
Mecánica Clásica

Máximo Coppola

Gúıa 7 - Hamilton-Jacobi

Repaso Teórico

Vimos que mediante una transformación canónica podemos llevar el Hamiltoniano a uno
nuevo, resolver la dinámica alĺı y luego volver. Esto va a ser útil si el nuevo Hamiltoniano
K es simple. La pregunta que nos hacemos entonces es: ¿cómo encontramos en general una
transformación que simplifique el Hamiltoniano?

Cegados por la ambición vamos a pedir simplificarlo lo máximo posible, al punto de trivia-
lizarlo. Vamos a pedir que K(Q,P ) = 0 (en lo que sigue q, p,Q, P representan vectores de n
variables). Las nuevas ecuaciones diferenciales son triviales: Q y P son constante por ser ćıcli-
cas. El peso del cálculo se va a trasladar ahora a tener que invertir y componer funciones para
hallar las variables originales (q, p) en función de las nuevas constantes (Q,P ). Pero ese peso,
aunque no lo parezca, suele ser menor que resolver ecuaciones diferenciales muy complejas.

H dif́ıcil: ¿q(t), p(t)?

Antitransformo: p = ∂S
∂q
, β = ∂S

∂α

Hallo q(β, α, t), p(β, α, t)

Transformo con S(q,P )=?−−−−−−−−−−−−−−−−→

Encuentro quién es S(q,α)←−−−−−−−−−−−−−−−−

K = 0y
Qi = βi, Pi = αi

Hamilton-Jacobi : Para anular K genéricamente, recurrimos a una función generatriz, que ele-
gimos de tipo 2

H(q, p, t) + ∂F2

∂t
(q, P, t) = K(Q,P, t) = 0 (1)

Ojo con la dependencia formal de cada función. Las variables se relacionan entre śı mediante
las ecuaciones de la transformación canónica

pk(q, P, t) =
∂F2

∂qk
(q, P, t) , Qk(q, P, t) =

∂F2

∂Pk

(q, P, t) (2)

A esta generatriz tan especial que anula el nuevo Hamiltoniano la vamos a definir con la letra
F2 ≡ S, denominada como función principal de Hamilton (usamos S porque en el fondo es
la acción). Reemplazando en (1) la expresión para p de la transformación (2) llegamos a la
ecuación diferencial de H-J para S:

H
(
q, p =

∂S

∂q
(q, P, t), t

)
+

∂S

∂t
(q, P, t) = 0 (3)
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Como tenemos derivadas parciales en n + 1 variables (q, t), aparecerán n + 1 constante de
integración. Sin embargo, hay una de ellas que no aporta nada. Como sólo aparecen derivadas
de S, S(q, P, t)+cte también es solución, pero esa cte no aparecerá en la dinámica del problema
(vamos a terminar derivando a S). Nos quedan n constantes, que llamaremos α1...n. Recordemos
que, como K = 0, Pi = cte, y tenemos n de ellas. Aśı que una vez que tengamos la solución,
podemos asociar a las constantes α con P . Esto es posible porque la ecuación diferencial (3)
no contiene derivadas parciales en la variable P .

Cómo hacer esa asociación puede ser un poco confuso. Antes de hacerlo, veamos un ejemplo
para explicar el punto. Supongamos que tenemos la ecuación diferencial para un MRUV

d2x

dt2
(t) = a ⇒ x(t) = x0 + v0(t− t0) +

a

2
(t− t0)

2 (4)

donde x0, v0, t0 son constantes de integración. Cuando escribimos la solución no solemos incluir
la dependencia en estas constantes, porque estamos resolviendo un ejercicio particular y sabemos
su valor. Pero en un caso general, lo más correcto seŕıa explicitar su dependencia

x(x0, v0, t0, t) = x0 + v0(t− t0) +
a

2
(t− t0)

2 (5)

Estas constantes no aparecen en la ecuación diferencial (4). Solo aparecen una vez que hallamos
la solución. Vamos a hacer lo mismo con S: escribimos en la solución la dependencia en las
constantes de integración, tal que S(q, α, t) es la solución.

