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Sobre los v́ınculos

Me gustaŕıa hacer una breve aclaración sobre un error que suele aparecer en los parciales.
En general en la práctica vamos a tratar con v́ınculos holónomos y no nos van a interesar las
fuerzas de v́ınculo. Lo que digo a continuación vale para ese caso.

Si tenemos m v́ınculos holónomos, el número de grados de libertad es n = 3N −m, y usamos
n coordenadas generalizadas {q1, ..., qn} para describirlos. Vimos que a partir del principio de
D’Alembert uno llegaba a la siguiente expresión

n∑
k=1

[
d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

]
δqk = 0 (1)

si las fuerzas generalizadas Qk provienen de fuerzas conservativas. Para derivar las ecuaciones
de E-L, es clave utilizar aqúı que los qk son independientes. En ese caso, lo que está dentro
del corchete se anula para cada k.

Un error común en esta materia es no imponer los v́ınculos en el Lagrangiano. Eso es un
problema porque cada Lagrangiano describe un sistema distinto; si no imponen v́ınculos van a
estar estudiando otro problema f́ısico. Por ejemplo para una masa enganchada a una barra que
gira con θ̇ = ω constante, estaŕıa mal escribir el siguiente Lagrangiano

L(r, ṙ, θ, θ̇) =
m

2
(ṙ2 + r2θ̇2)− V (θ) (2)

¿Por qué estaŕıa mal? Porque aśı escrito L depende de dos coordenadas, {q1, q2} = {r, θ}:
habŕıa dos ecuaciones de E-L. Pero ese conjunto de ecuaciones no describe una masa que rota
con velocidad angular constante, sino una que gira libremente. Podŕıamos, desesperadamente,
imponer el v́ınculo en las ecuaciones de E-L... pueden chequear que lo que queda es inconsistente.

La inconsistencia radica en decir que el corchete en la ecuación (1) se anula, siendo que los qk
no son independientes. Para que lo sean, debemos imponer los v́ınculos en L. En este ejemplo,
θ = ωt y el Lagrangiano correcto seŕıa

L(r, ṙ, t) =
m

2
(ṙ2 + r2ω2)− V (θ = ωt) (3)

Otro error común suele ser meter la información de una ecuación de E-L en el Lagrangiano.
Y luego, partiendo del Lagrangiano modificado, volver a hallar las ecuaciones de E-L (modifi-
cadas): es un ćırculo vicioso. Nuevamente: si cambiamos el Lagrangiano, cambiamos el sistema
f́ısico que estamos discutiendo. Prueben con el siguiente ejemplo: en un potencial central

L(r, ṙ, θ, θ̇) =
m

2
(ṙ2 + r2θ̇2)− V (r) (4)

1



θ es ćıclica y se conserva el momento angular. Reemplazando ℓ en la ecuación de r nos queda
ℓ = mr2θ̇

mr̈ = mrθ̇2 − V ′(r) = +
ℓ2

mr3
− V ′(r)

(5)

En cambio si reemplazamos la conservación de ℓ en el lagrangiano

L(r, ṙ, θ, θ̇) =
m

2
ṙ2 +

ℓ2

2mr2
− V (r) ⇒ mr̈ = − ℓ2

mr3
− V ′(r) (6)

El signo de diferencia es altamente nocivo y modifica completamente la trayectoria.

Traten de imaginar una ĺınea que divide al Lagrangiano de las ecuaciones de E-L. El Lagran-
giano estaŕıa en un nivel teórico, más abstracto; alĺı solo imponemos v́ınculos. Las ecuaciones
estaŕıan en un nivel práctico; podemos combinarlas, reemplazar la info de una en otra, etc.

Plano Teórico - Lagrangiano L(q, q̇, t) = T − V

Plano Práctico - Ecuaciones E-L
d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

= 0

Sobre las coordenadas ćıclicas

Si el Lagrangiano no depende de alguna coordenada (por ejemplo ξ), se dice que la coordenada
ξ es ćıclica. En ese caso, de las ecuaciones de E-L existe una cantidad conservada asociada pξ,
denominada como el momento conjugado de ξ

