Mecanica Clésica

Méximo Coppola

Guia 7 - Hamilton-Jacobi

REPASO TEORICO

Vimos que mediante una transformacion candénica podemos llevar el Hamiltoniano a uno
nuevo, resolver la dinamica alli y luego volver. Esto va a ser ttil si el nuevo Hamiltoniano
IC es simple. La pregunta que nos hacemos entonces es: jcomo encontramos en general una
transformacién que simplifique el Hamiltoniano?

Cegados por la ambicién vamos a pedir simplificarlo lo maximo posible, al punto de trivia-
lizarlo. Vamos a pedir que K(Q, P) = 0 (en lo que sigue ¢, p, @, P representan vectores de n
variables). Las nuevas ecuaciones diferenciales son triviales: () y P son constante por ser cicli-
cas. El peso del célculo se va a trasladar ahora a tener que invertir y componer funciones para
hallar las variables originales (g, p) en funcién de las nuevas constantes (@), P). Pero ese peso,
aunque no lo parezca, suele ser menor que resolver ecuaciones diferenciales muy complejas.

Transformo con S(gq,P)="

H dificil: jq(t), p(t)? N =0
: .. _ 88 p_ 88 J
Antitransformo: p = 5 B = s

/ Encuentro quién es S(g,)

Hallo Q(B,Oé,t),p<ﬁ,05,t) N szﬁl, Pi:Oéi

Hamilton-Jacobi: Para anular C genéricamente, recurrimos a una funciéon generatriz, que ele-
gimos de tipo 2

Hig.p.0)+ D2 Pot) = K(Q.P.1) =0 )

Ojo con la dependencia formal de cada funcién. Las variables se relacionan entre si mediante
las ecuaciones de la transformacion canénica

aFQ 8F2

pk(q7P’ t) = a_Qk((LP’ t)v Qk(q7 P7 t) = a_Pk(qv P7 t) (2)

A esta generatriz tan especial que anula el nuevo Hamiltoniano la vamos a definir con la letra
F, = S, denominada como funcién principal de Hamilton (usamos S porque en el fondo es
la accién). Reemplazando en (1) la expresion para p de la transformacién (2) llegamos a la
ecuaciéon diferencial de H-J para S:
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oS




Como tenemos derivadas parciales en n + 1 variables (q,t), apareceran n + 1 constante de
integracién. Sin embargo, hay una de ellas que no aporta nada. Como sélo aparecen derivadas
de S, S(q, P, t)+ cte también es solucién, pero esa cte no aparecerd en la dindmica del problema
(vamos a terminar derivando a S). Nos quedan n constantes, que llamaremos «;._,,. Recordemos
que, como K = 0, P, = cte, y tenemos n de ellas. Asi que una vez que tengamos la solucién,
podemos asociar a las constantes o con P. Esto es posible porque la ecuacién diferencial (3)
no contiene derivadas parciales en la variable P.

Cémo hacer esa asociacién puede ser un poco confuso. Antes de hacerlo, veamos un ejemplo
para explicar el punto. Supongamos que tenemos la ecuacion diferencial para un MRUV

d*x a
ﬁ(ﬂ =a = l’(t) :$0+U0(t—t0)+§<t—to)2 (4)
donde x¢, vy, to son constantes de integraciéon. Cuando escribimos la solucién no solemos incluir
la dependencia en estas constantes, porque estamos resolviendo un ejercicio particular y sabemos
su valor. Pero en un caso general, lo mas correcto seria explicitar su dependencia

a
x(x0, Vo, Lo, t) = xo + vo(t — to) + §(t—t0)2 (5)

Estas constantes no aparecen en la ecuacién diferencial (4). Solo aparecen una vez que hallamos
la soluciéon. Vamos a hacer lo mismo con S: escribimos en la solucion la dependencia en las
constantes de integracion, tal que S(q, «,t) es la solucién.

