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Caṕıtulo 1

Introducción

1.1. Objetivo de este cuaderno

El material presentado en este cuadernillo es de lectura obligatoria y previa a la

clase de laboratorio. Incluye conceptos aprendidos en F́ısica 2 y conceptos sobre medicio-

nes que veremos en este laboratorio. No pretende ser un repaso teórico exhaustivo y debe

ser complementado con libros sobre ondas y óptica y técnicas de medición. Además se in-

corporan propuestas de mediciones o preguntas para pensar antes de la clase. Es decir,

es una invitación a pensar en qué medir y cómo medir, pero no una gúıa de cómo hacerlo.

Al inicio de cada clase discutiremos lo que ustedes pensaron respecto al material y sobre

cómo hacer los experimentos. No se darán clases teóricas por lo que es obligatorio venir

al laboratorio con el material léıdo. Conocer el material de este texto: ¿es necesario? ¡Śı!

Los conceptos son fundamentales para entender ondas en distintos medios y entender bien

los experimentos que estamos haciendo. ¿Es suficiente? ¡No! Siempre podemos aprender

más si hacemos nuestras propias búsquedas. Se recomienda fuertemente leer la bibliograf́ıa.

Dado que utilizaremos el mismo material durante todo el semestre, deben elegir el par

emisor-receptor cuyo número sea igual al número de tu cuarto y usar el mismo sistema

durante todo el laboratorio.

1.2. Generalidades sobre ondas

En esta materia realizaremos experimentos empleando ondas de distintos tipos: ondas

mecánicas transversales (vibraciones en cuerdas) y longitudinales (ondas acústicas), y

ondas electromagnéticas transversales. Todas ellas satisfacen la ecuación de ondas (por
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simplicidad aqúı tomamos el caso unidimensional). La ecuación de ondas unidimensional

para un medio lineal, isótropo y homogéneo, está dada por

∂2Ψ(x, t)

∂t2
= v2

∂2Ψ(x, t)

∂x2
, (1.1)

donde Ψ(x, t) representa a la perturbación en el espacio (desplazamiento longitudinal de

part́ıculas en un gas o ĺıquido, presión o densidad para el caso de ondas acústicas en aire,

desplazamiento transversal en una cuerda o campo electromagnético para el caso de la

luz), x es la coordenada espacial y t el tiempo. La velocidad de propagación de las ondas

(v) depende de las caracteŕısticas del medio en que estas se propaguen y del tipo de onda.

En la tabla 1.1 se observa la dependencia de la velocidad de propagación para las ondas

que serán estudiadas en este laboratorio.

Tabla 1.1: Velocidad de propagación para ondas mecánicas que se propagan en distintos medios
y ondas electromagnéticas.

Una posible solución de la ecuación de ondas es una onda que se propaga hacia la

derecha (x > 0) y puede escribirse como

Ψ+(x, t) = A cos(kx− ωt+ φA), (1.2)

en donde A es la amplitud, φA una fase inicial, ω es la frecuencia y k el número de onda.

También se puede usar la notación compleja para escribir a la función de onda

Ψ+(x, t) = Ae−i(kx−ωt+φA), (1.3)
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lo que hace más fácil realizar ciertas operaciones, pero el verdadero significado f́ısico lo

tiene la parte real. Además podemos definir a la fase de la onda como

Φ+(x, t) = kx− ωt+ φA. (1.4)

Análogamente, la onda que se propaga hacia la izquierda (x < 0) también es solución

de la ecuación de ondas, y puede escribirse como

Ψ−(x, t) = B cos(kx+ ωt+ φA). (1.5)

Supongamos que tomamos una foto instantánea de la onda, de modo que observamos

la dependencia con la coordenada espacial como se muestra en la figura 2.6. La amplitud

de la onda es la distancia entre la cresta y el valor cero de Ψ(x, t). La fase inicial φA

corresponde al valor de fase del primer máximo, es decir, a cuánto se desplaza el primer

máximo respecto a la función patrón cos(kx). La longitud de onda, λ, es la distancia en

que la onda cubre un ciclo completo, y es además la distancia entre dos puntos idénticos

en fase, es decir, puntos en el espacio en que la onda tiene igual amplitud y pendiente.

Observar que no es necesario comenzar a medirla desde un máximo. Podŕıa medirse desde

cualquier punto en la onda, hasta el siguiente punto de igual fase. El número de onda está

relacionado con la longitud de onda como k = 2π/λ.

Figura 1.1: Propagación en el espacio de la onda para un tiempo t.

Análogamente, podemos pararnos en un punto del espacio y medir la evolución tem-

poral de la onda, como se muestra en la figura 1.2. De esta forma podemos definir el

peŕıodo τ (cuándo dura un ciclo completo o el tiempo en que la fase tarda en tomar el

mismo valor), la frecuencia ν = 1/τ (número de oscilaciones por segundo) y la frecuencia

angular ω = 2πν.
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Figura 1.2: Propagación de la onda en un punto del espacio xo.

Consideremos la relación entre las propiedades espaciales y temporales. Una manera

sencilla de explorar esta conexión es sustituir la solución de la ecuación 1.5 en la ecuación

de ondas. Esto nos permite obtener la relación de dispersión de las ondas, que en el caso

de un medio no dispersivo (v independiente de ω), es lineal:

ω = vk. (1.6)

¿Qué implica que la relación entre ω y k sea lineal? En una primera lectura podemos

decir que todas las ondas, independientemente de su frecuencia, se propagan con la misma

velocidad. Esto es especialmente importante porque significa que si tengo un paquete de

ondas (superposición de ondas de distintas frecuencias) en un medio, este se propaga sin

deformarse. A los fines prácticos esto es relevante, por ejemplo, porque puedo transmitir

información y no perderla.

Supongamos entonces que ahora observamos una onda monocromática (es decir con

una única frecuencia) propagándose y tomamos dos fotos en los tiempos t = 0s y t = 1s.

Considerando el esquema de la figura 1.3, y que la frecuencia es el número de veces que

la onda pasa por un mismo punto en el espacio por segundo, diŕıamos que la onda que

estamos observando tiene una frecuencia f = 1,75Hz. Si la onda se propaga con velocidad

v, la distancia que recorre la onda en 1s es d = v t = v 1s. El número de ciclos de la onda

que hay en esa distancia es d/λ, que es igual al número de ciclos de la onda que pasan

por el punto del espacio indicado con ĺınea entrecortada; es decir,

f =
d

λ
=
v t

λ
=
v 1s

λ
. (1.7)
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Entonces,

f =
v

λ
−→ ω = vk. (1.8)

Esto indica que en un peŕıodo de oscilación τ la onda se propaga una longitud de onda.

Hallamos la relación de dispersión solamente suponiendo que la velocidad de propagación

es constante.

Figura 1.3: Propagación de una onda monocromática vista en los tiempos t = 0 s y t = 1 s.

Debido a que la ecuación de ondas es lineal, es válido el principio de superposición.

Por lo tanto, la solución más general es una suma de ondas como la de la expresión 1.5

con distintas frecuencias, fases y amplitudes.

Ψ(x, t) = Σk[Ak cos(kx− ωt+ φA,k) +Bk cos(kx+ ωt+ φB,k)] (1.9)

Recordar que los valores de Ak, Bk, φA,k y φB,k se determinan a partir de las condi-

ciones iniciales, y que cuando las ondas se propagan en medios confinados los valores de

k (y por lo tanto ω) se discretizan (solo algunas ondas pueden propagarse en el medio

confinado).

1.3. Gúıa de lectura

Se completará esta tabla a lo largo del cuatrimestre
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Caṕıtulo 2

Ondas de ultrasonido

Las ondas de ultrasonido son ondas acústicas cuyas frecuencias son mayores que el

umbral del óıdo humano (∼20KHz). En la figura 2.1 se pueden observar las frecuencias

t́ıpicas junto con algunas fuentes que las generan o aplicaciones. Como toda onda acústica,

es longitudinal y se propaga por colisiones entre part́ıculas. Por lo tanto, la velocidad

de propagación depende de la densidad de part́ıculas y de la temperatura (no pueden

propagarse en vaćıo).

Figura 2.1: Espectro de las ondas acústicas y posibles fuentes y/o usos de estas ondas.

Empecemos estimando órdenes de magnitud de los distintos tipos de ondas acústicas.

Esto es importante sobre todo cuando queremos hacer experimentos; conocer el orden de

magnitud de las variables que uno espera medir permite definir cuáles son los instrumentos

adecuados para realizar la medición, en cuanto a precisión, exactitud, rango, etc. En este

sentido, les sugerimos los siguientes ejercicios:
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Tarea:

a) Las ondas de ultrasonido, ¿se propagan en todos los medios? Buscar veloci-

dades t́ıpicas en diferentes medios. Viajan más rápido por sustancias calientes que

por sustancias fŕıas, ¿por qué? Buscar bibliograf́ıa para obtener datos medidos.

b) Completar la tabla 2.1 y pensar si las cantidades definidas pueden ser

medidas con los instrumentos conocidos. Calcular, para algunas frecuencias (ν)

en el rango del sonido y del ultrasonido, la frecuencia angular (ω), el peŕıodo

(T ), el número de onda (k), la longitud de onda (λ) en las unidades indicadas.

Suponer que las ondas se propagan en un medio lineal cuya relación de dispersión

es ω = csk, con cs la velocidad de propagación de la onda en el medio. Tomar

valores para cs de bases de datos.

Tabla 2.1: Completar eligiendo distintas frecuencias en los rangos indicados y distintos materiales
en donde se propagan las ondas.

En la primera etapa de la materia trabajaremos con piezoeléctricos (PE), que son

materiales cristalinos o amorfos capaces de emitir y detectar ondas de ultrasonido ¡Veamos

cómo!
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2.1. Los piezoeléctricos como transductores de ultra-

sonido

La piezoelectricidad es un fenómeno que ocurre en determinados cristales que, al ser

sometidos a tensiones mecánicas, adquieren una polarización eléctrica, es decir, una dis-

tribución de carga eléctrica interna. Esto lleva a que entre sus superficies aparezca una

diferencia de potencial. Esto nos dice, por ejemplo, que es posible encender un LED co-

nectándolo a un piezoeléctrico (PE) sobre el que se ejercen distintos tipos de fuerzas

mecánicas (presión, extensión, torsión). En la figura 2.2(a)- ĺınea superior- se observa es-

quemáticamente como al ejercer deformaciones en un cristal PE se genera una diferencia

de tensión entre sus dos superficies. Ejemplos de PE cerámicos o cristalinos (cuarzo) se

pueden observar en la figura 2.2(b). Los primeros pueden ser encontrados en los parlantes

speakers y normalmente su respuesta en frecuencia es ancha. Los cristalinos, en cambio,

son utilizados en relojes muy precisos o como señales de referencia con frecuencias muy

estables (pronto veremos por qué).

Este fenómeno también ocurre a la inversa: los PE se deforman bajo la acción de

fuerzas internas al ser sometidos a un campo eléctrico, como se esquematiza en la figura

2.2(a)- ĺınea inferior-. Las deformaciones de los piezoeléctricos son tan pequeñas (decenas

de nanómetros a centenas de micrones) que necesitamos de técnicas ultra-precisas para

poder medirlas. ¿Se te ocurre cómo? ¡En la última práctica del curso vamos a aprender

estos temas! El efecto PE es normalmente reversible: al dejar de someter a los cristales a

un voltaje externo o campo eléctrico recuperan su forma.

Los cristales piezoeléctricos también se conocen como transductores piezoeléctricos.

Los transductores son dispositivos capaces de convertir algún tipo de enerǵıa en enerǵıa

eléctrica, y por eso se los utiliza para realizar mediciones. Por ejemplo, pueden convertir

enerǵıa mecánica, lumı́nica, etc., en una señal eléctrica y viceversa. Existen muchos tipos

de transductores que iremos estudiando en el curso. Los transductores PE pueden convertir

presión o stress mecánico en una señal eléctrica (sensores de fuerza) o pueden convertir

una señal eléctrica en un movimiento f́ısico (actuador de movimiento).

Debido a que t́ıpicamente el fenómeno de piezoelectricidad es lineal (a mayor tensión,

mayor desplazamiento), cuando se alimenta al PE con una señal armónica, las deforma-

ciones mecánicas en él también serán armónicas, con una amplitud que dependerá de la

frecuencia. Dado que esta oscilación armónica está confinada en el espacio (el PE tiene

un tamaño finito), habrá ciertas frecuencias para las cuales la transferencia de enerǵıa
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Figura 2.2: (a) Efecto piezoeléctrico directo: se mide una tensión en el volt́ımetro al comprimir,
expandir, tensionar al material. (b) Un piezoeléctrico t́ıpico que se encuentra en los parlantes
(arriba), y uno t́ıpico que se usa para generar señales precisas en frecuencia (abajo). (c) Efecto
piezoeléctrico inverso: al aplicar una diferencia de tensión con una fuente el material se deforma.
Figura adaptada de ref. [?].

eléctrica-mecánica sea máxima, y otras para las cuales ésta sea nula (¿Cómo podremos

estimar estas frecuencias?). Entonces, el PE es un sistema resonante y, como para cual-

quier otro sistema resonante, se espera que la respuesta en frecuencias sea una “campana”,

¿será cierto?

Cuando el PE oscila, produce movimiento del aire en su entorno. La perturbación

del aire se propaga como una onda acústica, con la misma frecuencia que la oscilación

mecánica. ¿Cómo es la amplitud de la onda generada en relación a la amplitud de la

alimentación? ¿Y en relación a la amplitud de oscilación mecánica? ¿Cómo haŕıas un ex-

perimento que te permita responder a estas preguntas?

Debido al efecto PE estos pueden actuar tanto como emisores o como receptores. Sien-

do que usamos PE tanto para generar como para detectar a las ondas de ultrasonido, nos

referimos a los dos PE como par emisor-receptor. La medición que realicemos va a estar

influenciada tanto por la respuesta del emisor como por la respuesta del receptor.

En cuanto a las aplicaciones, su capacidad de generar movimientos pequeños y con-

trolables por la tensión de alimentación permite que estos sean utilizados, por ejemplo,

en posicionadores de gran precisión que se utilizan en microscoṕıa o para estabilizar vi-
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braciones en sistemas ópticos. Su capacidad de generar y detectar ondas de ultrasonido

permite utilizarlos para detectar objetos y medir distancias (¡como los murciélagos!).

Para pensar: Buscar en una hoja de datos (pedir en el pañol el modelo del PE

disponible en el laboratorio) los tamaños t́ıpicos de los PE que producen ondas de

ultrasonido y buscar la velocidad de propagación de las ondas de ultrasonido en el

cuarzo. T́ıpicamente el PE tendrá forma de disco de diámetro d y altura h. Supo-

ner entonces que el PE oscila en el modo más bajo, cuya frecuencia es igual a la del

modo fundamental de una cuerda con dos extremos fijos (¿por qué?). ¿A que fre-

cuencias se espera que el PE resuene? ¿Su oscilación es en el diámetro o en el alto?

Experimental 1: De lo explicado se desprenden dos posibles caracterizaciones a

realizar sobre el par emisor-receptor:

a. Caracterización de la amplitud de la onda de ultrasonido (medida en el

receptor) en función del voltaje de alimentación (provisto por el generador

de funciones). A partir de ella se puede determinar el rango en donde la

respuesta es lineal. ¿Por qué es importante conocer el rango lineal?

b. La respuesta en frecuencias, conocida como campana de resonancia (ampli-

tud de la señal medida en el receptor en función de la frecuencia de la señal

de alimentación).

El montaje experimental sugerido (para la mayoŕıa de los experimentos de ultra-

sonido) es el que se observa en la figura 2.3, en donde se encuentra al emisor y

al receptor enfrentados, montados sobre un riel y a una distancia D entre śı. El

emisor se conecta a un generador de funciones mediante un cable BNC. La señal

en el receptor se mide empleando un osciloscopio. De ser necesario utilizar una

señal de referencia para el trigger, se puede emplear la señal de alimentación.

Pensar cuál es la mejor forma de implementar esta experiencia, en particular

para el ı́tem a.: ¿Cuál es la distancia óptima entre el emisor y el receptor? ¿En

qué frecuencia es conveniente realizar este estudio? ¿Debo usar trigger en el os-

ciloscopio? ¿Por qué? ¿Qué pruebas experimentales podŕıa hacer para responder

estas preguntas?
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Figura 2.3: Esquema del dispositivo experimental propuesto. El par emisor-receptor se encuen-
tran situados en un riel. El emisor se alimenta con un generador de funciones, a su vez esta señal
se usa como trigger del osciloscopio. La señal en el receptor se mide empleando el osciloscopio.

2.2. Calibración y regresión lineal

Las caracterización de la amplitud en el PE receptor en función del voltaje de ali-

mentación del emisor, nos permite obtener una curva a partir de la cual conociendo la

alimentación podemos predecir cual es la amplitud en el receptor. A esta curva la llamare-

mos calibración. En particular, observamos que el comportamiento de las mediciones es

lineal al menos en un rango de voltajes de alimentación, que es la calibración más simple

y conveniente que podemos obtener. Una calibración lineal tiene una sensibilidad dada

por la pendiente. A mayor pendiente, mayor sensibilidad; es decir, pequeñas variaciones en

voltaje ofrecen grandes variaciones en amplitud de la señal medida. Podŕıa existir un valor

de saturación que haŕıa que solo un rango de voltajes de alimentación sea útil (porque

donde satura no hay variación de respuesta y por lo tanto a los efectos de calibrar no sirve).

Una vez determinado el rango donde el comportamiento es lineal, uno se puede propo-

ner obtener un ajuste lineal para usarlo como función de calibración. Ajustar es encontrar

los valores de los parámetros de la función que minimizan la distancia entre los datos y lo

esperado por el modelo propuesto. Además, estas distancias se pesan por el error asignado

a cada una, para darle más importancia a los datos que están mejor definidos. Es decir,

se busca minimizar el siguiente valor:

χ2 =
∑(

ymedido − ymodelo

yerror

)2

.

A estas funciones que dependen de los datos y dan información de los parámetros del

modelo se los conoce como “estad́ısticos”. Por ejemplo, en el caso del χ2: si el modelo

propuesto se corresponde a los datos medidos, al calcularlo se obtienen resultados que

andan cerca de ν, que es la cantidad de grados de libertad del ajuste (#datos - #paráme-

tros ajuste - 1). Si χ2 > ν, suele ser indicativo de un ajuste que no responde a los datos
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o de que los errores fueron subestimados. Si, en cambio, χ2 < ν, es factible que el modelo

esté sobreajustado y que se esté ajustando el ruido, o que los errores hayan sido sobrees-

timados. A veces se utiliza el estad́ıstico χ2

ν
, llamado “χ2 reducido” y se analiza su valor

respecto de 1.

Ahora supongamos que se miden de nuevo los datos: es esperable que vayan a ser le-

vemente distintos, aunque seguramente dentro de las incertezas experimentales. Entonces

también es esperable que al calcular χ2 vaya a dar levemente distinto. Bueno, resulta que

si el modelo elegido es el correcto, los χ2 que se van obteniendo en mediciones sucesivas no

valen cualquier cosa, sino que siguen una distribución de probabilidades llamada χ2
ν (link):

Figura 2.4: Distribuciones de probabilidad χ2
ν .

Entonces, por ejemplo, si se realiza un ajuste cuadrático (3 parámetros) sobre 19 da-

tos, la curva a mirar es la de ν = 15: la curva roja. Esta nos dice que, si es cierta la

hipótesis de que el modelo elegido es el correcto, lo más habitual es obtener χ2 = 13...

¡pero también es muy probable obtener valores entre 8 y 20!

Sin embargo, śı podemos decir que a medida que uno se aleja del máximo de la cam-

pana, se empieza a volver menos probable haber obtenido un determinado χ2. Entonces,

el valor de χ2 obtenido no habla necesariamente de que el ajuste sea bueno o malo, sino

de qué tan probable es haber obtenido ese valor de χ2 en el caso de que el modelo elegido

para ajustar los datos es el que describe correctamente el fenómeno observado. Entonces,

podemos decir que:
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- Un χ2 muy bajo o muy alto indica que seŕıa muy extraño obtener esos datos si el

modelo es el correcto. Es decir: o el modelo no es el correcto, o el modelo śı es el correcto

pero se tuvo mucha mala suerte y justo lo medido no parece responder al modelo. En

estad́ıstica se dice que se rechaza la hipótesis de que el modelo sea el correcto, a riesgo de

que quizás se está en el caso de haber tenido mala suerte y que en realidad la hipótesis

no pueda ser completamente descartada.

- Un χ2 cercano a ν indica que los datos obtenidos son esperables si el modelo es el

correcto. Es decir: o el modelo es el correcto, o las mediciones se parecen al modelo pro-

puesto por una cuestión de azar. Por lo tanto, un χ2 “bueno”no garantiza que el modelo

sea el correcto, sino simplemente que el modelo propuesto ajusta lo suficientemente bien

a los datos. En estad́ıstica se dice que no se puede rechazar la hipótesis de que el modelo

sea el correcto.

Lo habitual es tomar algún criterio para determinar qué tan poco probable tiene que

ser el χ2 obtenido para rechazar la hipótesis de que el modelo ajusta a los datos. Cada

disciplina suele usar criterios distintos, pero es habitual tomar un umbral de tolerancia del

5% de probabilidad de equivocación. Y algo clave: ¡ni un “buen”χ2 ni ningún estad́ıstico

asegura que el modelo sea el correcto!

En particular, el χ2 no distingue si el ajuste pasa por arriba o por abajo de los datos, o

cuántas veces los cruza, o si falta algún parámetro en el ajuste, o si algún parámetro está

de más, o una infinidad de otros posibles criterios para determinar si el ajuste es bueno

o malo. Entonces lo podemos complementar con algo que ya sabemos de Laboratorio 1:

los residuos (ymedido − ymodelo) deben ser aleatorios y no estar correlacionados con ninguna

otra variable, ni correlacionados entre śı. Si presentan una distribución no aleatoria, es

indicativo de que el modelo no está ajustando bien a los datos.

2.3. Modelando la respuesta en frecuencias del par

emisor-receptor

Al ajustar mediciones es crucial que los modelos seleccionados estén respaldados por

fundamentos f́ısicos sólidos. Esto garantiza que nuestras interpretaciones y predicciones

estén en ĺınea con las leyes de la f́ısica y que los resultados sean confiables y significativos

para la comprensión de los fenómenos estudiados.
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Propusimos que, debido al comportamiento lineal del PE con el voltaje de alimenta-

ción, si se alimenta a este con una señal armónica, sus oscilaciones mecánicas también

serán armónicas. El modelo más sencillo que podemos pensar para el PE es entonces el

del oscilador armónico amortiguado sometido a una fuerza externa armónica (el campo

eléctrico generado por la alimentación), cuya ecuación de movimiento está dada por

d2x

dt2
+ γ1

dx

dt
+ ω2

o1x =
Fo

m
cos(ωt), (2.1)

en donde γ1 es la constante de amortiguamiento para el emisor, que en este caso

representa pérdidas mecánicas por fricción, la fuerza externa representa la fuente de ali-

mentación y el término lineal una fuerza restitutiva caracterizada por ωo1 =
√
k/m.

Nos preocupamos ahora por la solución particular porque, como sabemos, la ho-

mogénea decae con un tiempo caracteŕıstico 1/γ1. En notación compleja, dicha solución

está dada por

xE(ω, t) =
Fo

m

eiωt

(ω2
o1 − ω2) + iωγ1

. (2.2)

Recordemos que para que la solución tenga sentido f́ısico, debemos tomar la parte real,

de modo que la solución toma la forma xRE(t) = Acos(ωt + ϕ), con tan(ϕ) = −γ1ω
(ω2

o1−ω2)
y

A = Fo/m√
(ω2

o1−ω2)2+(γ1ω)2
.

Ahora bien, la ecuación 2.2 predice el desplazamiento del PE emisor cuando es ali-

mentado por una fuente de tensión alterna, bajo un modelo muy simple que considera

una única resonancia en ωo1. Si el PE tuviera más resonancias, podŕıamos plantear una

combinación lineal de soluciones similares a la de la ecuación 2.2 pero con distintas fre-

cuencias ωoi. Por otro lado, hasta ahora consideramos únicamente al PE emisor. Como

mencionamos anteriormente las oscilaciones mecánicas del PE producen ondas de ultra-

sonido que se propagan con una amplitud proporcional a xE hasta llegar al receptor. El

receptor transforma a la onda de ultrasonido en vibraciones mecánicas y luego en una

tensión. Idealmente el PE receptor tiene la misma frecuencia de resonancia que el emisor;

sin embargo, esto no siempre es cierto.

Entonces, podemos plantear ahora una ecuación similar a la ecuación 2.1, considerando

que la onda de ultrasonido que produce las oscilaciones mecánicas del PE receptor tiene

una amplitud proporcional al desplazamiento del PE emisor xE, es decir

d2x

dt2
+ γ2

dx

dt
+ ω2

o2x = αxE(ω, t), (2.3)
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en donde ahora consideramos que la constante de amortiguamiento γ2 y la frecuencia

caracteŕıstica ωo2 son distintas a las del PE emisor.

La solución particular de la ecuación 2.3 es

xER(ω, t) =
Beiωt

((ω2
o1 − ω2) + iωγ1)((ω2

o2 − ω2) + iωγ2)
, (2.4)

donde B es una constante.

Como dijimos anteriormente, la solución que tiene sentido f́ısico es la parte real de la

ecuación 2.4, de modo que la solución toma la forma xRER(t) = CER cos(ωt + ϕER), en

donde

CER = B

√
[(ω2

o1 − ω2)(ω2
o2 − ω2)− ω2γ1γ2]2 + [(ω2

o2 − ω2)ωγ1 + (ω2
o1 − ω2)ωγ2]2

[(ω2
o1 − ω2)2 + (γ1ω)2]2[(ω2

o2 − ω2)2 + (γ2ω)2]2
. (2.5)

Si ahora suponemos que ω01 = ω02 = ωo y γ1 = γ2 = γ,

CER =
B

[(ω2
o − ω2)2 + (γω)2]

. (2.6)

Para pensar: Las ecuaciones 2.5 y 2.6 consideran que los PE pueden ser mode-

lados por osciladores armónicos simples con una única frecuencia caracteŕıstica,

y pueden ser utilizadas para intentar ajustar a las mediciones. ¿Cómo se extiende

este modelo si los PE están caracterizados por más de una frecuencia caracteŕısti-

ca?

2.4. Caracteŕısticas de las ondas emitidas por los pie-

zoeléctricos

Como se mencionó con anterioridad, al alimentar al emisor con una onda armónica

se producen ondas de ultrasonido que se propagan en el aire. Las ondas emitidas son

tridimensionales, y para caracterizarlas mediremos la forma del frente de ondas (es decir,

si es plano, esférico o ciĺındrico), la longitud de onda, el peŕıodo, la frecuencia, el ángulo

de divergencia, la distribución de amplitud, etc.
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La ecuación de ondas tridimensional para un medio lineal, isótropo y homogéneo, está

dada por
∂2Ψ(r⃗, t)

∂t2
= v2∇2Ψ(r⃗, t), (2.7)

donde Ψ(r⃗, t) representa a la perturbación en el espacio (desplazamiento o presión para

el caso de ondas acústicas en aire), r⃗ es el vector de coordenadas espaciales, t el tiempo

y v la velocidad de propagación, que depende de las caracteŕısticas del medio y de la

frecuencia. Esta última cumple la relación de dispersión lineal de las ondas

ω = vk, (2.8)

donde k = 2π
λ

es el número de onda y λ la longitud de onda. La solución de esta

ecuación puede escribirse como

Ψ(r⃗, t) = A(r⃗) cos(k⃗r⃗ − ωt+ Φ0), (2.9)

en donde A(r⃗) es una amplitud dependiente de la posición, Φ0 una fase inicial y k⃗ el vector

de ondas cuyo módulo es k. Podemos definir también a la fase de la onda como

Φ(r⃗, t) = k⃗r⃗ − ωt+ Φ0. (2.10)

Nota: Se puede usar la notación compleja para escribir a la función de onda

Ψ(r⃗, t) = Ar⃗ e
−i(k⃗r⃗−ωt+Φ0), (2.11)

lo que hace más fácil realizar ciertas operaciones, pero el verdadero significado f́ısico lo

tiene la parte real.

Además, por el principio de suposición, la solución más general es combinación lineal

de todas las posibles soluciones de la ecuación (una suma de ondas con distintas frecuen-

cias, amplitudes, vector de ondas).