Si
∂L
∂ξ

= 0 ⇒ d

dt

(
∂L
∂ξ̇

)
=
∂L
∂ξ

= 0 ⇒ pξ ≡
∂L
∂ξ̇

= cte (7)
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Ejercicio 19

Tenemos una carga (q > 0) en un campo magnético uniforme B = B0ẑ. En la teórica vieron
que, como la fuerza magnética depende de la velocidad, el potencial también. Sin embargo las
ecuaciones de E-L se mantienen si las fuerzas se pueden escribir en función de un potencial de
la siguiente forma

Fk =
d

dt

(
∂U

∂q̇k

)
− ∂U

∂qk
(8)

En particular, la fuerza de Lorentz cumple esta relación, donde

FL = qE+ q v×B, E = −∇⃗ϕ− ∂A

∂t
, B = ∇⃗ ×A (9)

El potencial es
U = qϕ− q v ·A (10)

Muestren ustedes que de este potencial se llega a la fuerza de Lorentz usando E-L (ej. 15).

Invariance de gauge: los potenciales (de gauge) (ϕ,A) que describen los campos electro-
magnéticos no son únicos. Los campos E,B (y por lo tanto las ecuaciones de Maxwell) son
invariantes ante una transformación de gauge

A → A′ = A+ ∇⃗ψ

ϕ → ϕ′ = ϕ− ∂ψ

∂t
(11)

Piensen el potencial gravitatorio; F g = −∇Vg por lo que toda la familia de potenciales V ′
g =

Vg + cte describe la misma fuerza. L′ = L+ cte y las ecs de E-L son las mismas.

Antes de ir al Lagrangiano, ¿recuerdan de F́ısica 3 que movimiento haćıa una part́ıcula
cargada en un B = B0ẑ?
Spolier*: Ciclotrón. Da ćırculos en el plano perpendicular a B. La fuerza FB = v × B es
perpendicular a v y a B; es radial, como la tensión en una masa atada a una cuerda. Pueden
guiarse por la fig. 1.

Figura 1: Movimiento circular horario para una part́ıcula con carga negativa en un campo uniforme
que apunta hacia abajo (por eso las cruces).
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a) Gauge de Landau

El potencial vector es AL = B0xŷ. Como ϕ = 0 (porque E = 0)

LL = T − U =
m

2
(ẋ2 + ẏ2 + ż2) + qB0xẏ (12)

Un comentario al margen pero útil. Dijimos que los momentos canónicos conjugados de las
part́ıculas se definen como

Pk(q, q̇, t) =
∂L
∂q̇k

(q, q̇, t) ⇒ P = p+ qA (13)

para el caso general. Veremos más sobre momentos conjugados en la gúıa 6. En presencia de
campos magnéticos, el momento mecánico usual p = mv se generaliza al momento canónico
P debido a la presencia de fuerzas magnéticas. Notar que P es dependiente del gauge elegido
(depende de A). En el gauge de Landau

PL
z = mż , PL

x = mẋ , PL
y = mẏ + qB0x (14)

Continuando, vemos que LL es ćıclico en y y en z, por lo que las ecuaciones de E-L nos dan

z) mż = PL
z = mż0 ⇒ z(t) = z0 + ż0 t

y) mẏ + qB0 x = PL
y = cte

x) mẍ− qB0 ẏ = 0 =
d

dt
(mẋ− qB0 y) ⇒ P̃x = mẋ− qB0 y = cte (15)

En el gauge de Landau aparecen dos constantes de movimiento triviales (las coordinadas son
ćıclicas) PL

y y PL
z , junto con una cantidad P̃x que se dedujo de las ecuaciones de movimiento.

Para hallar las soluciones resulta más fácil reemplazar la ecuación y) de E-L en la ecuación
x). Vamos a llegar a la ecuación del oscilador con frecuencia ω = qB0/m

ẍ = −ω2(x− x̄) ⇒ x(t) = R cos(ω t+ ϕ) + x̄

y =
mẋ− P̃x

mω
⇒ y(t) = −R sin(ω t+ ϕ) + ȳ

, x̄ =
PL
y

mω
, ȳ = − P̃x

mω
(16)

La trayectoria viene dada entonces por una helicoidal (ćırculo que sube: rotación en el plano
xy más traslación en z) según la fig. 2. La frecuencia del giro es ω, el centro de la órbita se
encuentra en R̄ = (x̄, ȳ) y el radio desde la órbita viene dado por R2 = (x− x̄)2 + (y − ȳ)2.