En principio tenemos cierta libertad para definir como se relacionan α y P , podŕıan ser una
función de la otra: fi(P ) = αi. Vamos a mantenerlo simple y tomar Pi = αi (ya haremos otra
elección en ángulo-acción). Una vez que tenemos la solución S(q, α, t) podemos hallar la dinámi-
ca de las variables originales (q, p) invirtiendo las ecuaciones de la transformación (2). Para ello
usamos que, como K = 0, las variables Q son constantes. Las llamamos Qi = βi. Invirtiendo
primero las ecuaciones para Q hallamos q(β, α, t), y luego reemplazamos esta expresión en la
ecuación para p. Al final del d́ıa, las 2n constantes (β, α) del nuevo sistema se relacionan con
las 2n condiciones iniciales (q0, p0).

Hasta acá fue todo muy general. Veamos algunas casos prácticos.

Sistemas Conservativos

Si H no depende expĺıcitamente del tiempo, entonces se conserva H(q, p) = h. En ese caso la
ecuación diferencial (3) se reduce a

H
(
q,

∂S

∂q
(q, P, t)

)
= h = −∂S

∂t
(q, P, t) (6)

La ecuación quedó separable: derivadas en q por un lado, y derivadas en t por el otro. Integrando
el lado derecho y usando el caso simple P = α se obtiene

S(q, α, t) = W (q, α)− ht ≡ W (q, α)− α1t (7)
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A W se la suele llamar la función caracteŕıstica, o función reducida de Hamilton. Vemos que h
aparece como una de las constantes de la solución S, y dijimos que a esas constantes las definimos
como αi, por ejemplo definimos h = α1. Como Pi = αi, el primero de los nuevos momentos es
el Hamiltoniano (que se conserva). Es normal sentirse un poco confundidos, miren a la tira de
igualdades que llegamos: H(q, p) = h = α1 = P1. En general en los ejercicios de la gúıa h = E,
aśı que se suele escribir E en vez de α1 porque ya sabemos quién es esa constante.

Coordenadas Ćıclicas

Vimos que si h se conservaba, entonces la solución (7) era lineal en esa variable. Eso sucede
también para cualquier coordenada ćıclica. Si por ejemplo, en dos dimensiones, q2 es ćıclica,
entonces

H = H(q1, p1, p2) ⇒ ṗ2 =
∂H
∂q2

= 0 ⇒ p2 = cte (8)

De la ecuación de transformación (2)

p2(q, α, t) =
∂S

∂q2
(q, α, t) = cte ≡ α2 ⇒ S(q, α, t) = W̃ (q̃, α, t) + α2q2 (9)

donde q̃ contiene a todas las coordenadas menos a q2, y eleǵı asociar la constante de la coor-
denada ćıclica p2 con la constante de integración α2. Es decir, al hacer la transformación, el
nuevo momento es igual al viejo, P2 = p2 = α2. Si ya era constante, ¿para qué cambiarlo?

Sistemas Separables

En general resolver la ecuación diferencial (3) puede ser dif́ıcil si hay muchas variables. El
método resulta útil si el sistema es separable. ¿Se acuerdan cuando queŕıamos hallar el diagrama
de fase, que en la ecuación de la enerǵıa separábamos la dependencia en cada variable? Haciendo
esto nos quedaba una igualdad entre funciones tipo f(r) = g(z) = cte , que solo puede cumplirse
si ambas son constantes. Si esto es posible, entonces la función principal S también puede
separarse, y las funciones Wi se hallan separando variables en la igualdad (6)

S(q, α, t) =
∑
i

Wi(qi, α, t) ⇒ H
(
q, pi =

∂Wi

∂qi
(qi, α, t), t

)
+

∂S

∂t
(q, P, t) = 0 (10)
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Hamilton-Jacobi

0. Idea: para resolver un H dif́ıcil, hacemos una transformación canónica con generatriz
S que nos lleve a un nuevo Hamiltoniano trivial K = 0, que resolvemos fácilmente
mediante las ecs de Hamilton para obtener Qk = cte ≡ βk y Pk = cte ≡ αk. Queremos
antitransformar para hallar la solución del problema original.

1. Hallamos S(q, α, t) resolviendo la ecuación diferencial

H
(
q, p =

∂S

∂q
(q, α, t), t

)
+

∂S

∂t
(q, α, t) = 0 (11)

Si es conservativo, H = h = α1, entonces S(q, α, t) = W (q, α)− α1t

Si qj es ćıclica, entonces S(q, α, t) = W̃ (q̃, α, t) + αjqj

Si es separable, entonces S(q, α, t) =
∑

i Wi(qi, α, t)

2. Invertimos la transformación para hallar q en función del tiempo y las constantes

Qk(q, α, t) = βk =
∂S

∂αk

(q, α, t)
Invierto−−−−→ Hallo q(β, α, t) (12)

3. Reemplazamos q(β, α, t) en la otra ecuación de transformación

pk(β, α, t) =
∂S

∂qk
(q, α, t)

∣∣∣∣
q=q(β,α,t)

(13)

4



Ejercicio 3

Una pelota con carga total q > 0 sometida a un campo eléctrico constante E en ŷ se patea en
t = 0 con velocidad v⃗0 = (vy0, vz0). Hay gravedad en ẑ. Hallar la evolución de la posición de la
pelota r⃗ (t) usando el método de Hamilton-Jacobi.