Examinemos las soluciones de la ecuación de ondas. Éstas dependerán de la geometŕıa

del problema y de las caracteŕısticas del medio, que por ahora supondremos lineal, isótro-

po y homogéneo. En esas condiciones las soluciones t́ıpicas son las ondas planas, las ondas

esféricas y las ondas ciĺındricas, pero existen otros tipos, por ejemplo los vórtices.

Para el problema en coordenadas cartesianas la solución más sencilla es una onda

plana. Supongamos que la onda se propaga en la dirección ẑ, por lo que k⃗ = kẑ y está
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polarizada en x̂. Por simplicidad también supondremos que la amplitud es constante,

A(r⃗) = A0 y que la fase inicial es cero, Φ0 = 0, aunque estas dos consideraciones no son

necesarias. De este modo, la solución de la ecuación de ondas es

Ψ(r⃗, t) = A0 cos(kz − ωt)x̂, (2.12)

siendo la fase Φ(z, t) = kz − ωt.

Ahora busquemos cuál es el conjunto de puntos en el espacio que oscilan con la misma

fase. Para eso suponemos una fase constante (Φ(z, t) = cte) y despejamos la variable z,

obteniendo

z =
ω

k
t+ cte = vt+ cte.

Es decir, la fase es constante en planos perpendiculares a la dirección de propagación

ẑ. Decimos entonces que el frente de ondas es plano. Estos planos se propagan con la

velocidad de propagación v (o velocidad de fase) hacia los z positivos. Además, por cómo

definimos inicialmente a la onda, la amplitud también es constante en esos planos. En la

figura 2.5 se puede observar un esquema de estos planos de fase y amplitud constante.

Figura 2.5: Esquema de planos de fase y amplitud constante de una onda ideal.

Nota: Análogamente podemos definir una onda que se propaga hacia z negativos con un

solo cambio de signo en el vector de ondas k⃗: Ψ(r⃗, t) = A0 cos(−kz − ωt)x̂.

En la figura se puede observar que para Φ = 0 y para Φ = 2π la onda tiene igual

amplitud y la misma pendiente. Lo mismo pasa para Φ = −π/2 y Φ = 3π/2 o para
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Φ = π/2 y Φ = 5π/2. La diferencia de fase entre estos planos es 2π. Es decir, existen dos

planos separados en una distancia ∆z, cuya distancia en fase es 2π. Veamos cual es esa

distancia, resolviendo la siguiente ecuación:

Φ(z +∆z, t)− Φ(z, t) = 2π, (2.13)

o lo que es lo mismo

kz(z +∆z)− kzz = 2π. (2.14)

Despejando se obtiene que ∆z = λ. Es decir que la distancia mı́nima entre planos de

igual fase (solo difieren en 2π), o la distancia entre planos consecutivos de igual fase, es la

longitud de onda λ. Esta situación se encuentra esquematizada en la figura 2.6, en donde

se muestran dos planos de igual fase (frente de ondas) consecutivos separados por una

distancia λ. Entonces, medir la longitud de onda, es medir la distancia entre planos de

igual fase.

Figura 2.6: Se muestran dos planos de igual fase consecutivos separados por una distancia λ.

En general podemos obtener cómo se mueve el frente de ondas derivando la expresión

de la fase y suponiendo que la fase es constante. Es decir:

Φ(x, t) = kzz − wt = Φ0,

y luego derivando

∂Φ(x, t)

∂t
= kz

dz

dt
− w = 0,

a partir de la cual podemos definir la velocidad de fase vf como

dz

dt
=
w

kz
= vf = v. (2.15)
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Vimos que, en el caso de tener una onda plana, la fase es constante en planos de

extensión infinita. Análogamente se puede ver que para problemas con simetŕıa esférica

(fuentes puntuales) o simetŕıa ciĺındrica (ranuras o lentes ciĺındricas), la fase se mantiene

constante en esferas o cilindros, respectivamente. De este modo encontramos frentes de

ondas esféricos o ciĺındricos. El primer caso se encuentra esquematizado en la figura 2.7.

Figura 2.7: Esquema de un frente de ondas esférico. Las ĺıneas continuas corresponden a la
amplitud máxima de la onda (A/r), las ĺıneas cortadas corresponden a la amplitud mı́nima de
la onda (−A/r). La longitud de onda es la distancia entre esferas de igual fase.

Si resolvemos la ecuación de ondas para problemas con distintas simetŕıas, podemos

obtener la dependencia de la fase y de la amplitud con la posición para las ondas ciĺındri-

cas y esféricas. En la figura 2.8 se muestran las caracteŕısticas para distintos frentes de

onda, en donde se usa que la intensidad de la onda es I ∝ |Ψ(r⃗, t)|2. Para cada tipo de

fuente se muestra un diagrama del frente de ondas, y la dependencia de la amplitud y de

la intensidad con la distancia. Por ejemplo, se puede observar que la amplitud no depende

de la distancia en el caso de la onda plana, es inversamente proporcional a la ráız de la

distancia en el caso de la onda ciĺındrica, y es inversamente proporcional a la distancia en

el caso de la onda esférica.

La dependencia de la intensidad con la distancia también se puede obtener empleando

argumentos sobre la geometŕıa del problema. Por ejemplo, calculemos la intensidad para

una fuente puntual de potencia W que emite un frente de onda esférico como se esque-
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matiza en la figura 2.9. En primer lugar tomemos una superficie esférica de radio r en el

entorno de la fuente. La intensidad sobre la superficie es la potencia por unidad de área

S = 4πr2, es decir que

I =
W

S
=

W

4πr2
→ A ∼

√
W

r
.

Entonces, vemos que la amplitud es inversamente proporcional al radio. Además, se

observa como a medida que aumenta el radio, la intensidad (potencia por unidad de área)

disminuye.

Figura 2.8: Tabla con la descripción esquemática de fuentes con un frente de ondas esférico,
ciĺındrico y plano. Se muestra además la dependencia de la amplitud y de la intensidad con la
distancia.
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Figura 2.9: Esquema de la dependencia de la intensidad en función de la distancia radial para
una fuente con frente de ondas esférico.

Ahora bien, hasta ahora hablamos de situaciones idealizadas en donde no tenemos res-

tricción en la distribución de amplitud (la onda plana tiene amplitud constante en planos

de extensión infinita, la onda esférica tiene amplitud constante en esferas). Sin embargo,

dijimos que la hipótesis sobre la amplitud constante no era estrictamente necesaria. De

hecho, en los montajes puede haber aperturas que recorten al frente de ondas o que pro-

duzcan difracción. En particular, los propios montajes de las fuentes hacen que estas no

puedan ser consideradas ideales (ver en la figura 2.10 un ejemplo de montaje para PE).

Además, si el haz se difracta en la apertura (comparar el tamaño del PE con la longitud

de onda de la onda de ultrasonido) es probable que este sea divergente; es decir, que la

región en donde la amplitud es distinta de cero crece con la distancia de propagación.

Figura 2.10: Un montaje posible para un PE. Se observa al PE montado dentro de una carcasa
metálica. La ĺınea punteada es una malla para proteger al PE. Se alimenta al PE con una señal
armónica que se amplifica con un pre-amplificador.
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Según lo discutido, para caracterizar a la onda debeŕıamos medir la longitud de

onda, la dependencia de la amplitud con la distancia, determinar cuál es el frente

de ondas, la divergencia, la distribución de amplitud en el plano transversal a la

dirección de propagación. Vamos a dividir los experimentos según hagamos me-

diciones a lo largo de la dirección de propagación o en la dirección transversal.

Experimental 2: Mediciones a lo largo de la dirección de propagación:

a. Medir amplitud en función de la distancia A(r⃗).

b. Medir la longitud de onda (distancia entre planos de igual fase)

Experimental 3: Mediciones en la dirección perpendicular a dirección de propa-

gación:

a. Determinar cuál es el frente de ondas. Es decir, encontrar los planos, esferas

o cilindros (o cualquier otra superficie) en donde la fase constante.

b. Determinar cuál es la distribución de amplitud en el plano perpendicular a

la dirección de propagación.

c. Medir la divergencia del haz.

2.5. Repaso de ondas en gases y condiciones de borde

Recordemos que, dado que estamos tratando ondas acústicas que se propagan en un gas

(aire), normalmente nos interesan las ondas de desplazamiento Ψ(x, t) (cómo se desplazan

las part́ıculas en el gas), las ondas de presión P (x, t) (cuáles son las fluctuaciones de presión

ejercidas por las part́ıculas en movimiento), y las ondas de densidad ρ(x, t) (cuáles son

las fluctuaciones de densidad inducidas por el movimiento de las part́ıculas del gas).

Recordemos que tanto la presión como la densidad se pueden obtener a partir de la onda

de desplazamiento. En el caso de la presión, esta se puede estimar como el módulo de

compresibilidad κ (en unidades de presión, por ejemplo Pa) por la variación de volumen

∆V respecto al volumen medio Vo, a partir de lo que se puede deducir que

P (x, t) = −κdΨ(x, t)

dx
. (2.16)

La presión está relacionada con la compresión o expansión del gas: cuando se com-

prime en un volumen más chico, aumenta la presión; cuando se expande a un volumen

mayor, disminuye la presión.
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En el caso de la densidad, se puede calcular como

ρ(x) = ρo
dΨ(x, t)

dx
, (2.17)

donde ρo es la densidad media.

Dado que el PE receptor puede medir variaciones de presión, escribamos las condiciones

de borde para el desplazamiento y la presión, para una condición de borde cerrada como se

esquematiza en la figura 2.11. Si las part́ıculas están en el entorno de una pared, estas van

a estar quietas respecto a dicha pared. Recordar que la función de onda de desplazamiento

nos dice si las part́ıculas se mueven a la derecha o a la izquierda, y cuánto lo hacen. Como

en este experimento la pared es donde se refleja la onda, y las part́ıculas están quietas,

entonces la condición de borde es que la función de onda total (todas las ondas que viajan

hacia la pared Ψ+(x, t) más todas las ondas que se reflejan en la pared Ψ−(x, t) es nula.

Es decir

Ψ+(0, t) + Ψ−(0, t) = 0. (2.18)

Esto implica que al reflejarse la onda de desplazamiento en dicha pared, hay un cambio

de fase de π radianes dado que Ψ+(0, t) = −Ψ−(0, t). En cuanto a las ondas de presión,

en la pared es en donde se ejerce la presión máxima. Pensar que si todas las part́ıculas se

mueven hacia la pared, la presión es máxima. Esto es, que la derivada de la presión total

sea cero en la pared; es decir,

d[P+(x, t) + P−(x, t)]

dx

∣∣∣∣∣
x=0

= 0. (2.19)
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Figura 2.11: Condición de borde extremo cerrado. El desplazamiento total en la pared es nulo,
la presión es máxima

Más adelante veremos otras condiciones de borde.

2.6. Interferencia de ondas de ultrasonido

Habrán notado que, al medir la amplitud en función de la distancia, se observa una

serie de ondulaciones periódicas montada sobre “la señal esperada”. Discutimos en clase

sobre posibles explicaciones en base a la interferencia de ondas que se reflejan sucesiva-

mente entre el emisor y el receptor.

Supongamos que tenemos dos fuentes de ondas esféricas como las que se muestran en

la figura 2.7, situadas a una distancia d, tal como se esquematiza en la figura 2.12. Recor-

demos que las ĺıneas continuas representan a la amplitud es máxima y las punteadas a la

mı́nima. Podemos analizar cómo es la superposición de las ondas sobre los frentes de ondas

y estimar cuál es la onda resultante. Supongamos por el momento que las amplitudes no

dependen de la distancia radial, y veamos qué sucede al superponer dos ĺıneas continuas

o dos ĺıneas punteadas. Las ĺıneas continuas significan que la amplitud es máxima (A), de

modo que la amplitud total en la superposición de dos ĺıneas es 2A. En las ĺıneas puntea-

das la amplitud es −A, por lo que la suma en donde se superponen dos ĺıneas punteadas

es −2A. Dado que en la práctica detectamos la amplitud pico a pico, en ambos casos la

medición será 2 × 2A (recordar que la amplitud pico a pico es el doble del módulo de la

amplitud en una señal periódica). Marcamos con puntos rojos a estos puntos en el esque-

ma de la figura 2.12. En cambio, si se superpone una ĺınea punteada y una continua, la
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amplitud total es A+(−A) = 0; es decir, un mı́nimo de amplitud. Observar que, dado que

la amplitud decae con la distancia, es probable que los mı́nimos no sean nodos (¿por qué?).

La figura que resulta de unir mı́nimos y máximos forma hiperboloides. Si observamos

entonces la ĺınea que une a las dos fuentes, vemos que para la situación particular que

graficamos, observamos máximos de intensidad separados por λ/2. Veamos en detalle qué

sucede con la superposición de las ondas cuando medimos sobre una ĺınea paralela a la

ĺınea que une a las fuentes, o sobre la ĺınea que une a las fuentes.

Figura 2.12: Superposición de dos ondas esféricas. En ĺınea continua se esquematizan las crestas
de cada onda de cada fuente, y en ĺınea punteada los valles. Los puntos de encuentro de dos
máximos o dos mı́nimos (en rojo) forman interferencia constructiva. Los puntos de encuentro
de un máximo y un mı́nimo (cada uno de distinta fuente) forman interferencia destructiva. Esto
genera una onda estacionaria que cada λ

2 tiene un nodo (o antinodo).

2.6.1. Interferómetro de Fabry-Pérot acústico

En óptica, el interferómetro de Fabry-Pérot, también conocido como resonador (o cavi-

dad) óptico, consiste en dos espejos de alta reflectividad. Cuando la onda de entrada tiene

una frecuencia cercana a una de las frecuencias de resonancia de la cavidad se producirá

una realimentación positiva dentro de la misma. La contribución de la onda de entrada
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se suma constructivamente a la onda circulante.

En el caso de las ondas de ultrasonido, la onda emitida se puede reflejar sucesivas veces

en el emisor y el receptor, de manera de formar una onda estacionaria. Para encontrar la

función de onda en este sistema se debe calcular la superposición de ondas que se refleja

múltiples veces entre las dos superficies reflectantes e imponer condiciones de contorno.

Podemos hacerlo tanto con las ondas de presión o con las de desplazamiento.

Podemos pensar al par emisor-receptor de ultrasonido como una cavidad resonante,

análoga a un interferómetro de Fabry-Pérot, donde se produce una onda estacionaria,

producto de la reflexión de la misma en el par. Describimos la onda emitida como:

P+(x, t) =
1

x− xe
cos(ωt− k(x− xe)) (2.20)

siendo xe la posición del emisor. La onda reflejada por el receptor se describe a partir del

coeficiente de reflexión R y la posición xr del receptor:

P−(x, t) =
−1

x− (2xr − xe)
R cos (ωt+ k(x− (2xr − xe))) . (2.21)

Con el mismo razonamiento podemos definir la presión de las ondas reflejadas dos

(Ψ++(x, t)) y tres (Ψ−−(x, t)) veces:

P++(x, t) =
1

x− (−2xr + 3xe)
R2 cos (ωt+ k(x− (−2xr + 3xe))) , (2.22)

P−−(x, t) =
−1

x− (4xr − 3xe)
R3 cos (ωt+ k(x− (4xr − 3xe))) . (2.23)

Podŕıamos estudiar las contribuciones de orden mayor, pero se vuelven despreciables

frente a la onda emitida inicialmente. Como resultado de estas reflexiones, el receptor me-

dirá la suma de estas ondas, observando un efecto de interferencia entre las mismas. Para

entender mejor lo que sucede, pueden ver la simulación en Colab “Cavidad L2F.ipynb”(ver

Campus).

Responder usando las simulaciones:

a. ¿Están de acuerdo con que las ondas tengan esa pinta? Corroboren que estén

bien calculadas.

b. ¿Qué observan si ahora miden en distintos xr (que valores de xr es razonable

tomar)?

c. ¿Y para distintos R?
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d. ¿Puede el comportamiento de la amplitud en la cercańıa del emisor ser

explicado por interferencia de ondas reflejadas en el par emisor-receptor?

Comparando con el experimento

a. ¿Qué valor creen que podŕıa tener R?

b. ¿Bajo qué argumento se pueden despreciar las reflexiones de orden superior

P+++, P−−−, etc?

c. ¿El receptor mide solo las ondas que inciden, o también las reflejadas?

2.6.2. Interferómetro de Young acústico

Supongamos que se tienen dos emisores separados por una distancia h y un detector

que puede desplazarse en ĺınea recta (eje y) sobre un plano situado a una distancia L

perpendicular a la recta de separación de los emisores, como se ilustra en la Fig. 2.13.

Llamando dA y dB a las distancias de las respectivas fuentes al detector, es decir:

dA = |d⃗A| =
√
L2 + (y + h/2)2, (2.24)

dB = |d⃗B| =
√
L2 + (y − h/2)2. (2.25)

Figura 2.13: Esquema del experimento de Young acústico.

En el problema planteado en la Fig. 2.13, la expresión para la perturbación de la
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presión detectada por el receptor R resulta

p = A cos

(
−ωAt+ ωA

dA
cs

+ ΦA0

)
+B cos

(
−ωBt+ ωA

dB
cs

+ ΦB0

)
. (2.26)

Consideremos el caso que las amplitudes, las frecuencias y la fases iniciales de las dos

ondas sean iguales (y sin pérdida de generalidad se puede poner ΦA0 = ΦB0 = 0, ya que

puedo elegir t = 0 cuando esto se cumpla), entonces

p = A

{
cos

(
−ωt+ ω

dA
cs

)
+ cos

(
−ωt+ ω

dB
cs

)}
. (2.27)

Tarea: Escribiendo dA = d + ∆ y dB = d − ∆ obtenga la expresión de p en

función de los parámetros d y ∆ que se muestra en las ecuaciones 2.28 y 2.29.

La perturbación total se puede escribir como:

p = p0 cos

(
ω

(
t− d

cs

))
(2.28)

siendo la amplitud

p0 = 2A cos

(
ω
∆

cs

)
(2.29)

Notar que las variaciones de d producen una variación de fase en la señal, mientras que

las de ∆ modifican la amplitud de la señal.

Franjas de interferencia. Teniendo en cuenta que la longitud de onda vale λ =

2πcs/ω, la Ec. (2.29) puede reescribirse como

p0 = 2A cos

(
2π

∆

λ

)
(2.30)

lo que indica que la amplitud tendrá máximos y mı́nimos a medida que se vaŕıa ∆ (ya

sea variando y, o h, o L) y que, además, depende de la longitud de onda. Habrá máximos

de amplitud para algunos valores de ∆, que llamamos ∆m, cuando

∆m =
λ

2
m (2.31)

con m entero.
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Si llamamos ym la posición del detector en el máximo de orden m, se tiene que

∆m =
dA − dB

2
=

1

2

(√
L2 + (ym + h/2)2 −

√
L2 + (ym − h/2)2

)
. (2.32)

Como, en general, la distancia L es bastante mayor que la separación entre los emisores,

un desarrollo en serie de ∆m en función de h queda

∆m =
h

2

ym√
L2 + y2m

+O(h3). (2.33)

Notar que estas aproximaciones van a ser razonables incluso cuando no se cumpla

h ≪ L porque el término cuadrático se ha cancelado. Esto dice, por ejemplo, que si

h ∼ 0,1L se tendrá un error del 1%.

Si, además, ym ≪ L (o sea, si se observan sólo los primeros órdenes de interferencia)

se puede escribir

∆m =
hym
2L

(2.34)

con lo cual la Ec. (2.31) resulta

ym =
λL

h
m. (2.35)

Es decir que los máximos de interferencia están equiespaciados. La distancia entre dos

máximos consecutivos, llamada interfranja i, vale

i = ym+1 − ym =
λL

h
. (2.36)

En esta aproximación, para h y L fijos, la interfranja es constante y a partir de su

medición se puede calcular la longitud de onda.

Medición de la longitud de onda. Se propone una práctica de laboratorio para

medir la longitud de onda en ultrasonido utilizando dos emisores y un receptor,

que es conceptualmente similar a la experiencia de Young en luz visible. En base

al esquema de la Fig. 2.13 se muestra el dispositivo experimental en la Fig. 2.14.

Para pensar: Juntando lo explicado en la Sección 2.6.2, se te ocurre cómo medir

la longitud de onda en este experimento?
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Figura 2.14: Esquema del dispositivo experimental para el experimento de Young acústico.
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Caṕıtulo 3

La respuesta del detector en las
mediciones

Pensemos acerca de algunas ideas sobre situaciones en que realizamos mediciones (ver

Fig. 7.1):

1. Interferometŕıa. En el experimento de interferencia con dos emisores se produce

una señal periódica dependiente de la posición. Si queremos medir la dependencia funcio-

nal debemos desplazar al detector a lo largo de la coordenada x mientras medimos la señal

en el PE receptor. Sin embargo, el detector no es puntual (su respuesta está extendida en

el espacio y no es una delta ideal); por lo tanto, no se mide la señal en la posición x sino

el promedio de la señal en un rango [x, x+∆x].

2. Espectrometŕıa. Un espectrómetro permite separar la luz en distintos colores (fre-

cuencias o longitudes de onda) empleando redes de difracción. De esta manera cada color

va a ocupar un lugar en una posición diferente. Para medir la luz en cada color se utiliza

un detector que se lo desplaza a través de la figura de difracción (espectro) mientras se

mide la intensidad. Sin embargo, no es infinitamente angosto (no es una delta), y lo que

en realidad mide es la intensidad de la luz para un rango de longitudes de onda cercanas

a las que se quiere medir ([λ, λ+∆λ]).

3. Imágenes. Una fuente de luz produce sombras cuando ilumina un objeto. Si la

fuente de luz es puntual, la sombra que produce es la sombra “verdadera”. Sin embargo

las fuentes de luz reales no son puntuales. ¿Cómo difiere la sombra producida por una

fuente real de la sombra producida por una fuente puntual? ¿Qué pasa si el tamaño de la

fuente es más grande?
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4. Microscoṕıa. En un microscopio de fluorescencia se utiliza un haz láser enfocado

en una muestra y se mide la luz emitida por la muestra en el punto focal (t́ıpicamente un

área de 1µm de diámetro). La imagen de fluorescencia se construye barriendo el haz sobre

todos los puntos de la muestra mientras se adquiere la intensidad. Nuevamente, dado que

el punto focal no es un punto singular en el espacio (no es una delta), la fluorescencia que

se mide proviene de la pequeña área en la que está enfocado el haz.

Figura 3.1: Ejemplos de sistemas en los cuales se observa la influencia de tener un detector o
una fuente que no son puntuales. En el caso de las sombras, una fuente no puntual produce la
zona de penumbra, produciendo un efecto de borroneado respecto a lo que se obtendŕıa con una
fuente puntual. En espectrometŕıa, en lugar de medir una “única” longitud de onda, se mide un
rango λ, λ + ∆λ. En interferometŕıa, en lugar de medir en x integramos la señal en un rango
x, x+∆x. En microscoṕıa, en lugar de medir en (x, y) integramos en un área dada por el área
del haz. Es decir: en la práctica no es posible medir “un punto” del espacio, sino un intervalo
alrededor de ese punto.

En todos estos ejemplos, ¿Cómo se relaciona lo que se está midiendo con el fenómeno

f́ısico que se quiere caracterizar, si en cada punto que se mide se está mezclando la señal

que se quiere medir con la señal en los puntos vecinos? ¿Cómo depende la medición del
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tamaño del detector?

Siempre que se mida una variable f́ısica, la respuesta del instrumento impacta en la

medición. La respuesta del instrumento (usualmente descripta como filtros en la teoŕıa de

sistemas lineales), en general reduce la resolución de la medición. En este caso se modela al

proceso de medición como una convolución matemática. La ventaja de conocer la respues-

ta del instrumento es que se pueden construir algoritmos computacionales para reducir el

impacto del instrumento y obtener resultados con mayor fidelidad. A estos algoritmos y

procesos se los conoce como deconvolución.

Vamos a ver cómo se calcula una convolución (nombre raro pero no te preocupes,

es sencillo). Luego vamos a hacer la analoǵıa entre el experimento de interferencia y la

convolución de la respuesta del detector y la señal que queremos medir. A continuación

podremos cambiar algunos parámetros para estudiar como afecta el tamaño del detector.

3.1. Convolución: operación matemática

Nota: Los ejemplos que se muestran en esta sección están acompañados de un

Jupyter notebook (convolucion.ipynb) que pueden bajar del campus, para apoyar

esta explicación.

La convolución se puede definir para funciones discretas (como seŕıa una medición

muestreada) o para funciones continuas. En primer lugar, consideremos la función mues-

treada que se observa en la Fig. 3.2(a). Para este tipo de funciones, la convolución se

define como

(f ∗ g)n =
∞∑

m=−∞

fm · g∗n−m, (3.1)

en donde ∗ en g significa complejo conjugado. Siendo que todas las señales medidas son

reales, vamos a omitir ∗ de ahora en más. Observar que en esta cuenta no importa cuál es

el eje de las ordenadas, sino la posición de cada punto de la función. Luego veremos cómo

se calcula el eje de las ordenadas. Por tal motivo nos concentramos en las sucesiones de

números que se encuentran a la derecha de la figura 3.2(a) .
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Pensemos qué hace esta operación, fijando valores para n. Si n = 0, la expresión 3.1

nos indica que tenemos que multiplicar fm con g−m, y luego sumar los productos para

todos los m. Observar que g−m es la sucesión que resulta de espejar a g respecto de m = 0,

como se muestra en la Fig. 3.2(b). Multiplicamos entonces aquellos números cuyos produc-

tos dan distinto de cero (gris) y sumamos, obteniendo que la convolución vale (f ∗g)o = 9.

La consecuencia de cambiar el valor de n es producir traslaciones de g−m. Entonces

los distintos valores de la convolución se obtienen desplazando a g−m en el valor de n, y

para cada desplazamiento multiplicar y sumar los elementos de ambas sucesiones. Vea-

mos ejemplos concretos en las figuras 3.2(c-h). Por ejemplo, n = −4 significa que g−m se

desplaza 4 veces hacia la izquierda, como se muestra en 3.2(c).

Ahora vamos a hacer las cuentas para aquellos valores de n para los cuales la con-

volución no da cero. Vemos que n = −4 es el desplazamiento menor que me ofrece un

valor distinto de cero (ver que si n = −5 o menor, siempre algún término del producto

es cero). Entonces solo tiene sentido aumentar n. Luego, vemos que podemos seguir este

procedimiento hasta que la convolución vuelva a dar cero, si variamos n desde -4 hasta 2.

En el medio obtenemos valores distintos de cero, como se ve en 3.2(c-h). El resultado de

la convolución se puede observar en la figura 3.3.

¿Cómo cambia el resultado si las funciones son continuas? La expresión para la con-

volución está dada por la ecuación

f(x) ∗ g(x)ξ =
∫ ∞

−∞
f(t) · g∗(t− ξ) dt, (3.2)

en donde ∗ significa complejo conjugado. Siendo que todas las señales medidas son reales,

vamos a omitir ∗ de ahora en más. En este caso la operación es similar pero, en lugar

de hacer una sumatoria, calculamos el área bajo la curva que resulta de multiplicar a la

primera función por la segunda invertida y desplazada.
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Figura 3.2: Convolución de las funciones fm y gm. En (a) se muestra un gráfico del muestreo
realizado para estas funciones. En (b-h) se presenta una visualización del cálculo de la convolu-
ción de estas funciones para distintos valores de n.
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Figura 3.3: Resultado normalizado de la convolución entre las funciones fm y gm, variando n
entre -10 y 10. Se observa que toma valores no nulos cuando n se encuentra entre -4 y 2.

En la figura 3.4 se muestra un ejemplo para funciones ‘continuas’. Ver que el proce-

dimiento es el mismo: se invierte la función g(x) respecto de x = 0, se desplaza a g(−x)
a través de f(x) para distintos valores de ξ. Para cada desplazamiento ambas funciones

se multiplican y se calcula el área bajo la función producto (color gris en la figura que

corresponde al punto rojo en la convolución).
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Figura 3.4: Ejemplo de convolución para dos funciones continuas f(x) y g(x). Las mismas se
encuentran graficadas en (a). Se observa el proceso de convolución para diferentes desplazamien-
tos: (b) ξ = −5, (c) ξ = −1, (d) t = 0, (e) ξ = 1, (f) ξ = 3, y (g) ξ = 5. En cada caso se detalla
el área integrada (arriba en gris) y el valor resultante de la convolución (abajo como un punto
rojo).

Nota: todo esto que pensamos en una coordenada espacial unidimensional, tam-

bién vale para la coordenada temporal y para múltiples dimensiones.

