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We present details of an experiment that improves earlier attempts to study the propagation of

diffusive thermal waves inside a metal rod. In addition to technical improvements in data

acquisition and heater control, the experiment physically illustrates insightful concepts in Fourier

analysis. For example, the harmonic content and the differential damping of harmonics can be

observed in the thermal domain, thus providing a valuable extension to the standard Fourier

analysis of electric circuits. VC 2014 American Association of Physics Teachers.

[http://dx.doi.org/10.1119/1.4881608]

I. INTRODUCTION

If a metallic sample is periodically heated at one end, ther-
mal oscillations will propagate along the sample. This is the
mainstay of a beautiful experiment performed by Bodas and
co-workers,1 where an application of the one-dimensional
heat equation to a propagating thermal disturbance leads to
the estimation of the thermal diffusivity of copper. In that pa-
per, it is claimed that various Fourier components of the
advancing disturbance are differentially damped; however,
this claim was not experimentally observable as readings
were manually read from a hand-held device while time was
measured using a stopwatch. Here we show that by introduc-
ing computer-based control and data acquisition this experi-
ment can be transformed into an elegant demonstration of
Fourier analysis, enabling the harmonic content of a propa-
gating disturbance to be visualized with astounding clarity.
The key is inputting the data to a computer to allow for nu-
merical operations, such as Fast Fourier Transformation
(FFT) and the measurement of spectral density. The experi-
ment therefore manifests as a beautiful demonstration of a
mathematical phenomenon, to borrow Berry’s expression,2

something our students thoroughly enjoy.
It is interesting to understand the nature of these wave-like

oscillations and to decipher whether they constitute a “wave”
or not. The concept of a wave itself is not as simple as it
seems,3 although there are physical attributes that help us
infer whether a particular phenomenon qualifies as a wave.
First, these wave-like thermal oscillations do not transport
energy.4 Furthermore, they have no wavefronts, do not
reflect or refract when encountering an interface, and cannot
be transmitted in a preferred direction in a homogeneous me-
dium.5 Thus, these wavy thermal oscillations can by no
means be regarded as waves similar to those that transmit
sound or radio signals. Nevertheless, these oscillations are
sometimes referred to in the literature as diffusion-waves,
mainly because the accompanying transmission of energy or
particles is diffusion limited.5,6

Being fundamentally different from conventional waves
and having various important applications in different disci-
plines of science, diffusion-waves certainly deserve some
attention. An in-depth investigation of the phenomena should
help us understand the basic difference between conventional
waves and diffusion-waves. Moreover, these diffusive thermal
oscillations can be used in an undergraduate-level experi-
ment1 to measure the thermal properties of a material with
high efficiency and reasonable accuracy. Although

applications of diffusion-waves are not an immediate concern
of this article, it is worth mentioning a few examples. When a
modulated laser beam is irradiated on a surface, thermal diffu-
sion waves are generated that in turn create a refractive index
gradient. A probe laser moving parallel to the surface will
then be deflected harmonically, a phenomenon known as the
“mirage effect” that gives rise to a technique called Photo-
thermal Deflection Spectroscopy (PDS). Another example is
using intermittent laser heating and thermal expansion to cre-
ate a thermoelastic deformation bump. Blackbody radiation
can then be intercepted from the thermally oscillating surface
in a technique called Photo-Thermal Radiometry (PTR).
Lastly, a thermal oscillation can be generated inside a medium
with a characteristic skin depth; the diffusing oscillation can
be detected using a pyroelectric sensor in a technique known
as Photo-Pyro-Electric Spectroscopy (PPES).6

II. THE EXPERIMENT

A. Apparatus

Our experiment is a modern adaptation of the original
experiment by Bodas et al.1 We use a 50-cm cylindrical cop-
per bar with a homemade 25 -W cartridge heater inserted into
one end. The rod is wrapped inside 4–5 turns of 1/8-in. fiber-
glass insulation paper to minimize heat loss. Figure 1 shows
the experimental arrangement. A pulsed dc voltage set at
25 V supplies an intermittent current of 1 A to the heater and
is switched into the circuit by means of an electromechanical
relay actuated by a computer-generated signal. The heater is
actuated at a frequency of x1/(2p)¼ 5 mHz, applying a
square-wave heating pulse to the bar. Temperatures at four
different points along the bar are measured using K-type
thermocouples whose cold-junction temperatures are moni-
tored by a thermistor. The actuation pulse and temperatures
are interfaced using National Instrument’s PCI 6221
data-acquisition card. Adding computer interfacing provides
unique insight into the physics of the problem because we
can (a) accurately measure the oscillation amplitudes at mul-
tiple positions simultaneously as a function of time and (b)
perform a Fast Fourier Transform (FFT) on the finely
sampled numerical data sets.

