libres, que generan luz con lineas espectrales muy angostas en
el visible y el UV. El material de las paredes del tubo absorbe la luz UV excitando
a sus atomos. Estos atomos, al decaer a su estado fundamental, emiten luz visible
en un rango amplio de longitudes de onda cuya superposicion se observa como luz
blanca. De este modo, el espectro de emisién de los tubos de luz esta compuesto
por algunas lineas espectrales muy angostas correspondientes a la emision de iones
de mercurio, superpuesto con un fondo continuo en el visible que corresponde a

la emision del material de la superficie del tubo.

Recordando que medir es convolucionar, aqui podemos pensar que la senal medida
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Figura 9.7: Espectro de emisién del mercurio gaseoso. La linea espectral se vera ensanchada si la
resolucién del espectrometro es menor, por lo que se puede caracterizar la resolucién midiendo
el ancho de la linea.

Su(A), resulta de la convolucién entre la respuesta del espectrémetro R(\) y lo que

queremos medir S,(\), es decir

Sur(A) = Sy(A) * R(N). (9.12)

De este modo, si lo que queremos medir es una “delta” (la linea espectral muy angosta)
en el sentido que es mucho mas angosto en longitudes de onda que la funciéon respuesta

del espectréometro, el resultado de la medicion es la funcién resolucion.

Nota: ustedes ya midieron el espectro del laser que usaron en el experimento de
difraccion, por lo que ya estan en condiciones de determinar la resolucion espectral

del espectrometro de thorlabs.

Entre los factores que factores que limitan la performance de los espectrometros po-

demos encontrar
» La red de difraccién: rango de longitudes de onda y (en parte) la resolucién.
= La rendija de entrada: recorte nitido del haz incidente, throughput y resolucién.

» Fl sistema 6ptico: la magnificacién (tamanio de la imagen en el detector, resolucién),

las aberraciones (imagen nitida de la fuente en el detector, resolucion)

» El detector: su tamano (rango de longitudes de onda), muestreo (tamano del pixel,

resolucion en \) y digitalizacién (resolucién en intensidad).

Apuntes Laboratorio 2, Catedra Prof. M.G. Capeluto 139



9.5.1. La red de difraccion: resolucién limite o resolucion limi-
tada por difracciéon o poder resolvente cromatico

La resolucion limitada por difraccion es aquella determinada por la red de difraccién.
Podemos usar el criterio de Rayleigh para calcular poder resolvente de la red, esto es: se
pueden resolver dos longitudes de onda si el maximo de la figura de difracciéon para una
coincide con el minimo de la figura de difraccién de la otra. Usando la Fig. 9.8 en donde se
muestra el criterio de Raighleigh para dos longitudes de onda separadas en A\, se puede
observar que la distancia entre los dos maximos es igual a la distancia de un méximo al
primer minimo.

Recordemos que para una dada longitud de onda A (ver seccién 9.3) la distancia del
méximo principal m al primer minimo cumple que dsin(f#) = A/N. De esta manera la
distancia entre méximos es mAX = A/N, lo que resulta en

1 AN 1

R A mN
Se observa que la resolucién aumenta con el orden de difracciéon y con el nimero de

(9.13)

rendijas iluminadas.

Figura 9.8: Esquema de aplicacion del criterio de Raighleigh para dos ondas cuyas longitudes
de onda son A y A + A\, que se difractan en la red de difraccién.

Esto es consistente con la resolucién tedrica limitada por transformada que dice que
la unidad mas chica posible de resolver de cualquier transformada es inversamente pro-
porcional al nimero de muestras.

Mas alla de la teoria, apliquemos este criterio en algunos ejemplos:

» Una red de 300 I/mm, iluminando 20 mm de red, en el primer orden de difraccién

R=mN =1 x3001l/mm x 20 mm = 6000

140 Apuntes Laboratorio 2, Catedra Prof. M.G. Capeluto



» Una red de 600 1/mm, de iguales caracteristicas, en el segundo orden de difraccién