3.2. Convolución: intŕınseca en el proceso de medi-

ción

Si observamos ahora los ejemplos de mediciones que mencionamos en la Fig. 7.1 vemos

que, en casi todos los casos, hay ‘algo’ que se traslada a través de aquello que se desea

medir (detector o el haz de iluminación). En cada posición del detector o haz de barrido,

la medición resulta de integrar o sumar todo aquello que se encuentre en el área de

interacción del detector o haz con lo que uno quiere medir S(x). Es decir, el resultado

del proceso de medición (M(x)) es la convolución de lo que se desea medir S(x) con la
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respuesta del detector R(x). Re-escribiendo a la expresión 3.4 obtenemos

M(x) =

∫ ∞

−∞
S(τ) ·R(x− τ) dτ. (3.3)

Supongamos que estamos en el caso ideal que la respuesta del detector sea una delta

(por ejemplo, el haz puede enfocarse en un área infinitamente pequeña o el detector (ya

sea piezoeléctrico, detector de luz, etc) tienen un área infinitamente pequeña (sabemos

que eso no es posible). Entonces escribiendo R(x − τ) = δ(x − τ) y reemplazando en la

expresión 3.4, obtenemos

M(x) =

∫ ∞

−∞
S(τ) · δ(x− τ) dτ = S(x). (3.4)

Es decir, matemáticamente en el caso de tener un detector ‘ideal’ la medición resulta

idéntica a lo que uno quiere medir. Pero, f́ısicamente, ¿qué es ideal?

3.3. El detector ideal y el real

Veamos un ejemplo de medición, en donde queremos medir el doblete del sodio. Es de-

cir, queremos medir el espectro de una lámpara de sodio, que emite dos lineas espectrales

muy angostas (ancho ∼ 0,1 nm) centradas en las longitudes de onda 589.0 nm y 589.6

nm (doblete). Vamos a suponer que la forma o perfil de estas es lorentziano. En la figura

3.5 se pueden observar a estas lineas graficadas en color naranja. Supongamos entonces

que utilizando una red de difracción separamos estas ĺıneas y con un detector vamos a

barrer el espectro midiendo la intensidad, tal como se muestra en la Fig. 7.1. Para que

la resolución en la detección sea buena, solidario al detector pondremos una rendija cuyo

tamaño podemos cambiar con mucha precisión, de manera que todo lo que este dentro de

la rendija puede ser capturado por el detector, y todo lo que esté afuera no. La función de

respuesta R(x) que caracteriza a la rendija junto con el detector es la función cuadrada

que está graficada en la Fig. 3.5(a). En las Figs.3.5(b-c) se grafica en verde el resultado

de la medición (simulado como la convolución entre la respuesta del detector y las ĺıneas

espectrales que se desean caracterizar). Vemos que cuanto más chica es la rendija (más

parecida a una delta), más se parece la medición a las ĺıneas espectrales; mientras que, al

aumentar el ancho de la rendija, dejamos de resolver al doblete para medir solo una ĺınea

espectral.
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Desarrollando la intuición: Usando la simulación (Jupyter notebook (convo-

lucion.ipynb)), les sugerimos responder las siguientes preguntas (y diseñar otras!)

para trabajar sobre nuestra intuición acerca de la convolución en el proceso de

medición.

1. Cambiar la resolución del espectrómetro. Que pasa cuando la función resolución

se aproxima a una delta?

2. Cambiar la distancia entre lineas espectrales manteniendo la misma resolución

del espectrómetro.

3. Simular ruido de alta frecuencias sumando a las lineas espectrales algo como

0.1 sin(1000 x). Ver que la convolución funciona filtro pasa bajos.

4. Como debe ser el ancho de la rendija para tener una medición fiel?
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Figura 3.5: (a) Se observa la función que representa a la respuesta de la rendija y por lo tanto al
la región donde puede medir el detector, donde 1 corresponde a detección total y 0 a detección
nula. (b) Se detalla la comparación entre el espectro del doblete de sodio (ĺınea sólida naranja)
y el espectro obtenido al medir (ĺınea sólida verde) utilizando una rendija de ancho W = 0,2
nm, (c) W = 0,5 nm y (d) W = 1,0 nm.
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Caṕıtulo 4

Ondas estacionarias

Una onda estacionaria se forma cuando se superponen dos ondas de igual frecuencia

que se propagan en sentido opuesto a través de un medio. Por ejemplo, en la figura 4.1,

se observa la superposición de dos ondas contrapropagantes en distintos tiempos (t = 0,

t = T/4, t = 3T/4, t = T , donde T es el peŕıodo de la onda). La onda que se propaga a

la izquierda se puede expresar como

ΨA(x, t) = Acos(ωt+ kx+ ϕA) (4.1)

y una onda que se propaga a la derecha como

ΨB(x, t) = Bcos(ωt− kx+ ϕB) (4.2)

En la figura 4.1c se observa la superposición de ambas odas, formando la onda esta-

cionaria. Ver que la onda estacionaria cambia su amplitud en el tiempo, pero los puntos

indicados con la letra Q (conocidos como nodos) tienen amplitud nula en cualquier tiem-

po y los indicados con la letra P alcanzan la amplitud máxima (antinodos). La forma

funcional de estas ondas es

Ψ(x, t) = ΨA(x, t) + ΨB(x, t) = 2Asin(kx)cos(ωt) (4.3)

en donde, para simplificar los cálculos, se consideró, que las fases iniciales son nulas y las

amplitudes son iguales. Por el contrario a las ondas propagantes, las ondas estacionarias

no transportan enerǵıa (en ninguno de los casos hay transporte de masa). Se puede ver

gráficamente a partir de la figura 4.1c, que la distancia que separa dos nodos consecutivos

es λ
2
.

Podŕıamos preguntarnos, ¿cómo es que generamos dos ondas que se propaguen en

direcciones opuestas a partir de una única fuente de ondas? Los cambios en las carac-
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Figura 4.1: Dos ondas, una que se propagan hacia la izquierda (a) y otra hacia la derecha(b), se
superponen para formar una onda estacionaria (c)

teŕısticas de los medios en donde se propagan las ondas (cambios de sección en tubos,

fijaciones en las cuerdas, cambio de ı́ndice de refracción para la luz, etc), producen refle-

xiones. Por ejemplo, en la figura 4.2, se muestra la reflexión de una onda en una superficie

perfectamente reflectante. La onda Ψ(x, t) ahora está compuesta por la superposición de

una onda que incide en la pared ΨI(x, t) y una onda que se refleja ΨR(x, t). Dado que la

onda no puede producir movimiento de los átomos o moléculas de la superficie, se tienen

que anular en la misma, es decir, la condición de borde en una superficie perfectamente

reflectante o pared ŕıgida es

Ψ(xo, t) = ΨI(xo, t) + ΨR(xo, t) = 0. (4.4)

Esto significa que la onda reflejada tiene igual amplitud que la onda incidente, pero

se desfasa en π, puesto que ΨI(xo, t) = −ΨR(xo, t). Nota: para dibujar la onda reflejada,

tuvimos que espejar respecto a la dirección horizontal y vertical, por qué?)

Las ondas estacionarias son más comunes de lo que tal vez nos imaginamos. Por

ejemplo, son esenciales para el funcionamiento de los instrumentos musicales. En la figura

4.3, se muestran dos ejemplos t́ıpicos de un instrumento de viento (ondas longitudinales

en gases) y uno de cuerdas (ondas transversales en cuerdas). Los modos de oscilación en

ambos casos determinan la nota o tono y las caracteŕısticas del sonido (dos notas iguales

no suenan perfectamente igual en instrumentos distintos, aun estos sean del mismo tipo).

La frecuencia del modo más bajo, conocida como nota fundamental, los armónicos y

sobretonos son aquellos que le dan la riqueza la nota (su timbre, su color,etc). Tanto en

los instrumentos de viento como cuerdas, las vibraciones de las ondas estacionarias en ellos

producen vibraciones del aire en su entorno generando una onda longitudinal en el aire,
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Figura 4.2: Arriba: una onda incidente (en negro) incide sobre una superficie reflectante. Esto
produce una onda reflejada (marrón) que viaja en sentido contrario de igual amplitud. Esto
genera una onda resultante que es la superposición de las ondas incidentes y reflejadas (abajo)
formando nodos y antinodos.

que se propaga hasta nuestros óıdos, lo que permite que escuchemos a los instrumentos

musicales.

Figura 4.3: Las ondas de sonido provocan perturbaciones en el aire al desplazar las moléculas,
dando lugar a una onda longitudinal que permite la propagación del sonido. En el caso de instru-
mentos de cuerdas, encontramos mayoritariamente ondas mecánicas transversales estacionarias
mientras que en instrumentos de viento ondas mecánicas longitudinales.

Para accionar a las notas, ambos sistemas deben ser forzados. En el caso de los ins-

trumentos de cuerda, los dos extremos de las cuerdas se encuentran fijos (condición de
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borde extremos fijos) y el sistema se puede forzar por frotamiento (vioĺın, viola, cello) o

por percusión (los tres anteriores, la guitarra, el piano). En el caso de los instrumentos de

viento, se fuerza soplando aire por un extremo y el otro extremo es abierto (condición de

borde forzado-abierto).

En base a lo explicado previamente, nos interesa saber como se forman las ondas esta-

cionarias, como influyen distintas condiciones de borde y como son los sistemas forzados.

Intentemos responder a estas preguntas empleando dos sistemas t́ıpicos: cuerdas y tubos.

4.1. Ondas estacionarias en cuerdas

4.1.1. Condiciones de contorno

Las condiciones de contorno en el caso de cuerdas, pueden ser que el extremo sea fijo,

o que el extremo sea libre o que el extremo esté forzado, como se esquematiza en la figura

4.4. Si el extremo de la cuerda está fijo, el desplazamiento de la cuerda es nulo. Esto lo

expresamos matemáticamente como

Ψ(xo, t) = 0, (4.5)

en donde xo es la posición del extremo fijo de la cuerda. Como explicamos anteriormente

esto significa que la incidente y reflejadas son iguales en magnitud pero están desfasadas

en π. En el caso de que el extremo se encuentre libre, la onda incidente y reflejada tienen

que ser iguales en amplitud y pendiente. Esto es

dΨ(x, t)

dx

∣∣∣∣∣
x=xo

= 0. (4.6)

Ver que en el caso del extremo fijo, tal como mencionamos anteriormente hay una inversión

de la onda, mientras que en el extremo libre la onda no se invierte.

Tarea: Escribir una superposición de ondas armónicas propagantes que satisfagan

4.5 y 4.6.

A partir de las condiciones de borde planeadas podemos proponer varias situaciones

esquematizadas en la figura 4.5: que la cuerda tenga dos extremos fijos, que la cuerda

tenga dos extremos libres, que la cuerda tenga un extremo fijo y uno libre. Para analizar

que sucede podemos plantear la forma de la onda estacionaria genérica

Ψ(x, t) = Acos(kx+ ϕ)cos(ωt+ φ) (4.7)
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Figura 4.4: Arriba: una onda incide sobre un extremo fijo (izquierda). Esto genera una onda
reflejada invertida (derecha), es decir, desfasada en π. Abajo: una onda incide en un extremo
libre (izquierda) y produce una reflexión de igual amplitud y pendiente, sin invertirse.

donde φ es la fase inicial temporal y ϕ la fase inicial espacial. Luego proponemos las

condiciones de borde adecuadas según el problema particular.

4.1.2. Cuerda con dos extremos fijos

Tarea: Probar que imponiendo las condición de borde de la ecuación 4.5 en ambos

extremos para todo tiempo, se obtienen los resultados de esta sección.

Si la cuerda tiene dos extremos fijos en las posiciones x = 0 y x = L, y se proponen

las condiciones de borde

Ψ(0, t) = 0;Ψ(L, t) = 0

en la ecuación 4.7, se obtiene que ϕ = π/2 y que λ y k pueden tomar varios valores.

En particular se obtiene k = mπ/L con m un entero positivo (m = 1, 2, 3....) por lo que

λm = 2L/m. Es decir la onda entra un número entero de veces en la distancia 2L. Las

posibles soluciones toman la forma

Ψn(x, t) = Ansin(knx)cos(ωnt+ φn) (4.8)
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Figura 4.5: Ejemplo de dos configuraciones con distintas condiciones de contorno. Arriba, una
onda con sus dos extremos fijos (puntos rojos). Medio:una onda con un extremo fijo y el otro
extremo libre. Abajo: una cuerda con un extremo fijo y otro forzado

con An y φn parámetros a determinar a partir de las condiciones iniciales y ωn y kn

relacionados a partir de la relación de dispersión de la cuerda ωn = vkn, con v =
√
T/µ

donde T es la tensión de la cuerda y µ su densidad lineal (en unidades de kg/m). Esto

significa que solo algunas frecuencias podrán excitar a la cuerda. En la figura 4.6, se

observa un esquema en donde se observan graficados los primeros modos normales, sus

frecuencias (fn = ωn/2π) y longitudes de onda. A la primer frecuencia f1 se la conoce

como frecuencia fundamental o primer armónico. Las demás frecuencias son múltiplos de

esta y se las lama simplemente armónicos.

4.1.3. Cuerda con un extremo libre y uno fijo

Tarea: Probar que imponiendo las condición de borde de la ecuación 4.5 y 4.6

en cada uno de los extremos para todo tiempo, se obtienen los resultados de esta

sección.

De manera análoga a la sección anterior, si ahora la cuerda tiene un extremo fijo en

x = 0 y uno libre en x = L, y se proponen las condiciones de borde

Ψ(0, t) = 0;
dΨ(x, t)

dx

∣∣∣∣
x=L

= 0

en la ecuación 4.7, se obtiene que ϕ = π/2 y que λ y k pueden tomar varios valores. En

este caso se obtiene k = (2m − 1)π/2L con m un entero positivo (m = 1, 2, 3....) por lo
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Figura 4.6: Primeros cinco modos de oscilación de una cuerda con dos extremos fijos. A la
derecha se puede observar el número de modo (n), su longitud de onda (λn) y su frecuencia
(fn). En el esquema las N marcan las posiciones de los nodos y las A la de los antinodos (puntos
de máxima amplitud).

que λm = 4L/(2m− 1). Es decir la onda entra un número entero de veces en la distancia

4L. De manera análoga al inciso anterior, las posibles soluciones toman la forma

Ψn(x, t) = Ansin(knx)cos(ωnt+ φn) (4.9)

En la figura 4.7 se pueden observar graficados los primeros modos normales, sus frecuencias

y longitudes de onda.

4.1.4. Cuerda con un extremo fijo y otro forzado

Supongamos que ahora tenemos una cuerda con un extremo fijo en x = 0 y uno forzado

armónico en x = L (D cos(ωt)). El extremo fijo será un nodo, pero el extremo forzado se

verá obligado a moverse como el forzante, esto es

Ψ(0, t) =0

Ψ(L, t) =D cos(ωt)
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Figura 4.7: Primeros cinco modos de oscilación de una cuerda con dos un extremo fijo y uno libre.
A la derecha se puede observar el número de modo (n), su longitud de onda (λn) y su frecuencia
(fn). En el esquema las N marcan las posiciones de los nodos y las A la de los antinodos (puntos
de máxima amplitud).

Luego de aplicar estas dos condiciones a la ecuación 4.7, se obtiene que

Ψ(x, t) =
D

sin(kL)
sin(kx)cos(ωt) (4.10)

En donde se uso que dado que la solución transitoria decayó, la cuerda debe oscilar

con la misma frecuencia y fase que el forzante.

El dominador de la ecuación 4.10 se anula cuando kL = nπ con n = 1, 2, 3... (que son

los mismos valores que se obtienen para extremos fijo-fijo o libre-libre). De este modo si

el forzante tiene frecuencia ω = ωn = vkn, la solución diverge (es un sistema resonante).

Por otra parte, en las frecuencias de resonancia D/ sin(kL) ≫ D, por lo tanto la ampli-

tud del forzante es despreciable respecto a la amplitud de la onda, por ello consideramos

al extremo forzado como un nodo.

¿Qué pasa si forzamos con una frecuencia que no sea de un modo normal? Al forzar

generamos una onda progresiva que al llegar a un extremo se refleja generando una onda

regresiva (que viaja en el sentido contrario). Cuando la onda regresiva llegue al otro
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extremo volverá a reflejarse generando una nueva onda progresiva que se superpone con

la onda progresiva original. En general, debido al tiempo de viaje, la nueva onda progresiva

no estará en fase con la original. En cada reflexión, la onda adquiere una ∆ϕi, de manera

que la perturbación total progresiva será la suma de todas las ondas con distintas fases

Ψtot =
∑
i

(
A cos(kx− ωt+ ϕo +∆ϕi)

)
. (4.11)

La suma de ondas con defasaje aleatorio tiende a cero para una cantidad suficiente de

ondas. La única manera que no se anule la suma es que la diferencia de fase sea cero. Esto

se logra para algunas relaciones entre λ y L que son precisamente las condiciones bajo las

cuales aparecen los modos normales. Lo mismo pasa con las regresivas.

4.1.5. Experimento: ondas estacionarias en cuerdas.

En esta experiencia se estudiarán ondas estacionarias en cuerdas. El dispositivo ex-

perimental se observa en la figura 4.8. En uno de los extremos de la cuerda se sujeta un

portapesas y se la posiciona sobre una polea. En el portapesas se pueden colocar distintas

masas para tensionar la cuerda. Se debe tener particular cuidado durante el montaje de

que la cuerda este correctamente nivelada. Se excita a la cuerda en el otro extremo em-

pleando un wave driver (un parlante con membrana). El wave driver tiene una pieza con

una ranura para sujetar a la cuerda. Se alimenta al wave driver utilizando el generador

de funciones y un amplificador de señales. Además se puede emplear un osciloscopio para

medir la señal de alimentación. En el laboratorio se cuenta con cuerdas de distinta densi-

dad, masas de distinto peso, balanza, micrómetro. Advertencia: el wave driver posee una

traba para bloquear su accionamiento mecánico cuando no están en uso. No te olvides de

retirar la traba antes de comenzar a usarlos. ¿Qué voltaje máximo soporta?

Figura 4.8: Esquema experimental para la experiencia con cuerdas.

Apuntes Laboratorio 2, Cátedra Prof. M.G. Capeluto 57



Experimental:

a) Como se genera un punto fijo del lado de la polea?

b) Caracterizar las cuerdas que se van a utilizar midiendo su densidad lineal.

¿Cómo?

c) Como genero tensión en la cuerda? que rango de tensiones es razonable emplear?

d) Calcular la velocidad de propagación esperada en base a la densidad lineal y

la tensión.

e) Buscar los modos normales del sistema. Caracterizar la frecuencia, la longitud

de onda, etc. Como determino la velocidad de la propagación a partir de las

mediciones realizadas.

f) Medir la velocidad de propagación para distintas tensiones de la cuerda. Cuan-

tos valores de tensión es razonable tomar?

g) Repetir para una cuerda con otra densidad.

4.2. Ondas estacionarias en tubos

Ya hemos estudiado ondas que se propagan en gases cuando hicimos el experimento

de ultrasonido. Dećıamos que la onda se propaga en el aire a través de compresiones y

expansiones del mismo, pero que no hay un movimiento neto de las part́ıculas de aire

(aun estas puedan oscilar localmente).

Supongamos que el gas se encuentra en equilibrio en un tubo cuya sección tiene área

A, a una presión de equilibrio Po, con una densidad ρo (ver figura 4.9). Llamemos entonces

Ψ(x, t) al desplazamiento longitudinal de las moléculas de aire respecto de la posición de

equilibrio, y consideremos un volumen inicial Vo = ∆xA. Cuando la onda se propaga

en el tubo, el volumen de aire sufre un desplazamiento o deformación y por lo tanto

hay variaciones de presión en su entorno. La presión está relacionada con la compresión

o expansión del gas. Cuando se comprime a un volumen más chico, la presión aumenta.

Cuando se expande a un volumen más grande la presión disminuye. La variación de presión

(∆p) se puede expresar como

∆p = −κ∆V
Vo

(4.12)

donde κ es el módulo de compresibilidad en unidades de Pa. De este modo, nos queda

calcular la variación de volumen a partir de la función desplazamiento como ∆V = Ψ(x+
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∆x, t)−Ψ(x, t). A partir de esta expresión y en el ĺımite de ∆x muy chiquito, se obtiene

∆p = −κ∂Ψ(x, t)

∂x
. (4.13)

Figura 4.9: Esquema de un gas en equilibrio (arriba) y un gas en el que se propaga una onda
(abajo)

Por otra parte, se puede ver que la variación de densidad es

ρ(x, y) = ρo
∂Ψ(x, t)

∂x
. (4.14)

con ρo la densidad media del gas.

4.2.1. Condiciones de borde en tubos

Las condiciones de borde en los tubos pueden ser extremo cerrado, extremo abierto

o extremo forzado (también existen otras como los cambios de sección, pero por ahora

tomamos estas tres). Miremos primero que pasa con el extremo cerrado que está a la

derecha de la figura 4.10. Las part́ıculas muy cercanas a la pared se encuentran quietas,

de modo que la condición de borde se puede expresar como

Ψ(xo, t) = 0, (4.15)

donde xo es la posición del extremo. En el momento de la foto, la part́ıculas cercanas a

la pared se mueven hacia la pared, por lo que la presión en ese extremo es máxima.

En el caso de un extremo abierto, como el que se muestra en la figura 4.11, la condición

que hay que pedir, es que la presión inmediatamente antes e inmediatamente después del
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Figura 4.10: Condiciones de borde Forzado- cerrado. Arriba: Esquema de la distribución de
moléculas o átomos en el gas. Medio: Desplazamiento de las moléculas (positivo es hacia la
derecha, negativo es hacia la izquierda). Abajo: Presión en el tubo.

extremo sea la misma. De este modo, la variación de presión es nula, por lo que la condición

es que

∂Ψ(x, t)

∂x

∣∣∣∣∣
x=xo

= 0. (4.16)

Figura 4.11: Condiciones de borde cerrado- abierto. A la derecha, el extremo está abierto y las
presiones en el interior y exterior se igualan. Arriba: Esquema de la distribución de moléculas o
átomos en el gas. Medio: Desplazamiento de las moléculas (positivo es hacia la derecha, negativo
es hacia la izquierda). Abajo: Presión en el tubo.

Analicemos ahora el extremo forzado. Podemos suponer que las part́ıculas se mueven

igual que el forzante (igual que el piezoeléctrico o igual que el parlante), en cuyo caso

la condición será que Ψ(L, T ) = C cos(ωt), suponemos al extremo forzado en x = L.
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Utilizando esta condición obtenemos los mismos resultados que para la cuerda: kL = nπ

y la función de onda

Ψ(x, t) =
C

sin(kL)
sin(kx)cos(ωt) (4.17)

Es decir, el extremo forzado se comporta como un extremo cerrado para desplaza-

miento. Sin embargo, también podŕıamos pensar que en el extremo forzado las presiones

se igualan. Entonces

∆p = −κ∂Ψ(x, t)

∂x

∣∣∣∣∣
x=L

= C cos(ωt). (4.18)

A partir de esta condición se obtiene que la amplitud de la onda es

A =
−C

κ cos(kl)
(4.19)

que se maximiza cuando km = (2m − 1)π/2L, es decir, un extremo abierto para

desplazamiento.

4.2.2. Modos normales en tubos

A partir de las condiciones de borde mencionadas, se puede probar que los modos en

los tubos con condición abierto-abierto, abierto-cerrado o cerrado-cerrado, son similares

a los de las cuerdas. Los resultados se encuentran en la Figura 4.12.

Figura 4.12: Modos normales en tubos, para las condiciones cerrado-cerrado (izquierda), cerrado-
abierto (medio), abierto-abierto (derecha)

Tarea: Nunca conf́ıen en lo dicho, pruébenlo ustedes mismos!
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4.2.3. Experimentando con tubos: el tubo de Kundt

El dispositivo experimental que se empleará en la práctica se muestra en la figura

4.13. Consiste en un tubo de longitud L, que incorpora una regla para medir posiciones

dentro del mismo. En un extremo del tubo hay un pistón móvil que actúa como extremo

cerrado y permite variar la longitud del mismo. Este se puede remover dejando al tubo

con una longitud fija con aquel extremo abierto. Dentro del tubo hay un micrófono con el

cual se mide la perturbación (de desplazamiento o presión) dentro del tubo. El micrófono

se conecta a un amplificador y luego al osciloscopio para poder medir la señal. El otro

extremo del tubo se encuentra abierto y a una distancia do (do ≪ L) de un parlante con el

cual se emitirá la señal. El parlante está conectado a un generador de funciones mediante

un cable BNC-banana. El generador de funciones a su vez esta conectado al osciloscopio

para medir la señal emitida. Todas las conexiones salvo las que se indica lo contrario son

con cables BNC-BNC. No superar los 2 Vpp que se mandan al parlante, sino se distorsiona

la señal.

Figura 4.13: Dispositivo experimental que se empleará en la práctica de ondas estacionarias en
tubos

Experimental:

a) Determinar que mide el micrófono: Presión o desplazamiento. ¿Cómo lo hago?

¿Dónde mido? ¿Qué espero medir?

b) Diseñar un experimento para determinar si el parlante fuerza al extremo en

presión o desplazamiento. (es decir si el extremo está abierto o cerrado).

En todas las experiencias siguientes, repetir el experimento con pistón (cerra-

do), sin pistón (abierto).
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a) Medir las variaciones de presión o desplazamiento en los modos a lo largo del

tubo. ¿Cuántos modos puedo observar? ¿Puedo definir la posición de los nodos?

¿Y de los máximos? ¿Que error le asigno? ¿Cuál tiene menor error?

b) Dejando L fijo, estudiar la dependencia entre la frecuencia ν, la longitud de

onda de los modos λ y el número de modos. Pensar como es conveniente medir

λ. Usando estos datos, medir la velocidad de propagación del sonido y el largo

efectivo del tubo.

c) Diseñar un experimento para medir la velocidad de propagación variando la

longitud del tubo.

d) Determinar la velocidad de propagación a partir del retardo entre una señal

impulsiva y la señal medida. Adquirir una señal completa y guardar los datos (Los

vamos a usar pronto!).

e) Comparar la velocidad del sonido obtenida por los distintos métodos.
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Caṕıtulo 5

Composición de señales

En F́ısica 2 estudiamos propagación de ondas imponiendo condiciones iniciales arbi-

trarias en sistemas que soportan modos normales, y vimos que en esos casos la onda que

se propaga en el medio es una superposición de modos normales (¡los modos forman una

base de el espacio de soluciones!). Esto es factible debido al principio de superposición:

dado que la ecuación de ondas es lineal, una combinación lineal de soluciones también es

solución.

En lineas generales, para hallar la solución se propone que la solución general a tiem-

po inicial es una superposición (combinación lineal) de modos normales. Luego, para

hallar las amplitudes y fases de cada término de la superposición usamos la condición

inicial expresada en una base Fourier (que, elegida apropiadamente, coincide con la de los

modos normales), e igualamos la solución general en el tiempo inicial a la condición inicial.

¡Atención! Si no recordás esto que acabás de leer, leé primero la sección 5.1 en

donde comentamos brevemente un ejemplo que vieron en F́ısica 2 y luego retomá

desde aqúı. Si recordás todo, te lo podés saltear.

Si el sistema que estamos estudiando soporta un continuo de frecuencias, en lugar de

usar sumatorias usamos integrales: la transformada de Fourier.

Este concepto lo podemos extrapolar a muchas situaciones, más allá de las ondas.

Se utiliza much́ısimo en casi cualquier rama de la f́ısica, como la electrónica y la óptica.

Veamos algunos ejemplos.
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La mayoŕıa de los dispositivos electrónicos que usamos hoy en d́ıa manejan señales

digitalizadas. Un ejemplo que ya usamos es la señal cuadrada que genera el generador

de funciones. Para generar esa señal, el generador no hace más que superponer señales

armónicas de distintas frecuencias. ¿Se te ocurre cuáles?

Otro ejemplo es cómo se transmite la información en los circuitos lógicos. En ge-

neral esta está codificada en 8 bits, es decir base binaria de 8 d́ıgitos (por ejemplo, si

quiero transmitir una señal de 2 V, su codificación en base binaria es 00000010 ya que

2 = 0× 28 +0× 27 +0× 26 +0× 25 +0× 24 +0× 23 +0× 23 +0× 22 +1× 21 +0× 20).

Al conjunto ordenado de 8 bits lo conocemos como byte. Esta información además se

trasmite como pulsos con cierta frecuencia (bits por segundo), conocida como bit rate. Es

decir que, a fines prácticos, en los circuitos lógicos la información se transmite en código

binario, donde cada d́ıgito es un pulso de amplitud 0 V si quiero transmitir el cero binario,

y 3 V o 5 V para el 1 binario. En otras palabras: para transmitir la información de que

la señal tiene 2 V, se transmite una serie de pulsos ordenados en el tiempo (byte) de

amplitud (0 0 0 0 0 0 1 0). Y aśı, cualquier información que quiera transmitir necesito

codificarla en código binario y transmitirla como 1 y 0, es decir como pulsos de 5 V y 0 V.