B. Observations

The temperature variation for the four thermocouples,
each separated by 3.3 6 0.2 cm, is shown in Fig. 2 and
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displays several noteworthy features. First, the temperatures
vary in an oscillatory fashion riding on top of their respective
average values. The average temperature rises in the tran-
sient stage and in about half an hour reaches a constant
steady state; the oscillations persist until the heater is turned
off. The thermocouple nearest the heat source registers an
approximately triangular variation and the temperature
becomes increasingly more sinusoidal as you move farther
from the heat source. This (approximate) triangular shape
arises out of a fortuitous choice of the actuation frequency
and the distance of the first thermocouple from the heater’s
surface. We revisit the shape of this wave in Sec. II D.
Eventually, at the thermocouple farthest from the heat
source, the temperature fluctuation (now much smaller in
amplitude) is nearly a perfect sinusoid. Second, we also
observe that the oscillations are not in phase; there is a phase
lag between successive thermocouples. Third, the average
temperature for each thermocouple is different indicating the
existence of a mean temperature gradient. It is only the gra-
dient in the mean temperature field that in fact causes heat to
transfer from the hot to cold end.4 Last, we observe that all
four thermocouples begin at the same temperature and, after
the heater is turned off, the curves merge again showing
equilibration of temperature and cessation of heat flow. In
addition, the cooling region of the graph also provides a

measure of the quality of insulation of the copper rod from
its environment. In fact, one can fit the cooling data to an ex-
ponential function and determine the rate of convective heat
transfer. Several laboratory experiments investigating radia-
tive and convective heat transfer can be found in the
literature.8–10

C. Analysis

The mathematically rich structure of these fluctuations is
analyzed using Fourier analysis. The diffusive nature of the
oscillations is described by the one-dimensional heat
equation

@2T

@x2
¼ 1

D

@T

@t
; (1)

where T(x, t) is the temperature distribution along the rod, D
is the (constant) thermal diffusivity, and x¼ 0 is taken to be
the location of the first thermocouple. The solutions to the
heat equation are extensively described in numerous text-
books and analytic solutions exist for special cases.7,11 The
special case relevant to our problem is one-dimensional heat
conduction through a semi-infinite solid with temporally per-
iodic boundary conditions. Given the periodic nature of the
heating function, we seek a steady-state solution in the form
of a Fourier series:

Tðx; tÞ ¼ c0ðxÞ þ
X1

n¼1;2;…

cnðxÞcosðxnt� enÞ

¼ c0ðxÞ þ
X1

n¼1;2;…

cnðxÞR eiðxnt�enÞf g; (2)

where the symbolRf� � �g represents the real part of the func-
tion. Here, the cn’s are the (position dependent) Fourier coef-
ficients, xn¼ nx1 are the Fourier frequencies, and en are
phase factors. Note that the position dependence is contained
entirely in the Fourier coefficients and is separate from the
time-dependent exponentials. The zero-frequency term c0(x)
represents the mean temperature; in a moment we will
explore whether such a bias term is admitted by Eq. (1). For
notational convenience, we will drop the symbol Rf� � �g and
remember to take the real part when appropriate.

Fig. 1. (a) Schematic diagram of the experimental arrangement; (b) the switching circuit for actuating the heat source.

Fig. 2. Temperature oscillations at different points along the copper bar. The

thermocouples closer to the heat source have higher average temperatures.