En principio tenemos cierta libertad para definir como se relacionan « y P, podrian ser una
funcién de la otra: f;(P) = a;. Vamos a mantenerlo simple y tomar P; = «; (ya haremos otra
eleccién en dngulo-accién). Una vez que tenemos la solucién S(q, a, t) podemos hallar la dindmi-
ca de las variables originales (g, p) invirtiendo las ecuaciones de la transformacion (2). Para ello
usamos que, como K = 0, las variables () son constantes. Las llamamos ); = ;. Invirtiendo
primero las ecuaciones para @) hallamos ¢(f, «,t), y luego reemplazamos esta expresién en la
ecuaciéon para p. Al final del dia, las 2n constantes (3, «) del nuevo sistema se relacionan con
las 2n condiciones iniciales (qo, po)-

Hasta acé fue todo muy general. Veamos algunas casos précticos.

Sistemas Conservativos

Si H no depende explicitamente del tiempo, entonces se conserva H(q,p) = h. En ese caso la
ecuacion diferencial (3) se reduce a

oS oS

1 (0 Gt P0) =h=- TP ©)

La ecuacién quedé separable: derivadas en ¢ por un lado, y derivadas en ¢ por el otro. Integrando
el lado derecho y usando el caso simple P = « se obtiene

S(q,a,t) = W(gq,a) — ht = W(q, ) — aqt (7)



A W se la suele llamar la funcion caracteristica, o funcion reducida de Hamilton. Vemos que h
aparece como una de las constantes de la solucién S, y dijimos que a esas constantes las definimos
como «;, por ejemplo definimos h = ;. Como P; = «;, el primero de los nuevos momentos es
el Hamiltoniano (que se conserva). Es normal sentirse un poco confundidos, miren a la tira de
igualdades que llegamos: H(q,p) = h = a3 = P;. En general en los ejercicios de la guia h = F,
asi que se suele escribir E en vez de «; porque ya sabemos quién es esa constante.

Coordenadas Ciclicas

Vimos que si h se conservaba, entonces la solucién (7) era lineal en esa variable. Eso sucede
también para cualquier coordenada ciclica. Si por ejemplo, en dos dimensiones, g, es ciclica,
entonces

) OH
H:H(Chapl,pz) = pzzazo = Py = cte (8)
2

De la ecuacién de transformacién (2)

oS -
p2(Q7 «, t) - a_q2(QJ a, t) = cte = Qo = S(Qa «, t) - W(Q? «, t) + Qa2(2 (9)

donde ¢ contiene a todas las coordenadas menos a ¢y, y elegi asociar la constante de la coor-
denada ciclica ps con la constante de integracion as. Es decir, al hacer la transformacion, el
nuevo momento es igual al viejo, P, = po = ap. Si ya era constante, ;jpara qué cambiarlo?

Sistemas Separables

En general resolver la ecuacion diferencial (3) puede ser dificil si hay muchas variables. El
método resulta 1til si el sistema es separable. ;Se acuerdan cuando queriamos hallar el diagrama
de fase, que en la ecuacién de la energia separabamos la dependencia en cada variable? Haciendo
esto nos quedaba una igualdad entre funciones tipo f(r) = g(z) = cte , que solo puede cumplirse
si ambas son constantes. Si esto es posible, entonces la funcién principal S también puede
separarse, y las funciones W; se hallan separando variables en la igualdad (6)

ow;

oS
S(Qaaat) = ZI/VZ(QHO-/at) = H (CLpz = a_q(qiaa7t)vt) + E((L P7 t) =0 (10)



HAMILTON-JACOBI

0. Idea: para resolver un H dificil, hacemos una transformacion canénica con generatriz
S que nos lleve a un nuevo Hamiltoniano trivial IC = 0, que resolvemos facilmente
mediante las ecs de Hamilton para obtener Qy = cte = [y y Py = cte = ;. Queremos
antitransformar para hallar la solucién del problema original.