Aprovechando estas expresiones nos vamos al inciso b). Si v(0) = 0 entonces la part́ıcula
se queda quieta (x = x0) porque la fuerza magnética dependiente de la velocidad se anula,
FB = v×B = 0.
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Figura 2: Trayectoria helicoidal de una part́ıcula con carga positiva en un campo B = B0ẑ.

b) Gauge Simétrico

Ahora usamos AS = (B× r)/2 = B0(xŷ − yx̂)/2. El lagrangiano queda (ϕ = 0)

LS = T − U =
m

2
(ẋ2 + ẏ2 + ż2) +

qB0

2
(xẏ − yẋ) (17)

Los momentos canónicos son distintos en este gauge

P S
z = mż , P S

x = mẋ− qB0

2
y , P S

y = mẏ +
qB0

2
x (18)

Las ecuaciones de E-L nos dan (solo z es ćıclica)

x) mẍ− qB0ẏ = 0 ⇒ mẋ− qB0 y = P̃x = cte

y) mÿ + qB0ẋ = 0 ⇒ mẏ + qB0 x = P̃y = cte

z) mż = P S
z = mż0 ⇒ z(t) = z0 + ż0 t (19)

Pueden chequear que las soluciones son las mismas que en el caso anterior, dadas en la eq. (16).
Las cantidades conservadas P̃x, P̃y = PL

y , y P
S
z = PL

z también son las mismas que antes. La
f́ısica es la misma, no importa en que gauge la describamos.

Noten que antes y era ćıclica... y ahora no lo es. No pudimos leer la conservación de P̃y

directamente de LS, tuvimos que deducirlo de las ecuaciones de movimiento. Dicho aśı, el
gauge simétrico parece bastante inútil en comparación al de Landau. Eso es porque en este
gauge hay otras coordenadas más ideales para describir el problema: como tiene simetŕıa de
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rotación, conveńıa usar polares. Si hacen eso les queda el lagrangiano

LS = T − U =
m

2
(ṙ2 + r2φ̇2 + ż2) +

qB0

2
r2φ̇ (20)

que es ćıclico en φ, dando la conservación de Lz. Esta conservación no apareció expĺıcitamente
en las ecuaciones de E-L usando coordenadas cartesianas, se nos pasó de largo. Está escondida
en las ecuaciones (16) y (19).

Resumen: En L, en vez de E y B aparecen los potenciales de gauge ϕ yA. Por lo tanto, L de-
pende del gauge. Esto hace que en cada lagrangiano aparezcan distintas cantidades conservadas
asociadas a las coordenadas ćıclicas. Sin embargo, el problema f́ısico real debe ser independien-
te del gauge que elijamos usar. Y podemos chequear que en cada gauge las soluciones y las
cantidades conservadas (que son varias) son las mismas.

c) Los potenciales vectores del gauge de Landau y simétrico se relacionan por una transfor-

mación de gauge tal que AS = AL+∇⃗ψ. Hallen ψ y prueben que los lagrangianos se relacionan
según

LS = LL +
dF

dt
, F = q ψ (21)

Existe un resultado general que dice que si dos lagrangianos se relacionan por una derivada
total dependiente de las posiciones y el tiempo, entonces las ecuaciones de E-L son las mismas.
Podemos demostrar rápidamente que dF/dt cumple las ecuaciones de E-L. Como

Ḟ (q, t) =
dF

dt
(q, t) =

∑
k

∂F

∂qk
q̇k +

∂F

∂t
(22)

entonces

d

dt

(
∂Ḟ

∂q̇k

)
=

d

dt

(
∂F

∂qk

)
=
∑
i

∂

∂qi

(
∂F

∂qk

)
q̇i +

∂

∂t

(
∂F

∂qk

)
=

∂

∂qk

(∑
i

∂F

∂qi
q̇i +

∂F

∂t

)
=
∂Ḟ

∂qk

(23)
que no son otra cosa que las ecuaciones de E-L para Ḟ . Luego, si L′ = L+ Ḟ y L satisface las
ecuaciones de E-L, entonces L′ también lo hará ya que

d

dt

(
∂L′

∂q̇k

)
− ∂L′

∂qk
=

d

dt

(
∂L
∂q̇k

)
− ∂L
∂qk

(24)

Es decir que la f́ısica del problema es la misma porque una transformación de gauge modifica
el lagrangiano a menos de una derivada total, obteniendo las mismas ecuaciones de movimiento.

6