R=mN =2 x600]/mm x 20 mm = 24000

En general el poder resolvente de la red es mucho méas grande que el poder re-
solvente del espectrometro por lo que otros factores determinan la resolucion del
espectrometro: rendijas, aberraciones 6pticas, tamano del detector, pixeles en el

detector

9.5.2. La rendija de entrada

Recordemos que una forma de pensar al espectrémetro es como un sistema 6ptico que
forma iméagenes de la rendija en el plano del detector, desplazadas segtin la longitud de
onda. La rendija es clave para el buen funcionamiento del espectrémetro: determina la
cantidad de luz que pasa y llega al detector (throughput o transmisién) y la resolucién
espectral cuando el espectrémetro no funciona al limite de difraccion. En general, cuanto
maés chica la rendija mejor resolucion pero menor transmision. Se puede ver como ejemplo,
las mediciones de la Fig. 9.9 en donde se observan mediciones adquiridas con tamanos
de rendijas diferentes, mejorando la resolucién en el caso de la rendija mas chica. Sin
embargo, lo que importa es la imagen de la rendija en el plano de deteccién, por lo que,
usando un sistema optico adecuado nos la podemos ingeniar para tener una transmision

alta, con una imagen pequena en el plano de deteccion.

Figura 9.9: Ejemplos de mediciones para tamanos de rendijas diferentes.

La rendija también define la apertura angular de los haces que ingresan al espectréme-

tro. Tipicamente la luz de la fuente se enfoca en la rendija con una lente cuya apertura
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numérica es igual a la del espectréometro. Eso garantiza iluminar éptimamente a la red,
es decir, iluminar la mayor cantidad de lineas de la red posibles (recordar que cuanto
mas lineas ilumino, mas finitos son los ordenes de difraccién, y mayor es la resolucion de
la red). Si se ilumina con una apertura numérica menor a la éptima, se iluminan menos
lineas, los ordenes se ensanchan (ver 9.3). Si se ilumina con mayor apertura que la 6ptima,
se pierde intensidad a la salida.

Ademas, la rendija define un recorte nitido de la fuente de iluminacion. El tamano
de la rendija (W x Hy) es uno de los factores principales que definen el throughput del
espectrémetro (cuanto més grande la rendija més luz entra).

El ancho de la imagen de la rendija en el plano del detector (W;), es critico para
determinar la resoluciéon. Ademas normalmente se desea que W; > W,,, con W,, ancho del
pixel del detector. El ancho de la imagen de la rendija de entrada W; se puede estimar
como W; = (M?W?2+W2)/2 donde W, es un ensanchamiento de la imagen que se puede
producir por los distintos elementos épticos (por ejemplo por aberraciones) y M es la
demagnificacién del sistema 6ptico. Reducir W; por debajo de W), no ayuda a aumentar
la resolucién del espectrometro.

Si el requerimiento en resolucion se satisfice, el ancho de la rendija debe ser lo mas
grande posible para aumentar la transmision del espectrémetro.

Idealmente quisieramos trabajar en el limite permitido pro la difraccion. Si el ancho
proyectado de la rendija en el detector es mucho menor que la resolucién limitada por
difraccion del espectrémetro, no habra pérdida de resolucién. Sin embargo, si se ensancha
la rendija de modo que el ancho de su imagen en el espectro supera la resolucién limite,
serd el ancho de la rendija el que definira la resolucion del espectro, no la difraccion.
Este punto se ilustra en la Fig. 9.10, que muestra la resolucion espectral limitada por la

difraccién y por el ancho de la rendija, respectivamente.

Figura 9.10: Ejemplos de figuras de difraccién limitadas por difraccién y limitadas por tamano
de la rendija.
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Para maximizar la resolucion espectral, por lo tanto, parece obvio que el ancho de la
rendija siempre deberia mantenerse mas pequeno que la resolucién limite. Desafortuna-
damente, esto es raramente posible, ya que la rendija seria tan estrecha que muy poca luz

pasaria al espectrometro.