1. Hallamos S(q, «, t) resolviendo la ecuacién diferencial

0S oS
H (q,p = a—q(q,a,t),t) + E(q,a,t) =0 (11)

= Si es conservativo, H = h = «y, entonces S(q, a,t) = W(q, o) — ant

= Si g; es ciclica, entonces S(q, a,t) = W(q, o, t) + g,

= Si es separable, entonces S(q, o, t) = > Wi(q, o, t)

2. Invertimos la transformacion para hallar ¢ en funcion del tiempo y las constantes

85 nvierto
Qk(Q7a7t) = Bk = @<q,a,t> I—t> Hallo Q(ﬁvaat) (12)

3. Reemplazamos ¢(f3, a, t) en la otra ecuacién de transformacion

oS
pk(ﬁuaut) = _<Q7a7t) (13)
aqk q:q(57a7t)




Ejercicio 3

Una pelota con carga total ¢ > 0 sometida a un campo eléctrico constante E en 1 se patea en
t =0 con velocidad Ty = (vyo, vs0). Hay gravedad en z. Hallar la evolucion de la posicion de la
pelota 7 (t) usando el método de Hamilton-Jacobi.

El potencial del campo electromagnético viene dado por U = g¢ — qv - A. Podemos calcular
los potenciales de gauge para este caso a partir de las ecuaciones de Maxwell

. - 04
Be—vo- 22 _ gy 6= —Ey
e A A (14)
B=VxA= A=0
Por lo que el Lagrangiano vendra dado por
M9 .2
E,—E(y + %) 4+ qFEy — mgz (15)
De aqui pasamos al Hamiltoniano, les dejo a ustedes la cuenta
H = (52 4 p?) — qBy + mg> (16)
2m Y

Queremos resolver la ecuacién diferencial para S (11). Como H no depende explicitamente
del tiempo entonces H(q,p) = h se conserva (jes h = Energia?). Vamos a llamar «; a h
para ser consistentes con la notacién. Como el sistema es conservativo proponemos S(q, a, t) =
W (y, z, &) — ayt, con lo que la ecuacién diferencial

oS oS
H ((Lp = a_q(Qa Oé,t),t) = _E(Q7aat) (17)

se reduce a

—qFy+mgz = o (18)

% [(amg;,a))? . (8W(g,zz,oz))2

Como el potencial esta separado en las coordenadas (no hay un término acoplado, como por €j.
V ~ ayz), podemos llevar su dependencia funcional en y y en z a cada lado de la igualdad

1 [(OW(y,z, «) 2 B 1 [(OW(y,z, «) 2
2m < oy ) —eBy = 2m 0z - s (19)

Como W se deriva por separado en derivadas parciales para cada ¢;, proponemos una solucion
separable para W

Wy, z,a) = Wy(y,a) + W.(z, @) (20)

Fijense que cada W), depende solo de ¢, pero de todos los a.. Llegamos a una ecuacion separable
tipo f(y) = g(z), entonces debe cumplirse que f(y) = g(2) = cte = a,.



Maés conveniente que trabajar con {ay, oy}, es definir o = oy + a, y trabajar con {a,, a,}.
Con el diario del lunes, es intuitivo que como las fuerzas son perpendiculares entre ellas, lo
que pase en un eje no afecta al otro. Son dos problemas independientes, sumados en un tinico
Hamiltoniano (16): H(y, z, py, p2) = Hy(y,py) + H.(2,p,). Tiene sentido entonces que haya dos
cantidades conservadas: la energia en cada direccion.

La forma rapida de decir lo anterior es

1 (W, (y, @) 2 B 1 (OW.(z,a)\ B
5 <—8y q 9, +mgz = o (21)

/
-~ -~
=Qy =Qz

redefiniendo oy = 4 .. Haciéndolo de esta manera, cada W}, depende de sélo una constante
ag, lo cual simplifica los despejes que siguen. Despejando las W tenemos que

O S(qg,a,t) = Wy(y, o) + Wz, ) — (o + @)t
O W,(y, o) = j:\/2m/\/ay+qu dy

O W.(sa.) — £v2m / Jar =gz d (22)

Noten que aparecié una duplicidad de signos + al tomar la raiz de W} /dq, = py, correspon-
dientes a las zonas donde py, es positivo o negativo. A veces el signo desaparece al despejar ¢(t)
y podemos despreocuparnos. Una opcién méas avanzada es tomar el signo positivo y al final
utilizar propiedades que conozcamos del movimiento (por ejemplo dibujando su diagrama de
fases) para deducir que pasa con la otra rama negativa.

