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Sobre los vinculos

Me gustaria hacer una breve aclaracion sobre un error que suele aparecer en los parciales.
En general en la practica vamos a tratar con vinculos holénomos y no nos van a interesar las
fuerzas de vinculo. Lo que digo a continuacién vale para ese caso.

Si tenemos m vinculos holénomos, el nimero de grados de libertad es n = 3N —m, y usamos
n coordenadas generalizadas {qi, ..., ¢, } para describirlos. Vimos que a partir del principio de
D’Alembert uno llegaba a la siguiente expresién

i d (0L oL
Zb(%)‘%} S = 0 1)

si las fuerzas generalizadas (Q; provienen de fuerzas conservativas. Para derivar las ecuaciones
de E-L, es clave utilizar aqui que los ¢ son tndependientes. En ese caso, lo que esta dentro
del corchete se anula para cada k.

Un error comun en esta materia es no imponer los vinculos en el Lagrangiano. Eso es un
problema porque cada Lagrangiano describe un sistema distinto; si no imponen vinculos van a
estar estudiando otro problema fisico. Por ejemplo para una masa enganchada a una barra que
gira con 6 = w constante, estarfa mal escribir el siguiente Lagrangiano

L(r,7,0,0) = %(f2+r26’2)—V(«9) 2)

¢ Por qué estaria mal? Porque asi escrito £ depende de dos coordenadas, {qi,q} = {r,0}:
habria dos ecuaciones de E-L. Pero ese conjunto de ecuaciones no describe una masa que rota
con velocidad angular constante, sino una que gira libremente. Podriamos, desesperadamente,
imponer el vinculo en las ecuaciones de E-L... pueden chequear que lo que queda es inconsistente.

La inconsistencia radica en decir que el corchete en la ecuacién (1) se anula, siendo que los gy
no son independientes. Para que lo sean, debemos imponer los vinculos en £. En este ejemplo,
0 = wt y el Lagrangiano correcto seria

L(rit) = %(7‘”2+r2 2) V(0 = wt) (3)

Otro error comtn suele ser meter la informacion de una ecuacién de E-L en el Lagrangiano.
Y luego, partiendo del Lagrangiano modificado, volver a hallar las ecuaciones de E-L (modifi-
cadas): es un circulo vicioso. Nuevamente: si cambiamos el Lagrangiano, cambiamos el sistema
fisico que estamos discutiendo. Prueben con el siguiente ejemplo: en un potencial central

Lir#0,0) = S +1%%) = V() (4)



0 es ciclica y se conserva el momento angular. Reemplazando ¢ en la ecuacion de r nos queda
(= mr?0
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En cambio si reemplazamos la conservacién de ¢ en el lagrangiano

£ V(r) = mi= % —V'(r) (6)

Lir,i6,0) = S+ 5—

El signo de diferencia es altamente nocivo y modifica completamente la trayectoria.

Traten de imaginar una linea que divide al Lagrangiano de las ecuaciones de E-L. El Lagran-
giano estaria en un nivel tedrico, mas abstracto; alli solo imponemos vinculos. Las ecuaciones
estarian en un nivel practico; podemos combinarlas, reemplazar la info de una en otra, etc.

Plano Tedrico - Lagrangiano L(q,q,t) =T -V

Plano Practico - Ecuaciones E-L i % — % =0
dt \ gk g

Sobre las coordenadas ciclicas

Si el Lagrangiano no depende de alguna coordenada (por ejemplo &), se dice que la coordenada
§ es ciclica. En ese caso, de las ecuaciones de E-L existe una cantidad conservada asociada pg,
denominada como el momento conjugado de &

Si
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Ejercicio 19

Tenemos una carga (¢ > 0) en un campo magnético uniforme B = ByZ. En la tedrica vieron
que, como la fuerza magnética depende de la velocidad, el potencial también. Sin embargo las
ecuaciones de E-L se mantienen si las fuerzas se pueden escribir en funcién de un potencial de
la siguiente forma
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En particular, la fuerza de Lorentz cumple esta relaciéon, donde
L OA .
Fr=qE+qgv x B, E:—Vqﬁ—a, B=VxA (9)
El potencial es
U=qp—qv-A (10)

Muestren ustedes que de este potencial se llega a la fuerza de Lorentz usando E-L (ej. 15).

Invariance de gauge: los potenciales (de gauge) (¢, A) que describen los campos electro-
magnéticos no son unicos. Los campos E, B (y por lo tanto las ecuaciones de Maxwell) son
invariantes ante una transformacion de gauge

A - A=A+
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Piensen el potencial gravitatorio; Fy, = —VV, por lo que toda la familia de potenciales V, =

V, + cte describe la misma fuerza. £ = L + cte y las ecs de E-L son las mismas.