9.5.3. Los pixeles en el detector

Segun el criterio de Nyquist, la frecuencia de muestreo debe ser por lo menos el do-
ble de la frecuencia maxima contenida en la senal. El tamano de la menor estructura
en el espectro (determinado por el espectro de una linea atémica o un laser) contiene
la mayor cantidad de frecuencias espaciales en el detector (serfa el andlogo al impulso
en el experimento de piezoeléctricos), es del orden AXpy gar. Segin Nyquist, por lo me-
nos necesitariamos una frecuencia de muestreo del doble: 2/AXpy . La condicién de
minima para que los pixeles no limiten la resolucién, es poder detectar la resoluciéon ade-

cuadamente. Esto se logra si al menos medimos la funcién resolucion con 3 pixeles en el

A>\FWHM~

Figura 9.11: Muestreo de la funcién de resolucion

9.6. Estimacion de la resolucion

Segun lo visto, podemos estimar a la resolucién como

d\
R=——xW,; (9.14)
Ay
siendo W; tamano de la imagen de la rendija y la dispersion lineal dA/dy,, que men-
cionamos en las secciones anteriores.
Podemos hacer una estimacién de la siguiente manera. Consideremos la dispersion por

pixel (DP) como
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DP — ancho de banda (nm)

9.15
nimero de pixeles ( )

Por otro lado, calculamos el tamano de la rendija proyectada (o sea de la imagen de

la rendija) en pixeles (pixel slit projection- PSP)

tamano de la imagen proyectada W;(um)

PSP = el 9.16
tamano del pixel (um) (pivels) (9.16)

Estimamos entonces a la resolucién como
R=DP x PSP (9.17)

Veamos un ejemplo: Usando una red de 300 1/mm, queremos medir longitudes de onda
entre 200 nm y 1100 nm (ancho de banda de 900 nm)en un drea del detector que tiene

2048 pixeles. La imagen de la rendija tiene 25 pym y el tamafo de los pixeles es 14 pm.

900nm 25pum 0,43 nm

R=DP x PSP = pizels = ——— x 2pizels = 0,9nm (9.18)

9.7. Medicion de absorbancia

El espectrémetro mas sencillo es aquel que mide la absorbancia, es decir cuanta luz fue
absorbida por una muestra traslicida. Supongamos que tenemos una muestra traslucida,

que permite transmitir parte de la luz incidente, como se esquematiza en la Fig. 9.12.

Figura 9.12: Esquema de un haz atravesando una muestra traslucida. Ejemplos de muestras con
distintas concentraciones

Luego de atravesar una distancia [ podemos escribir al campo como

144 Apuntes Laboratorio 2, Catedra Prof. M.G. Capeluto



E = E,e'ki=wt) (9.19)

en donde k£ es el namero de onda en el material. El nimero de onda en el material es

k = kon(\) con k, = 2mw /), siendo A la longitud de onda en el vacio y n(\) el indice de

refraccién complejo n(\) = n(A)+ik(A). Sustituyendo en la expresion anterior obtenemos

E = Eoei(koﬁ(k)l—wt) — Eoei(kon()\)l—wt—l—im()\)l) — Eoei(kon(A)l—wt)e—n(A)l (920)

Si queremos calcular la intensidad, tomamos moédulo cuadrado en la expresion anterior

para obtener

I(N\) = I(A\)e " (9.21)

De este modo, la transmision en funcién de la longitud de onda resulta

T(\) = % = eI (9.22)

Se define absorbancia a k(A)l, y la podemos obtener calculando el logaritmo de la

transmitancia

A=r(N)l=-In <]Io((>/\\))) (9.23)

La ley de Beer-Lambert, es una ley empirica que establece una relacién entre la ab-

sorbancia y la concentraciéon C' de un absorbente, y se expresa como

A=Ce(N)l (9.24)
donde €(A) es el coeficiente de absorcién molar que depende del material y de la

longitud de onda.

9.8. Experimento

Discutir los siguientes dispositivos experimentales sus posibles ventajas y desventajas,

que distancias focales considerarian

» Caracterizar la respuesta en intensidad (Malus) y tiempo de exposicién de nuestro

sensor de luz (cdmara)
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Figura 9.13: Dispositivos propuestos

» Armar y caracterizar el dispositivo experimental (medir todas las distancias, au-

mento, throughput)

= Comparando con el espectro del LED medido con el espectrometro Thorlabs, cali-

brar en longitudes de onda el espectro medido

= Usar el dispositivo experimental para medir absorbancia o espectros de emision
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Capitulo 10

Apéndice

10.1. Transformada de Fourier de la senal del Michel-
son, alimentacién sinusoidal

Queremos hallar la transformada de Fourier de la senal medida en el Michelson cuando

se desplaza el piezoeléctrico, que tiene la forma

I(t) =1+ cos(2kx(t))

donde z(t) es la posicién en funcién del tiempo, para la que vamos a suponer que es

senoidal periddica x(t) = Acos(wt), de modo que

I(t) =1+ cos(2kAcos(wt))