Otro comentario técnico es que dejé las integrales indefinidas, en vez de partir de un valor
inicial. Ese valor inicial solo agregara una constante irrelevante al problema porque puede ser
reabsorbida en las f3.

Si resolvemos las integrales, obtenemos una solucién para S(q, a,t) y completamos el paso 1.
En general no es conveniente integrar a esta altura; no nos interesa S sino sus derivadas. Suele
ser mas util dejarlo expresado asi; luego cuando antitransformemos lo que haremos sera derivar
primero e integrar después. Armados con S podemos ir al paso 2 y despejar g, a partir de la
ecuacion (12) de transformacion para Qr = S

9 Bzﬁ_S:(()Wy_t:i\/Qm/ 1 dy— 1
Y aay 8ay 2 \ oy + qu
9 5, = oS :aWZ_t:j:VQm/ 1 P (23)
Ja,  Oa, 2 Va, —mgz

Estas integrales son muy faciles de hacer! Hagamos la de z

B, +t= L V2m <_—2) Va, —mgz (24)

2 mg



Invirtiendo esto se llega al MRUV esperado

a,  gp? g g .
=2 2= g T2 ot — 2t 25
2(t) s 2 98-t =35 20+ vt — (25)

Vemos como las dos constantes (3., «,) de H-J se relacionan con las dos c.i. (29, v0).

La cuenta para y(t) es muy parecida, solo hay que reemplazar mg — —qFE y a, — «.
También podrian hallar p'(¢) siguiendo el paso 3.



Ejercicio 4

Nos dan el siguiente Hamiltoniano

2
P1 1 2
=2 4 = (po—Fk 26
y nos piden resolver el problema usando todos los métodos conocidos. El inciso d) y todo lo

que en esta guia diga ‘angulo-accion’ quedard pendiente hasta la préxima clase. Junto con el
ejercicio 4 son buenos para hacer una practica general.

Antes de resolverlo podemos irnos anticipando a que tipo de érbitas podemos esperar si dibu-
jamos el diagrama de fases. Como H no depende explicitamente de ¢, el sistema es conservativo
(no sabemos bien si h es E porque no sabemos la cinética y el potencial por separado). Ademas,
gz es ciclica, por lo que py = cte. Reacomodando un poco la igualdad H(q,p) = h

2 2
Py (Q1 - pQ/k)

=1 2
2mh * 2mh k> (27)

Para cada valor de p, esta es la ecuacién de una elipse centrada en (py/k,0), como se observa
en la figura 1. ;Qué tipo de movimiento es este?

Figura 1: Diagrama de fases del ejercicio 6.

a) Primero nos piden resolverlo por Hamilton-Jacobi. El sistema es conservativo y go es ciclica.
Proponemos entonces

S(q, o, t) = Wi(q1, @) + azge — agt (28)

Voy a seguir con «; 2 para mantener la notaciéon del formalismo, pero no hay que perder de
vista que la identificaciéon con las variables del problema es inmediata: as = po y a1 = h
Reemplazando la S propuesta, la ecuacion diferencial queda

08 s 1 [fow\* 1 ) B
H(q’p_a_q’t>+a_%<8q1> +%(O‘2_kﬁh) —a; =0

= Wi(q,a) = j:/ \/2moz1 — (g — kq1)? dgy (29)




No integremos todavia. Listo el paso 1, obtenemos ¢(3, «, t) de la ecuacién de transformacién
siguiendo el paso 2

51:3—S:awl—t:im/ dg, —t (30)
8061 aOél \/Qmozl — (042 — k’ql)Z
= bi+t= +™ arccos (%_—k(zl> (31)
k 2maoy

Esta integral aparece seguido en H-J, empiecen a memorizarla:

