Medición de la velocidad de la luz mediante la modulación de un láser

Myoren Reyna, Eugenia Lechuga, Yasmin Hachim Laboratorio 4, Facultad de Ciencias Exactas y <u>Naturales, UBA</u>

Un poco de HISTORIA...

Un poco de HISTORIA...

IV a.C Aristóteles creía que la luz viajaba instantáneamente

Galileo propuso prender una linterna y medir el retraso, pero no fue concluyente

Un poco de HISTORIA...

IV a.C Aristóteles creía que la luz viajaba instantáneamente

- **1667** Galileo propuso prender una linterna y medir el retraso, pero no fue concluyente
- **1676** Primera estimación exitosa: por Ole Romer, estudiando el movimiento de un satélite estimó $\mathbf{c} = 2.2 \times 10^8 \,\text{m/s}$

Un poco de HISTORIA...

1850

- IV a.C Aristóteles creía que la luz viajaba instantáneamente
- **1667** Galileo propuso prender una linterna y medir el retraso, pero no fue concluyente
 - **1676** Primera estimación exitosa: por Ole Romer, estudiando el movimiento de un satélite estimó $\mathbf{c} = 2.2 \times 10^8 \text{ m/s}$
 - Foucault fue uno de los primeros en estimar su valor con un experimento terrestre

1879 Michelson mejoró el método de Foucault añadiendo interferometría y estimó c= 2.99 ×10⁸ m/s

1879 Michelson mejoró el método de Foucault añadiendo interferometría y estimó c= 2.99 ×10⁸ m/s

Se midió cada vez con más precisión, utilizando técnicas de interferometría y relojes atómicos

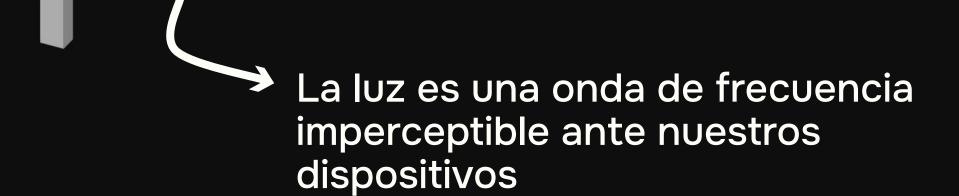
1879 Michelson mejoró el método de Foucault añadiendo interferometría y estimó c= 2.99 ×10⁸ m/s

Se midió cada vez con más precisión, utilizando técnicas de interferometría y relojes atómicos

1975 El CODATA recomendó el valor de c= 299 792 458 ± 1 m/s como el mejor estimado experimental disponible hasta ese momento

1879 Michelson mejoró el método de Foucault añadiendo interferometría y estimó c= 2.99 ×10⁸ m/s

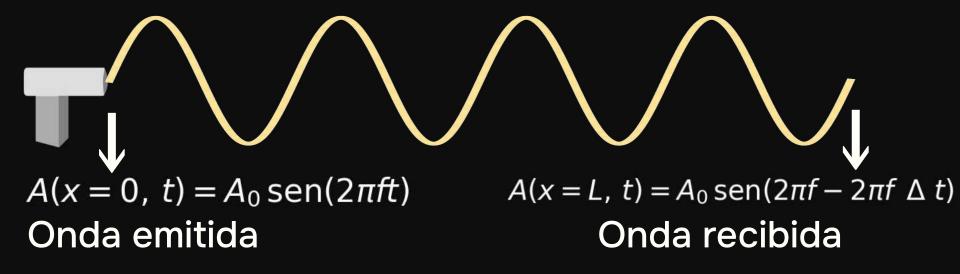
Se midió cada vez con más precisión, utilizando técnicas de interferometría y relojes atómicos

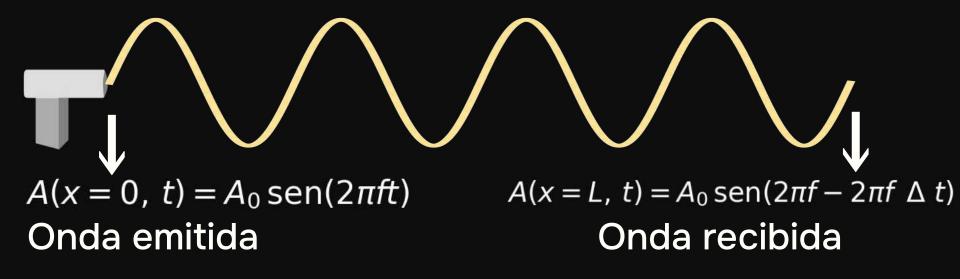

1975 El CODATA recomendó el valor de **c**= 299 792 458 ± 1 m/s como el mejor estimado experimental disponible hasta ese momento