La tansformada de Fourier de la intensidad es

F{I(t)}w) = 6(w) + F{cos(2kAcos(wt))}

Afortunadamente, hay una forma sencilla de resolver la transformada del segundo

término. En primer lugar, escribamos al coseno como suma de exponenciales

F{cos(2kz(t))}(w) = % (]—“{ei%x(t)}(w) + f{e_i2kx(t)}(w))

Resolver cada uno de estos términos ahora es més sencillo, tomemos uno de ellos (el
otro se resuelve igual, cambiando k por —k. Usamos la representacion en serie de Fourier

para expresar la funciéon exponencial en términos de funciones de Bessel:

eiQkAcos(%”t) _ Z Zan(QkA)em%”t

n=—oo
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Donde J, es la funcién de Bessel de primera clase de orden n. La transformada de

2mn .
T

o 2m 2mn
FlemTt) — -
{e"T'} =0 (w T >

12k A cos(%rt) es:

Fourier de e 7! es un delta de Dirac centrado en

Entonces, la transformada de Fourier de e

F {ei%AwS(%“t)} (w) = i " Jn(2k A)S (w - 2”7")

n=—oo
Es decir, es un peine de deltas, centradas en multiplos de la frecuencia de excitacion,
y amplitudes dadas por las J de Bessel. Es decir, la informacién del desplazamiento, esta

en las amplitudes y no en las frecuencias.

10.2. Transformada de Fourier de la senal del Michel-
son, alimentacién triangular

Queremos hallar la transformada de Fourier de la senial medida en el Michelson cuando

se desplaza el piezoeléctrico, que tiene la forma

I(t) = 1+ cos(kz(t))

donde xz(t) es la posicién en funcién del tiempo, para la que vamos a suponer que es
triangular periédica. Una onda triangular con periodo T'y amplitud 1 se puede representar

COImo:

4 T
Tt—l para0§t<§
—%t—l—iﬂ para%§t<T

Como es periddica podemos expresarla como una serie de Fourier de la forma

x(t) = Z Coe T

con

8 (_1)(7171)/2
Cp = To—Fs——
2 n?

De modo que
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8 = (=1)br2 2mn
x(t):xoﬁ Z o cos Tt

n=1, impar

Transformada de Fourier de 1 + cos(kz(t)):

1. Transformada de Fourier del Término Constante 1

Usamos que la transformada de Fourier de una funcion constante ¢ esta dada por:

F{c}(w) = cd(w)

Para ¢ = 1:

F{l}(w) = d(w)

Esto significa que vas a tener senal en la transformada para frecuencia w = 0

2. Transformada de Fourier de cos(kx(t))

Necesitamos calcular:

F{cos(kx(t))}(w) = F {cos (k’ Z cneﬁ;%) }

n=-—oo
donde los ¢, son los que se dieron previamente. Para calcular esta transformada, vamos
a escribir el coseno en término de exponenciales y luego calcular la transformada de
exponenciales de la siguiente manera

F{cos(kx(t))}(w) = (]—“{eikm(t)}(w) + ]:{e_ikm(t)}(w))

N —

Enfoquémosnos en uno solo de los términos, por ejemplo en F{e**®}(w) porque cal-
culando uno, el resultado del otro se obtienen cambiando k por —k. Tenemos que usar la

propiedad que la exponencial de una sumatoria, es el producto de exponenciales, es decir:

27n 0

. ) i . 2mn
ezkz;t(t) _ ezk D on=1, odd cnet T b | | ezkcn cos(%t)

n=1,odd
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Ahora, podemos calcular la transformada de un producto de exponenciales, para lo que
vamos a usar que la transformada de un producto es la convolucion de la transformadas.

Es decir, vamos a usar que

F{fgdw) = F{ fHw) « F{ g} (w)

Entonces nos queda,

2
T

J—_-{ eikx(t)}(w) _ J,—_-{ eichos(—lt)} *f{ eikcgcos(ﬁt)} % J,—_-{ eikcnc0s<27’T"t)} % (101)

Es decir, que si resolvemos la transformada de Fourier de un término genérico al-
canza, porque todos tienen la misma forma. La transformada de un término genérico la

conocemos y vale (ver més abajo el cdlculo)

}'{eikcs COS(%t)} (w) = i i" T (kcg)d (w - 27;7}5> (10.2)

n=—oo

en donde J,, son funciones de Bessel de primer tipo de orden n.