/ dr = arcsin / dr = —arccos éx (32)
B? — A%? B? — A2x2 B

(las dos integrales dan lo mismo porque no escribi la constante de integracion; el arcsin se rela-
ciona con el arccos a través de constantes). Al invertir esta ecuacién, los signos 4+ desaparecen
debido a que cos(+x) = cos(z) y tenemos

vV 2ma1 < k kﬂl ) (6]
COS

Q(B,a,t) = — k + —= (33)

Esa fue la ecuacién de transformacion para Q1. Para ()5 tenemos

oS oW 0
oy =q2+ RALE - q2 /@\/Qmal — (oo — kq1)?dg (34)

By = s

Si prestamos un poco de atencién notaremos que no es necesario hacer esta integral. Si hacemos
el cambio de variables z = ay — kq; entonces derivar respecto de ap es igual a derivar respecto
de z. Pero también debemos cambiar la variable de integracion que es independiente de as

2=ay — kg = Bgzqgﬂ:/%\ﬂmm—z? (—_dz) (35)

k

La primitiva serd la funcion que alli aparece, y por lo tanto

1
Bo=q2F E\/Qmal — (a2 — kqu)? (36)

De aqui podemos despejar a ¢y en funcién de ¢;, obteniendo la orbita en el plano ¢; — ¢

o\ 2 2may _ _
<Q1 — ?) + (2 — Bo)? = o (1 — @)+ (2 — @) =R (37)
que es la ecuacién de circulo de radio R centrado en § = (g1, q2). Si quisiéramos a ¢y en

funcion de las constantes y el tiempo reemplazamos la solucién que encontramos para ¢, de la

ecuacion (33) en (36)
L (L 40 .

k m

. Qué hacemos con el £7 Antes dijimos que, como p; = dW;/dq, la rama positiva (negativa)

g =By *




corresponde a valores positivos (negativos) de py, ver ecuacién (29). En efecto,

B oW,
p1 = o0

=..==%=V2mo

: k k 1
sin (—t + ﬁ) ‘ = g =[P+ —|pi| (39)
m m k

Cuando p; > 0 tomamos el 4, y cuando p; < 0 tomamos el —, asi que £|p;| = p;.

Finalmente, la soluciéon completa es

k
(B, a,t) = —Rcos (EtﬂL <P> +q

k
(5, t) = +Rsin (Et + go) + o (40)

donde podemos identificar algunas constantes

~ V2may  V2mh k31 _ g P

R 2 2 y P =—) QI:?:E’ G2 = P2 (41)

Las 4 constantes (aq, aw, 81, 52) se relacionan con las 4 condiciones iniciales.

La soluciones son circulos y el Hamiltoniano tiene la forma de la ecuacién (26)... ;Les suena
a algo?

Se parece a las soluciones de una particula en un campo magnético uniforme. El Hamiltoniano
en presencia de un campo electromagnético es

H(g.p) = % (p—qA)’ (42)

(p = mv + ¢A es el momento mecanico). Vemos que podemos recuperar el Hamiltoniano de la
ecuacién (26) si

k
Al =0= A3 Yy k’ql = qAQ = AQ = aql (43)

La constante k no puede ser cualquier cosa. Como B =B3 =V x A=k / ¢ 3 entonces k = ¢B.
Este Hamiltoniano corresponde al gauge de Landau!

b) Esta versién ya se pidi6 en un ejercicio de la gufa anterior. Hay que resolver el sistema
usando las ecuaciones candnicas

oH . oH

e = —— | _ 2 44
Pk Dar qk . ()

y chequear que las soluciones son las mismas que en (40).

10



c) En este inciso debemos utilizar la transformacién Q1 = Ap,, P, = B(ps — kq1), donde Ay B
son constantes que debemos elegir de forma tal que la transformacién sea canénica. Lo mismo
con las variables no especificadas Q y Ps.