El potencial del campo electromagnético viene dado por U = qϕ− qv⃗ · A⃗. Podemos calcular
los potenciales de gauge para este caso a partir de las ecuaciones de MaxwellE⃗ = −∇⃗ϕ− ∂A⃗

∂t
= Eŷ

B⃗ = ∇⃗ × A⃗ = 0

⇒

ϕ = −Ey

A⃗ = 0⃗
(14)

Por lo que el Lagrangiano vendrá dado por

L =
m

2
(ẏ2 + ż2) + qEy −mgz (15)

De aqúı pasamos al Hamiltoniano, les dejo a ustedes la cuenta

H =
1

2m
(p2y + p2z)− qEy +mgz (16)

Queremos resolver la ecuación diferencial para S (11). Como H no depende expĺıcitamente
del tiempo entonces H(q, p) = h se conserva (¿es h = Energia?). Vamos a llamar α1 a h
para ser consistentes con la notación. Como el sistema es conservativo proponemos S(q, α, t) =
W (y, z, α)− α1t, con lo que la ecuación diferencial

H
(
q, p =

∂S

∂q
(q, α, t), t

)
= −∂S

∂t
(q, α, t) (17)

se reduce a

1

2m

[(
∂W (y, z, α)

∂y

)2

+

(
∂W (y, z, α)

∂z

)2
]
− qEy +mgz = α1 (18)

Como el potencial está separado en las coordenadas (no hay un término acoplado, como por ej.
V ∼ αyz), podemos llevar su dependencia funcional en y y en z a cada lado de la igualdad

1

2m

(
∂W (y, z, α)

∂y

)2

− qEy = α1 −
1

2m

(
∂W (y, z, α)

∂z

)2

−mgz (19)

Como W se deriva por separado en derivadas parciales para cada qi, proponemos una solución
separable para W

W (y, z, α) = Wy(y, α) +Wz(z, α) (20)

F́ıjense que cada Wk depende solo de qk, pero de todos los α. Llegamos a una ecuación separable
tipo f(y) = g(z), entonces debe cumplirse que f(y) = g(z) = cte ≡ αy.
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Más conveniente que trabajar con {α1, αy}, es definir α1 ≡ αy + αz y trabajar con {αy, αz}.
Con el diario del lunes, es intuitivo que como las fuerzas son perpendiculares entre ellas, lo
que pase en un eje no afecta al otro. Son dos problemas independientes, sumados en un único
Hamiltoniano (16): H(y, z, py, pz) = Hy(y, py)+Hz(z, pz). Tiene sentido entonces que haya dos
cantidades conservadas: la enerǵıa en cada dirección.

La forma rápida de decir lo anterior es

1

2m

(
∂Wy(y, α)

∂y

)2

− qEy︸ ︷︷ ︸
=αy

+
1

2m

(
∂Wz(z, α)

∂z

)2

+mgz︸ ︷︷ ︸
=αz

= α1 (21)

redefiniendo α1 = αy +αz. Haciéndolo de esta manera, cada Wk depende de sólo una constante
αk, lo cual simplifica los despejes que siguen. Despejando las W tenemos que

À S(q, α, t) = Wy(y, αy) +Wz(z, αz)− (αy + αz)t

À Wy(y, αy) = ±
√
2m

∫ √
αy + qEy dy

À Wz(z, αz) = ±
√
2m

∫ √
αz −mgz dz (22)

Noten que apareció una duplicidad de signos ± al tomar la ráız de ∂Wk/∂qk = pk, correspon-
dientes a las zonas donde pk es positivo o negativo. A veces el signo desaparece al despejar q(t)
y podemos despreocuparnos. Una opción más avanzada es tomar el signo positivo y al final
utilizar propiedades que conozcamos del movimiento (por ejemplo dibujando su diagrama de
fases) para deducir que pasa con la otra rama negativa.
Otro comentario técnico es que dejé las integrales indefinidas, en vez de partir de un valor
inicial. Ese valor inicial solo agregará una constante irrelevante al problema porque puede ser
reabsorbida en las β.