Lo que viene ahora seria reemplazar cada uno de los términos en la ecuaciéon 10.1,
es bastante lio, pero lo importante es darse cuenta que cada uno de los términos de la
productoria tiene una J en frecuencias que son unicamente multiplos de la frecuencia de
la alimentacion, y por lo tanto, en principio, no deberian aparecer frecuencias que tengan
que ver con el desplazamiento del piezo. En cambio, la informacion del desplazamiento
del piezo esté en las amplitudes, es decir, en las J,(kes). Mas abajo hay una cuenta de
dos exponenciales, pero con esta justificacién en principio quedaria demostrado, que no

hay info en las frecuencias sobre el desplazamiento de los piezos.

10.2.1. Transformada de Fourier del producto de dos exponen-
ciales

Para encontrar la transformada de Fourier del producto de las dos funciones, realiza-

mos la convolucién de las transformadas de Fourier individuales:

]_—{eikcscos(Q;S )} *]_—{eikckcos(%t)}
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La convolucién de dos deltas de Dirac 0(w — wy) y 0(w — we) se realiza de la siguiente

manera:

o

(0(w —wy) *x0(w — wy))(w) = / d(w' —wy)d(w — W —ws) dw' = d(w — (w1 + wy))

—0o0

Aplicando esto a nuestras series de funciones de Bessel, obtenemos:

i " T (kes) (w ~ 27;?5) . i i g, (k)0 <w ~ 27rmk;>

n=—oo m=—0oQ

T
= 3 S ke, Julker)s (w— ””mk)

n=—00 Mm=—0o0

La transformada de Fourier del producto de las dos funciones es:

F{eikcs cos(%ﬁ ) ikcy cos( } Z Z ZnerJ kCS J (ka)5 (w _ 27T(TLST+ mk))

n=—000 Mm=—0o0

10.2.2. Todas las frecuencias

Para calcular la transformada de Fourier del producto infinito de exponenciales de
cosenos, es 1til recordar que cada exponencial de un coseno se puede expresar en términos
de una serie de funciones de Bessel. Usaremos la propiedad de que la transformada de
Fourier de un producto de funciones en el dominio del tiempo corresponde a la convolucion
de sus respectivas transformadas de Fourier en el dominio de la frecuencia.

Para encontrar la transformada de Fourier del producto de todas estas funciones, rea-
lizamos la convolucion de todas sus transformadas de Fourier. La convolucién de muchas
deltas de Dirac resulta en una delta de Dirac centrada en la suma de las posiciones de
las deltas individuales. Por lo tanto, la transformada de Fourier del producto infinito sera

una suma infinita de convoluciones.

J—_-{ ﬁ eikcncos(ng”t)} (W) — (103)

n=1, odd

IR | R MO Sy
mM1=—00 M3=—00 M5=—00 n=1, odd n=1, odd

Donde la suma se realiza sobre todos los indices m, correspondientes a los términos

impares n.
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10.3. Intentemos otra forma mas directa

Voy a pensar al problema como si fuera una red de difracciéon. En cada periodo de la
senal, voy a pensar que hay una fuente puntual, de modo que en el plano transformado
tengo la interferencia de esas fuentes puntuales, es decir, los .°rdenes de difraccion”van a
estar en los multiplos enteros de la frecuencia de la senial. La modulacién (anélogo a la
campana de difraccién) va a estar dada por la transformada de Fourier de un periodo.

Entonces, hagamos solo para un periodo:

F{I(t)} = F{l+ cos(2kx(t))} (w) = ?/0 (14 cos(2kx(t))) e ™" dt

Donde T es el periodo de la funcién z(t), y w es la frecuencia angular.