Con esta transformacion, el nuevo Hamiltoniano resulta ser

1 Q2 1 P}
K(Q,P) = o 2 T 9 B2 (45)

Nuevamente se conserva K = k y tenemos elipses en el diagrama de fases de (Q1, P;). Si la
transformacién fuese candénica podriamos resolver las ecs de Hamilton en el nuevo sistema

. oK P,
Q1_+8_f’1_m32 . 1 D 1 . 46
5 oK 0, = Ql—_le = Q1= sm(m —HD) (46)
=90 T ma

Por otro lado, K es ciclico en (05 y P», por lo que esas variables son constantes. Para hallar ¢; y
g2 debemos anti-transformar. Para ello necesitamos la transformacién completa, y necesitamos
que sea candnica.

. Qué formas vimos que existen para probar que la transformacién es canénica?

Este es el método mas simple. La transformacién sera canénica si [@Q;, Pj] = d;5, [Q:, @Q;] =0 =
[P, P;] respecto de las variables (g, p). Es decir, las variables (¢, p) ya cumplen esos corchetes, eso
es lo que simplifica la cuenta. Notar que son varias relaciones porque i, j = 1,2. Escribiéndolo
por extenso con Q1 = Ap; vy Py = B(ps — kq1)

(Q1, P = ABm—ABkm:ABk: 1 (47a)
[Q1, Q2] = Alp1, Q2] =0 (47b)
[Q1, Po] = Alpr, P,] =0 (47¢)
[Py, Py] = Blps, P5] — kBlq1, P,]) =0 (47d)
[P1, Qo] = Blp2, Q2] — kBlq1, Q2] = 0 (47e)
(@2, P2 =1 (471)

La primer igualdad nos dice que la transformaciéon es canoénica si ABk = 1. Como A y B son
constantes a elegir, lo mas simple seria elegir B = 1 (para que P; también tenga unidades de
momento). Entonces A = 1/k. Las demds igualdades nos imponen restricciones sobre Qg y Ps.

11



Una eleccién simple podria ser P, = po, que sabemos que es una cantidad conservada. En ese
caso, la tercer y cuarta linea — (47¢) y (47d)— se cumplen automaticamente. La tltima (47f)
nos dice que

[Q2, Po] = [Q2,p2] = %—Cq?; =1 = Q2=q+ flg1,p1,p2) (48)

Reemplazando en (47b)
—_90fr
=0 R

[Q1, Q2] = Alp1, Q2] = Alp1, ¢ +ATP1, f(Q1,p17p2)T =0 = flq,p1,p2) = 9(p1,p2)  (49)

por lo que la funcién f no puede depender de ¢;. Sino apareceria el corchete [p1,q;] = —1 que
no tiene con quien anularse ([p;, p;] = 0). Nos queda sélo una ecuacién disponible, la (47¢)

9g

=1 =0 =0 =op1

—~ —N— —~ = —~—
[P1, Q2] = Blp2, @] = kBlg1, Q2] = B [pa, ¢o] +B [p2, 9(p1,p2)] =k B a1, ¢2] =k B [q1, 9(p1, p2)] = 0

Dg(p1., 1
o PP b ) =B b

Nos quedé la libertad de elegir la funcién h(ps2); lo mas simple es elegirla igual a cero.

Juntando todo, la transformacién canénica que encontramos (no es la tnica) es

QL= Py =py — kqu, QQZQ2—%7 Py =ps (50)

Podemos chequear algunas cosas.

= Dijimos que como )y era ciclica en el nuevo Hamiltoniano I, entonces Q2 = cte. En
las gufas 1 y 6 también resolvimos este ejercicio en el gauge de Landau (por Lagrange
y Hamilton), y encontramos la cantidad conservada P, = mgq; — mwgs. Pueden verificar
que P, = —k@Qs = cte, por lo que los métodos coinciden.

» Usando que p; = k@1 y la solucién de la ecuacién (46) tenemos que

p1 = k@1 = kD sin (%t + gp) (51)

Pueden compararla con la expresién (39); coinciden!
De hecho, completando la anti-transformacién se recupera la solucién (40).

Pueden repetir este procedimiento, o bien chequear que la transformacién (50) es candnica,
usando alguno de los otros métodos que vimos: encontrando una funcién generatriz, chequeando
las condiciones directas o utilizando el método simpléctico.

12