Si resolvemos las integrales, obtenemos una solución para S(q, α, t) y completamos el paso 1.
En general no es conveniente integrar a esta altura; no nos interesa S sino sus derivadas. Suele
ser más util dejarlo expresado aśı; luego cuando antitransformemos lo que haremos será derivar
primero e integrar después. Armados con S podemos ir al paso 2 y despejar qk a partir de la
ecuación (12) de transformación para Qk = βk

Á βy =
∂S

∂αy

=
∂Wy

∂αy

− t = ±
√
2m

2

∫
1√

αy + qEy
dy − t

Á βz =
∂S

∂αz

=
∂Wz

∂αz

− t = ±
√
2m

2

∫
1√

αz −mgz
dz − t (23)

Estas integrales son muy fáciles de hacer! Hagamos la de z

βz + t = ±
√
2m

2

(
−2
mg

)√
αz −mgz (24)
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Invirtiendo esto se llega al MRUV esperado

z(t) =
αz

mg
− gβ2

z

2
− gβz t−

g

2
t2 = z0 + vz0 t−

g

2
t2 (25)

Vemos como las dos constantes (βz, αz) de H-J se relacionan con las dos c.i. (z0, vz0).

La cuenta para y(t) es muy parecida, solo hay que reemplazar mg → −qE y αz → αy.
También podŕıan hallar p⃗ (t) siguiendo el paso 3.
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Ejercicio 4

Nos dan el siguiente Hamiltoniano

H(q, p) = p21
2m

+
1

2m
(p2 − kq1)

2 (26)

y nos piden resolver el problema usando todos los métodos conocidos. El inciso d) y todo lo
que en esta gúıa diga ‘angulo-acción’ quedará pendiente hasta la próxima clase. Junto con el
ejercicio 4 son buenos para hacer una práctica general.

Antes de resolverlo podemos irnos anticipando a que tipo de órbitas podemos esperar si dibu-
jamos el diagrama de fases. Como H no depende expĺıcitamente de t, el sistema es conservativo
(no sabemos bien si h es E porque no sabemos la cinética y el potencial por separado). Además,
q2 es ćıclica, por lo que p2 = cte. Reacomodando un poco la igualdad H(q, p) = h

p21
2mh

+
(q1 − p2/k)

2

2mh/k2
= 1 (27)

Para cada valor de p2 esta es la ecuación de una elipse centrada en (p2/k, 0), como se observa
en la figura 1. ¿Qué tipo de movimiento es este?

Figura 1: Diagrama de fases del ejercicio 6.

a) Primero nos piden resolverlo por Hamilton-Jacobi. El sistema es conservativo y q2 es ćıclica.
Proponemos entonces

S(q, α, t) = W1(q1, α) + α2q2 − α1t (28)

Voy a seguir con α1,2 para mantener la notación del formalismo, pero no hay que perder de
vista que la identificación con las variables del problema es inmediata: α2 = p2 y α1 = h
Reemplazando la S propuesta, la ecuación diferencial queda

H
(
q, p =

∂S

∂q
, t

)
+

∂S

∂t
=

1

2m

(
∂W1

∂q1

)2

+
1

2m
(α2 − kq1)

2 − α1 = 0

⇒ W1(q1, α) = ±
∫ √

2mα1 − (α2 − kq1)2 dq1 (29)
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No integremos todav́ıa. Listo el paso 1, obtenemos q(β, α, t) de la ecuación de transformación
siguiendo el paso 2

β1 =
∂S

∂α1

=
∂W1

∂α1

− t = ±m
∫

1√
2mα1 − (α2 − kq1)2

dq1 − t (30)

⇒ β1 + t = ±m

k
arc cos

(
α2 − kq1√

2mα1

)
(31)

Esta integral aparece seguido en H-J, empiecen a memorizarla:∫
A√

B2 − A2x2
dx = arcsin

(
A

B
x

)
o

∫
A√

B2 − A2x2
dx = − arc cos

(
A

B
x

)
(32)

(las dos integrales dan lo mismo porque no escrib́ı la constante de integración; el arcsin se rela-
ciona con el arc cos a través de constantes). Al invertir esta ecuación, los signos ± desaparecen
debido a que cos(±x) = cos(x) y tenemos

q1(β, α, t) = −
√
2mα1

k
cos

(
k

m
t+

kβ1

m

)
+

α2

k
(33)