Recordando que

%t—l para0§t<%

4 T
—Tt‘i‘?) para5§t<T

Entonces
F{I(0)} = % /0 (1+ cos(2ka(t))) e= ! dt —
1 (12 —iwt 1" —iwt
FU(0)} = 50)+ / (cos(2KA(H/T 1)) e dit | (cos(RA(~4/T +3) = ds
0 T/2

Usando el resultado parcial 1 obtenemos (ver siguiente seccion)

2 _iTw i Tw T T/4 SkAv Ciwv
F{I(t)} =0(w) + g€ e icos (wz) / cos ( T ) e " dv

~T/4

y ahora usando el resultado parcial 2

FU0) = w50 Feos (w7 ) Jsine (7 - - ) sine (35 ++) - )]

Aca va un plot para valores arbitrarios, sin tener en cuenta el termino de la frecuenia
negativa
Solo ver que el maximo de la funcién (en azul) no estd ni en el méximo de la sinc ni en

el del coseno (dibujados en gris clarito)....pero se puede hallar aunque sea numéricamente.
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Figura 10.1

10.3.1. Solucién de la integral

Resultado parcial 1

En primer lugar usemos las propiedades de cos de la suma:

1 T AL\ T KA\ .
Integral = [COS(GkA)/ Cos (8—) e hdt + sin(GkA)/ sin <—8 > et dt]
T T/2 T T/2 T

1
T

T/ kALY _, T/ kALY
cos(2kA)/ cos (87) e ™t dt + sin(QkA)/ sin <8T> e "t dt
0 0

Haciendo el cambio de variables u =t — T'/2

1 Wz [T A .
Integral = T [COS(ESI{?A)@_ME/ cos (8kT “ 4k:A) e " du| +
0

1
T

o [T? A .
sin(6kA)e™ 2 / sin <8ka “y 4kA) e du]
0
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Ll
T

T/2 A A T/2 A A
cos(2kA)/ cos (M) et dt + sin(QkA)/ sin (—Sk t) et dt
0 T 0 T

Para simplificar ain mas, observamos que las integrales tienen formas similares y

podemos combinar términos:

L g [ kA kA |
1) = = {e_wg / [COS(6I€A) oS (8 T “ 4 4kA) + sin(6kA) sin (8 T Yy 4kA>] e ™" du
0

T/2 :
+ / {cos(QkA) cos (%At) + sin(2kA) sin <%At)} et dt}
0

Luego, usando la identidad de angulos suma para coseno y seno:

L iz [ kA - T/2 kAt |
Integral = — {e”’g / cos (8 “ +4kA — 6kA> e du—i—/ cos (—8 — 2kA> et dt
T 0 T 0 T

Finalmente, simplificando las integrales:

1 , T/2 A ' T/2 A .
Integral = — {e‘wg / CoS (8k v 2kA> e "“"du +/ CoS (—8k L 2k;A> et dt
T 0 T 0 T

Luego, sacando factor comun la integral

1 4 T/ kA 4
Integral = — {(e“’g + 1)/ cos (8 “_ QkA) e du}
T . T

o lo que es lo mismo

2 1w T\ [T 8k A ‘

Haciendo un nuevo cambio de variables v = u — T'/4, llegamos al resultado parcial

2 i Tw _Tw T T/4 SkAv .
Integral = —e "1 e "1 cos | w— coS e "“dv
T 4) J 1 T

Resultado parcial 2
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Queremos ahora resolver la siguiente integral

T/ 8kA :
Integral2 = / coS ( - U) e " dv,

—T/4

Expresamos coseno como combinacion de exponenciales

—i 8kAv

A rgkAY T e
cos e "dv = e " dv.
—1/4 T —1/4 2

Esto se puede separar en dos integrales

T/4 T/4
= L / ¢ (F =) g + / i) gy |
2 T/4 —T/4

La primer integral:

T/4
/ ei(%_“)” dv.

—T/4
Llamemos o = %4 — w. Entonces:
1 T/4 o T —ia.T _ .
/4 piov T/ el _ gl 24 sin (a . I) 2sin (a . Z)
o QU _ _ _ 4) 4
= edv = |—= = ; = ; =
7/ | gy yxe’ y¥e}
Entonces
. 8kA T
2sin (% —w) - 7)
SkA
- w

La segunda integral
Usando el mismo truco del cambio de variables

e dv =
—T/4

Combinando los resultados se obtiene

/T/4 (34 1) 2sin (24 +w) - 1) |

8kA

/T/4 cos (SkAv) i g sin (%4 —w) - N
0T W s

/T/4 SKAVY i g T 8kA ™, T, 8kA T
COS T (& vV = 487,7”&6 T w 1 482”0 T w 1

—T/4
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