Para transmitir estos pulsos, necesito que la electrónica que uso tenga suficiente ancho de

banda como para que estos pulsos de los bits se propaguen en los circuitos sin deformarse

demasiado (es decir, que no pierdan sus componentes de Fourier al propagarse).

Notar que, en cualquiera de los ejemplos mencionados anteriormente, para que los

pulsos o señales estén bien conformados, es decir que tengan la forma que quiero que

tengan, matemáticamente debeŕıa tener infinitas frecuencias (infinitas componentes del

espectro en la serie de Fourier). Sin embargo, ningún dispositivo electrónico puede manejar

infinitas frecuencias (ya que su ancho de banda es limitado), por lo que las series están

truncadas. Entonces podemos ver una de las razones por las cuales es importante el ancho

de banda de los dispositivos electrónicos (las frecuencias que pueden sintetizar o medir).

Para sintetizar señales cuya forma no es armónica necesito que el ancho de banda sea

suficiente para poder sintetizar la fundamental de la señal y un número adecuado de

armónicos.

Analicemos todo lo dicho haciendo experimentos!
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5.1. Recordando algunas cosas vistas en F́ısica 2

5.1.1. La serie y la transformada de Fourier

La base de Fourier {1, cos(2πnνox), sin(2πnνox)} nos permite escribir cualquier fun-

ción periódica como una combinación lineal de senos y cosenos:

S(x) =
ao
2

+
∞∑
n

ancos(knx) + bnsen(knx) (5.1)

donde las frecuencias kn = nko son múltiplos de la frecuencia fundamental νo y An, Bn

amplitudes que pueden ser halladas a partir de las siguientes expresiones:

an =
2

L

∫ L

0

S(x) cos

(
2πnx

L

)
dx (5.2)

bn =
2

L

∫ L

0

S(x) sin

(
2πnx

L

)
dx (5.3)

En la Fig. 7.1 se pueden observar las series de Fourier de diversas ondas periódicas.

Figura 5.1: Series de Fourier de ondas periódicas cuadrada, diente de sierra y triangular.

Nota: Todo esto vale también para el tiempo, alcanza con cambiar x → t y

ko → ωo = 2πνo.
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Tarea: Usando algún lenguaje de programación, graficar las series de Fourier de

la Fig. 7.1, para un número finito de términos No.

-Que sucede cuando No aumenta?

-Cuantos términos necesito para que la serie se parezca a la función?

-Como puedo definir un error?

Aśı como existe una base de senos y cosenos, dado que la exponencial compleja es una

combinación lineal de senos y cosenos (e−ikx = cos(kx) − isin(kx)), también podemos

definir la serie de Fourier en una base exponencial

S(x) =
∞∑
n

Cne
ikx (5.4)

En donde los coeficientes Cn pueden ser hallados a partir de la siguiente expresión

Cn =
1

L

∫
L

S(x) · e−ikx dx

Más aun, si el sistema admite un continuo de frecuencias (por ejemplo cuando no

es un sistema acotado, por lo que las frecuencias no se discretizan), en lugar de usar

una sumatoria discreta podemos usar una integral (por ejemplo haciendo el ĺımite al

continuo empleando la serie en base exponencial), obteniendo la transformada de Fourier.

La expresión para la transformada directa es

F{f(t)} = F (ν) =

∫ ∞

−∞
f(t) · e−i2πνt dt

y para la transformada inversa

F−1{F (ν)} = f(t) =

∫ ∞

−∞
F (ν) · ei2πνt dν

En la Fig. 5.2 se pueden observar las transformadas de algunas funciones que solemos

usar.
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Figura 5.2: Transformadas de Fourier de distintas señales no periódicas.

Pensar: Podŕıas asociar las transformadas de la Fig. 5.2 a fenómenos que estu-

diaste en F́ısica 2?

Veamos ahora ejemplos en donde usaron transformadas y series en F́ısica 2.

5.1.2. Ejemplo del uso de la serie de Fourier en el problema de
condiciones iniciales en sistemas acotados

Vamos a comentar someramente un ejemplo, pero si necesitás más detalles podés

consultar el apunte de la materia F́ısica 2 [?]. Tomemos como ejemplo para recordar, el

de una cuerda de longitud L con extremos fijos. Tal como se mencionó en la sección 4.1.2,

una posible solución es

Ψn(x, t) = Ansin(knx)cos(ωnt+ φn) (5.5)

Apuntes Laboratorio 2, Cátedra Prof. M.G. Capeluto 69



con kn = nπ/L. La solución más general es una superposición de modos normales

Ψ(x, t) = ΣnAnsin

(
n
π

L
x

)
cos

(
ωnt+ φn

)
(5.6)

en donde las constantes An y φn están determinadas por las condiciones iniciales. Vamos

a suponer que la cuerda parte del reposo, es decir Ψ̇(x, 0) = 0, de una posición inicial

dada por la expresión

Ψ̃(x, 0) =


0 si 0 < x < L

3

ψo si L
3
< x < 2L

3

0 si 2L
3
< x < L

(5.7)

Si pedimos que la cuerda parta del reposo en la expresión 5.6, obtenemos que

ΣnAn sin(knx) sin(φn) = 0 (5.8)

para toda posición, por lo que la única posibilidad es que φn = 0 para todo valor n.

La condición inicial para la deformación implica poder igualar Ψ(x, 0) = Ψ̃(x, 0). Nos

encontramos con el problema de que la forma general para la deformación está escrita

en una base de senos, mientras que la condición inicial es una función cuadrada. De este

modo lo primero que tenemos que hacer es escribir a la condición inicial en una base de

senos y cosenos (la de Fourier):

Ψ(x, t) = ΣpApsin(p
π

L
x) = Ψ̃(x, 0) = ao/2 +

∞∑
n

ancos(nkox) + bnsen(nkox) (5.9)

Dado que las series de Fourier permiten escribir funciones periódicas como super-

posición de senos y cosenos, para poder expresar a la condición inicial como una serie

de Fourier necesitamos convertirla en una función periódica. Pero, ¿cual seŕıa el peŕıodo,

y que condiciones tienen que cumplir? En primer lugar, se tienen que cumplir las con-

diciones de borde en x = 0 y x = L. En segundo lugar, querŕıamos interpretar la serie

de modos como otro desarrollo Fourier para igualar término a términos los coeficientes.

Esto es posible sólo si ambos desarrollos son de funciones con la misma periodicidad. Los

peŕıodos espaciales de los modos normales (longitudes de onda de los modos) son

λp =
2π

kp
=

2L

p
, (5.10)

es decir que la longitud de onda del modo fundamental (p = 1) es λ1 = 2L, y todos los otros

son fracciones enteras de este. Por lo tanto, en analoǵıa, vamos a pedir que el peŕıodo Λ
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de una extensión periódica de Ψ̃(x, 0), sea la longitud de onda fundamental: Λ = λ1 = 2L.

Entonces, siendo que ko = 2π/Λ, reemplazando Λ = 2L se obtiene ko = π/L, en cuyo

caso la igualdad entre series quedará

Ψ(x, t) = ΣpApsin(p
π

L
x) = Ψ̃(x, 0) = ao/2 +

∞∑
n

ancos(n
π

L
x) + bnsen(n

π

L
x) (5.11)

Entonces ya sabemos cuál es el peŕıodo de la extensión. Para terminar de determinar

cuál es la función extendida correcta, notemos que en la igualdad anterior entre desarrollos,

del lado de modos normales solamente tenemos senos, mientras que para Fourier tenemos

senos y cosenos. Por lo tanto, necesitaremos que an = 0 para todo n. Esto lo logramos si

extendemos a Ψ̃(x, 0) de forma impar. En la Fig. 5.3 encontramos la extensión impar de

Ψ̃(x, 0), con peŕıodo Λ = 2L y que además cumple las condiciones de borde (en este caso

dos extremos fijos).

Figura 5.3: Extensión impar de Ψ̃(x, 0).

Solo queda ahora resolver las integrales de las ecuaciones 5.3 tomando como peŕıodo

2L, es decir:

an =
2

2L

∫ 2L

0

f(x) cos

(
2πnx

2L

)
dx =

1

L

∫ 2L

0

f(x) cos
(πnx
L

)
dx (5.12)

bn =
2

2L

∫ 2L

0

f(x) sin

(
2πnx

2L

)
dx =

1

L

∫ 2L

0

f(x) sin
(πnx
L

)
dx, (5.13)

a partir de las que se obtiene

an = 0 (5.14)

b2n = 0 (5.15)

b2n−1 =
4ψ0

π(2p− 1)

[
cos

(
π(2p− 1)

3

)
− cos

(
π(2p− 1)

2

)]
(5.16)
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Es decir que solo sobreviven los términos impares, al igual que la expansión en modos

normales, por lo que podemos igualar los coeficientes b2p−1 = Ap en la expresión 5.11. De

modo que la solución para todo tiempo es

Ψ(x, t) =
∑
n

{
4ψ0

π(2p− 1)

[
cos

(
π(2p− 1)

3

)
− cos

(
π(2p− 1)

2

)]
sin
(
n
π

L
x
)
cos (ωnt+ φn)

}
(5.17)

5.1.3. Ejemplo del uso de la transformada de Fourier en óptica

Observando la Fig. 5.2, es fácil recordar muchos problemas que resolvimos en óptica

en F́ısica 2:

1) Difracción en una rendija: la difracción en campo lejano es la transformada de Fourier

de la rendija. Observar en la figura 5.2 que la transformada de la función cuadrada es la

función seno cardinal.

2) La interferencia de N fuentes puntuales (campo lejano), es la transformada de Fou-

rier de un peine de deltas como el último ejemplo de la figura 5.2. Esto da como resultado

máximos (puntos brillantes) centrados en múltiplos de 2π/T (los ordenes de difracción).

Estos máximos son más angostos cuanto más fuentes puntuales tenga.

3) En el caso más general, la difracción por una red se calcula como la interferencia

de N fuentes puntuales (N es el número de rendijas iluminadas), multiplicado por la di-

fracción en una de las rendijas (la transformada de Fourier de una de las rendijas).

5.2. Sintonizando señales con los piezoeléctricos

Vimos que, al alimentar al emisor con una señal sinusoidal de amplitud Ao, en el

receptor se mide una señal de la misma frecuencia pero cuya amplitud depende de la misma

(A(ν)). Entonces podemos definir a la función transferencia del par emisor-receptor PE

como T (ν) = A(ν)/Ao. Vemos entonces que, si la frecuencia de alimentación está cerca del

máximo de la función transferencia (curva azul en la figura 5.4), la respuesta será mucho

mayor que para una señal cuya frecuencia esté en las colas de la misma (curva verde).

Podemos definir al factor calidad o de mérito como Q = νo/∆ν, donde νo es la frecuencia

central y ∆ν el ancho a mitad de altura de la campana de resonancia. Para el caso t́ıpico

de los piezoeléctricos que se encuentran en el laboratorio, Q ∼ 0,1. Ver que cuanto más
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grande es la frecuencia de resonancia y más angosta la respuesta en frecuencias, Q se hace

más grande.

Figura 5.4: Izquierda: dos ejemplos de señales sinusoidales con distinta frecuencia con las cuales
se alimenta un par ER. Medio: Curva de transferencia para el par ER. Notar que la frecuencia
de la onda azul es un máximo en la función de transferencia, mientras que la verde no. Derecha:
señal respuesta de cada excitación. Notar que en el caso de la onda azul la amplitud es mucho
mayor que la verde.

Para pensar

¿Podemos pensar al piezoeléctrico como un filtro en frecuencias? (ver Fig. 5.4)

Explicar. ¿Cómo debeŕıa ser Q para sintonizar las frecuencias con precisión gran-

de?

5.3. Sintonizando señales periódicas

Vamos ahora a estudiar la capacidad del piezoeléctrico de sintonizar señales. Sabemos

que, en general, si la señal es periódica podemos escribirla como una suma de señales

armónicas a partir de la serie de Fourier. Tomemos el ejemplo particular de la señal

cuadrada (ustedes en clase pueden tomar la que más les interese). Una señal periódica

cuadrada de amplitud A cuya frecuencia es νo como la que se muestra en la figura 5.5,

puede ser representada por la serie de Fourier cuyos términos corresponden a múltiplos

impares de la frecuencia fundamental:

S(t) =
4A

π
{sin(2πνo) +

1

3
sin(2π(3νo)t) +

1

5
sin(2π(5νo)t) + ...}. (5.18)
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Figura 5.5: Señal periódica cuadrada de amplitud A y frecuencia νo.

Importante: Observar que no importa qué valor tome νo, los coeficientes de Fourier

son siempre iguales ya que responden a la forma funcional de la señal.

En la figura 5.6(a) se puede observar la dependencia temporal de la señal y los primeros

términos de la serie de Fourier. En la figura 5.6(b) se observa el espectro de frecuencias

de la señal; es decir, la relación de los coeficientes de la serie de Fourier en función de la

frecuencia. Se observa que, a medida que aumenta el número de armónico, la amplitud se

hace cada vez más chica: esto hace pensar que, si bien la serie es una sumatoria infinita

de términos, no necesitamos infinitos términos en la aproximación para tener una buena

representación de la señal. En la figura 5.7 se puede observar la aproximación tomando

N=1 y N=10 términos de la serie de Fourier.

Figura 5.6: (a) Señal cuadrada (en azul) y los primeros tres términos de su serie de Fourier
correspondientes al modo fundamental (amarillo), tercer (verde) y quinto (rojo) armónico. (b)
Espectro de frecuencias de la señal cuadrada.

74 Apuntes Laboratorio 2, Cátedra Prof. M.G. Capeluto



Ejercicio previo a la clase: Programar la serie de Fourier y graficarla para

distintos valores de N. Estimar numéricamente el error de aproximación y definir

cuántos términos es razonable tomar para tener una buena aproximación de la

señal. Describir el criterio elegido.

Figura 5.7: Aproximación a la señal cuadrada (azul) tomando N=1 (amarillo) y N=10 (verde)
términos de la serie de Fourier.

Tal como se mencionó en la introducción de este caṕıtulo, en cualquier instrumento

para construir una señal se superponen ondas armónicas y, dado que el ancho de banda de

los instrumentos es finito, no se pueden considerar infinitos términos en la superposición

de las señales. Entonces, supongamos que el ancho de banda de nuestro instrumento es

800 kHz: en el caso del ejemplo podŕıamos tomar solo 10 términos de la serie, y por lo

tanto mediŕıamos en el osciloscopio la señal que se muestra en la figura 5.7.

Para pensar y experimentar:

Observar en el osciloscopio el detalle de una onda cuadrada generada por el ge-

nerador de funciones.

- ¿Cuál es el ancho de banda del generador de funciones? (está impreso en el

mismo)

- ¿Cuál es el ancho de banda del osciloscopio? (está impreso en el mismo)

- ¿Cuál es el contenido espectral de la señal que estamos midiendo?

- ¿Quién lo limita: el osciloscopio o el generador de funciones?
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Pensemos ahora el siguiente experimento. Alimentamos al piezoeléctrico emisor con

una señal cuadrada. La frecuencia fundamental de la señal cuadrada la podemos cam-

biar libremente. ¿Qué se espera medir en el piezoeléctrico receptor? ¿Qué pasa cuando

cambiamos la fundamental? Para responder esto podemos hacernos algunas preguntas

que motiven el experimento. Aqúı van algunos ejemplos, pero ¿qué otras preguntas se te

ocurren?

Para pensar (antes de la clase) y experimentar (en clase):

Elegir la frecuencia de la señal con que se alimentará al piezoeléctrico. ¿Cómo es

la separación entre las frecuencias los armónicos de la cuadrada respecto al ancho

de la campana de resonancia?

¿Qué se mide en el receptor si se alimenta al emisor con una señal cuadrada de

frecuencia:

- igual a la de resonancia del PE?

- igual a la de resonancia sobre un número entero impar?

- igual a la de resonancia sobre un número entero par?

- distinta a cualquiera de esas opciones?

¿Cómo utilizaŕıas el piezoeléctrico para medir los coeficientes de la serie de Fou-

rier?

¿Puedo reconstruir la señal empleando esos coeficientes de Fourier?

Explicar... ¡y hacerlo!

5.4. Respuesta impulsiva de un sistema

En todos los casos que vimos hasta ahora, el par ER fue alimentado con una onda

periódica, y, por lo tanto, con un espectro de frecuencias discreto. Supongamos ahora que

alimentamos al PE con una señal cuyo contenido espectral es continuo y coincidente con

la función transferencia T (ν). Además supongamos que idealmente esta señal tiene un

espectro plano, es decir, todas sus componentes espectrales tienen la misma amplitud. En

la figura 5.8 se muestran algunas de las señales incluidas en la señal de alimentación en

este experimento imaginario. Por lo que vimos hasta el momento, al medir en el receptor

solo aquellas señales cuyas frecuencias coincidan con la campana de resonancia ofrecen

una señal apreciable. Las señales con frecuencias coincidentes con la de resonancia tendrán
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mayor amplitud y las que están hacia las colas de la función transferencia tendrán menor

amplitud. En el receptor se mide entonces la superposición de todas esas señales. Es decir

que, analizando el espectro de la señal medida, podemos medir la función transferencia

del sistema piezoeléctrico ER.

Figura 5.8: Esquema de la acción del par ER cuando se alimenta al emisor con ondas armónicas
de igual amplitud cuyas frecuencias se encuentran en el rango donde la función transferencia
T (ν) no es nula. La respuesta del par ER es la superposición de todas las ondas que se encuentran
a la derecha.

Nos preguntamos ahora: ¿es posible excitar al PE simultáneamente en todo el rango

en que este puede responder? Es decir, ¿existe alguna señal cuyo espectro sea continuo y

se superponga con la función transmisión T (ν) del PE? ¿Cuál será esta señal?

Para responder esa pregunta necesitamos pensar en cuáles son las señales con mayor

contenido espectral, y nos vamos a ayudar con situaciones que ya conocemos (¡y la figura

5.2!).

Analizar las siguientes situaciones con intuición y conocimiento:

- Un aplauso, un golpe en una mesa, un chasquido con los dedos, la explosión de

un chaskiboom (todos lo conocemos no? :) ): ¿cuánto dura el evento en el tiempo?

¿qué contenido espectral necesito para que suceda tan rápido?

- Hacer un experimento en casa grabando alguna de estas señales y utilizar la

transformada de Fourier para analizar su contenido espectral.

- La difracción en una rendija en campo lejano: ¿cómo se relacionan la ‘función

rendija’ y la ‘función difracción’? ¿Cuánto espacio ocupa la rendija? ¿Cuánto es-

pacio ocupa la difracción? ¿Cómo se relaciona la difracción con la transformada

de Fourier de la rendija?
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Nota: Recordar la definición de la transformada de Fourier explicadas anterior-

mente.

5.4.1. Respuesta al impulso

Todas las situaciones que describimos anteriormente están relacionadas con señales del

tipo impulsivas. Es decir, señales muy cortas en el tiempo y de amplitud muy grande. El

impulso ideal es una δ(t) de Dirac, cuya transformada de Fourier (TF) es una constante

(Fig. 5.2), por lo que su contenido espectral es infinito. Sin embargo, experimentalmente

no podemos tener una señal que sea una delta (ya vimos que los dispositivos electrónicos

tienen un ancho de banda limitado). Entonces, veamos cuál es la mejor señal impulsiva

que podemos generar.

En la figura 5.9 se observa un pulso cuadrado de ancho ∆t y altura 1/∆(t) (es decir

área A = 1). Llamaremos a esta función x(t) = rect(t). En el ĺımite de ∆t → 0, el

pulso cuadrado se parece cada vez más a la delta de Dirac. La TF del pulso cuadrado de

ancho ∆t es la función seno cardinal sinc(ν/∆ν), que tiene su máximo en la frecuencia

ν = 0, y el ancho de la región más significativa es (∼ 1/∆t). Vemos que a medida que

disminuye ∆t el ancho de la función sinc aumenta, es decir, el contenido espectral aumenta.

Entonces, generando el pulso más angosto posible obtendremos el mayor ancho espectral,

pero centrado en la frecuencia ν = 0.

Experimental: ¿Cuál es el pulso más angosto que se puede generar empleando

el generador de funciones del laboratorio? ¿Qué contenido espectral tiene?

Todav́ıa podŕıamos hacer un truco más para correr el centro del espectro a donde

nosotros querramos. Supongamos que, en lugar de emplear una función cuadrada, em-

pleamos una función armónica (portadora) modulada por una función cuadrada, x(t) =

rect(t)sin(2πνot). Para calcular la TF vamos a usar una propiedad de la transformada,

cuya deducción van a aprender más adelante, pero es tan bueno que se los muestro ahora:

Propiedad: Dadas las funciones f y g, la transormada del producto se calcula asi:

F{f(t)g(t)} = F{f(t)} ∗ F{g(t)} = F (ν) ∗G(ν)

Es decir: la transformada de un producto, es la convolución del producto de la trans-

78 Apuntes Laboratorio 2, Cátedra Prof. M.G. Capeluto



Figura 5.9: Esquema de un pulso cuadrado de ancho ∆t y altura 1/∆t (izquierda) y su transfor-
mada de Fourier (derecha). A medida que ∆t → 0, el pulso se parece cada vez más a una delta
y la transformada a una constante.

formada

Entonces, la TF de x(t) se puede expresar como (la cuenta que sigue va para quienes

hayan hecho Matemática 4, quienes aun no hayan cursado vean directamente el resultado):

F (ν) = F{x(t)} = F{rect(t)sin(2πνot)} = F{sin(2πνot)} ∗ F{rect(t)} = (5.19)

F (ν) = δ(ν − νo) ∗ sinc(ν/∆ν) = sinc((ν − νo)/∆ν) (5.20)

en donde usamos los resultados de la tabla 5.2 para calcular las transformadas. Es decir,

agregar la portadora nos permitió correr el espectro a la frecuencia que querramos. En la

figura 5.10 podemos ver un ejemplo de la señal y su transformada para una portadora de

frecuencia νo = 10 kHz. Sin embargo, cuanto más angosto es el pulso, menos oscilaciones

entran, y cada vez menos se parece la señal a una modulación y una portadora.

Figura 5.10: Ejemplo de una señal armónica modulada por una función cuadrada y su transfor-
mada de Fourier
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Volvamos ahora al caso del pulso cuadrado, y analicemos un ejemplo hipotético senci-

llo para ver cómo es la evolución temporal para distintos anchos de impulsos, o a medida

que el pulso cuadrado se acorta para parecerse más a un impulso ideal. El caso que se

muestra podŕıa ser el de un oscilador amortiguado. Queremos analizar qué sucede cuando,

luego de recibir el impulso, el sistema evoluciona. Vemos que el ancho del pulso fija la

condición inicial para la evolución posterior. Cuanto más corto, menos importante lo que

suceda dentro del pulso; es decir, se lleva al sistema a la condición inicial instantánea-

mente. La evolución posterior depende de las frecuencias que se hayan activado, hasta

que el sistema decae completamente. Si el sistema tiene asociadas varias frecuencias o

un ancho de frecuencias, cada señal asociada a una frecuencia individual decaerá con el

tiempo caracteŕıstico propio, pero la señal total será la superposición de todas las señales.

Es decir, estamos dando un impulso al sistema, y este reaccionará activando todas sus

frecuencias que coincidan en rango espectral con las del impulso (idealmente un rango

infinito), y la evolución posterior sera que cada componente espectral decaerá con su

tiempo caracteŕıstico. La respuesta total es la superposición de las respuestas individuales

en cada frecuencia. Seguiremos trabajando con el concepto de frecuencias activadas en la

siguiente sección.

Figura 5.11: Dependencia temporal de una señal ante distintos impulsos. Cuanto más corto el
impulso, es menos importante lo que pase durante ∆t, la evolución posterior depende de las
frecuencias activas del sistema.

5.4.2. Respuesta al escalón

En los experimentos de tiempo de vuelo en ultrasonido (piezoeléctricos) y en sonido

(tubo de Kundt) usamos una señal cuadrada de baja frecuencia (∼ 10Hz) para medir con

qué velocidad se propaga el flanco de la señal en el aire. Para eso medimos el retardo ∆t

entre la señal medida en el receptor (PE receptor o micrófono) y la señal de alimentación

en función de la distancia entre el emisor y el receptor d, y usamos que d = cs∆t, donde cs
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es la velocidad de propagación de las ondas. Como ejemplo de las señales medidas, en la

figura observamos la señal que resulta de alimentar a un piezoeléctrico con dicho flanco.

Figura 5.12: Respuesta del par ER (naranja) cuando se alimenta al emisor con una señal cuadrada
de baja frecuencia (azul). ∆t es el retardo entre que la señal es enviada por el emisor y recibida
por el receptor.

Tratemos de entender ahora, por qué la señal adquiere esa forma. En primer lugar

vemos que, para las escalas temporales que estamos manejando, podemos pensar que la

señal cuadrada es simplemente una señal constante nula (frecuencia cero), un flanco ver-

tical (ahora veremos que significa vertical) y nuevamente una señal constante (frecuencia

cero). Sabemos que el piezoeléctrico no tiene respuesta en ν = 0, entonces si lo estamos

excitando, es porque el flanco tiene al menos una porción de su contenido espectral que

coincide con al función transferencia del PE, T (ν).

Comencemos analizando conceptualmente al flanco, luego daremos descripciones más

matemáticas. En la figura 5.13(a) vemos un flanco t́ıpico que podŕıamos medir con un

osciloscopio. Podemos caracterizar al flanco midiendo el tiempo de subida de la señal (o

rise time) tr que se suele caracterizar midiendo el tiempo que tarda la señal en subir

del 10% al 90% del valor estable. En el ejemplo de la figura 5.13(b) se observa cómo

el flanco de una señal cuadrada se va ajustando por una serie de Fourier que considera

cada vez más términos. Vemos que si solo consideramos el primer armónico (una onda

sinusoidal con la frecuencia fundamental) la subida de la señal es muy suave. También

vemos que su flanco es más vertical cuanto más términos de la serie se consideran. Lo

que estamos diciendo es que para tener un flanco vertical se necesita mucho contenido

espectral. Pero ¿cuánto es mucho? Se puede ver, analizando la transformada de Fourier,
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que el tiempo de subida de la señal es inversamente proporcional al ancho de banda

tr = 0,35/BW (bandwidth). Entonces por ejemplo, si el tiempo de subida es 10 ns, el

ancho de banda es aproximadamente 35 MHz, que es 3 ordenes de magnitud mayor que

la frecuencia que necesitamos para excitar al PE.

Figura 5.13: (a) Flanco de una señal cuadrada y medición del tiempo de subida (tr). (b) Ejemplo
de como la suma de más armónicos (o términos en la sumatoria) en la serie de Fourier reconstruye
cada vez mejor una onda cuadrada.

Para experimentar

- Caracterizar el flanco de una señal producida en el generador de funciones em-

pleando el osciloscopio. ¿Cuál es el tiempo de subida? ¿Cuál es el contenido es-

pectral? ¿Quién lo limita: el generador, el osciloscopio o ambos?

- Comparar el ancho del pulso más angosto con el tiempo de subida. ¿Cuál de las

dos señales es más rápida? ¿Cuál tiene mayor contenido espectral?

Nota: Si bien se comparó el flanco con términos de una serie de Fourier, todo este

análisis de puede realizar empleando la transformada de Fourier de la función Heaviside:

su comportamiento con la frecuencia, al igual que los términos de la serie, va como 1/ν [?].

Entonces tenemos ancho de banda suficiente para excitar al PE, y lo estamos excitando

en todas sus frecuencias. ¿Cómo entendemos entonces la señal de respuesta? En primer

lugar, se observa que hay un retardo ∆t entre que la señal es emitida y el PE receptor la

recibe. Luego, de todas las posibles frecuencias contenidas en el flanco, solo aquellas que

coinciden con T (ν) tienen una amplitud significativa. La señal total es la superposición de
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todas las señales cuyas frecuencias están contenidas en T (ν), con amplitudes dadas por

T (ν). Como todas las frecuencias están muy juntas, el resultado de dicha superposición

es un batido.

Si entonces realizamos la transformada de Fourier de la señal medida, obtendremos la

función transmisión del par ER.

Pensar y experimentar

Pensar cuáles son las diferencias y similitudes que hay entre el par ER piezo-

eléctrico y el micrófono-parlante en el tubo de Kundt.