A dynamic equilibrium is reached after about 30 min. At around 55 min the

heater is switched off permanently and the assembly is allowed to cool, first

under ambient conditions and then in the presence of a cooling fan.
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Inserting the ansatz (2) into Eq. (1), we obtain

d2c0ðxÞ
dx2

þ
X1

n¼1;2;…

d2cnðxÞ
dx2

eiðxnt�enÞ

¼
X1

n¼1;2;…

i
nx1

D
cnðxÞeiðxnt�enÞ; (3)

and equating terms with the same time dependence leads to

d2c0ðxÞ
dx2

¼ 0 and
d2cnðxÞ

dx2
¼ i

nx1

D
cnðxÞ: (4)

These equations can be solved to give

c0ðxÞ ¼ P1xþ P0 (5)

cnðxÞ ¼ An exp ð1þ iÞ
ffiffiffiffiffiffiffiffi
nx1

2D

r
x

" #

þ Bn exp �ð1þ iÞ
ffiffiffiffiffiffiffiffi
nx1

2D

r
x

" #
; (6)

where P0, P1, An, and Bn are constants that will be deter-
mined from appropriate boundary conditions. We note im-
mediately that the bias term c0(x) has a linear position
dependence, as expected. Furthermore, since we require fi-
nite temperatures as x ! 1, we must have An¼ 0 for all n.
Hence, a possible solution to the heat-equation for our
one-dimensional problem is

Tðx; tÞ ¼ ðP1xþ P0Þ þ
X1

n¼1;2;…

Bnexp �
ffiffiffiffiffiffiffiffi
nx1

2D

r
x

 !

� exp i nx1t�
ffiffiffiffiffiffiffiffi
nx1

2D

r
x� en

 !" #
: (7)

As mentioned, the constants are determined from the bound-
ary conditions, which are, interestingly, measured and
extracted from the experiment itself. As shown below, all of
the constants except P1 can be determined from the tempera-
ture oscillation at the location of the first thermocouple
(x¼ 0). Later, we can find P1 by measuring the average tem-
perature at any other location within the domain of experi-
mental observation.

At x¼ 0, Eq. (7) takes the form

Tð0; tÞ ¼ P0 þ
X1

n¼1;2;…

Bneiðnx1t�enÞ; (8)

with real part

Tð0; tÞ ¼ P0 þ
X1

n¼1;2;…

Bncos nx1t� enð Þ: (9)

The temperature measured at the first thermocouple f(t),
whose steady-state profile is shown in Fig. 3, is approxi-
mated by a triangle waveform. This waveform is comprised
of ascents and descents between the temperature extremes Tl

and Th with a period of 2p/x1 � 200 s (driving frequency is

5 mHz). Our linear approximations are shown superposed on
the temperature profile in the shaded region of Fig. 3.

Next, we write down the Fourier series for a triangle wave
of period 2p/x1 oscillating between temperatures Tl and Th:

f ðtÞ ¼ Th þ Tl

2

� �
� 2ðTh � TlÞ

p2

X1
n¼61;63;…

1

n2
einx1t (10)

¼ hTð0Þi � 4DT

p2

X1
n¼1;3;…

1

n2
cosðnx1tÞ; (11)

where h� � �i represents a time average and DT¼Th – Tl is the
difference between temperature extremes at x¼ 0.
Comparing Eqs. (9) and (11), we see that P0 ¼ hTð0Þi is the
mean temperature of the first thermocouple, en¼ 0, and
Bn¼ –4DT/(p2n2) for odd n while Bn¼ 0 for even n. Since
the variation of the dc component of the field is linear in
space, P1 can be determined from the average temperature at
some other thermocouple. Hence, the solution for our experi-
ment is

Tðx; tÞ ¼ P1xþ hTð0Þi

� 4DT

p2

X1
n¼1;3;5;…

1

n2
e�x=dn cos nx1t� x

dn

� �
;

(12)

where dn ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2D=xn

p
are “damping lengths” and P1

¼ hTðDxÞi � hTð0Þið Þ=Dx is the gradient of the average
temperatures.

The oscillatory component of the above solution is a peri-
odic function comprising the pulsing frequency x1 and
(only) its odd multiples (x3¼ 3x1, x5¼ 5x1, x7¼ 7x1,
etc.). Armed with Eq. (12), the Fourier composition of the
thermal fluctuations shown in Fig. 2 is now quite clear. The
disturbance is a sum of spatially damped odd harmonics
where the damping of the n’th harmonic is represented by
the exponential term expð�x=dnÞ. The damping lengths dn ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2D=xn

p
are mathematically similar to the skin depth and

represent the distance over which the amplitude of each har-
monic decreases to 1/e of its value at x¼ 0. As dn / 1=

ffiffiffi
n
p

the higher harmonics damp away at smaller distances; ulti-
mately, only the fundamental frequency will survive far

Fig. 3. The temporal variation of the temperature registered by the thermo-

couple located closest to the heat source (at x¼ 0). The shaded region (of pe-

riod 2p/x1) shows linear fits on the two alternating segments of the

waveform.
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from the heat source. In some sense the material is acting
like the thermal analogue of a low pass filter.