Antes de ir al Lagrangiano, ;jrecuerdan de Fisica 3 que movimiento hacia una particula
cargada en un B = Byz?
Spolier*: Ciclotrén. Da circulos en el plano perpendicular a B. La fuerza Fg = v x B es
perpendicular a v y a B; es radial, como la tensién en una masa atada a una cuerda. Pueden
guiarse por la fig. 1.
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Figura 1: Movimiento circular horario para una particula con carga negativa en un campo uniforme
que apunta hacia abajo (por eso las cruces).



a) Gauge de Landau

El potencial vector es A* = Byzj. Como ¢ = 0 (porque E = 0)

LE—T U= %(¢2+y2+z2)+q30xy (12)

Un comentario al margen pero til. Dijimos que los momentos canonicos conjugados de las
particulas se definen como
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para el caso general. Veremos mas sobre momentos conjugados en la guia 6. En presencia de
campos magnéticos, el momento mecanico usual p = mv se generaliza al momento canénico
P debido a la presencia de fuerzas magnéticas. Notar que P es dependiente del gauge elegido
(depende de A). En el gauge de Landau

P =mz, PE=mi, PyL =my + qBox (14)
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Continuando, vemos que £” es ciclico en y y en z, por lo que las ecuaciones de E-L nos dan
2) mi =Pl =mzy = 2(t) =20+ 2ot
Y) my—quox:PyL:cte

d -
) mi—qBoy':O:E(mab—qBoy) = P, =mi —qByy = cte (15)

En el gauge de Landau aparecen dos constantes de movimiento triviales (las coordinadas son
ciclicas) PyL y PE junto con una cantidad P, que se dedujo de las ecuaciones de movimiento.

Para hallar las soluciones resulta mas facil reemplazar la ecuacién y) de E-L en la ecuacién
x). Vamos a llegar a la ecuacién del oscilador con frecuencia w = ¢By/m

i=—-w(r—7) = z(t)= Rcos(wt+¢)+7

PL
mi — P, ’ j:m_z;)’ g:_mw
y=——->" = y(t) = —Rsin(wt+¢) +y
mw
La trayectoria viene dada entonces por una helicoidal (circulo que sube: rotacién en el plano
ry mas traslacion en z) segun la fig. 2. La frecuencia del giro es w, el centro de la 6rbita se
encuentra en R = (Z, %) y el radio desde la érbita viene dado por R? = (z — z)? + (y — 7)2.

Aprovechando estas expresiones nos vamos al inciso b). Si v(0) = 0 entonces la particula
se queda quieta (x = Xg) porque la fuerza magnética dependiente de la velocidad se anula,
FB =vxB=0.



Figura 2: Trayectoria helicoidal de una particula con carga positiva en un campo B = By2Z.

b)  Gauge Simétrico

Ahora usamos AS = (B xr)/2 = Bo(xy — yz)/2. El lagrangiano queda (¢ = 0)

B
£5=T-U = 2+ + ) + Loy - 1o) (17)

Los momentos canénicos son distintos en este gauge

B B
PS =msz, Pf:mg‘g—%y, Pf:my+q7x (18)

Las ecuaciones de E-L nos dan (solo z es ciclica)

x) mi —qBoy =0 = mi—qByy= P, = cte

Y) my+qBpt =0 = my+qByx =P, =cte
2) mié=P=mzy = z(t) =2+ 20t (19)

Pueden chequear que las soluciones son las mismas que en el caso anterior, dadas en la eq. (16).
Las cantidades conservadas P, P, = PyL, y P% = PE también son las mismas que antes. La
fisica es la misma, no importa en que gauge la describamos.

Noten que antes y era ciclica... y ahora no lo es. No pudimos leer la conservacién de 15y
directamente de £, tuvimos que deducirlo de las ecuaciones de movimiento. Dicho asi, el
gauge simétrico parece bastante inutil en comparacion al de Landau. Eso es porque en este
gauge hay otras coordenadas mas ideales para describir el problema: como tiene simetria de



rotacion, convenia usar polares. Si hacen eso les queda el lagrangiano

m B
L5 =T U= (417 4+ ) + T (20)
que es ciclico en ¢, dando la conservacion de L,. Esta conservacién no aparecié explicitamente
en las ecuaciones de E-L usando coordenadas cartesianas, se nos pasé de largo. Esta escondida
en las ecuaciones (16) y (19).

RESUMEN: En L, en vez de E y B aparecen los potenciales de gauge ¢ y A. Por lo tanto, £ de-
pende del gauge. Esto hace que en cada lagrangiano aparezcan distintas cantidades conservadas
asociadas a las coordenadas ciclicas. Sin embargo, el problema fisico real debe ser independien-
te del gauge que elijamos usar. Y podemos chequear que en cada gauge las soluciones y las
cantidades conservadas (que son varias) son las mismas.

c) Los potenciales vectores del gauge de Landau y simétrico se relacionan por una transfor-
macién de gauge tal que A° = AL+ V. Hallen v y prueben que los lagrangianos se relacionan
segun

dF
ol £L+%, F=qy (21)
Existe un resultado general que dice que si dos lagrangianos se relacionan por una derivada
total dependiente de las posiciones y el tiempo, entonces las ecuaciones de E-L son las mismas.

Podemos demostrar rdpidamente que dF'/dt cumple las ecuaciones de E-L. Como
F(a,t) = Z i + 2 (22)

entonces
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(23)

que no son otra cosa que las ecuaciones de E-L para F. Luego, si £ = £+ F y L satisface las
ecuaciones de E-L, entonces £ también lo hard ya que

oy or _d ory oc "
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Es decir que la fisica del problema es la misma porque una transformacién de gauge modifica
el lagrangiano a menos de una derivada total, obteniendo las mismas ecuaciones de movimiento.