- ¿Cómo se comparan los anchos de banda de sus respuestas?

- ¿Cómo se comparan las frecuencias que se pueden propagar entre ellos?

- ¿Qué se espera obtener si se realiza el experimento de la respuesta impulsiva en

el tubo de Kundt?

5.5. Frecuencia de muestreo y transformada de Fou-

rier

Cuando medimos con un instrumento en el laboratorio, a pesar de que la variable de

interés sea continua, obtenemos una muestra discreta de esa variable. Por ejemplo, cuando

medimos la amplitud de la onda en función del tiempo, estamos de acuerdo que tanto la

amplitud como el tiempo son variables continuas; sin embargo, el osciloscopio nos entrega

una señal que es digitalizada y muestreada.

La digitalización depende de los bits que tenga la placa de adquisición del osciloscopio

o del instrumento que estemos usando. Por ejemplo, si nuestra placa es de 12 bits, significa

que todo el rango dinámico que puede medir nuestro instrumento ∆V , va a estar dividido

en valores digitales ∆V/212.

El muestreo de una señal dependiente del tiempo corresponde a tomar datos equies-

paciados en un tiempo dt o a una frecuencia de muestreo fs = 1/dt determinada. La

frecuencia de muestreo define el número de muestras que se obtienen de la señal por

segundo, y está limitada por el instrumento de medición. En este proceso hay que ser

cuidadosos en no perder información de la señal. En la Figura 5.14 se muestra un ejemplo
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de una señal muestreada (medida) utilizando una frecuencia más chica que la de la señal a

medir, por lo que se obtienen puntos discretos sobre la señal. Sin embargo, se observa que

la señal muestreada (puntos azules) poco tiene que ver con la señal que se desea medir.

Si la frecuencia de muestreo no es adecuada, la señal medida puede resultar en una señal

completamente distinta a la original. Este efecto se lo conoce como aliasing.

El teorema de Nyquist, establece que una señal estará correctamente muestreada si la

frecuencia de muestreo fs es al menos el doble de la frecuencia más alta de la señal fmax.

fs > 2fn. (5.21)

Figura 5.14: Señal continua periódica de frecuencia f0 (en rojo) y señal medida (en azul) con
una frecuencia de muestreo fs < f0 tal que la señal que se obtiene es una onda armónica con
una frecuencia distinta a f0.

Si, por ejemplo, se desea muestrear una señal que contenga frecuencias de hasta 8 kHz,

se necesita una frecuencia de muestreo de al menos 16 kHz. La mitad de la frecuencia de

muestreo (equivalente a fmax), en este ejemplo 8 kHz, se denomina frecuencia de Nyquist,

fn.
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Veamos cómo se desprende este teorema observando el espectro en frecuencias (espa-

cio transformado) de la señal. En la Figura 5.15 se observa una señal continua g(t) en el

espacio de tiempos y su transformada G(f) en el espacio de frecuencias. Consideremos

que la señal tiene un espectro de frecuencias acotado.

La señal muestreada gs(t) resulta de hacer el producto entre la señal continua y el

muestreo, que está representado por el peine de deltas

s(t) =
∑
n

δ(t− ndt) (5.22)

La transformada del peine de deltas es también un peine de deltas que están a una

distancia fs entre śı:

S(f) =
∑
n

δ(f − nfs) (5.23)

Es decir que, cuanto mas chico sea dt, más van a estar separadas las deltas del peine

en el espacio de las frecuencias.

Figura 5.15: Medición de una señal continua en el tiempo y su representación en el espacio
transformado de frecuencias.

La señal muestreada resulta entonces

gs(t) = g(t)
∑
n

δ(t− nδt) =
∑
n

g(nδt)δ(t− nδt).
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Ahora tenemos que ver cómo es el espectro de esta función, y para eso hacemos la

transformada. Podemos usar una propiedad muy interesante de las transformadas y la

convolución que dice que la transformada del producto de funciones, es igual a la convo-

lución de las transformadas. Es decir:

F{g(t)h(t)} = F{g(t)} ∗ F{h(t)} (5.24)

Entonces podemos calcular el espectro de la función muestreada como

Gs(f) = F{g(t)} ∗ F

{∑
n

δ(t− nδt)

}
= G(f) ∗

∑
n

δ(f − nfs) =
∑
n

G(f − nfs).

donde G(f) es la transformada de la función sin muestrear (es decir el espectro de la

señal original). No hace falta entrar en el detalle de cómo se calcula la convolución pero,

en esencia, lo que implica la expresión más a la derecha es que tenemos una réplica

de G(f) centrada en cada posición f = nfs. Veamos cómo se ve la señal en el espacio

transformado cuando cambia la frecuencia de muestreo, o lo que es lo mismo, el dt en

el espacio de tiempos. En la Fig. 5.17 se ven dos ejemplos: se observa que al aumentar

dt (y por lo tanto disminuir fs), en el espacio transformado comienzan a solaparse las

réplicas vecinas. Esto da lugar al efecto de aliasing que mencionamos antes (la aparición

de frecuencias que previamente no exist́ıan). F́ıjense que ahora la condición de Nyquist

surge naturalmente, ya que fs tiene que ser por lo menos mayor que 2fmax, para que las

réplicas no se solapen.

Ahora nos preguntamos ¿cómo está muestreada la transformada? De hecho, tiene que

estar muestreada, porque no podemos obtener una transformada continua si la función

original es discreta. Si se realizan N mediciones (muestras) sobre la señal g(t), la duración

total de la señal está dada por ∆t = Ndt. Mediante la transformada de Fourier discre-

ta (DFT) en el espacio transformado obtendremos N valores de Gs(f) en el intervalo

(−fs/2, fs/2) (ancho fs). Por lo tanto, dado que en en el espacio transformado tenemos

también N muestras, el espaciado de frecuencias será ∆f = fs/N = 1/(Ndt) = 1/∆t (ver

Fig. 5.16). Es decir: la resolución de la transformada está dada por el largo total

de la medición.
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Figura 5.16: Esquema de la relación entre el tiempo en el espacio de coordenadas y las frecuencias
en el espacio transformado.

Figura 5.17: Ejemplo de una señal medida con dos frecuencias de muestreo diferentes, tanto en
el espacio de coordenadas (tiempo) como en el espacio transformado (frecuencias).

Para pensar: Supongamos que se quiere medir la campana de resonancia del par

PE a partir de la transformada de su respuesta. ¿Cuánto tiempo tengo que medir?

¿Qué frecuencia de muestreo debo usar para que no haya aliasing si la campana

está centrada en 40kHz y tiene una ancho de 5kHz? Piensen en cuántos puntos se

necesitan mı́nimo para medir bien la campana.
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Caṕıtulo 6

Ondas electromagnéticas

Hasta ahora hemos trabajado con ondas mecánicas transversales (vibraciones en cuer-

das) y longitudinales (ondas acústicas). En este caṕıtulo, y durante la segunda mitad de la

materia, trabajaremos con ondas electromagnéticas. Este tipo de ondas son esenciales en

diversas aplicaciones cotidianas, desde la transmisión de señales de radio y televisión hasta

el funcionamiento de dispositivos de comunicación inalámbrica y la luz que percibimos.

En el espectro electromagnético (Fig. 6.1) se encuentran diversas categoŕıas de radiación

como radiofrecuencias, microondas, infrarrojo, visible, ultravioleta, rayos X y rayos gam-

ma. Cada una de estas categoŕıas tiene aplicaciones espećıficas y propiedades particulares

que las hacen adecuadas para distintos usos tecnológicos, médicos, de comunicación y

de investigación cient́ıfica. En particular, en esta materia vamos a realizar experimentos

empleando luz en el la parte visible del espectro (o luz visible por los humanos), formada

por la radiación electromagnética cuyas longitudes de onda se encuentran entre 400 y 700

nm.

Las ondas electromagnéticas son generalmente ondas transversales que se caracterizan

por la propagación de enerǵıa a través del espacio, sin requerir un medio material para

su transmisión, propagándose en vaćıo con una velocidad c ∼ 3 × 108m/s. El vector de

campo eléctrico puede oscilar de diversas formas en el plano perpendicular al vector de

propagación, definiendo el estado de polarización (luz polarizada lineal, circular, eĺıptica,

luz natural o luz parcialmente polarizada).

Las propiedades de propagación de la luz en materiales, están determinadas por la res-

puesta de los electrones en los mismos. En esta materia estudiamos solamente la respuesta

lineal, pero también existen otros fenómenos muy interesantes asociados a la respuesta no

lineal. El campo electromagnético que constituye a la onda interactúa con los electrones

en los materiales ejerciendo fuerzas sobre estos. Los electrones en los átomos se ponen en

movimiento en el campo oscilatorio de luz, desplazándose respecto a los núcleos que son
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muy pesados y se mantienen quietos. El movimiento oscilatorio de los electrones genera

dipolos (un desbalance de carga) oscilantes que re-irradian luz. La magnitud f́ısica que

caracteriza macroscópicamente la interacción lineal con los electrones es el ı́ndice de re-

fracción (por lineal se entiende que la polarización del material es lineal con el campo,

y eso se traduce en que el desplazamiento de los electrones es proporcional al campo

eléctrico de la luz).

Las propiedades de propagación más básicas son la absorción (A), transmisión (T),

reflexión (R) y scattering (S), como se esquematiza en la Fig. 6.2. En general vale, por

conservación de enerǵıa que I = R + T + A+ S, donde I es la intensidad incidente.

Supongamos que un haz de luz incide con un ángulo θi sobre una interfaz entre dos

medios. Parte del haz se refleja en la superficie con un ángulo θr y parte se transmite con

un ángulo θt. El valor de los ángulos θt y θr se obtienen a partir de las leyes de Snell

n1 sin(θi) = n2 sin(θt) (6.1)

θr = θt. (6.2)

Figura 6.1: Esquema de los tipos de ondas y frecuencias que abarca el espectro electromagnético,
donde solo una pequeña porción es visible para el ojo humano. Se muestran ejemplos de fuentes
que generan esas ondas

Las ondas reflejadas y transmitidas se generan en respuesta a la oscilación de los elec-

trones en el medio, que irradian luz al oscilar (dipolo oscilante) en presencia del campo
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incidente. Al transmitirse, la luz incidente cambia de dirección porque su velocidad de

propagación es menor segundo medio. Las las ondas con polarización paralela o perpendi-

cular al plano de incidencia, se reflejan y transmiten con distinta eficiencia, que está dada

por los coeficientes de Fresnel.

La absorción está relacionada con las transiciones electrónicas en los átomos. La luz

puede promover electrones de un nivel energético inferior a otro de mayor enerǵıa. Luego

de absorber fotones, los electrones en los átomos pueden decaer naturalmente a estados

de menor enerǵıa (como siempre es conveniente), y lo pueden hacer emitiendo luz en una

frecuencia distinta a la incidente (fluorescencia) o transformando esa enerǵıa en calor (o

vibraciones en el material).

La dispersión de luz (scattering) sucede cuando en el medio hay part́ıculas o moléculas

cuyo tamaño es chico comparado con la longitud de onda, que provocan que la luz cambie

su dirección. En el modelo microscópico de dipolos, cuando los dipolos son iluminados

estos oscilan con la misma frecuencia que la luz, al estar oscilando estos emiten luz en

todas las direcciones.

La luz transmitida es aquella que pudo atravesar el material, sin absorberse ni disper-

sarse.

Figura 6.2: Un haz que incide en el material con un ángulo θi, puede reflejarse, refractarse en
su superficie. La luz refractada, puede dispersarse, absorberse o transmitirse.

6.1. Polarización de la luz

La luz es una onda electromagnética compuesta por campos eléctricos E⃗ y magnéticos

H⃗ que oscilan perpendicularmente entre śı y, a su vez, éstos son perpendiculares a la
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dirección de propagación, dada por el vector de ondas k⃗. Si la onda es monocromática

(una única frecuencia) y se propaga en la dirección z⃗, podemos escribir al campo eléctrico

como

E⃗ = E0x cos(kz − wt)x̂+ E0y cos(kz − wt+ ϕ)ŷ. (6.3)

En notación compleja, la ecuación anterior se puede re-escribir como

E⃗ = E0xe
i(kz−wt)x̂+ E0ye

i(kz−wt+ϕ)ŷ = ei(kz−wt)(E0xx̂+ E0ye
iϕŷ). (6.4)

Otra manera de visualizar esta ecuación es escribiendo las componentes cartesianas de

manera vectorial, de la siguiente manera

E⃗ =

(
Ex

Ey

)
=

(
E0x

E0ye
iϕ

)
ei(kz−wt). (6.5)

Una propiedad relacionado con la luz es su polarización, que se refiere a la orientación

preferencial de las oscilaciones del campo eléctrico. Ver que según las ecuaciones anterio-

res, las componentes en x̂ e ŷ del campo eléctrico pueden oscilar con distintas amplitudes

y fases. Al vector que representa la forma en que oscila el campo eléctrico, se lo llama po-

larización . Si fijamos valores para las amplitudes y fases en valores particulares, podemos

encontrar distintos tipos de polarización, como se muestra en la figura 6.3:

Figura 6.3: Onda electromagnética polarizada lineal, circular y eĺıptica, y sus respectivos vectores
de polarización escritos en forma genérica.

Polarización lineal: En la polarización lineal las oscilaciones eléctricas se realizan en

un solo plano, lo que resulta en una onda que vibra en una dirección espećıfica.
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Polarización circular: El vector de polarización oscila girando (en sentido horario o

antihorario) describiendo un patrón helicoidal a medida que se propaga. En el plano

perpendicular a k⃗, el vector de polarización describe un circulo.

Polarización eĺıptica: La polarización eĺıptica es una combinación de la polarización

lineal y circular. Las oscilaciones siguen una trayectoria eĺıptica a medida que se

propagan. Este tipo de polarización puede ser tanto eĺıptica derecha como eĺıptica

izquierda, dependiendo del sentido de giro. En el plano perpendicular a k⃗, el vector

de polarización describe una elipse.

Luz naturalmente polarizada (o no polarizada): Una onda electromagnética no po-

larizada se caracteriza por la vibración aleatoria del campo eléctrico, de manera que

en los tiempos caracteŕısticos de detección, no se puede determinar una dirección de

oscilación particular. Ejemplos de luz naturalmente polarizada son el sol, el fuego,

las lámparas de filamento y tungsteno, lámparas de gas, entre otras (ver Fig. 6.4).

Por que sucede esto? porque las fuentes están compuestas por un número enorme

de átomos que emiten luz. Cada átomo emite por un tiempo del orden de 10−8s, y

el campo eléctrico emitido no tiene ninguna dirección de oscilación ni de propaga-

ción preferencial (es decir, difiere entre distintos átomos). La emisión de la fuente

está formada por la superposición de las ondas emitidas por todos los átomos, con

polarizaciones que cambian caóticamente, dando a lugar a un campo total que vaŕıa

también aleatoriamente y se emite en todas las direcciones. Si la luz es parcialmente

polarizada la amplitud en una dirección es significativamente mayor que en la otra.

Figura 6.4: Elemplos de fuentes que producen luz natural

6.2. Fenómenos que polarizan la luz

La luz natural no está polarizada, pero hay ciertos fenómenos y materiales en la

naturaleza que polarizan la luz. Un ejemplo son los materiales anisótropos, como la calcita.
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La reflexión polariza la luz (esto es siempre cierto?). El scattering o dispersión de la luz

también es un fenómeno polarizante.

6.2.1. Polarización por reflexión

Cuando las ondas de luz se reflejan en una superficie, pueden polarizarse parcial o

totalmente según el ángulo de incidencia y las propiedades de la superficie. Supongamos

que un haz de luz natural incide sobre una superficie con un ángulo de incidencia θi

respecto a la normal a la superficie, como se indica en la Fig.6.5a.

Figura 6.5: a) Esquema del plano de incidencia, indicando los ángulos intervinientes y la pola-
rización de los haces. b) Esquema similar cuando el ángulo incidente es el de Brewster θB. c)
coeficientes de reflexión para las polarizaciones perpendicular y paralelas al plano de incidencia

El ángulo de Brewster (θB) es el ángulo de incidencia para el cual la luz reflejada se

polariza completamente, como se muestra en la Fig. 6.5b. La polarización de la luz refleja-

da en ese caso es paralela a la superficie. Esto sucede debido al peculiar comportamiento

de las ondas de luz y su interacción con los átomos en el material, que se ve manifestada

en los coeficientes de reflexión de Fresnel (Fig. 6.5c).

En general los campos eléctricos de las ondas luminosas incidente, reflejada y trans-

mitida, se pueden descomponer en componentes paralelas (E∥) y perpendiculares (E⊥) al

plano de incidencia. En el ángulo de Brewster, la componente del campo eléctrico reflejado

paralela al plano de incidencia E
∥
R se anula, dando como resultado una luz reflejada com-

pletamente polarizada. Por que sucede esto? Dijimos anteriormente que la luz incidente

produce la oscilación de los electrones que forman dipolos en el segundo medio. Estos

mismos dipolos oscilantes son los que generan la luz reflejada. Los dipolos oscilarán en la

dirección de la polarización de la luz transmitida. Si la polarización de la luz transmitida

E
∥
T es paralela a la dirección de propagación de la onda reflejada, estos dipolos no podrán
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generar campo eléctrico reflejado con esa polarización (como veremos más abajo, los di-

polos no generan radiación en la dirección de oscilación), por lo que la luz reflejada será

polarizada E⊥
R .

Entonces el efecto de polarización está influenciado por las propiedades del medio en

que se propagan los haces, como su ı́ndice de refracción. En el ángulo de Brewster, el haz

reflejado y transmitido forman un ángulo de 90o, y, esta condición junto a las leyes de

Snell, permiten obtener

θB = arctan(n2/n1), (6.6)

donde n1 es el ı́ndice de refracción del medio desde donde se incide (por ejemplo, aire)

hacia el segundo medio de ı́ndice n2 (mayor que n1), en donde se transmiten los haces

(por ejemplo, un superficie de vidrio o agua).

6.2.2. Polarización por dicróısmo

Los materiales dicroicos tienen la propiedad de absorber la luz de forma selectiva

según sea su estado de polarización, permitiendo que solo pase la luz con una polarización

espećıfica. Principalmente existen dos tipos de materiales dicroicos según la polarización

de la luz que manipulan: lineales (cuando hay una dirección lineal preferencial de absorción

o transmisión) y circulares (cuando reaccionan diferente según sea la polarización circular

izquierda o derecha).

Los materiales (polarizador lineal), en general, están formados por moléculas alineadas

(mediante procesos de fabricación o propiedades inherentes del material) que absorben

selectivamente la luz con una orientación particular del campo eléctrico (ver Fig. 6.6).

La luz incide con polarización paralela al eje mayor de las moléculas es absorbida, por

lo que la luz que emerge del material está polarizada en la dirección perpendicular a

la de las moléculas. Quedan entonces definidos los ejes de absorción y transmisión del

material. En la Fig. 6.7 se muestra el efecto de un polarizador lineal cuando sobre el

incide luz natural. La luz que emerge, independientemente de la polarización incidente,

es polarizada linealmente en la dirección del eje de transmisión.

En este contexto, cuando sobre el polarizador lineal incide luz linealmente polariza-

da (Fig. 6.8), es posible describir la relación entre la intensidad de la luz incidente y

transmitida utilizando la ley de Malus

I = I0 cos2(θ) (6.7)
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Figura 6.6: Al estirar una lámina de polyvinyl alcohol, sus moléculas se alinean generando una
dirección preferencial para la absorción

Figura 6.7: La luz naturalmente polarizada emerge del polarizador con polarización lineal, en la
dirección perpendicular a la dirección de absorción

donde la intensidad de la luz transmitida (I) es directamente proporcional a la intensidad

de la luz incidente (I0), y un factor igual al coseno al cuadrado del ángulo (θ) entre la

dirección de polarización del haz incidente y el eje rápido del polarizador (ver Fig.6.8).

Esta ley demuestra cómo un material dicroico lineal permite seleccionar y controlar

la polarización de la luz. Por ejemplo, si el ángulo es θ = 0, la intensidad se reduce a

cero, bloqueando toda la luz que no está alineada con el polarizador. Del mismo modo, se

pueden usar lentes de sol de polarizadores para anular las reflexiones que están polarizadas

(aquellas cuyo ángulo de incidencia es cercano al de Brewster), como se esquematiza en

la Fig. 6.9. Con este mismo truco, podes salvarte de un ataque de cocodrilo (ver link).

Para pensar: Al expresar la ley de Malus, consideramos que los polarizadores

son ideales, de modo que la absorción solo se da por el efecto dicroico. Como

modificamos esta expresión para considerar un polarizador real? Quien debeŕıa

ser Io?
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Figura 6.8: El haz incidente sobre el analizador, está linealmente polarizado en la misma dirección
que el eje de transmisión del polarizador. El analizador está rotado en un ángulo ϕ respecto del
eje del polarizador.

Figura 6.9: Los anteojos con vidrios polarizados permiten anular los reflejos polarizados

6.2.3. Polarización por dispersión (scattering)

Cuando la luz se propaga por un medio se dispersa. Si las part́ıculas del medio tienen

un tamaño comparable a la longitud de onda de la luz, este proceso se denomina dispersión

o scattering de Rayleigh. Esencialmente cuando la luz incide sobre una molécula/átomo,

los electrones que los constituyen oscilan con el campo electromagnético externo formando

un dipolo oscilante. Este dipolo re-irradia luz, tal como lo haŕıa una antena dipolar. Los

medios en donde se dispersa la luz están compuestos por un número elevado de part́ıculas.

Debido a que las part́ıculas están distribuidas en posiciones aleatorias, la luz dispersada

por cada part́ıcula llega al punto particular de observación con fases aleatoreas, por lo

tanto la radiación es incoherente y la intensidad resultante es la suma de las amplitudes al

cuadrado de luz dispersada en cada part́ıcula (sin término de interferencia). El scattering

de Raileigh es inelástico, porque por las leyes de conservación la frecuencia de las ondas

emitidas es igual a las incidentes. La expresión que corresponde al vector de Poynting

(vector cuya dirección dice hacia donde fluye la enerǵıa, y su magnitud la intensidad) de
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un dipolo oscilante es

⟨S⟩ ∼
(
µ0p

2
0ω

4

32π2c

)
sin2(θ)

r2
r̂, (6.8)

donde po es el momento dipolar y c la velocidad de la luz en vaćıo. Observemos algunas

cuestiones importantes. En primer lugar, el módulo del vector de Poyinting es directa-

mente (inversamente) proporcional con la frecuencia (longitud de onda) a la cuarta. En

segundo lugar, depende inversamente de la distancia al cuadrado y tiene simetŕıa asimutal

(no depende del ángulo asimutal polar). Además, depende del sin2(theta), o sea tiene una

dirección de emisión preferencial:la emisión es máxima cuando θ = π/2, mı́nima cuando

θ = 0, o sea en la dirección de oscilación del dipolo. En la Fig. 6.10 se observa el patrón

de radiación de un dipolo, que se obtiene a partir de los campos electromagnéticos. Notar

que, la emisión tiene simetŕıa asimutal, y en la dirección de oscilación del dipolo (flechita)

no hay emisión.

Figura 6.10: Simulación de el campo electromagnético irradiado por un dipolo. Se observa que
no emite en la dirección de oscilación, tiene simetŕıa acimutal, y emite preferencialmente en la
dirección perpendicular a la de oscilación. Gráfico adaptado de este video.

A partir de estos conceptos, podemos entender por ejemplo, cual es el color del cielo

y cual es su polarización.

La dependencia de la longitud de onda (∼ 1/λ4) de este tipo de dispersión es respon-

sable de los cielos azules y los atardeceres rojos, como se esquematiza en la Fig.6.11. Las

longitudes de onda más cortas (azules) se dispersan mucho más que las largas (rojas). El
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sol emite luz blanca (en todo el espectro visible) y la luz tiene que atravesar la atmósfera

para llegar a nosotres. Cuando el sol está alto (por ejemplo al medio d́ıa) la luz recorre

una capa relativamente angosta en la atmósfera. La mayor parte del espectro visible puede

recorrer mayor distancia sin desviar su recorrido, pero las ondas en el espectro azul se

dispersan en todas las direcciones. Por ese motivo vemos al sol casi blanco, y alrededor

vemos al cielo celeste. En cambio al atardecer, el sol está en su posición baja, por lo que

la luz recorre una distancia mucho mayor en la atmósfera. Los haces azules se disper-

san cambiando su recorrido, pero la distancia que tienen que recorrer es tan grande, que

prácticamente no llegan al observador. De este modo, vemos el cielo anaranjado.

Figura 6.11: La dispersión de Raileigh es responsable de que veamos el cielo azul durante el d́ıa
y naranja al atardecer

Consideremos ahora la polarización de la luz del sol (no polarizada) entrando a la

atmósfera terrestre. La fuente está tan lejos que podemos considerar a los haces incidentes

sobre la tierra paralelos, o casi paralelos (una onda plana no polarizada). Nuevamente

consideremos dos situaciones esquematizadas en la Fig. 6.12. Los haces que entran a la

atmósfera por el camino 1, inciden normalmente sobre el observador (gorro rojo). Como

ya vimos lo haces azules se dispersan más que los rojos, pero en lo que respecta a la

polarización, la luz continua siendo no polarizada. Los haces que recorren el camino 2,

son observados perpendicularmente a su vector de propagación. Podemos descomponer a

la polarización en dos direcciones, paralela a la dirección de observación (linea punteada

roja) o perpendicular a la misma. Ahora recordemos, que al inicio de esta sección se

mostró que la emisión dipolar es simétrica alrededor del dipolo, y que no hay emisión

en la dirección del dipolo. Por ese motivo, la componente de polarización paralela a la
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linea roja, no puede generar emisión de luz, mientras que la otra si. De este modo, la luz

dispersa, observada normal a la dirección de propagación del haz incidente, es polarizada.

Estrictamente, la intensidad de la onda dispersada con la polarización indicada con al

flechita (paralela al papel), disminuye como cos2θ, donde θ es el ángulo de observación

. Además, como hay un sin fin de centros de scatering, en realizad la luz será siempre

parcialmente polarizada.

Figura 6.12: Analisis de la polarización de la luz dispersada. En incidencia normal sobre nuestros
ojos, la luz tiene polarización natural. Si miramos perpendicular a la dirección de propagación,
la luz es polarizada.

6.2.4. Polarización por birrefringencia

La birrefringencia, o doble refracción, es un fenómeno que se presenta en cristales

no cúbicos como la calcita o en plásticos sometidos a tensión. Debido a su estructura

atómica estos materiales son anisótropos y la velocidad de la luz depende de su dirección

de propagación a través del material. El rayo incidente al pasar por la calcita se separa

en dos rayos, llamados ordinario (o) y extraordinario (e), el rayo e se desv́ıa más que el o

(Fig. 6.13a).

El eje óptico en cristales uniaxiales está dado por el eje de simetŕıa del cristal. El plano

principal es el plano que contiene al eje óptico (Fig. 6.13a en gris). Supongamos un haz

que incide perpendicular a la superficie del cristal. Podemos separarlo por polarización

según sea paralela o perpendicular al plano principal, como se muestra en la Fig. 6.13a,b.

El haz ordinario, viaja con su polarización perpendicular al plano principal (y por lo tanto

perpendicular al eje óptico), no se desv́ıa y viaja con velocidad v⊥ = c/no. En cambio

el haz extraordinario, tiene polarización paralela al plano principal. Entonces, el campo
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Figura 6.13: Esquema de la lámina birefringente uniaxial, en donde se observa el plano principal
(a), y la refracción de los haces ordinario y extraordinario (b), mostrando además los casos
separados para el haz ordinario (c) y extraordinario (d).

eléctrico se puede descomponer según sea paralelo o perpendicular al eje óptico. Si es

perpendicular al eje óptico, viaja con v⊥ = c/no. Si es paralelo al eje óptico viaja con

v∥ = c/ne. Por ello, se desv́ıa. Como consecuencia, al colocar una calcita sobre un papel

escrito, se producen imágenes dobles, polarizadas perpendicularmente (Fig. 6.14).

Para pensar antes de la clase: En la clase vas a tener disponibles calcitas y

polarizadores y algunos objetos por descubrir. Te proponemos pensar en algunos

experimentos:

- Que experimento podés hacer para estudiar la polarización por reflexión? -

Como determinaŕıas cual es el eje de transmisión del polarizador?

- Que experimento podes hacer para estudiar si la luz dispersada es parcialmente

polarizada?.