Figure 4 shows the absolute value of the FFT spectrum of
the dynamic equilibrium portion of the temperature data
shown in Fig. 2. Prior to taking the FFT we subtracted the
mean value; otherwise a large peak at zero frequency domi-
nates the spectrum with its large tails masking out the higher
harmonic content. The inset in Fig. 4 vividly shows the pres-
ence of discernible harmonics up to 11th order before the
peaks sink within the noise limit. (The eleventh order har-
monic corresponds to x11/2p¼ 11x1/2p¼ 55 mHz.)

From the spectral density curves shown in Fig. 4, we can
calculate the spectral power under the various frequency
peaks (the areas under the peaks), and by comparing these
for different thermocouple locations we can determine dn

and subsequently the thermal diffusivity. Figure 5 shows the
distance-wise variation of the spectral power for the frequen-
cies x1, x3, x5, and x7 on a semi-logarithmic scale. The

horizontal axis is distance, which for convenience is demar-
cated in terms of the four thermocouples that are separated
by 3.3 cm, while the spectral powers are shown along the
vertical axis. The slope of the n’th harmonic line is seen
from the damping term expð�x=dnÞ to be (–1/dn) and imme-
diately determines the damping length of the various har-
monics. For the lowest three frequencies, the estimated
diffusivities at the 95% coverage probability12 are
(0.81 6 0.20), (0.88 6 0.22), and (0.91 6 0.22)� 10�4 m2/s.
The accepted value of copper’s diffusivity is 1.02� 10�4

m2/s showing that our best estimates are reasonably close to
the accepted values.

D. Temperature at x 5 0

In this section, we take a closer look at the waveform
measured by the thermocouple nearest the heat source
[shown in Fig. 3 and modeled by Eq. (11)]. The heat flux
from the heater is expected to be a square pulse. The temper-
ature, however, will not follow a square pulse. In fact, accu-
rately predicting the temperature variation in an extended
solid resulting from a known heating profile is a complicated
undertaking and admits analytic expressions only in special
cases.7,11 One tractable scenario is the “lumped capacitance”
framework (see p. 51 of Incropera7) which uses an energy
balance approach to find the transient temperature response
of a solid assuming that the entire solid is held at a spatially
uniform temperature by virtue of an infinite thermal conduc-
tivity. In this simplification, which is reasonably accurate for
small objects (more precisely, objects with small Biot num-
bers), the temperature profile is described by exponential
functions and are characterized by a thermal time-constant
s¼qcv/L. Here q is the material’s density, cv the specific
heat capacity, and L the effective length scale over which
heat transfer with a source takes place. In short, smaller s
results in rapid variation of the temperature in response to a
heat flux, while larger s shows thermal inertia and sluggish
changes in temperature.

In this grossly simplistic lumped model, we can predict
the temperature variation at a point extremely close to the
heater, say, at its very tip. Suppose the actuation time period
is denoted by b¼ 2p/x1 and the time constant is s, assumed
to be identical for both the ascending and descending seg-
ments of the heating cycle. The temperature variation is then
approximately given by

Tasc ¼ Tl þ ðTh � TlÞ 1� e�t=sð Þ; for t � b=2 and

(13)

Tdes ¼ Tascðb=2Þ e�ðt�b=2Þ=s for b=2 � t � b; (14)

where Tl and Th are the temperature extremes. These curves
are plotted in Fig. 6(a) for different values of s/b. A small
value of s/b means smaller inertia relative to longer time
periods (lower x1); the temperature changes briskly and the
exponential rise and fall of the temperature are all more pro-
nounced. The curves are analogous to the charging and dis-
charging of a capacitor. On the other hand, larger values of
s/b imply greater inertia relative to shorter time periods
(rapid switching and higher x1). The temperature change is
slow and does not appreciably change before it switches
direction. In this latter case, the profile traverses only a small
early segment of the exponential, which enables a piecewise
linear approximation to be made. The simulations in Fig.

Fig. 4. (a) Fourier transforms of the temperatures measured by the thermo-

couples. Within a group of peaks, the thermocouples closer to the heat

source have the larger components. (b) Close-up of the data from the first

thermocouple in the higher frequency range.