1983 En la Conferencia General de Pesas y Medidas, se fijó por definición el valor de la velocidad de la luz como:

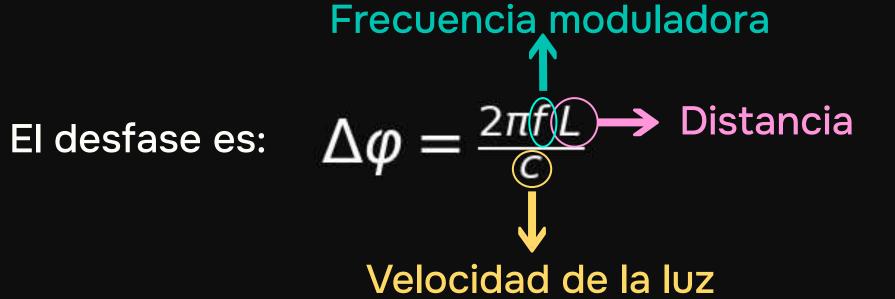
c = 299 792 458 m/s

¿Cómo podemos estimar la velocidad de la luz en este laboratorio?


¿Cómo podemos estimar la velocidad de la luz en este laboratorio?


Proponemos modular la intensidad del haz sinusoidalmente:

Proponemos modular la intensidad del haz sinusoidalmente:



Proponemos modular la intensidad del haz sinusoidalmente:

El desfase es: $\Delta \varphi = 2\pi f \Delta t$

Proponemos modular la intensidad del haz sinusoidalmente:

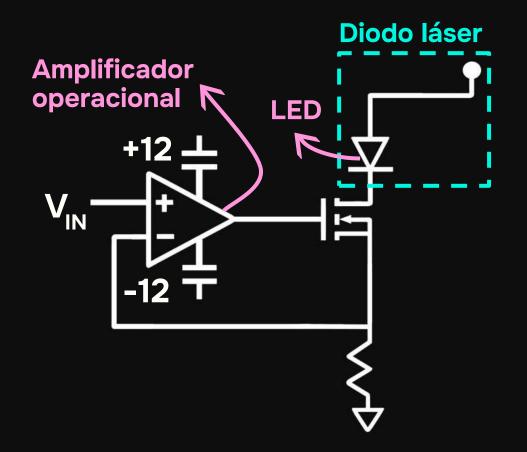
OBJETIVO

Estimar la velocidad de la luz, modulando sinusoidalmente la intensidad de un láser y midiendo el desfase a distintas distancias y frecuencia conocidas

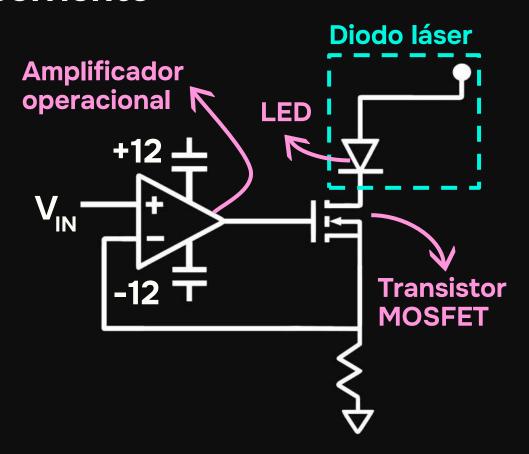
DESARROLLO EXPERIMENTAL

El diseño experimental está dividido en tres partes:

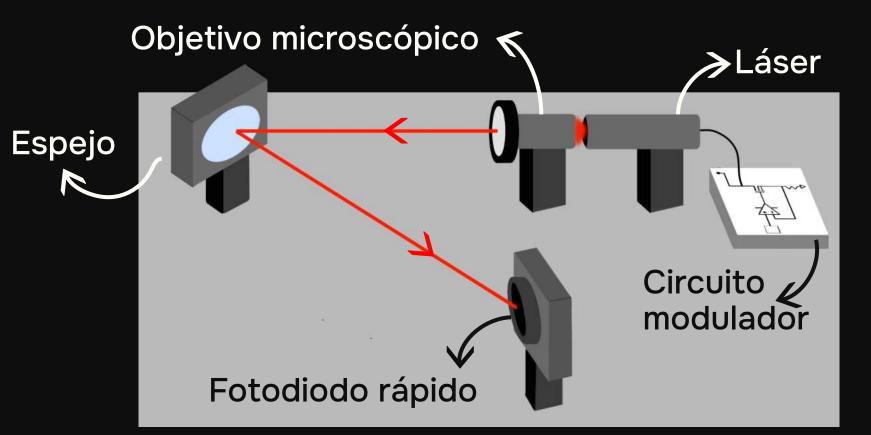
- **01.** Modulación de la intensidad del láser
- 02. Distribución de elementos ópticos
- 03. Adquisición y procesamiento de la señal