- Como están polarizados los haces ordinario y extraordinario en la calcita?
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Figura 6.14: Dobles refracciones en la calcita

6.3. Detectores de luz

Existen numerosos dispositivos capaces de detectar luz, y convertirla en señales eléctri-

cas. Entre ellos encontramos a los fotodiodos, fotoresistencias, fototransistores, cámaras

CCD/CMOS, etc (Fig. 6.15). En la segunda parte de la materia usaremos fotodiodos y

CCDs (detectores 2D que contienen NxM fotodiodos).

Figura 6.15: Elemplos de distintos detectores de luz

Los fotodiodos son detectores que se basan en la tecnoloǵıa de los semiconductores.

Al absorber un fotón de luz con determinada enerǵıa, electrones que están en la banda

de valencia del material son promovidos a la banda de conducción. Esos electrones pue-

den ahora transportarse en el circuito eléctrico de medición generando de una corriente

que es posible medir. La relación R = P/I entre la potencia lumı́nica absorbida P [W ]

(enerǵıa/tiempo) y la corriente generada I[A] se conoce como responsividad, fotosensiti-

vidad, respuesta espectral, etc, depende de la longitud de onda (energia de los fotones)

y del material del fotodiodo (Fig. 6.16). Como se puede observar en la figura, existen

fotodiodos con respuesta en diversos rangos espectrales según el material del que estén

constituidos.
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Figura 6.16: Responsibidad t́ıpica en A/W para distintos materiales en función de la longitud
de onda

La mı́nima corriente que puedo medir, se conoce como corriente de oscuridad (Idark), y

está generada esencialmente por el movimiento térmico de los electrones. Por otra parte,

la relación entre la potencia lumı́nica P (W ) o la intensidad I(Wcm−2) y la señal medida

en el fotodiodo, depende del circuito al que este esté conectado, pero t́ıpicamente tiene

un comportamiento lineal y una saturación (Isat) (6.17.

Figura 6.17: Esquema de la corriente (en A) t́ıpica medida en un fotodiodo, en función de la
potencia o intensidad incidente

Pensar un experimento: Si queremos hacer experimentos con los fotodiodos

detectando variaciones de intensidad y queremos hacer estudios comparativos, ne-

cesitamos saber como es la calibración de corriente en función de intensidad de luz.

Para esto necesitamos generar variaciones conocidas de intensidad. Que fenómeno
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o elementos ópticos podés usar para variar la intensidad controladamente? Como

haŕıas entonces el experimento?

6.4. Caracteŕısticas de los láseres

En esta parte de la materia vamos a estudiar algunas caracteŕısticas de los láseres. La

palabra láser es en realidad un acrónimo que significa Light Amplification by Stimulated

Emission Of Radiation. En ĺıneas generales, un láser está compuesto por un medio activo

o de amplificación, un bombeo y una cavidad resonante, como se esquematiza en la Fig.

6.18. El bombeo, puede ser eléctrico (como en los punteros láser) u óptico (una lámpara

flash u otro láser). Su función es proveer enerǵıa al medio activo. El medio activo es

t́ıpicamente un material que es capaz de amplificar luz. La conservación del momento de

los fotones hace que las ondas que se generan en el medio estén en fase con las ondas

incidentes, por lo que la radiación láser resulta coherente. Además, como solo algunos

niveles de enerǵıa del material son capaces de generar amplificación, la emisión es muy

monocromática.

La cavidad resonante, es una cavidad óptica, como por ejemplo una cavidad de Fabry

Perot que está formada por dos espejos (uno de ellos tiene alta reflectividad, el otro

deja salir un porcentaje pequeño de la luz presente en la cavidad). La cavidad se usa

principalmente para acumular enerǵıa hasta que las condiciones de laseo se cumplan y el

láser empiece a funcionar: esto es que la ganancia que provee el medio activo, supere las

pérdidas dentro de la cavidad (reflectividad en los espejos, absorción en los materiales).

La luz puede reflejarse sucesivas veces solo en la dirección perpendicular a los espejos, un

haz que está desviado respecto a esa dirección, va a salir de la cavidad luego de algunas

reflexiones. Es por esto, que la amplificación se da principalmente en esa dirección, y

por lo tanto el láser sale de la cavidad colimado, con una divergencia muy pequeña

(< 10mrad). En la Fig. 6.19a, podemos ver un esquema de un láser en donde se observa

que el haz láser y se va expandiendo a medida que se propaga. La polarización en los

láseres t́ıpicamente se obtiene poniendo una ventana (vidrio con gran calidad óptica y

transparente) en ángulo de Brewster dentro de la cavidad o usando como bombeo un

láser polarizado.

Tal como vimos en las prácticas de ondas estacionarias (cuerdas y tubos), en una

cavidad óptica también tenemos modos porque la luz está confinada entre dos espejos;

en este caso hablamos de modos longitudinales. Los modos longitudinales que pueden

propagarse en la cavidad son aquellos que además tengan frecuencias en el espectro de
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Figura 6.18: Esquema simplificado de un láser, en donde se muestra una cavidad óptica formada
por dos espejos, un medio activo o amplificador. El haz láser emerge de la cavidad colimado.

ganancia del medio activo, las ondas con frecuencias fuera del espectro de ganancia no

son amplificadas. Además, como los espejos tienen un tamaño finito, la luz también está

confinada en la dirección perpendicular a la de la cavidad. Por tal motivo, aparecen

también los modos transversales, que son quienes le dan la estructura a la distribución de

intensidad en el plano perpendicular a la dirección de propagación. El modo más bajo,

se conoce como TEMoo y tiene forma de una función gaussiana (modo gaussiano). Por

esta razón, si ponemos un papel en frente del láser vemos una distribución espacial de

intensidad como la que se observa en la Fig. 6.19b. Si graficamos la intensidad sobre un

corte de esa figura (linea blanca), observamos que la forma funcional es gaussiana, como

se muestra en la Fig. 6.19c.

Figura 6.19: Esquema de un laser que se propaga (a), y como lo observariamos cuando este
incide normalmente sobre una pantalla b). c) Perfil sobre la linea blanca de la figura b)

La expresión de la intensidad de un haz gaussiano que se propaga en la dirección z se

puede escribir como
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I(r, z) = Io

(
ωo

ω(z)

)2

e
−2r2

w(z)2 (6.9)

donde Io la intensidad máxima cuando z = 0, ωo es el tamaño de la cintura del haz (el

tamaño transversal más chico del haz), r2 = x2+y2 es la distancia medida desde el centro

del haz, y ω(z) el tamaño del haz a medida que este se propaga, y viene dado por la

expresión

ω(z) =

√
1 +

zr
z

(6.10)

donde zr = πωo/λ se conoce como parámetro de Rayleigh o confocal, que es la distancia

longitudinal en la que el haz se mantiene enfocado. En la Fig. 6.20a se observa un corte a

lo largo de la dirección z, en donde se esquematizan los parámetros mencionados. Además

se observa en los perfiles de intensidad en distintas posiciones a lo largo del eje z (Figs.

6.20b-d) que a medida que nos alejamos de la posición en donde se encuentra la cintura

(Fig.6.20b), el haz gaussiano se achata en intensidad y se ensancha. Se puede hallar una

expresión para la divergencia dada por θ = λ/πωo, pero experimentalmente conviene usar

otras formas de medir, como se verá más adelante.

Podemos definir algunos parámetros para caracterizar el ancho de la distribución de

intensidad. Una forma es a partir de medir el ancho de la gaussiana a la mitad de su

altura (ancho mitad altura (FWHM)), es decir el ancho cuando I(r, z) = Imax/2, donde

Imax es la intensidad máxima, obteniéndose

∆ρFWHM =
1

2

√
2 ln(2)ω(z) (6.11)

Otra forma puede ser medir el ancho cuando la intensidad cae en 1/e2, que representa

aproximadamente el 86% de la intensidad, es decir cuando I(r, z) = Imax/e2, a aprtir

de lo que se obtiene que

∆ρ1/e2 = 2ω(z) (6.12)

En resumen, los láseres se caracterizan por ser:

- Direccionales

- Colimados (divergencia 1-10 mrad)

- Monocromáticos

- Coherentes

- Polarizados (la mayor parte de los casos)
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Figura 6.20: a) Corte longitudinal de un haz gausiano, en donde se muestra la cintura de tamaño
∼ 2ωo, divergencia θ y parametro de Raileigh zr. b-d) Perfil del haz para posiciones que se alejan
de la cintura.

- T́ıpicamente gaussianos.

- Estabilidad temporal (esta es nueva :) )

En consecuencia de la direccionalidad y colimación, toda su potencia (P ), está con-

centra en un área A pequeña, y en un ángulo sólido Ω que es también muy pequeño. Por

ese motivo, tiene gran brillo

B =
P

AΩ

[
W

cm2sr

]
. (6.13)

Veamos como caracterizar algunas de las magnitudes descriptas anteriormente: colima-

ción, polarización, distribución espacial de intensidad, estabilidad temporal, divergencia.

Dejamos para más adelante la coherencia y monocromaticidad (espectro).

6.4.1. Polarización

Para estudiar la polarización del láser, podemos emplear un polarizador lineal y ca-

racterizar el contraste o grado de polarización. Supongamos que tenemos una fuente

de luz, cuya polarización es quasi lineal (una elipse con su eje mayor mucho más grande

que el menor). Si usamos al analizador podemos determinar dos intensidades:

1. La intensidad máxima Imax que corresponde al eje del analizador paralelo al eje mayor.
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Figura 6.21: Medición t́ıpica de la potencia del laser en función del tiempo

2. La intensidad mı́nima Imin, que corresponde aleje del analizador paralelo al eje menor.

A modo de cuantificar la linealidad en la polarización, definimos como contraste de

polarización a

C =
Imax − Imin

Imax + Imin

. (6.14)

Cuanto más cercano a 1 sea ese número, más lineal es la polarización.

6.4.2. Estabilidad Temporal

La estabilidad temporal en un láser continuo, significa que su potencia o intensidad

se mantiene estable en el tiempo. Las causas de falta de estabilidad del láser pueden ser

externas como las variaciones de temperatura, humedad, vibraciones, fluctuaciones de la

fuente de alimentación; como internas, como la competencia de modos, la realimentación,

el desgaste por años de uso.

Si tenemos un detector de luz con resolución temporal adecuada, simplemente pode-

mos medir en el tiempo como fluctúa la señal medida durante un tiempo determinado.

Supongamos que medimos algo similar a lo que se observa en la Fig. 6.21. Podemos carac-

terizar estas fluctuaciones con su amplitud rms (∆VRMS) respecto a la amplitud media.

La estabilidad pico a pico se refiere a la diferencia porcentual entre el valor máximo y

mı́nimo de la potencia o enerǵıa de salida y el valor promedio de la potencia o enerǵıa.

También podemos caracterizar las fluctuaciones de la señal ∆V en comparación con el

valor medio V , para saber si estas son importantes o no, definiendo la relación señal-ruido
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SNR =
V

∆V
(6.15)

6.4.3. Distribución espacial de intensidad

Para caracterizar como es la distribución de intensidad en la dirección transversal a la

propagación, podemos usar varios técnicas. Ambas necesitan de detectores calibrados en

intensidad.

Cámara. Se puede usar una cámara para tomar una foto de la distribución espacial de

intensidades. Se puede sacar la foto del láser incidiendo sobre un papel y tomar una escala

para calibrar pixel en distancia. Si quiero hacer mediciones comparativas en intensidad,

además necesito hacer una calibración en intensidades. Como lo haŕıas?

Método de la gillete o del borde filoso. Se puede determinar como vaŕıa la inten-

sidad en una dirección empleando un dispositivo como el que se muestra en la Fig. 6.22.

Un borde filoso interrumpe el haz, dejando pasar otra parte del mismo que es colectada

en un detector. Para asegurar que toda la luz sea colectada, también se puede usar una

lente entre el borde filoso y el detector. El borde filoso se encuentra ubicado sobre un

posicionador con tornillo micrométrico (unidad de traslación), de manera que es posible

desplazarlo a través del haz y medir la intensidad en cada posición.

Figura 6.22: Esquema experimental para la medición del perfil del haz empleando la técnica del
borde filoso.

La cuestión está ahora en entender cual es el resultado de esa medición. En primer lugar

observamos que si tenemos totalmente tapado el haz, no medimos señal. A medida que

vamos destapando el haz cada vez medimos una señal mayor, hasta que está totalmente

destapado y medimos la señal máxima. Este procedimiento, por el cual se va sumando

acumulativamente la intensidad para posiciones en aumento del borde filoso, es justamente

lo que hace la operación integral. Es decir, lo que estamos midiendo, es la integral del

perfil de intensidad. Por lo tanto podemos escribir a la señal medida como la integral de

una gaussiana
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P (x) =
Pmax

2
(1− erf(

√
2x/ω) (6.16)

y tomando la derivada dP (x)/dx obtenemos I(x) = Imaxexp(−2x2/ω)

Pensar: Desde el punto de vista del análisis de datos, conviene derivar los datos

o ajustar por la expresión integral? Por que?

6.4.4. Divergencia

La divergencia es el ángulo con el cual el haz se abre a medida que se propaga. Como

vimos anteriormente este ángulo se relaciona con el tamaño de la cintura del haz: cuanto

más chica la cintura, mayor divergencia (te suena difracción?). El problema que tenemos

con los láseres, es que es dif́ıcil determinar en donde está la cintura, ya que el parámetro

confocal es muy largo (sino no estaŕıa casi colimado por distancias muy largas). Para

determinar la divergencia, entonces necesitamos realizar dos mediciones muy distantes

del tamaño del haz y emplear argumentos geométricos. Como lo haŕıas?

Resumen de la clase 1 óptica:

- Tendrás disponibles polarizadores, cristales birrefringentes, poĺımeros deforma-

dos, filtros, etc.

- Podrás analizar con dichos elementos los fenómenos que polarizan la luz.

- Caracterizarás la respuesta de detectores de luz en función de la intensidad in-

cidente.

- Caracterizarás un láser: polarización, distribución espacial de intensidad, esta-

bilidad temporal, divergencia.
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Caṕıtulo 7

Difracción

El fenómeno de difracción se observa con gran frecuencia en la naturaleza, por ejem-

plo, cuando los haces del sol atraviesan las nubes, el arco iris que se forma en un CD.

Las estrellas no tienen naturalmente puntas, las puntas son la difracción en los distintos

diafragmas de las cámaras. En los ojos tenemos lo que se conoce como lineas de suturas,

que hace que veamos fuentes lejanas con difracción (Fig. 7.1). Por supuesto que la difrac-

ción no solo es atributo de ondas electromagnéticas, sino de cualquier tipo de ondas, por

ejemplo, las que se ven en las playas de Tel Aviv (Fig. 7.1). Por otra parte, el fenómeno de

difracción tiene much́ısimos usos en la ciencia, por ejemplo se usa para medir part́ıculas de

cientos de nanómetros a algunos micrones, en medicina para hacer “delivery de drogas”,

para medir tamaño de gotas (asi se midieron los sprays pulmonares o nasales durante la

pandemia debida al COVID!).

En este caṕıtulo, vamos a estudiar entre otras cosas cómo uso la difracción para medir

tamaños de objetos muy pequeños? cuáles son las ventajas de usar difracción y de donde

surgen dichas ventajas?

A continuación revisaremos algunos conceptos sobre difracción, si los tenes claros podes

saltar al experimento directamente. El objetivo es entender los conceptos más allá de

resolver las cuentas, y entender cuáles son las aproximaciones importantes que se hacen

para entender la difracción.

7.1. La integral de Kirchhoff

Kirchhoff (1882) encontró la solución de la ecuación de Maxwell para un frente de

ondas plano que atraviesa una apertura
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Figura 7.1: Ejemplos de la naturaleza en donde observamos difracción

U(P ) =

∫∫
S

(
−i
λ

)
U(P ′)

eikr

r

1

2
(cos(n̂, r̂) + 1) ds (7.1)

Mediante esta ecuación, si conocemos la distribución de campo U(P ′) en los punto P ′

de una superficie, podemos calcular el campo U(P ), luego de que la onda se propagó hasta

un punto P = (x, y, z) arbitrario del espacio. También podemos calcular como la luz se

propaga a través de distintos objetos. En particular podemos calcular como se difracta

en una apertura de geometŕıa arbitraria, como la que se esquematiza en la Fig. 7.2. Se

ilumina una apertura de manera que se genera una distribución de intensidad U(P ′) sobre

la apertura. Es decir el campo valdrá U(P ′) en los puntos P ′ = (x′, y′, 0) sobre la apertura

y cero fuera. Queremos calcular la distribución de intensidad en un punto P sobre el plano

xy que se encuentra a una distancia d de la apertura. La coordenada r va desde el punto

el punto P ′ en la máscara al punto P , y podemos escribir su módulo en función de las

coordenadas cartesianas como

r =
√
d2 + (x− x′)2 + (y − y′)2 (7.2)

Analicemos primero el significado de la parte de la ecuación pintada de rojo. En primer

lugar podemos identificar una onda esférica emitida desde el punto P ′, eikr/r. La amplitud

de esta onda es la intensidad de la onda incidente en el punto P ′ reducida en λ: U(P ′)/λ

y desfasada en −90o (−i).
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Si esquematizamos el término pintado en azul, vemos que es 1 cuando el ángulo entre

r̂ y la normal n̂ es 0o y nulo cuando ese ángulo es 180o. Lo que nos dice este término

entonces, es que esta ondita esférica que parte del punto P ′ en realidad emite más hacia

adelante. A este término se lo conoce como factor de oblicuidad.

Si ahora hacemos la integral, lo que estamos diciendo es que de cada punto en la

apertura, parte una onda esférica que emite preferentemente hacia adelante. Al realizar

la integral, estamos superponiendo (interferencia) todas esas onditas que parten de la

apertura. No estamos diciendo otra cosa, que la difracción es un fenómeno de interferencia.

Figura 7.2: Esquema de una ranura de forma arbitraria en donde se indican los distintos sistemas
de coordenadas. Arriba a la derecha, se observa un esquema de la superposición de onditas
esféricas y abajo a la derecha un esquema del factor de oblicuidad.

Esto justamente constituye el principio de Huygens-Fresnel (1818): El campo en cual-

quier punto del espacio se obtiene como la superposición (es decir, interferencia)

de las “onditas esféricas secundarias” generadas en cada punto de la apertura. Solo que

Kirchhoff agregó que estas onditas se emiten preferentemente hacia adelante (el factor de

oblicuidad)

La integral de la ecuación 7.1 es muy dif́ıcil de resolver, pero se simplifica si hacemos

algunas aproximaciones, como se muestra a continuación.

7.1.1. Aproximación de Fresnel

La primera aproximación que podemos hacer es la paraxial. En esta aproximación se

considera que las distancias involucradas en el plano donde se mide ρ son mucho más
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chicas que la distancia de propagación d (es decir que los haces son casi paralelos al eje

óptico). Esto se cumple si estamos observando en posiciones cercanas a la rendija, en

donde los haces aun no se desviaron demasiado. Ver que en términos de ρ, r se puede

escribir como

r =
√
d2 + ρ2 (7.3)

siendo ρ2 = (x − x′)2 + (y − y′)2 (ver Fig. 7.2). Si ρ ≪ d entonces podemos hacer un

desarrollo de Taylor en r,

r = d

√√√√1 +

(
ρ

d

)2

∼ d

(
1 +

ρ2

2d2

)
+O(2). (7.4)

Para implementar esta aproximación, en primer lugar, vamos a reescribir la ecuación

7.1 usando que cos(n̂, r̂) = d/r

U(x, y) =

∫∫
S

(
−i
λ

)
U(P ′)

eikr

r

1

2

(
d

r
+ 1

)
ds (7.5)

Luego, dado que los términos con 1/r vaŕıan mucho más lento que los términos expo-

nenciales de fase, vamos a aproximar r ∼ d (Taylor orden 0) en el numerador, y vamos

a considerar Taylor orden 1 en la exponencial. De esta manera, usando la definición para

ρ2 dada anteriormente, obtenemos lo que se conoce como integral de Fresnel

U(x, y) =

(
−i
dλ

)
eikd

∫∫
S

U(x′, y′)e
ik
2d

(x−x′)2+(y−y′)2 dx′dy′ (7.6)

Hacemos un poquito más de cuentas para llegar a un resultado importante y termina-

mos con Fresnel :). Ahora vamos a desarrollar el cuadrado en la potencia, con el objetivo

de dejar dentro de la integral solamente las variables primadas, obteniendo

U(x, y) =

(
−i
dλ

)
eikde

ik
2d

(x2+y2)

∫∫
S

U(x′, y′)e
ik
2d

(x′2+y′2)e−
ik
d
(xx′+yy′) dx′dy′ (7.7)

Este resultado es muy interesante, porque si observamos el término que depende de

xx′ e yy′, notamos que se parece mucho al factor de una trasformada de Fourier. Entonces

vemos que podemos escribir a la integral de Fresnel como una transformada de Fourier de

la función U ′(x′, y′) (que es la que está pintada en rojo en la ecuación anterior), evaluada

en las variables x/λd e y/λd
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U(x, y) =

(
−i
dλ

)
eikde

ik
2d

(x2+y2)Fλd

{
U(x′, y′)e

ik
2d

(x′2+y′2)

}
= F

(
x

λd
,
y

λd

)
(7.8)

Esta ecuación me dice entonces que en la aproximación Fresnel, puedo calcular el

campo haciendo la trasformada de Fourier de la distribución de campo en la apertura,

agregando una fase cuadrática. Notar que si quiero calcular la intensidad, los factores

de fase fuera de la transformada dejan de tener relevancia, ya que desaparecen al tomar

módulo cuadrado.

A modo de ejemplo, en la Fig. 7.3 se observan simulaciones numéricas de la difracción

por distintas aperturas, en la aproximación de Fresnel y en la aproximación de Fraunhofer

(que veremos pronto).

En las dos secciones siguientes vamos a intentar deshacernos de la fase cuadrática de

dos maneras.

Figura 7.3: Difracción por fistintas rendijas mostrando las como luce en la aproximación de
Fresnel y Faunhoffer.

7.1.2. Aproximación de Fraunhofer

Queremos lograr que eik(x
′2+y′2)/2d sea aproximadamente 1, para eso vamos a hacer que

el exponente sea muy chico, lo que implica d≫ k(x′2+y′2)/2. Como los puntos (x′, y′) son
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posiciones en la apertura, podemos acotarlos por un tamaño caracteŕıstico, por ejemplo

(x′2 + y′2) ∼ A donde A es el área de la apertura. Entonces obtenemos d ≫ kA/2, y la

integral de Fresnel se reduce a

U(x, y) ∼ Fλd

{
U(x′, y′)

}
(7.9)

en donde omitimos todos los factores de fase y constantes para no perder de vista nuestro

objetivo.

Arribamos a una conclusión importante, en la aproximación de Fraunhofer (campo

lejano), el campo no es más que la trasformada de Fourier del campo de la apertura.

7.1.3. El truco de la lente

Supongamos ahora que queremos calcular el campo que atraviesa la apertura y a

continuación una lente convergente. La función transmisión de la lente es simplemente

una variación de fase cuadrática, por lo que la podemos escribir como

T (x, y) = e−
ik
2f

(x2+y2) (7.10)

en donde f es la distancia focal. Para escribir el campo en un punto arbitrario (x, y, d)

agregamos T (x, y) en la Eq. 7.8

U(x, y) ∼ Fλd

{
U(x′, y′)e−

ik
2f

(x′2+y′2)e
ik
2d

(x′2+y′2)

}
(7.11)

en donde para no perder de vista nuestro objetivo, obviamos todos los factores multiplica-

tivos. Si ahora queremos calcular el campo en el plano focal de la lente, basta con tomar

f = d en la ecuación anterior. En ese caso,los factores de fase se cancelan, obteniendo

U(x, y) ∼ Fλd

{
U(x′, y′)

}
(7.12)

Arribamos ahora a una segunda conclusión muy importante:

la difracción de Fraunhofer se encuentra tanto en el campo lejano (Eq. 7.9) como

en el foco de una lente (Eq. 7.12). Esta situación se encuentra esquematizada en

la figura 7.4
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Figura 7.4: Esquema que muestra que la difracción en campo lejano es equivalente al campo en
el foco de la lente

7.2. Difracción por una rendija rectangular

Vamos a estudiar en la materia, la difracción por una rendija rectangular de tamaño

a, que se encuentra esquematizada en la figura 7.5.

Figura 7.5: Difracción por una rendija rectangular en donde se muestran las variables de interés
para el problema: θ angulo de difracción, D distancia entre la pantalla y la rendija, y posición
medida en la pantalla

Ya estudiaron en F́ısica 2 que la expresión anaĺıtica de la intensidad I(θ) de la figura

de difracción en función del ángulo θ es

I(θ) = Io
sin(δ)2

δ2
, (7.13)

siendo δ = πa sin(θ)/λ = πay/Dλ. En la figura 7.6 se puede observar una foto de una

figura de difracción, y el resultado de la expresión anterior, que, experimentalmente equi-
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Figura 7.6: Figura de difracción y perfil de la misma tomado sobr la linea punteada blanca

vale a medir la intensidad en los puntos sobre la linea blanca. La figura de difracción tiene

mı́nimos situados en donde se encuentran los ceros de la función seno, es decir, cuando

δ = nπ con n un entero, es decir cuando sin(θ) = y/D = nλ/a

A partir de esta expresión podemos hacer observaciones importantes (y bastante ge-

nerales). En primer lugar, podemos observar que haces con menor longitud de onda,

difractan más. En la figura 7.7, podemos observar la figura de difracción producida por

una fuente de luz blanca, y las figuras de difracción que resultan de filtrar longitudes de

onda en la misma figura.

Figura 7.7: Difracción de luz blanca por una rendija rectangular y su descomposición en colores
RGB

Pensar: En la figura de difracción de la fuente de luz blanca se observan colores
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cian, magenta y amarillo (CMY). Sin embargo los colores originales son rojo,

verde y azul (RGB). Porque se ve CMY?

En segundo lugar podemos relacionar el tamaño de la rendija con la extensión de la

figura de difracción: vamos que cuanto más chica es la rendija, la figura de difracción es

más extensa. Esto tiene mucha lógica si pensamos que la difracción de Franhofer es una

transformada de Fourier de la rendija, y las coordenadas relacionadas por la transformada

(x y ξ = x′/λd en este caso) siempre cumplen una relación de incerteza ∆x∆ξ > cte: si

la rendija es muy chica, ∆ξ es muy chico, entonces ∆x es muy grande.

Experimental: En la experiencia de difracción, vamos a medir el tamaño de la

rendija a partir de la figura de difracción y vamos a comparar el tamaño obtenido

con el que midamos con un microscopio. Hay muchas maneras de medir y carac-

terizar a la figura de difracción:

1) Marcar en un papel la posición de los mı́nimos y medir la posición del mı́nimo

en función del número de mı́nimo. Obtener a a partir de la pendiente de la recta

(necesito además λ).

2) Sacar una foto de la figura de difracción, para determinar la posición de los

mı́nimos (y seguir como en el ı́tem anterior). Necesito además, obtener una escala

para calibrar pixeles de la cámara en distancia. Las cámaras miden las señales

en unidades discretas conocidas como niveles de gris. Para medir intensidad ne-

cesitamos saber primero cual es la calibración de la intensidad en nivel de gris,

o al menos saber si la relación es lineal. Si obtenemos esta información además

podŕıamos medir el perfil de intensidades. Como podemos calibrar la cámara?

3) Desplazando al Fotodiodo a través de la figura de difracción, relevar la inten-

sidad en función de la distancia. Las consideraciones que necesitamos tener en

cuenta para la medición del perfil de intensidad con el fotodiodo son:

- Linealidad de la señal en el fotodiodo con la intensidad (ya lo probaron la

clase anterior)

- Muestreo espacial adecuado requiere conocer aproximadamente lo que se
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quiere medir. Se debe cumplir Nyquist (como mı́nimo). Cual es el detalle más

chico que quiero medir?

- Influencia de la respuesta del detector: La medición es la convolución de

la función respuesta del detector y la magnitud a medir. (Revisar caṕıtulo de

mediciones).

Pensar como realizaŕıan cada uno de estos experimentos, ustedes ya tienen las

herramientas!

7.3. Máscaras complementarias

Nos preguntamos ahora ¿Como se comparan las figuras de difracción producida a

partir de dos objetos complementarios, como las de la Fig. 7.8a y b? ¿Cuáles son sus

similitudes y sus diferencias?

Puedo conocer el tamaño de las células rojas (Fig. 7.8e) a partir de conocer la difracción

por una apertura circular (Fig. 7.8d)?

Figura 7.8: Esquema de máscaras complemetarias (a y b son complementarias, y d y e también
lo son.

