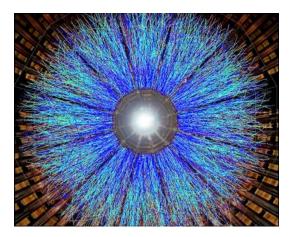
Práctica 8: Estados térmicos y función de partición en QFT



Brookhaven National Laboratory: colision de iones pesados

En esta guía veremos ejemplos de cálculo de la función de partición en distintos modelos de QFT y el de valores de expectación en un estado térmico. Esto nos llevará a la necesidad de regularizar determinantes funcionales.

1. **Determinante de operadores**: Muestre que formalmente el logaritmo del determinante de un operador A con espectro discreto cuyos autovalores son λ_n puede escribirse como:

$$\log \det(A) = -\xi_A'(0)$$

siendo $\xi_A(s) \equiv \sum_{n=1}^{\infty} (\lambda_n)^{-s}$. $\xi_A(s)$ es una función de s similar en la forma a la $\zeta(s)$ de Riemann.

- 2. Como entrenamiento para el cálculo de determinantes, halle la expresión formal del determinante del laplaciano para funciones de 1-variable $\psi(x)$ sujetas a la condición de contorno $\psi(0)=\psi(L)=0$. Este problema podría corresponder al de los autovalores del Hamiltoniano (a menos de un signo) de una partícula libre en un potencial con dos paredes infinitas en x=0 y x=L. Dado que la expresión es infinita, ?'como podría hallar alguna versión finita de la misma?
- 3. Repita el argumento por el cual la traza de $e^{-\beta H}$ con $\beta>0$ ¹ sobre el espacio de Hilbert de un campo escalar es igual a la integral funcional euclidea sobre campos periódicos con período T en una coordenada.
- 4. Aplique esa idea al caso del oscilador armónico cuántico. Para ello deberá regularizar el determinante que aparece en el lado de la integral funcional.
- 5. * Halle la función de partición $Z(\beta,V)$ en el caso de un campo escalar en D dimensiones. Halla la expresión de $-\frac{1}{\beta V}\log(Z_{\beta})$, siendo V el volumen de la parte D-1 dimensional espacial. Esta cantidad corresponde a la presión.
- 6. * Considere un campo escalar con un término de interacción $\lambda \phi^4$.
 - (a) Liste algunos diagramas que aparecerán en el calculo de la función de partición
 - (b) Considerando solo la corrección a un loop al propagador y en el limite de masa cero, muestre que la presión es proporcional a:

$$\left(1 - \lambda \frac{15}{8\pi^2}\right) T^4$$

siendo T la temperatura.

7. En el caso fermionico, las condiciones impuestas del lado de la integral funcional son de anti-periodicidad. Analice el argumento que lleva a esto tal como está en la sección 4.5 de Ashok Das Finite Temperature Field Theory.

Como aplicación, considere la traza en el Hilbert de dos niveles y reproduzca ese resultado mediante la integral funcional euclídea con condiciones de anti-periodicidad.

8. Condición KMS: El valor de expectación de un observable en un estado térmico a temperatura $T=\frac{1}{\beta}$ es:

$$\langle O(x)\rangle_{\beta} = \frac{Tr(e^{-\beta H}O(x))}{Tr(e^{-\beta H})}$$
 (1)

 $[\]overline{^1\beta}$ aquí no tiene que pensarla como ninguna cantidad asociada a una temperatura. Es simplemente un número positivo

expresión natural para un estado mixto de matriz densidad igual a

$$\rho = \frac{e^{-\beta H}}{Tr(e^{-\beta H})}$$

Operando a nivel formal (es decir, suponiendo que está todo perfectamente definido) derive la condición KMS para el caso de la función de dos puntos de dos observables A y B en la representación de Heisenberg:

$$\langle A(t_1 - i\beta)B(t_2)\rangle_{\beta} = \langle B(t_2)A(t_1)\rangle_{\beta}$$

- 9. Para conectar con la realidad, busque datos sobre las siguientes temperaturas:
 - (a) La alcanzada en plasma de quarks y gluones en los aceleradores de partículas.
 - (b) La temperatura de Hagedorn (junto con su definición)
 - (c) La temperatura en el universo temprano entre los 10^{-10} t 10^{-6} segundos luego del big-bang
 - (d) Temperatura de Hawking para agujeros negros de distinto tipo (estelares, supermasivos, etc)

Identidades útiles

Las siguientes identidades (perfectamente definidas) son útiles para el cálculo de determinantes de los operadores que aparecen en el caso del oscilador armónico:

$$\sinh(x) = x \prod_{n=1}^{+\infty} \left(1 + \frac{x^2}{n^2 \pi^2} \right)$$

Esta es una identidad relacionada con la demostrada por Euler para el $\sin(x)$.

Tomando logaritmo en ambos lados y derivando respecto a x se obtiene esta otra:

$$\frac{\pi}{2x}\coth(\pi x) = \frac{1}{2x^2} + \sum_{n=1}^{+\infty} \frac{1}{n^2 + x^2}$$

para x > 0