Circuito modulador de corriente

Transforma tensión en corriente proporcional

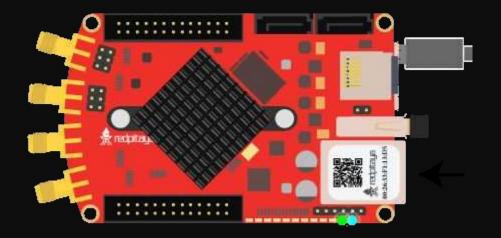

Circuito modulador de corriente

- Transforma tensión en corriente proporcional
- El OP-AMP se encarga de controlar la corriente

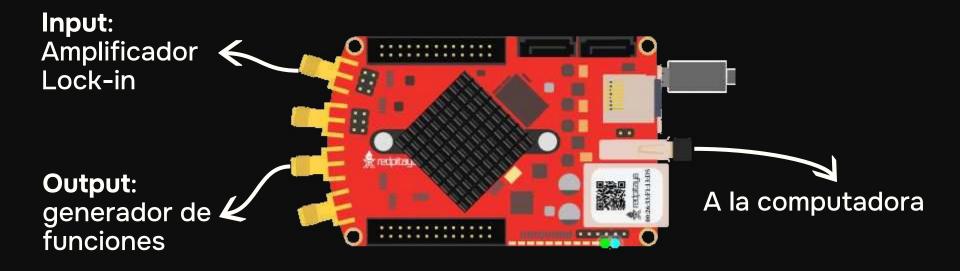


Circuito modulador de corriente

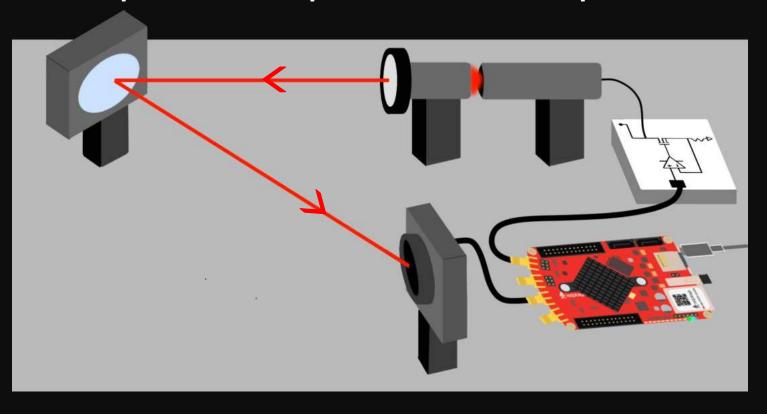
- Transforma tensión en corriente proporcional
- El OP-AMP se encarga de controlar la corriente
- El transistor amplifica la corriente



Disposición de los elementos ópticos


Adquisición y procesamiento de la señal

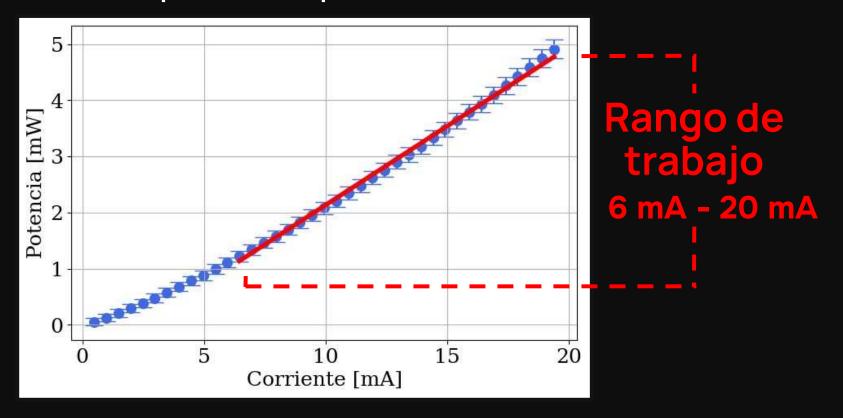
Red Pitaya: Plataforma central para la generación, adquisición y procesamiento de señales



Adquisición y procesamiento de la señal

Red Pitaya: Plataforma central para la generación, adquisición y procesamiento de señales

Dispositivo experimental completo:


¿Qué hicimos?