Esa fue la ecuación de transformación para Q1. Para Q2 tenemos

β2 =
∂S

∂α2

= q2 +
∂W1

∂α2

= q2 ±
∫

∂

∂α2

√
2mα1 − (α2 − kq1)2 dq1 (34)

Si prestamos un poco de atención notaremos que no es necesario hacer esta integral. Si hacemos
el cambio de variables z = α2 − kq1 entonces derivar respecto de α2 es igual a derivar respecto
de z. Pero también debemos cambiar la variable de integración que es independiente de α2

z = α2 − kq1 ⇒ β2 = q2 ±
∫

∂

∂z

√
2mα1 − z2

(
−dz
k

)
(35)

La primitiva será la función que alĺı aparece, y por lo tanto

β2 = q2 ∓
1

k

√
2mα1 − (α2 − kq1)2 (36)

De aqúı podemos despejar a q2 en función de q1, obteniendo la órbita en el plano q1 − q2(
q1 −

α2

k

)2

+ (q2 − β2)
2 =

2mα1

k2
→ (q1 − q̄1)

2 + (q2 − q̄2)
2 = R2 (37)

que es la ecuación de ćırculo de radio R centrado en q̄ = (q̄1, q̄2). Si quisiéramos a q2 en
función de las constantes y el tiempo reemplazamos la solución que encontramos para q1 de la
ecuación (33) en (36)

q2 = β2 ±
√
2mα1

k

∣∣∣∣sin( k

m
t+

kβ1

m

)∣∣∣∣ (38)

¿Qué hacemos con el ±? Antes dijimos que, como p1 = ∂W1/∂q1, la rama positiva (negativa)
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corresponde a valores positivos (negativos) de p1, ver ecuación (29). En efecto,

p1 =
∂W1

∂q1
= ... = ±

√
2mα1

∣∣∣∣sin( k

m
t+

kβ1

m

)∣∣∣∣ ⇒ q2 = β2 ±
1

k
|p1| (39)

Cuando p1 > 0 tomamos el +, y cuando p1 < 0 tomamos el −, aśı que ±|p1| = p1.

Finalmente, la solución completa es

q1(β, α, t) = −R cos

(
k

m
t+ φ

)
+ q̄1

q2(β, α, t) = +R sin

(
k

m
t+ φ

)
+ q̄2 (40)

donde podemos identificar algunas constantes

R =

√
2mα1

k
=

√
2mh

k
, φ =

kβ1

m
, q̄1 =

α2

k
=

p2
k
, q̄2 = β2 (41)

Las 4 constantes (α1, α2, β1, β2) se relacionan con las 4 condiciones iniciales.

La soluciones son ćırculos y el Hamiltoniano tiene la forma de la ecuación (26)... ¿Les suena
a algo?

Se parece a las soluciones de una part́ıcula en un campo magnético uniforme. El Hamiltoniano
en presencia de un campo electromagnético es

H(q, p) = 1

2m
(p− qA)2 (42)

(p = mv+ qA es el momento mecánico). Vemos que podemos recuperar el Hamiltoniano de la
ecuación (26) si

A1 = 0 = A3 y kq1 = qA2 ⇒ A2 =
k

q
q1 (43)

La constante k no puede ser cualquier cosa. Como B = B3̂ = ∇×A = k/q 3̂ entonces k = qB.
Este Hamiltoniano corresponde al gauge de Landau!

b) Esta versión ya se pidió en un ejercicio de la gúıa anterior. Hay que resolver el sistema
usando las ecuaciones canónicas

ṗk =
∂H
∂qk

, q̇k =
∂H
∂pk

(44)

y chequear que las soluciones son las mismas que en (40).
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c) En este inciso debemos utilizar la transformación Q1 = Ap1, P1 = B(p2−kq1), donde A y B
son constantes que debemos elegir de forma tal que la transformación sea canónica. Lo mismo
con las variables no especificadas Q2 y P2.

Con esta transformación, el nuevo Hamiltoniano resulta ser

K(Q,P ) =
1

2m

Q2
1

A2
+

1

2m

P 2
1

B2
(45)

Nuevamente se conserva K = k̄ y tenemos elipses en el diagrama de fases de (Q1, P1). Si la
transformación fuese canónica podŕıamos resolver las ecs de Hamilton en el nuevo sistema

Q̇1 = +
∂K
∂P1

=
P1

mB2

Ṗ1 = −
∂K
∂Q1

=
Q1

mA2

⇒ Q̈1 = −
1

(mBA)2
Q1 ⇒ Q1 = D sin

(
1

mBA
t+ φ

)
(46)

Por otro lado, K es ćıclico en Q2 y P2, por lo que esas variables son constantes. Para hallar q1 y
q2 debemos anti-transformar. Para ello necesitamos la transformación completa, y necesitamos
que sea canónica.