Fig. 5. The logarithm of the area under the peaks (power) in the Fourier

transform versus the thermocouple position used as a measure of distance

from the heating source. The least square curve fits for the frequencies x,

x3, and x5 are shown. The slopes of the best-fit lines are used in computing

the thermal diffusivity. For most data points, the error bars are smaller than

the drawn circles.
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6(a) show that this piecewise linear approximation succes-
sively becomes more reasonable as s/b increases.

Now, in the real experiment, we don’t measure the tem-
perature at the heater’s tip. Instead the nearest thermocouple
is �3 cm from the heater. The temperature waveforms close
to the heater and modeled through the above equations will
of course alter as the disturbance spreads to the location of
the first thermocouple. The primary alteration is through the
frequency filtering effect described earlier. So the actual
temperature profile f(t) at x¼ 0 depends not only on the pro-
file at the tip of the heater but also the frequency-dependent
suppression of the terms. Hence, the waveform f(t) can in
principle be controlled by changing the position of the ther-
mocouple, the wattage of the heater or the frequency x1. We
precisely depict this control in Fig. 6(b). The topmost curve
is for a (low) frequency of 1 mHz, which preserves the expo-
nential shape down to the first thermocouple with little
damping. On the other extreme is the 20-mHz fluctuation
that is not only much smaller in amplitude, but has been ren-
dered into an almost perfect sinusoid with all the higher fre-
quency components effectively damped out. In between
these extremes is the fluctuation for 5 mHz, the one used in
our experiment and producing a waveform that resembles a
triangle waveform. Notice that in a triangular profile, the
fractional spectral power in the n> 1 harmonics is a mere
�10�4% ¼

P1
n>1 Bn=

P1
n�1 Bn

� �2 ¼ ð1� p2=8Þ2, showing
that the signal energy in the n> 1 harmonics has already
been damped quite significantly.

It must also be appreciated that the measurement of the
diffusivity is completely independent of the precise wave-
form observed at the first thermocouple, since the damping
length is calculated ratiometrically and the ratio is independ-
ent of the coefficients Bn. The temperature profile users
obtain in different experimental settings may well be differ-
ent but this would only change the constants Bn that are not
utilized in the determination of the diffusivity.

III. DISCUSSION

We have successfully employed this experiment in our
advanced physics laboratory, typically taken by junior stu-
dents, for four consecutive years. Students need about an
hour to familiarize themselves with the hardware, particu-
larly the temperature measurement apparatus and the princi-
ple of how the relay circuit works. The data are acquired
over a period of about 2 h, and it takes an additional 4–5 h of
data manipulation to compute thermal diffusivities and
damping lengths.

We believe that this experiment is useful in many respects.
From a hardware standpoint, it is relatively straightforward
to implement, so modern laboratories equipped with data-
acquisition tools can replicate it without difficulty. The
mathematical underpinnings are sophisticated and elegant,
and so is the instrumentation. The analysis can be framed so
that students are required to work out the derivation of the
solution, measure the boundary conditions and write down
the Fourier series, and understand how the dc component of
the oscillations correlate with energy flow. Readers are wel-
come to consult our laboratory instructions and the associ-
ated data acquisition software (LabVIEW program), both of
which are available online.13

Several important insights can be gleaned from the spatio-
temporal temperature data. First, heating and cooling are not
instantaneous processes—a square heating pattern does not
lead to a square temperature profile; instead, the temperature
rises exponentially with a time constant s. Furthermore, once
the heating is turned off, the temperature of the rod follows
Newton’s Law of Cooling10 and can be used to estimate the
convective heat transfer rates. Second, the experiment
directly evokes the original utilization of Fourier’s famous
series in solving problems in heat diffusion, dating from the
early nineteenth century.14 For our students, observing the
Fourier composition of a signal that is outside the domain of
electric currents has been inspiring and motivational, particu-
larly when the higher harmonics are naturally filtered as seen
here. Third, students gain valuable experience in applying
the FFT algorithm while having to keep an eye on frequency
re-scaling, sampling rates, resolution in the frequency do-
main, and the total time for acquisition necessary for a sensi-
ble analysis. Needless to say, we like to pose this experiment
as a real-world illustration of a beautiful mathematical
phenomenon.
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