En primer lugar escribamos la función transmisión de ambas máscaras, diciendo que

la función transmisión T (P ′) es 1 si la máscara es transparente y 0 si la máscara es opaca,

como se esquematiza en la Fig. 7.9. Luego notamos que la suma de las transmisiones de

ambas máscaras es 1, por lo que podemos escribir TA′′(P ′) = 1−TA′(P ′). Ahora escribamos

la integral de Kirchhoff (Eq. 7.1)
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Figura 7.9: Función transmisión para dos máscaras complementarias y su suma.

U(P ) =

∫∫
A

U(P ′)f(P ′)ds =

∫∫
S

U(P ′)(TA′ + TA′′)f(P ′)ds (7.14)

en donde llamamos f(P ′) =

(
−i
λ

)
eikr

r
1
2
(cos(n̂, r̂) + 1) . Luego, distribuyendo la integral

U(P ) =

∫∫
A

U(P ′)f(P ′)ds =

∫∫
A

U(P ′)TA′f(P ′)ds+

∫∫
A

U(P ′)TA′′f(P ′)ds (7.15)

usando las definiciones de la función transmisión podemos escribir

U(P ) =

∫∫
A

U(P ′)f(P ′)ds =

∫∫
A′
U(P ′)f(P ′)ds+

∫∫
A′′
U(P ′)f(P ′)ds (7.16)

En la aproximación de Fraunhofer, podemos aproximar las integrales por transforma-

das de Fourier

U(P ) = Fλd{UA(P
′)} = Fλd{UA′(P ′)}+ Fλd{UA′′(P ′)} (7.17)

Observando que A es un cuadrado por donde pasa luz, sabemos que su transformada

es una función sinc. Si ese cuadrado es muy muy grande, la sinc es muy angosta, de modo

que Fλd{UA(P
′)} = 0 salvo en el punto donde incide el laser o sobre la función sinc que

es muy angosta (casi una delta). De este modo resulta que

Fλd{UA′(P ′)} = −Fλd{UA′′(P ′)} (7.18)

Es decir, las intensidades de ambas figuras de difracción son idénticas en la aproxima-

ción de Frounhofer (salvo en el centro de la figura de difracción en el caso de la máscara

más transparente, ya que tiene un punto muy luminoso).
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Experimental: En esta parte de la experiencia, vamos a comparar la figura de

difracción de objetos complementarios. Pensar que objetos podŕıan usar y como

realizar tal comparación.

122 Apuntes Laboratorio 2, Cátedra Prof. M.G. Capeluto



Caṕıtulo 8

Lentes y sistemas formadores de
imágenes

El mundo de la fotograf́ıa y la videograf́ıa ha sido revolucionado por los intrincados

componentes dentro de las lentes de la cámara. Más allá de aparentar ser solo un accesorio,

las lentes son la puerta de entrada para capturar imágenes impresionantes. Los arreglos

de lentes también permiten tener otros dispositivos de gran calidad, como los telescopios.

El rol fundamental de una lente o sistema de lentes en estos dispositivos es proyectar la

imagen de un objeto sobre el elemento sensible de la cámara (Fig. 8.1).

Figura 8.1: Mediante un sistema de lentes, se forma una imagen de-magnificada del objeto en el
sensor de la cámara

8.1. Sistemas de lentes simples

Las propiedades ópticas que definen una lente están originadas en su composición

estructural, espećıficamente en su distancia focal, ángulo de campo de visión y apertura

relativa.

Podemos clasificar a las lentes como convergentes o divergentes, como se esquematiza
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en la Fig. 8.2. En el caso de las lentes convergentes (convexas), los haces que inciden

paralelos al eje óptico convergen en el plano focal de la misma. En cambio, en la lente

divergente, los haces que inciden paralelos al eje óptico divergen, pareciendo provenir de

un punto focal virtual, localizado detrás de la lente.

Figura 8.2: El foco de las lentes convergentes (a) y divergentes (b)

8.1.1. La ecuación de la lente, las bases de la óptica geométrica

En el caso de que las lentes sean delgadas, se puede encontrar una relación entre la

distancia focal (f), la posición del objeto (u) y la posición de la imagen (v), conocida

como la ecuación de la lente

1

v
− 1

u
=

1

f
(8.1)

A la relación entre el tamaño de la imagen (h′) y el tamaño del objeto (h) se la conoce

como aumento y esta también se relaciona con la posición objeto e imagen como

M =
h′

h
=
v

u
(8.2)

En base a la ecuación de la lente, se puede definir el trazado de ciertos haces de luz

a partir de los cuales se puede obtener la descripción geométrica de las lentes, como se

esquematiza en la Fig. 8.3. Las reglas básicas son:

El haz de luz que incide paralelamente al eje principal sobre una lente convergente

pasa por el foco real, mientras que en una lente divergente, dicho haz parece provenir

del foco virtual.

El haz de luz que pasa por el centro óptico de la lente sigue su trayectoria sin

desviarse.
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El haz de luz que incide sobre la lente pasando por el foco real de una lente conver-

gente sale de la lente de manera paralela al eje principal. En una lente divergente,

el haz de luz que se dirige hacia el foco virtual sale de la lente paralelamente al eje

principal.

Figura 8.3: Trazado de haces principales en lentes delgadas

8.1.2. Apertura numérica, profundidad de foco y resolución

La apertura numérica (NA) de una lente es una medida de su capacidad para colectar

luz y resolver detalles pequeños. La apertura numérica se define como:

NA = n sin(θ)

donde n es el ı́ndice de refracción del medio en el que se encuentra la lente y θ es el

ángulo medio de aceptación de la lente. La apertura numérica puede relacionarse con los

parámetros de la lente usando que

sin(θ) =
D

2f

donde D es el diámetro de la apertura de la lente (o pupila de entrada) y f es la distancia

focal.

Una mayor apertura numérica indica que la lente puede colectar más luz y tiene una

mayor capacidad para resolver detalles pequeños, lo cual es crucial en aplicaciones como

la microscopia y la fotograf́ıa de alta precisión.

La capacidad de colección de luz aumenta porque una lente con una mayor NA puede

aceptar luz de un ángulo más amplio, lo que significa que más rayos de luz pueden entrar

en la lente. Esto resulta en una imagen más brillante y mejor iluminada.
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Figura 8.4: Esquema de una lente y como determina el diagragma a la apertura numérica

Además, la resolución aumenta con una mayor apertura numérica. La resolución de

una lente se refiere a su capacidad para distinguir entre dos puntos muy cercanos. Según

el criterio de resolución de Rayleigh, la resolución R es inversamente proporcional a la

apertura numérica

R =
0,61λ

NA

donde λ es la longitud de onda de la luz utilizada. Una mayor NA reduce el valor de

R, permitiendo a la lente resolver detalles más finos.

El concepto de profundidad de foco también está relacionado con la apertura numérica.

La profundidad de foco es la distancia sobre la cual el sistema óptico puede mantener un

enfoque aceptable. La profundidad de foco está inversamente relacionada con la apertura

numérica:

Profundidad de foco ≈ λ

(NA)2

Una mayor apertura numérica reduce la profundidad de foco, lo que significa que el

rango de distancias en el que la imagen permanece ńıtida es más pequeño. Esto puede ser

una ventaja o una desventaja, dependiendo de la aplicación: en microscoṕıa, una menor

profundidad de foco permite enfocar en detalles muy espećıficos dentro de una muestra

tridimensional. En fotograf́ıa una menor profundidad de foco permite resaltar el objeto

principal enfocado mientras que el resto de los objetos en otros planos están borroneados.

En resumen, una mayor apertura numérica mejora la capacidad de colección de luz

y la resolución, permitiendo a la lente captar imágenes más brillantes y detalladas. Sin

embargo, también reduce la profundidad de foco, restringiendo el rango de distancias a lo

largo de las cuales la imagen permanece enfocada.

Experimental 1:En la experiencia de lentes vamos a estudiar primero lenes del-

gadas. En particular van a disponer de una fuente LED, una máscara para usar de
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objeto, un diafragma, dos lentes de distinta distancia focal y una pantalla. Para

ambas lentes:

1) Diseñar un experimento para determinar la distancia focal de las lentes.

2) Formar una imagen de un objeto. En que cambia la imagen si cambio el diáme-

tro de la lente? Hint: usar un diafragma.

3) Como cambia la intensidad en el foco si cambio el área del diafragma?

3) Como vaŕıa la intensidad en la dirección longitudinal al atravesar el foco? y en

la dirección transversal? Que detector usaŕıas para medir la variación de intensi-

dad en función de la posición?

¿Qué lente elijo para tener un foco más chico y con más intensidad?

8.2. Sistemas formados por varias lentes

En óptica, los sistemas formados por varias lentes son comunes y ofrecen diversas

ventajas y funcionalidades que una sola lente no puede proporcionar. Estos sistemas pue-

den incluir combinaciones de lentes convergentes y divergentes para corregir aberraciones,

mejorar la resolución, ajustar el campo de visión y controlar la magnificación.

Por ejemplo, las aberraciones ópticas, como la aberración cromática y la aberración

esférica, pueden ser corregidas mediante la combinación de diferentes tipos de lentes. Por

ejemplo:

Lentes Apocromáticas: Utilizan al menos tres lentes de diferentes materiales para

corregir la aberración cromática en tres colores.

Lentes Acromáticas: Combinan dos lentes, generalmente una convergente y una

divergente, para corregir la aberración cromática en dos colores.

Un microscopio compuesto es un buen ejemplo de un sistema óptico con varias lentes:

Objetivo: Lente o sistema de lentes cercano a la muestra que produce una imagen

real y ampliada.

Ocular: Lente o sistema de lentes a través del cual se observa la imagen real am-

pliada, produciendo una imagen virtual aún más ampliada.

La magnificación total del microscopio compuesto es el producto de las magnificaciones

del objetivo y el ocular.
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Experimental 2: Armar algun sistema compuesto de lentes. Proponemos uno

como ejemplo, pero pueden probar cualquier otro.

Telescopio. El esquema del telescopio se puede observar en la Fig. 8.5. De-

terminar el aumento, registrar distancias objeto, imagen, focos, distancia entre

lentes. Utilizarlo para aumentar el tamaño de un laser. Como mediŕıas el tamaño

del haz?

Ahora podes usar el telescopio para iluminar un par de rendijas. Podremos

ver la difracción de Fresnel y la de Fraunhoffer? Recordemos que en el foco de la

lente, podemos encontrar la figura de difracción de Fraunhoffer. Podemos usar una

segunda lente para aumentar lo que se observa en el foco? Como elegir So y S1 de

manera que pueda observar la imagen, la difracción de Fresnel, y de Fraunhofer.

Figura 8.5: Esquema de un telescopio simple

Figura 8.6: Ejemplo de montaje para observar la difracción de Fresnel y Fraunhoffer
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Caṕıtulo 9

Espectrometŕıa

La espectrometŕıa es un campo amplio y versátil de la ciencia que abarca una serie de

técnicas destinadas a analizar la composición en frecuencia del espectro electromagnéti-

co. Estas técnicas se utilizan para obtener información detallada sobre las propiedades

estructurales de los materiales mediante su interacción con la luz. A través de la espec-

trometŕıa, es posible estudiar transiciones atómicas y moleculares, aśı como propiedades

cristalinas, proporcionando una comprensión profunda de la materia a nivel microscópico

y molecular. A continuación se mencionan algunos ejemplos de tipos de espectrometŕıa y

sus aplicaciones:

Espectrometŕıa de Absorción

Descripción: Esta técnica mide la cantidad de luz absorbida por un material a

diferentes longitudes de onda. Cuando la luz pasa a través de una muestra, algunas

longitudes de onda son absorbidas más que otras, creando un espectro de absorción

caracteŕıstico.

Aplicaciones: Determinación de bandas de absorción de materiales, identificación

de compuestos qúımicos, análisis cuantitativo de concentración de sustancias.

Espectrometŕıa de Fluorescencia

Descripción: Se basa en la emisión de luz por una sustancia que ha absorbido pre-

viamente luz o radiación electromagnética. La muestra es excitada con una longitud

de onda espećıfica, y la luz emitida (fluorescencia) es medida.

Aplicaciones: Análisis de elementos traza en materiales, estudios de protéınas y

ácidos nucleicos, investigación de materiales biológicos y farmacéuticos.

Espectrometŕıa Infrarroja (IR)
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Descripción: Esta técnica estudia los niveles de enerǵıa vibracionales de las molécu-

las. La radiación infrarroja interactúa con las moléculas, causando transiciones en

sus niveles vibracionales.

Aplicaciones: Identificación de grupos funcionales en compuestos orgánicos, estu-

dio de estructuras moleculares, análisis de contaminantes ambientales.

Espectrometŕıa de Resonancia Magnética Nuclear (RMN)

Descripción: Utiliza la interacción de núcleos atómicos con un campo magnético

externo y radiación electromagnética en el rango de radiofrecuencia para estudiar

las propiedades de los núcleos en una molécula.

Aplicaciones: Determinación de estructuras tridimensionales de moléculas orgáni-

cas e inorgánicas, estudio de dinámicas moleculares, análisis de metabolitos en bio-

loǵıa.

Espectrometŕıa de Masas

Descripción: Mide la relación masa/carga de los iones. Una muestra es ionizada,

y los iones resultantes son separados según su masa y carga.

Aplicaciones: Identificación de compuestos qúımicos, determinación de la estructu-

ra molecular, análisis de mezclas complejas, estudios de proteómica y metabolómica.

Espectrometŕıa de Rayos X

Descripción: Utiliza la interacción de rayos X con la materia para estudiar la

estructura atómica y molecular. Los rayos X pueden ser absorbidos o dispersados,

proporcionando información sobre la estructura interna.

Aplicaciones: Análisis de materiales cristalinos (difracción de rayos X), estudios

de composición elemental (fluorescencia de rayos X), investigación de defectos en

materiales.

Cada tipo de espectrometŕıa ofrece ventajas espećıficas y es adecuado para diferentes

aplicaciones cient́ıficas y tecnológicas. La elección de la técnica adecuada depende de la

naturaleza de la muestra y la información que se desea obtener. La espectrometŕıa es una

herramienta esencial en qúımica, f́ısica, bioloǵıa y muchas otras disciplinas cient́ıficas, y

continúa evolucionando con el desarrollo de nuevas tecnoloǵıas y métodos anaĺıticos.
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9.1. Espectrómetros

Un espectrómetro es un sistema formador de imágenes, que mapea imágenes mono-

cromáticas de la rendija de entrada en el plano del detector. Existen diversas configu-

raciones de espectrómetros; en particular, el que ustedes estuvieron usando en la ma-

teria (espectrómetro de Thorlabs) tiene una configuración experimental conocida como

Czerny-Turner, que es robusta y no tiene partes móviles. En la Fig 9.1 se muestra este

espectrómetro además de otras dos configuraciones posibles.

Figura 9.1: Ejemplo de montajes de distintos espectrometros

Como se puede observar en la figura, todos coinciden en que poseen algunos elementos

en común: una fuente de luz, una rendija y un elemento que dispersa luz (un prisma o

una red de difracción). Además se usan lentes y espejos para formar imágenes y colimar

haces. En esta materia utilizaremos como elemento principal a la red de difracción, quien

determina el rango de longitudes de onda que se puede medir y, de manera parcial, la

resolución del espectrómetro.

9.2. La detección en espectrometŕıa

La medición del espectro (intensidad en función de la longitud de onda) se puede

realizar de dos maneras, que se encuentran esquematizadas en la Fig. 9.2. Una opción es

usar una rendija para seleccionar un rango de longitudes de onda y un detector puntual a

continuación para medir la intensidad. Luego se hace un barrido en longitud de onda ya

sea moviendo el detector en conjunto con la rendija o cambiando la posición angular de
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la red para dirigir porciones distintas del espectro a la rendija. La otra opción es usar una

cámara (CCD, CMOS), en ese caso, lo que determina el rango espectral de longitudes de

ondas medidas en cada pixel, es el tamaño del pixel.

Figura 9.2: Posibles sistemas de detección en espectrometŕıa

Nuevamente, lo que medimos resulta de la convolución entre lo que queremos medir

(el espectro) y la función respuesta de detección, determinada en este caso por el tamaño

de la rendija o del pixel. En este caso, podŕıamos pensar que la función respuesta de cada

elemento de detección (pixel o rendija junto a detector) vale 1 en el área de detección

y cero en otro lugar. Vemos entonces más adelante que un factor importante para la

resolución del espectrómetro va a ser el tamaño del detector (tamaño de la rendija o del

pixel).

9.3. Redes de difracción

Una red de difracción es un arreglo periódico de estructuras (rendijas, espejos, etc)

que tienen tamaños similares a la longitud de onda. Estas redes pueden ser de reflexión

o de transmisión. En la Fig. 9.3 se muestran algunas de ellas y los métodos más comunes

de fabricación. Las conocidas como ruled gratings, son redes de reflexión y esencialmente

están compuestas por surcos (que se graban mecánicamente) en una superficie espejada.

Las holográficas, son exactamente hologramas que se graban en un poĺımero y luego se

transfieren a una superficie (traslúcida o espejada) mediante técnicas como etching.

La red más sencilla es la red de rendijas, que está compuesta por un arreglo de N

rendijas de ancho a y separación d (medida entre centros). Supongamos que iluminamos

a la red con luz coherente monocromática de longitud de onda λ en incidencia normal

(Fig. 9.4). La difracción se puede analizar utilizando los principios de la interferencia y la

difracción de Fraunhofer.
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Figura 9.3: Ejemplo de distintos tipos de redes y los métodos de fabricación

Figura 9.4: La red de rendijas y un esquema de la figura de difracción producida por la misma.

La intensidad de la luz difractada en un ángulo θ está dada por

I(θ) = I0

(
sin(β)

β

)2(
sin(Nγ)

sin(γ)

)2

(9.1)

donde I0 es la intensidad máxima β = πa
λ
sin θ y γ = πd

λ
sin θ. Recordemos la interpretación

de la figura de difracción: el término que contiene β (la envolvente en linea punteada en la

figura) describe la difracción por una sola de las rendijas. Las caracteŕısticas de la figura

de difracción por una rendija cuadrada ya fueron estudiadas en el caṕıtulo de Difracción

por lo que no lo repetimos aqúı. El término que contiene γ describe la interferencia entre
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N fuentes puntuales, que genera una distribución de intensidad de máximos principales

y secundarios, cuyas caracteŕısticas generales se muestran el la Fig. 9.5.

Figura 9.5: Esquema de la interferencia de N fuentes puntuales y caracteŕısticas principales (el
dibujo corresponde a N=6).

La condición para obtener máximos de interferencia en un arreglo de rendijas se da

cuando la diferencia de camino óptico entre las ondas que pasan por rendijas adyacentes

es un múltiplo entero de la longitud de onda (Fig. 9.4). Esto se expresa como

d sin θ = mλ donde m = 0,±1,±2, . . . (9.2)

donde m es el orden del máximo. Ver que esto resulta equivalente a pedir que γ sea

múltiplo entero de π. La intensidad de estos máximos es

Ip = IoN
2 sin

2 β

β2
(9.3)

Es decir, los máximos principales que se encuentren cerca del máximo de difracción

tendrán una intensidadN2 veces mayor que la intensidad de la fuente Io. Cuanto mayor sea

el número de rendijas iluminadas (N), mayor es la intensidad en los máximos principales.

Maximizando la función
(

sin(Nγ)
sin(γ)

)2
, se pueden obtener también la posición de los máxi-

mos secundarios, que se encuentran en aquellos valores de γ que cumplen con la ecuación

trascendental tan(Nγ) = N tan(γ). Sin embargo, su intensidad

Is =
Ip

1 + (N2 − 1) sin(γ)2
(9.4)

es mucho menor que la de los máximos principales, por lo que normalmente no los obser-

vamos fácilmente.

La posición de los mı́nimos es importante calcular porque eso nos va decir cuan angosto

es un máximo. Los mı́nimos se encuentran en los ceros de la figura de interferencia de N

fuentes puntuales, es decir cuando sin(Nγ) = 0. Esto ocurre si Nγ = πd sin(θ)/λ = mπ
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o d sin(θ) = mλ/N . Se puede ver en entre dos máximos principales hay N − 1 mı́nimos,

N − 2 máximos y que el primer mı́nimo se encuentra a una distancia d sin(θ) = λ/N del

máximo correspondiente (ver detalles sobre este tema en cualquier libro de óptica que

hayan usado en F2). Esto significa que el máximo principal tendrá un ancho 2λ/N , y

entonces cuanto más lineas ilumine de la red, más angosto serán los órdenes de difracción.

Nota: En general, si la luz incide en un ángulo θo, podemos reescribir la Eq. 9.2

de manera que la expresión adopta la forma de la conocida ecuación de la red

d(sin θ − sin θo) = mλ donde m = 0,±1,±2, . . . (9.5)

donde m indica la posición de los máximos principales, los ordenes de difracción.

Experimental 1: En el laboratorio vas a recibir una red de transmisión ho-

lográfica. Como podŕıas corroborar que la densidad de lineas por miĺımetros es la

indicada en la etiqueta? que experimento realizaŕıas?

9.4. La difracción de una fuente no monocromática

Si queremos determinar el espectro de una fuente que no es monocromática empleando

una red, vamos a encontrar que los máximos principales van a tener una posición distinta

para cada longitud de onda. Por ejemplo, en la Fig. 9.6 se muestra un ejemplo de los

ordenes 2, 1, 0, -1 y -2 de una fuente de luz blanca.

Aqúı se hace evidente la posibilidad de crear un instrumento para medir espectros:

solo basta medir un orden de difracción y realizar la calibración de:

la longitud de onda en función de posición,

la señal en el detector en función de intensidad.

Observemos que, según lo visto en la sección anterior, el orden va a estar más expandido

cuanto más grandes sean el número de orden, la densidad de lineas de la red, y la distancia

a la pantalla. Entonces podemos pensar intuitivamente (y luego confirmaremos) que la

resolución (capacidad de detectar longitudes de onda distintas), va a aumentar con el

número de orden. El costo a pagar por tener mayor resolución es que tenemos menos
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Figura 9.6: izquierda: Esquema de la difracción en un orden particular, mostrando posiciones y′m
y ym que corresponden a longitudes de onda diferentes en el mismo orden. Derecha: Esquema
de la difracción de una fuente de luz blanca.

intensidad (recordar que la intensidad disminuye con el aumento del orden porque la

intensidad está modulada por la campana de difracción).

Observemos además que el rango del longitudes de onda que vamos a poder medir, va

a estar determinado por el tamaño del orden en el plano de detección (que a su vez está

determinado por la densidad de lineas, el número de orden y la distancia a la pantalla),

respecto al tamaño del detector. Si el detector es más chico que la expansión del orden,

vamos a poder medir un rango espectral menor.

Entonces para diseñar el espectrómetro, necesitamos conocer cuál es la dispersión que

introduce la red, para saber también que distancia a la pantalla elegir, o como está limi-

tado lo que puedo medir según el tamaño del detector que tenga.

Dispersión angular

Podemos analizar cuál es la capacidad de dispersar de una red angularmente, diferen-

ciando la Eq. 9.5 para obtener

dθm
dλ

=
m

d cos θm
(9.6)

Vemos que la dispersión aumenta con la disminución del peŕıodo (mayor densidad de

ĺıneas) y el número de orden. Esto significa que voy a tener mayor resolución con ordenes

mayores y con redes de mayor densidad de ĺıneas.

Dispersión lineal

La dispersión lineal o dispersión reciproca de la red es cuanto se dispersa la longitudes

de onda por unidad de longitud en el detector. Para simplificar cuentas vamos a suponer

que los ángulos de difracción son pequeños de manera que θm ∼ ym/D (Nota, si usáramos

136 Apuntes Laboratorio 2, Cátedra Prof. M.G. Capeluto



una lente para producir la condición de Franhofer, en lugar de D usaŕıamos la distancia

focal). Entonces, a partir de la Eq. 9.6 obtenemos

dym
dλ

=
mD

d cos θm
(9.7)

Luego, invirtiendo esta relación encontramos

dλ

dym
=

cos θm
dmD

(9.8)

que representa la diferencia de longitud de onda por unidad de distancia en el detector.

En particular, si consideramos que el detector esta compuesto por pixeles de tamaño Wp

(o usamos una rendija a la salida del espectrómetro y un detector puntual, entonces consi-

deraŕıamos el tamaño de la rendija Ws), encontramos a partir de la Eq 9.8, una expresión

para la resolución multiplicando la dispersión reciproca por el tamaño del ṕıxel.

R = Wp
dλ

dym
= Wp

cos θm
dmD

(9.9)

Rango de longitudes de onda (bandpass)

Supongamos que el tamaño del detector mide yD, el rango de longitudes de onda que

es posible medir se puede estimar como

∆λ = λmax − λmin = yD
mD

d cos θm
(9.10)

observando que este depende del tamaño del detector, el orden de difracción y del

peŕıodo de la red. A menor peŕıodo d (mayor densidad de ĺıneas), la red dispersa más,

pero el rango de longitudes de onda que puedo medir en un área definida disminuye.

A menor peŕıodo (más densidad de ĺıneas):

La resolución aumenta

La dispersión aumenta

El rango de longitudes de onda (en el detector o rendija de salida) disminuye
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9.5. Resolución

La resolución espectral es la mı́nima separación ∆λ en longitudes de onda entre dos

ĺıneas espectrales que el instrumento puede resolver. Generalmente se expresa como

R =
λ

∆λ
. (9.11)

Por ejemplo, si R = 10000, significa que la mı́nima separación en λ que se puede medir

es ∆λ = 0,0001λ. También podŕıamos intentar estimar cual es el poder resolvente que

necesitamos para poder resolver dos lineas espectrales cercanas. Por ejemplo, tomemos el

caso del doblete del sodio cuyas lineas espectrales se encuentran en 589.00 nm and 589.59

nm. Resolver estas lineas significa que tengo que tener una red cuyo poder resolvente sea

como mı́nimo

R =
λ

∆λ
=

589nm

0,59 nm
= 1000

Para caracterizar la resolución, se puede hacer un experimento tipo respuesta impul-

siva: se usan fuentes con ĺıneas espectrales muy angostas (más angostas que la resolución

normal de los espectrómetros), por ejemplo, láseres muy monocromáticos, lámparas atómi-

cas. Por ejemplo, en la Fig.9.7 se muestra el espectro del mercurio gaseoso, cuyas lineas

espectrales son más angostas que ∼ 1 nm. Luego se mide cual es el ancho de la ĺınea

espectral adoptando algún criterio (por ejemplo el ancho mitad altura).

Comentario: en los tubos de luz, se genera una descarga eléctrica ionizando

átomos de mercurio. Luego de la ionización suceden diversos fenómenos como el

decaimiento de electrones a niveles de menor enerǵıa o la recombinación de los

iones con electrones libres, que generan luz con lineas espectrales muy angostas en

el visible y el UV. El material de las paredes del tubo absorbe la luz UV excitando

a sus átomos. Estos átomos, al decaer a su estado fundamental, emiten luz visible

en un rango amplio de longitudes de onda cuya superposición se observa como luz

blanca. De este modo, el espectro de emisión de los tubos de luz está compuesto

por algunas lineas espectrales muy angostas correspondientes a la emisión de iones

de mercurio, superpuesto con un fondo continuo en el visible que corresponde a

la emisión del material de la superficie del tubo.

Recordando que medir es convolucionar, aqui podemos pensar que la señal medida
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Figura 9.7: Espectro de emisión del mercurio gaseoso. La linea espectral se verá ensanchada si la
resolución del espectrometro es menor, por lo que se puede caracterizar la resolución midiendo
el ancho de la linea.

SM(λ), resulta de la convolución entre la respuesta del espectrómetro R(λ) y lo que

queremos medir So(λ), es decir

SM(λ) = So(λ) ∗R(λ). (9.12)

De este modo, si lo que queremos medir es una “delta” (la ĺınea espectral muy angosta)

en el sentido que es mucho más angosto en longitudes de onda que la función respuesta

del espectrómetro, el resultado de la medición es la función resolución.

Nota: ustedes ya midieron el espectro del láser que usaron en el experimento de

difracción, por lo que ya están en condiciones de determinar la resolución espectral

del espectrómetro de thorlabs.

Entre los factores que factores que limitan la performance de los espectrómetros po-

demos encontrar

La red de difracción: rango de longitudes de onda y (en parte) la resolución.

La rendija de entrada: recorte ńıtido del haz incidente, throughput y resolución.