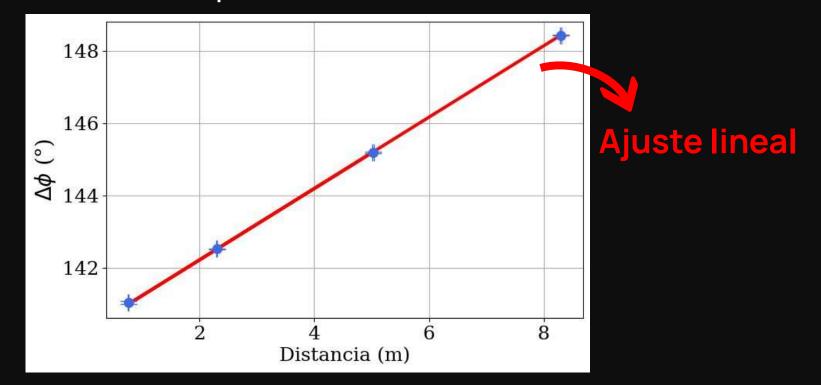
- a. Realizamos una caracterización del diodo láser para determinar rango de trabajo
- Medimos el desfase entre la señal recibida y la emitida, variando la distancia recorrida por el haz, a una frecuencia de modulación de 1MHz

MEDICIONES Y RESULTADOS

a. Caracterización del láser

Gráfico de la potencia óptica en función de la corriente:

b. Estimación de la velocidad de la luz


Consideraciones:

Realizamos 20 mediciones de cada distancia, a causa de fluctuaciones de la señal

Medimos un "offset" debido al ruido ambiente y cables del sistema, y lo restamos a cada medición

- 1. Calculamos los desfases $\Delta \phi$ para cada distancia
- Tomamos el promedio las mediciones de X e Y, calculamos el Δφ de estos y propagamos los errores

- b.
 - 1. Calculamos los desfases Δφ para cada distancia
 - Graficamos Δφ en función de la distancia recorrida

- 1. Calculamos los desfases Δφ para cada distancia
- 2. Graficamos $\Delta \phi$ en función de la distancia recorrida
- 3. Estimamos la velocidad de la luz

$$v = (3.65 \pm 0.01) \times 10^8 \text{ m/s}$$

- b
- 1. Calculamos los desfases $\Delta \phi$ para cada distancia
- 2. Graficamos $\Delta \phi$ en función de la distancia recorrida
- 3. Estimamos la velocidad de la luz

Dió cerca . . . ¿Qué pasó? ¿Cómo lo podemos mejorar?

Posibles Mejoras

Para la distancia:

- >> Utilización de una única mesa óptica graduada
- Utilización de una celda multipaso
- Medir más distancias

Posibles Mejoras

Para la distancia:

- >> Utilización de una única mesa óptica graduada
- Utilización de una celda multipaso
- Medir más distancias

Para estabilizar el haz del láser:

- Soldar las componentes del circuito en un placa
- No modificar la inclinación de los espejos

CONCLUSIONES

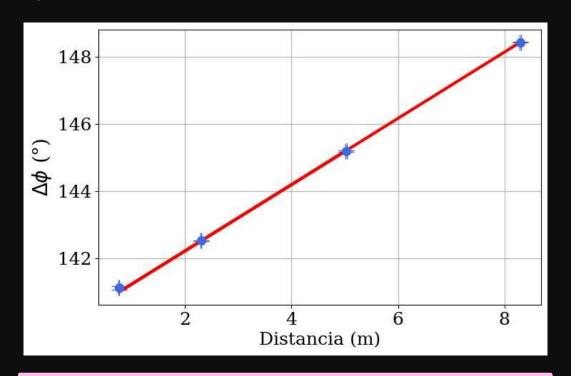
Hallamos el rango lineal en el cual el voltaje aplicado es proporcional a la corriente

- Hallamos el rango lineal en el cual el voltaje aplicado es proporcional a la corriente
- Se estimó un valor de la velocidad de la luz del mismo orden de magnitud al tabulado

- Hallamos el rango lineal en el cual el voltaje aplicado es proporcional a la corriente
- Se estimó un valor de la velocidad de la luz del mismo orden de magnitud al tabulado
- Hubo imprecisiones al momento de medir las distancias

- Hallamos el rango lineal en el cual el voltaje aplicado es proporcional a la corriente
- Se estimó un valor de la velocidad de la luz del mismo orden de magnitud al tabulado
- Hubo imprecisiones al momento de medir las distancias
- Se puede mejorar la experiencia ubicando en la mesa óptica a todos los elementos, utilizando un multipaso o realizando múltiples mediciones de cada distancia

OTROS EXPERIMENTOS


Otros experimentos

Interferometría láser: se divide el haz de luz en dos y se genera un patrón de interferencia. Variando la distancia de un haz o la frecuencia, se analiza dicho patrón.

Relojes atómicos: Debido a la precisión extremadamente alta que poseen, es posible medir el tiempo que tarda el haz de forma directa.

Gracias!

Calculando $\Delta \phi$ en cada dato de las 20 mediciones y luego haciendo un promedio:

$$c = (3.65 \pm 0.01) \times 10^8 \text{m/s}$$