
Mecánica Clásica - 2do. cuatrimestre de 2025

Guía 5: Relatividad especial

Cinemática relativista

1. El primer postulado de la relatividad especial dice que las leyes de la naturaleza son las mismas para
todo sistema de referencia inercial. En la física Newtoniana, estos referenciales pueden diferir en alguna
combinación de las del grupo de Galileo:

Boosts: r′ = r−Vt y t′ = t

Traslaciones: r′ = r+ d y/o t′ = t+ T

Rotaciones: r′ = Rr y t′ = t , con R ∈ R3×3 una matriz de rotación tal que RTR = I

Pruebe que las leyes de Newton son invariantes ante el grupo de Galileo, así como la distancia |∆r| =
|rA − rB| y el tiempo transcurrido ∆t = tA − tB entre dos eventos A y B.

Las leyes de Maxwell, en cambio, no son invariantes ante transformaciones de Galileo (dependen de
las velocidades de las cargas), ni tampoco la ecuación de ondas que describe la propagación de ondas
(en este caso electromagnéticas). Puede intentar probar este último punto.

2. El segundo postulado de la relatividad especial afirma que la velocidad de la luz (en módulo) es la
misma para todo sistema de referencia inercial. Esto implica que las coordenadas de dos referenciales
con velocidad relativa V están relacionadas por las transformaciones de Lorentz, que en su versión
tridimensional están dadas por

ct′ = γ(ct− β · r∥)
r′∥ = γ(r∥ − βct)

r′⊥ = r⊥ ,

donde r∥ y r⊥ son las componentes de r paralelas y perpendiculares a V, β = V/c, y γ = 1/
√

1− β2.
Este es el grupo de Lorentz. Junto con las traslaciones y rotaciones, forman el grupo de Poincaré.

a) Particularice al caso de una velocidad V = V x̂ para recuperar la forma unidimensional conocida:

ct′ = γ(ct− βx)

x′ = γ(x− βct)

y′ = y, z′ = z .

b) A partir de las transformaciones de Lorentz, obtenga la fórmula de contracción de longitudes
para un cuerpo en movimiento y la de dilatación temporal para un sistema en movimiento. Ilustre
ambos efectos en un diagrama espacio-temporal de Minkowski.

c) Muestre que estas transformaciones dejan invariante el intervalo relativista ∆s2 = (c∆t)2 −
(∆r)2 entre dos eventos.
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d) Una nave espacial se mueve con velocidad V respecto a la Tierra. Tome dos eventos A y B

arbitrarios ubicados sobre la línea de universo de la nave, y calcule el intervalo ∆s2AB usando tanto
un sistema de referencia fijo a la Tierra como uno fijo a la nave. Usando que ambos resultados
deben ser iguales, reobtenga la fórmula de dilatación temporal.

3. En un sistema de referencia inercial S se propaga una onda electromagnética plana en una cierta direc-
ción n̂, de manera que la amplitud de la misma puede expresarse como

A(x, t) = A0 cos [k(x · n̂− ct)] .

Asuma que la onda toma los mismos valores en cualquier sistema de referencia, de modo que la fase
debe ser invariante ante transformaciones de Lorentz. Muestre que si se observa dicha onda desde un
sistema S’, que se mueve con velocidad V respecto de S, la dirección de propagación será distinta, de
valor

n̂′ =
n̂+ (γ − 1)(V · n̂)V/V 2 − γV/c

γ(1−V · n̂/c)
.

efecto conocido como aberración. Asimismo, muestre que en el sistema S’ la frecuencia ω = kc pasa a
ser

ω′ = γ(1−V · n̂/c)ω ,

que es el efecto Doppler relativista (difiere del galileano en el factor γ).

4. Considere la famosa paradoja de los mellizos. Usando un diagrama espacio-temporal de Minkowski
indique las líneas de universo de ambos mellizos y de las señales de radio que se envían uno al otro
a intervalos regulares iguales en el sistema propio de cada uno de ellos. Note la diferencia de escalas
en el diagrama de los intervalos para cada mellizo y discuta la diferencia entre intervalos de recepción
de cada señal e intervalos de emisión. Repita el análisis desde el punto de vista galileano, pero con-
siderando que las señales de radio tienen siempre velocidad c independientemente de la velocidad de
la fuente emisora. Discuta la diferencia del efecto Doppler en los casos relativista y galileano como se
manifiesta en los diagramas previos.