El sistema óptico: la magnificación (tamaño de la imagen en el detector, resolución),

las aberraciones (imagen ńıtida de la fuente en el detector, resolución)

El detector: su tamaño (rango de longitudes de onda), muestreo (tamaño del ṕıxel,

resolución en λ) y digitalización (resolución en intensidad).
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9.5.1. La red de difracción: resolución ĺımite o resolución limi-
tada por difracción o poder resolvente cromático

La resolución limitada por difracción es aquella determinada por la red de difracción.

Podemos usar el criterio de Rayleigh para calcular poder resolvente de la red, esto es: se

pueden resolver dos longitudes de onda si el máximo de la figura de difracción para una

coincide con el mı́nimo de la figura de difracción de la otra. Usando la Fig. 9.8 en donde se

muestra el criterio de Raighleigh para dos longitudes de onda separadas en ∆λ, se puede

observar que la distancia entre los dos máximos es igual a la distancia de un máximo al

primer mı́nimo.

Recordemos que para una dada longitud de onda λ (ver sección 9.3) la distancia del

máximo principal m al primer mı́nimo cumple que d sin(θ) = λ/N . De esta manera la

distancia entre máximos es m∆λ = λ/N , lo que resulta en

1

R
=

∆λ

λ
=

1

mN
(9.13)

Se observa que la resolución aumenta con el orden de difracción y con el número de

rendijas iluminadas.

Figura 9.8: Esquema de aplicación del criterio de Raighleigh para dos ondas cuyas longitudes
de onda son λ y λ+∆λ, que se difractan en la red de difracción.

Esto es consistente con la resolución teórica limitada por transformada que dice que

la unidad más chica posible de resolver de cualquier transformada es inversamente pro-

porcional al número de muestras.

Más allá de la teoŕıa, apliquemos este criterio en algunos ejemplos:

Una red de 300 l/mm, iluminando 20 mm de red, en el primer orden de difracción

R = mN = 1× 300 l/mm× 20mm = 6000
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Una red de 600 l/mm, de iguales caracteŕısticas, en el segundo orden de difracción

R = mN = 2× 600 l/mm× 20mm = 24000

En general el poder resolvente de la red es mucho más grande que el poder re-

solvente del espectrómetro por lo que otros factores determinan la resolución del

espectrómetro: rendijas, aberraciones ópticas, tamaño del detector, pixeles en el

detector

9.5.2. La rendija de entrada

Recordemos que una forma de pensar al espectrómetro es como un sistema óptico que

forma imágenes de la rendija en el plano del detector, desplazadas según la longitud de

onda. La rendija es clave para el buen funcionamiento del espectrómetro: determina la

cantidad de luz que pasa y llega al detector (throughput o transmisión) y la resolución

espectral cuando el espectrómetro no funciona al ĺımite de difracción. En general, cuanto

más chica la rendija mejor resolución pero menor transmisión. Se puede ver como ejemplo,

las mediciones de la Fig. 9.9 en donde se observan mediciones adquiridas con tamaños

de rendijas diferentes, mejorando la resolución en el caso de la rendija más chica. Sin

embargo, lo que importa es la imagen de la rendija en el plano de detección, por lo que,

usando un sistema óptico adecuado nos la podemos ingeniar para tener una transmisión

alta, con una imagen pequeña en el plano de detección.

Figura 9.9: Ejemplos de mediciones para tamaños de rendijas diferentes.

La rendija también define la apertura angular de los haces que ingresan al espectróme-

tro. T́ıpicamente la luz de la fuente se enfoca en la rendija con una lente cuya apertura
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numérica es igual a la del espectrómetro. Eso garantiza iluminar óptimamente a la red,

es decir, iluminar la mayor cantidad de lineas de la red posibles (recordar que cuanto

más lineas ilumino, más finitos son los ordenes de difracción, y mayor es la resolución de

la red). Si se ilumina con una apertura numérica menor a la óptima, se iluminan menos

lineas, los ordenes se ensanchan (ver 9.3). Si se ilumina con mayor apertura que la óptima,

se pierde intensidad a la salida.

Además, la rendija define un recorte ńıtido de la fuente de iluminación. El tamaño

de la rendija (Ws ×Hs) es uno de los factores principales que definen el throughput del

espectrómetro (cuanto más grande la rendija más luz entra).

El ancho de la imagen de la rendija en el plano del detector (Wi), es cŕıtico para

determinar la resolución. Además normalmente se desea que Wi > Wp, con Wp ancho del

ṕıxel del detector. El ancho de la imagen de la rendija de entrada Wi se puede estimar

como Wi = (M2W 2
s +W

2
o )

1/2, donde Wo es un ensanchamiento de la imagen que se puede

producir por los distintos elementos ópticos (por ejemplo por aberraciones) y M es la

demagnificación del sistema óptico. Reducir Wi por debajo de Wp no ayuda a aumentar

la resolución del espectrómetro.

Si el requerimiento en resolución se satisfice, el ancho de la rendija debe ser lo más

grande posible para aumentar la transmisión del espectrómetro.

Idealmente quisieramos trabajar en el ĺımite permitido pro la difracción. Si el ancho

proyectado de la rendija en el detector es mucho menor que la resolución limitada por

difracción del espectrómetro, no habrá pérdida de resolución. Sin embargo, si se ensancha

la rendija de modo que el ancho de su imagen en el espectro supera la resolución ĺımite,

será el ancho de la rendija el que definirá la resolución del espectro, no la difracción.

Este punto se ilustra en la Fig. 9.10, que muestra la resolución espectral limitada por la

difracción y por el ancho de la rendija, respectivamente.

Figura 9.10: Ejemplos de figuras de difracción limitadas por difracción y limitadas por tamaño
de la rendija.
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Para maximizar la resolución espectral, por lo tanto, parece obvio que el ancho de la

rendija siempre debeŕıa mantenerse más pequeño que la resolución ĺımite. Desafortuna-

damente, esto es raramente posible, ya que la rendija seŕıa tan estrecha que muy poca luz

pasaŕıa al espectrómetro.

9.5.3. Los ṕıxeles en el detector

Según el criterio de Nyquist, la frecuencia de muestreo debe ser por lo menos el do-

ble de la frecuencia máxima contenida en la señal. El tamaño de la menor estructura

en el espectro (determinado por el espectro de una ĺınea atómica o un láser) contiene

la mayor cantidad de frecuencias espaciales en el detector (seŕıa el análogo al impulso

en el experimento de piezoeléctricos), es del orden ∆λFWHM . Según Nyquist, por lo me-

nos necesitaŕıamos una frecuencia de muestreo del doble: 2/∆λFWHM . La condición de

mı́nima para que los ṕıxeles no limiten la resolución, es poder detectar la resolución ade-

cuadamente. Esto se logra si al menos medimos la función resolución con 3 ṕıxeles en el

∆λFWHM .

Figura 9.11: Muestreo de la función de resolución

9.6. Estimación de la resolución

Según lo visto, podemos estimar a la resolución como

R =
dλ

dym
×Wi (9.14)

siendo Wi tamaño de la imagen de la rendija y la dispersión lineal dλ/dym que men-

cionamos en las secciones anteriores.

Podemos hacer una estimación de la siguiente manera. Consideremos la dispersión por

pixel (DP) como
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DP =
ancho de banda (nm)

número de ṕıxeles
(9.15)

Por otro lado, calculamos el tamaño de la rendija proyectada (o sea de la imagen de

la rendija) en ṕıxeles (pixel slit projection- PSP)

PSP =
tamaño de la imagen proyectadaWi(µm)

tamaño del ṕıxel (µm)
(pixels) (9.16)

Estimamos entonces a la resolución como

R = DP × PSP (9.17)

Veamos un ejemplo: Usando una red de 300 l/mm, queremos medir longitudes de onda

entre 200 nm y 1100 nm (ancho de banda de 900 nm)en un área del detector que tiene

2048 ṕıxeles. La imagen de la rendija tiene 25 µm y el tamaño de los pixeles es 14 µm.

R = DP × PSP =
900nm

2048 pixels
× 25µm

14µm
pixels =

0,43nm

pixels
× 2 pixels = 0,9nm (9.18)

9.7. Medición de absorbancia

El espectrómetro más sencillo es aquel que mide la absorbancia, es decir cuanta luz fue

absorbida por una muestra traslúcida. Supongamos que tenemos una muestra traslucida,

que permite transmitir parte de la luz incidente, como se esquematiza en la Fig. 9.12.

Figura 9.12: Esquema de un haz atravesando una muestra traslucida. Ejemplos de muestras con
distintas concentraciones

Luego de atravesar una distancia l podemos escribir al campo como
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E = Eoe
i(kl−ωt) (9.19)

en donde k es el número de onda en el material. El número de onda en el material es

k = ko ¯n(λ) con ko = 2π/λ, siendo λ la longitud de onda en el vaćıo y ¯n(λ) el ı́ndice de

refracción complejo ¯n(λ) = n(λ)+ iκ(λ). Sustituyendo en la expresión anterior obtenemos

E = Eoe
i(kon̄(λ)l−ωt) = Eoe

i(kon(λ)l−ωt+iκ(λ)l) = Eoe
i(kon(λ)l−ωt)e−κ(λ)l (9.20)

Si queremos calcular la intensidad, tomamos módulo cuadrado en la expresión anterior

para obtener

I(λ) = Io(λ)e
−κ(λ)l (9.21)

De este modo, la transmisión en función de la longitud de onda resulta

T (λ) =
I(λ)

Io(λ)
= e−κ(λ)l (9.22)

Se define absorbancia a κ(λ)l, y la podemos obtener calculando el logaritmo de la

transmitancia

A = κ(λ)l = −ln

(
I(λ)

Io(λ)

)
(9.23)

La ley de Beer-Lambert, es una ley emṕırica que establece una relación entre la ab-

sorbancia y la concentración C de un absorbente, y se expresa como

A = C ϵ(λ) l (9.24)

donde ϵ(λ) es el coeficiente de absorción molar que depende del material y de la

longitud de onda.

9.8. Experimento

Discutir los siguientes dispositivos experimentales sus posibles ventajas y desventajas,

que distancias focales consideraŕıan

Caracterizar la respuesta en intensidad (Malus) y tiempo de exposición de nuestro

sensor de luz (cámara)
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Figura 9.13: Dispositivos propuestos

Armar y caracterizar el dispositivo experimental (medir todas las distancias, au-

mento, throughput)

Comparando con el espectro del LED medido con el espectrómetro Thorlabs, cali-

brar en longitudes de onda el espectro medido

Usar el dispositivo experimental para medir absorbancia o espectros de emisión
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Caṕıtulo 10

Apéndice

10.1. Transformada de Fourier de la señal del Michel-

son, alimentación sinusoidal

Queremos hallar la transformada de Fourier de la señal medida en el Michelson cuando

se desplaza el piezoeléctrico, que tiene la forma

I(t) = 1 + cos(2kx(t))

donde x(t) es la posición en función del tiempo, para la que vamos a suponer que es

senoidal periódica x(t) = Acos(ωt), de modo que

I(t) = 1 + cos(2kAcos(ωt))

La tansformada de Fourier de la intensidad es

F{I(t)}(ω) = δ(ω) + F{cos(2kAcos(ωt))}

Afortunadamente, hay una forma sencilla de resolver la transformada del segundo

término. En primer lugar, escribamos al coseno como suma de exponenciales

F{cos(2kx(t))}(ω) = 1

2

(
F{ei2kx(t)}(ω) + F{e−i2kx(t)}(ω)

)
Resolver cada uno de estos términos ahora es más sencillo, tomemos uno de ellos (el

otro se resuelve igual, cambiando k por −k. Usamos la representación en serie de Fourier

para expresar la función exponencial en términos de funciones de Bessel:

ei2kA cos( 2π
T

t) =
∞∑

n=−∞

inJn(2kA)e
in 2π

T
t
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Donde Jn es la función de Bessel de primera clase de orden n. La transformada de

Fourier de ein
2π
T

t es un delta de Dirac centrado en 2πn
T
:

F{ein
2π
T

t} = δ

(
ω − 2πn

T

)
Entonces, la transformada de Fourier de ei2kA cos( 2π

T
t) es:

F
{
ei2kA cos( 2π

T
t)
}
(ω) =

∞∑
n=−∞

inJn(2kA)δ

(
ω − 2πn

T

)
Es decir, es un peine de deltas, centradas en múltiplos de la frecuencia de excitación,

y amplitudes dadas por las J de Bessel. Es decir, la información del desplazamiento, está

en las amplitudes y no en las frecuencias.

10.2. Transformada de Fourier de la señal del Michel-

son, alimentación triangular

Queremos hallar la transformada de Fourier de la señal medida en el Michelson cuando

se desplaza el piezoeléctrico, que tiene la forma

I(t) = 1 + cos(kx(t))

donde x(t) es la posición en función del tiempo, para la que vamos a suponer que es

triangular periódica. Una onda triangular con peŕıodo T y amplitud 1 se puede representar

como:

x(t) =

 4
T
t− 1 para 0 ≤ t < T

2

− 4
T
t+ 3 para T

2
≤ t < T

Como es periódica podemos expresarla como una serie de Fourier de la forma

x(t) =
∞∑

n=−∞

cne
i 2πn

T
t

con

cn = xo
8

π2

(−1)(n−1)/2

n2

De modo que
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x(t) = xo
8

π2

∞∑
n=1, impar

(−1)(n−1)/2

n2
cos

(
2πn

T
t

)

Transformada de Fourier de 1 + cos(kx(t)):

1. Transformada de Fourier del Término Constante 1

Usamos que la transformada de Fourier de una función constante c está dada por:

F{c}(ω) = cδ(ω)

Para c = 1:

F{1}(ω) = δ(ω)

Esto significa que vas a tener señal en la transformada para frecuencia ω = 0

2. Transformada de Fourier de cos(kx(t))

Necesitamos calcular:

F{cos(kx(t))}(ω) = F

{
cos

(
k

∞∑
n=−∞

cne
i 2πn

T
x

)}
donde los cn son los que se dieron previamente. Para calcular esta transformada, vamos

a escribir el coseno en término de exponenciales y luego calcular la transformada de

exponenciales de la siguiente manera

F{cos(kx(t))}(ω) = 1

2

(
F{eikx(t)}(ω) + F{e−ikx(t)}(ω)

)

Enfoquémosnos en uno solo de los términos, por ejemplo en F{eikx(t)}(ω) porque cal-

culando uno, el resultado del otro se obtienen cambiando k por −k. Tenemos que usar la

propiedad que la exponencial de una sumatoria, es el producto de exponenciales, es decir:

eikx(t) = eik
∑∞

n,n=1, odd cne
i 2πn

T
t

=
∞∏

n=1, odd

eikcn cos( 2πn
T

t)
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Ahora, podemos calcular la transformada de un producto de exponenciales, para lo que

vamos a usar que la transformada de un producto es la convolución de la transformadas.

Es decir, vamos a usar que

F{ f · g}(ω) = F{ f}(ω) ∗ F{ g}(ω)

Entonces nos queda,

F{ eikx(t)}(ω) = F{ eikc1 cos(
2π1
T

t)} ∗ F{ eikc3 cos(
2π3
T

t)} ∗ ....F{ eikcn cos( 2πn
T

t)} ∗ ... (10.1)

Es decir, que si resolvemos la transformada de Fourier de un término genérico al-

canza, porque todos tienen la misma forma. La transformada de un término genérico la

conocemos y vale (ver más abajo el cálculo)

F
{
eikcs cos(

2πs
T

t)
}
(ω) =

∞∑
n=−∞

inJn(kcs)δ

(
ω − 2πns

T

)
(10.2)

en donde Jn son funciones de Bessel de primer tipo de orden n.

Lo que viene ahora seria reemplazar cada uno de los términos en la ecuación 10.1,

es bastante ĺıo, pero lo importante es darse cuenta que cada uno de los términos de la

productoria tiene una δ en frecuencias que son únicamente múltiplos de la frecuencia de

la alimentación, y por lo tanto, en principio, no debeŕıan aparecer frecuencias que tengan

que ver con el desplazamiento del piezo. En cambio, la información del desplazamiento

del piezo está en las amplitudes, es decir, en las Jn(kcs). Más abajo hay una cuenta de

dos exponenciales, pero con esta justificación en principio quedaŕıa demostrado, que no

hay info en las frecuencias sobre el desplazamiento de los piezos.

10.2.1. Transformada de Fourier del producto de dos exponen-
ciales

Para encontrar la transformada de Fourier del producto de las dos funciones, realiza-

mos la convolución de las transformadas de Fourier individuales:

F
{
eikcs cos(

2πs
T

t)
}
∗ F

{
eikck cos( 2πk

T
t)
}

150 Apuntes Laboratorio 2, Cátedra Prof. M.G. Capeluto



La convolución de dos deltas de Dirac δ(ω − ω1) y δ(ω − ω2) se realiza de la siguiente

manera:

(δ(ω − ω1) ∗ δ(ω − ω2))(ω) =

∫ ∞

−∞
δ(ω′ − ω1)δ(ω − ω′ − ω2) dω

′ = δ(ω − (ω1 + ω2))

Aplicando esto a nuestras series de funciones de Bessel, obtenemos:

∞∑
n=−∞

inJn(kcs)δ

(
ω − 2πns

T

)
∗

∞∑
m=−∞

imJm(kck)δ

(
ω − 2πmk

T

)

=
∞∑

n=−∞

∞∑
m=−∞

inimJn(kcs)Jm(kck)δ

(
ω − 2π(ns+mk)

T

)
La transformada de Fourier del producto de las dos funciones es:

F
{
eikcs cos(

2πs
T

t)eikck cos( 2πk
T

t)
}
(ω) =

∞∑
n=−∞

∞∑
m=−∞

in+mJn(kcs)Jm(kck)δ

(
ω − 2π(ns+mk)

T

)

10.2.2. Todas las frecuencias

Para calcular la transformada de Fourier del producto infinito de exponenciales de

cosenos, es útil recordar que cada exponencial de un coseno se puede expresar en términos

de una serie de funciones de Bessel. Usaremos la propiedad de que la transformada de

Fourier de un producto de funciones en el dominio del tiempo corresponde a la convolución

de sus respectivas transformadas de Fourier en el dominio de la frecuencia.

Para encontrar la transformada de Fourier del producto de todas estas funciones, rea-

lizamos la convolución de todas sus transformadas de Fourier. La convolución de muchas

deltas de Dirac resulta en una delta de Dirac centrada en la suma de las posiciones de

las deltas individuales. Por lo tanto, la transformada de Fourier del producto infinito será

una suma infinita de convoluciones.

F

{
∞∏

n=1, odd

eikcn cos( 2πn
T

t)

}
(ω) = (10.3)

∞∑
m1=−∞

∞∑
m3=−∞

∞∑
m5=−∞

· · ·

(
∞∏

n=1, odd

imnJmn(kcn)

)
δ

(
ω − 2π

T

∞∑
n=1, odd

mnn

)
Donde la suma se realiza sobre todos los ı́ndices mn correspondientes a los términos

impares n.
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10.3. Intentemos otra forma más directa

Voy a pensar al problema como si fuera una red de difracción. En cada periodo de la

señal, voy a pensar que hay una fuente puntual, de modo que en el plano transformado

tengo la interferencia de esas fuentes puntuales, es decir, los .ordenes de difracción”van a

estar en los múltiplos enteros de la frecuencia de la señal. La modulación (análogo a la

campana de difracción) va a estar dada por la transformada de Fourier de un peŕıodo.

Entonces, hagamos solo para un peŕıodo:

F{I(t)} = F {1 + cos(2kx(t))} (ω) = 1

T

∫ T

0

(1 + cos(2kx(t))) e−iωt dt

Donde T es el peŕıodo de la función x(t), y ω es la frecuencia angular.

Recordando que

x(t) = A

 4
T
t− 1 para 0 ≤ t < T

2

− 4
T
t+ 3 para T

2
≤ t < T

Entonces

F{I(t)} =
1

T

∫ T

0

(1 + cos(2kx(t))) e−iωt dt =

F{I(t)} = δ(ω)+
1

T

∫ T/2

0

(cos(2kA(4t/T − 1)) e−iωt dt+
1

T

∫ T

T/2

(cos(2kA(−4t/T + 3)) e−iωt dt

Usando el resultado parcial 1 obtenemos (ver siguiente sección)

F{I(t)} = δ(ω) +
2

T
e−iTω

4 e−iTω
4 cos

(
ω
T

4

)∫ T/4

−T/4

cos

(
8kAv

T

)
e−iωv dv

y ahora usando el resultado parcial 2

F{I(t)} = δ(ω)+
1

2
e−iTω

2 cos

(
ω
T

4

)[
sinc

((
8kA

T
− ω

)
· T
4

)
+ sinc

((
8kA

T
+ ω

)
· T
4

)]
Aca va un plot para valores arbitrarios, sin tener en cuenta el termino de la frecuenia

negativa

Solo ver que el máximo de la función (en azul) no está ni en el máximo de la sinc ni en

el del coseno (dibujados en gris clarito)....pero se puede hallar aunque sea numéricamente.
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Figura 10.1

10.3.1. Solución de la integral

Resultado parcial 1

En primer lugar usemos las propiedades de cos de la suma:

Integral =
1

T

[
cos(6kA)

∫ T

T/2

cos

(
8kAt

T

)
e−iωt dt+ sin(6kA)

∫ T

T/2

sin

(
8kAt

T

)
e−iωt dt

]

+
1

T

[
cos(2kA)

∫ T/2

0

cos

(
8kAt

T

)
e−iωt dt+ sin(2kA)

∫ T/2

0

sin

(
8kAt

T

)
e−iωt dt

]

Haciendo el cambio de variables u = t− T/2

Integral =
1

T

[
cos(6kA)e−iω T

2

∫ T/2

0

cos

(
8kAu

T
+ 4kA

)
e−iωu du

]
+

1

T

[
sin(6kA)e−iω T

2

∫ T/2

0

sin

(
8kAu

T
+ 4kA

)
e−iωu du

]
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+
1

T

[
cos(2kA)

∫ T/2

0

cos

(
8kAt

T

)
e−iωt dt+ sin(2kA)

∫ T/2

0

sin

(
8kAt

T

)
e−iωt dt

]

Para simplificar aún más, observamos que las integrales tienen formas similares y

podemos combinar términos:

I(t) =
1

T

{
e−iω T

2

∫ T/2

0

[
cos(6kA) cos

(
8kAu

T
+ 4kA

)
+ sin(6kA) sin

(
8kAu

T
+ 4kA

)]
e−iωu du

+

∫ T/2

0

[
cos(2kA) cos

(
8kAt

T

)
+ sin(2kA) sin

(
8kAt

T

)]
e−iωt dt

}
Luego, usando la identidad de ángulos suma para coseno y seno:

Integral =
1

T

{
e−iω T

2

∫ T/2

0

cos

(
8kAu

T
+ 4kA− 6kA

)
e−iωu du+

∫ T/2

0

cos

(
8kAt

T
− 2kA

)
e−iωt dt

}

Finalmente, simplificando las integrales:

Integral =
1

T

{
e−iω T

2

∫ T/2

0

cos

(
8kAu

T
− 2kA

)
e−iωu du+

∫ T/2

0

cos

(
8kAt

T
− 2kA

)
e−iωt dt

}

Luego, sacando factor común la integral

Integral =
1

T

{
(e−iω T

2 + 1)

∫ T/2

0

cos

(
8kAu

T
− 2kA

)
e−iωu du

}
o lo que es lo mismo

Integral =
2

T
e−iTω

4 cos

(
ω
T

4

)∫ T/2

0

cos

(
8kAu

T
− 2kA

)
e−iωu du

Haciendo un nuevo cambio de variables v = u− T/4, llegamos al resultado parcial

1:

Integral =
2

T
e−iTω

4 e−iTω
4 cos

(
ω
T

4

)∫ T/4

−T/4

cos

(
8kAv

T

)
e−iωv dv

Resultado parcial 2
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Queremos ahora resolver la siguiente integral

Integral2 =

∫ T/4

−T/4

cos

(
8kAv

T

)
e−iωv dv,

Expresamos coseno como combinación de exponenciales

∫ T/4

−T/4

cos

(
8kAv

T

)
e−iωv dv =

∫ T/4

−T/4

ei
8kAv
T + e−i 8kAv

T

2
e−iωv dv.

Esto se puede separar en dos integrales

=
1

2

(∫ T/4

−T/4

ei(
8kA
T

−ω)v dv +

∫ T/4

−T/4

e−i( 8kA
T

+ω)v dv

)
.

La primer integral: ∫ T/4

−T/4

ei(
8kA
T

−ω)v dv.

Llamemos α = 8kA
T

− ω. Entonces:

=

∫ T/4

−T/4

eiαv dv =

[
eiαv

iα

]T/4
−T/4

=
eiα·

T
4 − e−iα·T

4

iα
=

2i sin
(
α · T

4

)
iα

=
2 sin

(
α · T

4

)
α

.

Entonces

2 sin
((

8kA
T

− ω
)
· T

4

)
8kA
T

− ω
.

La segunda integral

Usando el mismo truco del cambio de variables∫ T/4

−T/4

e−i( 8kA
T

+ω)v dv =
2 sin

((
8kA
T

+ ω
)
· T

4

)
8kA
T

+ ω
.

Combinando los resultados se obtiene∫ T/4

−T/4

cos

(
8kAv

T

)
e−iωv dv =

sin
((

8kA
T

− ω
)
· T

4

)
8kA
T

− ω
+

sin
((

8kA
T

+ ω
)
· T

4

)
8kA
T

+ ω
.

∫ T/4

−T/4

cos

(
8kAv

T

)
e−iωv dv =

T

4
sinc

((
8kA

T
− ω

)
· T
4

)
+
T

4
sinc

((
8kA

T
+ ω

)
· T
4

)

Apuntes Laboratorio 2, Cátedra Prof. M.G. Capeluto 155


	Introducción
	Objetivo de este cuaderno
	Generalidades sobre ondas
	Guía de lectura

	Ondas de ultrasonido
	Los piezoeléctricos como transductores de ultrasonido
	Calibración y regresión lineal
	Modelando la respuesta en frecuencias del par emisor-receptor
	Características de las ondas emitidas por los piezoeléctricos
	Repaso de ondas en gases y condiciones de borde
	Interferencia de ondas de ultrasonido
	Interferómetro de Fabry-Pérot acústico
	Interferómetro de Young acústico


	La respuesta del detector en las mediciones
	Convolución: operación matemática
	Convolución: intrínseca en el proceso de medición
	El detector ideal y el real

	Ondas estacionarias
	Ondas estacionarias en cuerdas
	Condiciones de contorno
	Cuerda con dos extremos fijos
	Cuerda con un extremo libre y uno fijo
	Cuerda con un extremo fijo y otro forzado
	Experimento: ondas estacionarias en cuerdas.

	Ondas estacionarias en tubos
	Condiciones de borde en tubos
	Modos normales en tubos
	Experimentando con tubos: el tubo de Kundt


	Composición de señales
	Recordando algunas cosas vistas en Física 2 
	La serie y la transformada de Fourier
	Ejemplo del uso de la serie de Fourier en el problema de condiciones iniciales en sistemas acotados
	Ejemplo del uso de la transformada de Fourier en óptica

	Sintonizando señales con los piezoeléctricos
	Sintonizando señales periódicas
	Respuesta impulsiva de un sistema
	Respuesta al impulso
	Respuesta al escalón

	Frecuencia de muestreo y transformada de Fourier

	Ondas electromagnéticas
	Polarización de la luz
	Fenómenos que polarizan la luz
	Polarización por reflexión
	Polarización por dicroísmo
	Polarización por dispersión (scattering)
	Polarización por birrefringencia

	Detectores de luz
	Características de los láseres
	Polarización
	Estabilidad Temporal
	Distribución espacial de intensidad
	Divergencia


	Difracción
	La integral de Kirchhoff
	Aproximación de Fresnel
	Aproximación de Fraunhofer
	El truco de la lente

	Difracción por una rendija rectangular
	Máscaras complementarias

	Lentes y sistemas formadores de imágenes
	Sistemas de lentes simples
	La ecuación de la lente, las bases de la óptica geométrica
	Apertura numérica, profundidad de foco y resolución

	Sistemas formados por varias lentes

	Espectrometría
	Espectrómetros
	La detección en espectrometría
	Redes de difracción
	La difracción de una fuente no monocromática
	Resolución
	La red de difracción: resolución límite o resolución limitada por difracción o poder resolvente cromático
	La rendija de entrada
	Los píxeles en el detector

	Estimación de la resolución
	Medición de absorbancia
	Experimento

	Apéndice
	Transformada de Fourier de la señal del Michelson, alimentación sinusoidal
	Transformada de Fourier de la señal del Michelson, alimentación triangular
	Transformada de Fourier del producto de dos exponenciales
	Todas las frecuencias

	Intentemos otra forma más directa
	Solución de la integral