¿Qué formas vimos que existen para probar que la transformación es canónica?

Corchetes de Poisson

Este es el método más simple. La transformación será canónica si [Qi, Pj] = δij, [Qi, Qj] = 0 =
[Pi, Pj] respecto de las variables (q, p). Es decir, las variables (q, p) ya cumplen esos corchetes, eso
es lo que simplifica la cuenta. Notar que son varias relaciones porque i, j = 1, 2. Escribiéndolo
por extenso con Q1 = Ap1 y P1 = B(p2 − kq1)

[Q1, P1] = AB

=0︷ ︸︸ ︷
[p1, p2]−ABk

=−1︷ ︸︸ ︷
[p1, q1] = ABk = 1 (47a)

[Q1, Q2] = A[p1, Q2] = 0 (47b)

[Q1, P2] = A[p1, P2] = 0 (47c)

[P1, P2] = B[p2, P2]− kB[q1, P2] = 0 (47d)

[P1, Q2] = B[p2, Q2]− kB[q1, Q2] = 0 (47e)

[Q2, P2] = 1 (47f)

La primer igualdad nos dice que la transformación es canónica si ABk = 1. Como A y B son
constantes a elegir, lo más simple seŕıa elegir B = 1 (para que P1 también tenga unidades de
momento). Entonces A = 1/k. Las demás igualdades nos imponen restricciones sobre Q2 y P2.
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Una elección simple podŕıa ser P2 = p2, que sabemos que es una cantidad conservada. En ese
caso, la tercer y cuarta ĺınea – (47c) y (47d)– se cumplen automáticamente. La última (47f)
nos dice que

[Q2, P2] = [Q2, p2] =
∂Q2

∂q2
= 1 ⇒ Q2 = q2 + f(q1, p1, p2) (48)

Reemplazando en (47b)

[Q1, Q2] = A[p1, Q2] = A

=0︷ ︸︸ ︷
[p1, q2] +A

=− ∂f
∂q1︷ ︸︸ ︷

[p1, f(q1, p1, p2)] = 0 ⇒ f(q1, p1, p2) = g(p1, p2) (49)

por lo que la función f no puede depender de q1. Sino apareceŕıa el corchete [p1, q1] = −1 que
no tiene con quien anularse ([pi, pj] = 0). Nos queda sólo una ecuación disponible, la (47e)

[P1, Q2] = B[p2, Q2]− kB[q1, Q2] = B

=−1︷ ︸︸ ︷
[p2, q2] +B

=0︷ ︸︸ ︷
[p2, g(p1, p2)]−kB

=0︷ ︸︸ ︷
[q1, q2]−kB

= ∂g
∂p1︷ ︸︸ ︷

[q1, g(p1, p2)] = 0

⇒ ∂g(p1, p2)

∂p1
= −1

k
⇒ g(p1, p2) = −

p1
k

+ h(p2)

Nos quedó la libertad de elegir la función h(p2); lo más simple es elegirla igual a cero.

Juntando todo, la transformación canónica que encontramos (no es la única) es

Q1 =
p1
k
, P1 = p2 − kq1 , Q2 = q2 −

p1
k
, P2 = p2 (50)

Podemos chequear algunas cosas.

Dijimos que como Q2 era ćıclica en el nuevo Hamiltoniano K, entonces Q2 = cte. En
las gúıas 1 y 6 también resolvimos este ejercicio en el gauge de Landau (por Lagrange
y Hamilton), y encontramos la cantidad conservada Px = mq̇1 −mωq2. Pueden verificar
que Px = −kQ2 = cte, por lo que los métodos coinciden.

Usando que p1 = kQ1 y la solución de la ecuación (46) tenemos que

p1 = kQ1 = kD sin

(
k

m
t+ φ

)
(51)

Pueden compararla con la expresión (39); coinciden!
De hecho, completando la anti-transformación se recupera la solución (40).

Pueden repetir este procedimiento, o bien chequear que la transformación (50) es canónica,
usando alguno de los otros métodos que vimos: encontrando una función generatriz, chequeando
las condiciones directas o utilizando el método simpléctico.
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