5. Cuando partículas muy energéticas provenientes del espacio exterior colisionan con átomos en la alta
atmósfera, se desintegran o ‘decaen’ en una cascada de otras partículas. En particular, los muones se
forman en la baja atmósfera, a 10 km de la superficie. Al ser mucho más masivo que el electrón, el
muón puede decaer en un electrón y dos neutrinos. Este decaimiento tiene una vida media medida de
T = 2µs. A pesar de su corta vida media, los muones logran llegar a la superficie terrestre antes de
decaer, lo que se mide en observatorios como el Pierre Auger en Mendoza. Asuma que los muones
viajan a velocidades relativistas v = 0,9999c.

a) Suponiendo que T estuviese dado en el sistema de referencia del observatorio, ¿qué distancia
recorrerían los muones (en promedio) antes de desintegrarse? ¿Llegan a los detectores del Pierre
Auger?

b) Para resolver la paradoja, tenga en cuenta que T está dada en el sistema de referencia propio
del muón: cualquier otra elección sería poco objetiva y natural. Calcule la vida media observada
desde el sistema del observatorio.
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Dinámica relativista

6. Pidiendo que la acción de una partícula relativista libre sea invariante de Lorentz, se puede deducir que
el Lagrangiano debe ser de la forma L = α

√
1− v2/c2, con α una constante.

a) Encuentre el valor de α tomando el límite v ≪ c y pidiendo que el Lagrangiano coincida con el
de la física Newtoniana.

b) Escriba las ecuaciones de movimiento y encuentre los momentos pi y la energía E = h. Escriba
la expresión de la energía para una partícula en reposo. Siéntase Einstein.

c) Muestre que el momento y la energía satisfacen la relación E2 − p2c2 = (mc2)2.

7. Una partícula de masa m y carga q se mueve en un campo electromagnético dado. Esta interacción se
puede incorporar al Lagrangiano de la partícula con el mismo potencial U = q(ϕ − v · A) que en el
caso no relativista.

a) Obtenga las ecuaciones de movimiento correspondientes.

b) Resuelva las ecuaciones de movimiento para un campo magnético B = B0ẑ. Muestre que la
partícula rota alrededor de B con una velocidad angular ω0 = qB0c

2/E, denominada frecuencia
de Larmor, donde E es la energía. Muestre que en el límite no relativista v/c ≪ 1 se obtiene la
frecuencia de ciclotrón ω0 ∼ qB0/m.

c) Para el caso en que la velocidad es perpendicular al campo magnético B, muestre que la partí-
cula se mueve en una circunferencia de radio R = v/ω0. Calcule el valor de B0 necesario para
mantener rotando en el acelerador LHC protones con E = 7TeV en un radio de 4,3 km.

8. Para una partícula de masa m que en reposo se desintegra en dos partículas de masas m1 y m2, pruebe
que la energía cinética T1,2 (energía total menos energía en reposo) de cada una de ellas se expresa en
la forma

T1,2 = ∆mc2
(
1− m1,2

m
− ∆m

2m

)
,

donde ∆m = m−m1 −m2 es el exceso de masa del proceso.

Considere ahora que una partícula de masa m en reposo se desintegra en un conjunto de partículas, la
suma de cuyas masas es igual a m−∆m. Usando lo deducido para el caso de sólo dos partículas resul-
tantes justifique que en el caso general la energía cinética máxima posible de una partícula resultante
genérica de masa mi es

Tmax
i = ∆mc2

(
1− mi

m
− ∆m

2m

)
.

9. Una partícula de masa m que viaja a velocidad V se desintegra en dos partículas de masas m1 y m2.
Determine la energía de cada una de ellas y la dirección en la que se mueve una de ellas, sabiendo que
la otra sale en un ángulo θ con respecto a la dirección de V. Demuestre que conociendo las masas m1

y m2 de las partículas resultantes y el ángulo entre sus trayectorias puede determinarse la masa m de la
partícula inicial.
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10. Para un choque elástico de dos partículas de igual masa m, una en reposo y otra moviéndose a velocidad
V, determine las energías de las partículas resultantes y la dirección en la que se mueve una de ellas,
sabiendo que la otra sale en un ángulo θ con respecto a la dirección de V.

11. Los fotones son las partículas (cuánticas) portadoras del campo electromagnético (la luz) y su masa
es nula (¿por qué?). Según la mecánica cuántica, su energía es E = ℏω (ℏ es la constante de Planck
reducida y ω la frecuencia del fotón) y su momento lineal es p = ℏk (k es el vector de onda).

Scattering de Compton. Un fotón de longitud de onda λ choca elásticamente con un electrón en reposo
y emerge con una longitud de onda λ′, formando un ángulo θ con respecto a la dirección de incidencia.
Muestre que:

λ′ − λ =
h

me c
(1− cos θ) ≡ λc (1− cos θ) ,

donde me es la masa del electrón. ¿Qué tipo de luz utilizaría para ver este efecto: rayos-X, luz visible
o infrarroja?
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