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Preface

The last two decades have seen the development of the new field of quantum information
science, which analyzes how quantum systems may be used to store, transmit, and process
information. This field encompasses a growing body of new insights into the basic properties
of quantum systems and processes and sheds new light on the conceptual foundations of
quantum theory. It has also inspired a great deal of contemporary research in optical, atomic,
molecular, and solid state physics. Yet quantum information has so far had little impact on
the way that quantum mechanics is taught.

Quantum Processes, Systems, and Information is designed to be both an undergraduate
textbook on quantum mechanics and an exploration of the physical meaning and significance
of information. We do not regard these two aims as incompatible. In fact, we believe
that attention to both subjects can lead to a deeper understanding of each. Therefore, the
essential “story” of this book is very different from that found in most existing undergraduate
textbooks.

Roughly speaking, the book is organized into five parts:

e Part I (Chapters 1-5) presents the basic outline of quantum theory, including a devel-
opment of the essential ideas for simple “qubit” systems, a more general mathematical
treatment, basic theorems about information and uncertainty, and an introduction to
quantum dynamics.

e Part II (Chapters 6—9) extends the theory in several ways, discussing quantum entangle-
ment, ideas of quantum information, density operators for mixed states, and dynamics
and measurement on open systems.

e Part III (Chapters 10—14) uses the basic theory to discuss several specific quantum
systems, including particles moving in one or more dimensions, systems with orbital
or intrinsic angular momentum, harmonic oscillators and related systems, and systems
containing many particles.

e Part IV (Chapters 15—17) deals with the stationary states of particles moving in 1-D and
3-D potentials, including variational and perturbation methods.

e Part V (Chapters 18-20) further develops the ideas of quantum information, examining
quantum information processing, NMR systems, the meaning of classical and quantum
entropy, and the idea of error correction.

These chapters are followed by Appendices on probability (Appendix A), Fourier series
and Fourier transforms (Appendix B), Gaussian functions (Appendix C) and generalized
quantum evolution (Appendix D).
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Part I is the basis for all further work in the text. The remaining parts follow two
quasi-independent tracks:

Part IT (Ch. 6-9) » Part V (Ch. 18-20)
Extended theory Quantum information

Part I (Ch. 1-5)
Basic theory

\ Part I1I (Ch. 10-14) Part IV (Ch. 15-17)
Quantum systems Stationary states

Thus, this book could be used as a text for either an upper-track or a lower-track style of
course.!

We, however, strongly recommend including material from both tracks. This book
is written from the conviction that a modern student of physics needs a broader set of
concepts than conventional quantum mechanics textbooks now provide. Unitary time evo-
lution, quantum entanglement, density operator methods, open systems, thermodynamics,
concepts of communication, and information processing — all of these are at least as essen-
tial to the meaning of quantum theory as is solving the time-independent Schrodinger
equation.

As we wrote this book, we had the benefit of useful and inspiring conversations with
a great many colleagues and friends. Among these we wish particularly to express our
gratitude to Charles Bennett, Herb Bernstein, Carl Caves, Chris Fuchs, Lucien Hardy,
David Mermin, Michael Nielsen, and Bill Wootters. In a similar vein, we would also like to
thank the other members of the (fondly remembered) Central Ohio Quantum Conspiracy:
Michael Nathanson, Kat Christandl Gillen, and Lee Kennard. We have also received
valuable input on the book from Matthew Neal and Ron Winters of Denison University and
Ian Durham of St. Anselm College.

An early version of this book was used as an experimental textbook for a quantum
mechanics course at Kenyon College, and the students in that course deserve their own
thanks: Andrew Berger, Stephanie Hemmingson, John Hungerford, Lee Kennard, Joey
Konieczny, Jeff Lanz, Max Lavrentovich, David Lenkner, Nikhil Nagendra, Alex Rantz,
David Slochower, Jeremy Spater, Will Stanton, Adam Tassile, Chris Yorlano, and Matt
Zaremsky.

Our faculty colleagues at both Kenyon College and Denison University have been won-
derfully supportive throughout this project. One of us (MDW) is grateful to acknowledge
a Robert C. Good Faculty Fellowship from Denison University. We also thank our editor
at Cambridge University Press, Simon Capelin, for providing the initial impetus and for
considerable patience and encouragement throughout.

! There are a few minor dependencies not indicated in this chart, but these can be easily accommodated in practice.
The general discussion of composite systems in Section 6.1 is a useful preparation for work on many-particle
systems in Chapter 14. The analysis of thermal states of a ladder system (Section 13.4) depends on the density
operator formalism, but may be omitted if Chapter 8 has not been covered.
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Preface

We are more grateful than we can readily express for the continuing love and support
of our wives, Carol Schumacher and Bonnie Westmoreland. And finally, a word to our
children, Barry, Patrick and Carolyn Westmoreland, and Sarah and Glynis Schumacher:
This is what we have been so busy doing for the last few years. We hope you like it, because
we are dedicating it to you.

Benjamin Schumacher
Department of Physics
Kenyon College

Michael D. Westmoreland
Department of Mathematics
and Computer Science
Denison University






Bits and quanta

1.1 Information and bits
(.

On the evening of 18 April 1775, British troops garrisoned in Boston prepared to move
west to the towns of Lexington and Concord to seize the weapons and capture the leaders of
the rebellious American colonists. The colonists had anticipated such a move and prepared
for it. However, there were two possible routes by which the British might leave the city:
by land via Boston Neck, or directly across the water of Boston Harbor. The colonists had
established a system of spies and couriers to carry the word ahead of the advancing troops,
informing the colonial militias exactly when, and by what road, the British were coming.

The vital message was delivered first by signal lamps hung in the steeple of Christ Church
in Boston and observed by watchers over the harbor in Charlestown. As Henry Wadsworth
Longfellow later wrote,

One if by land, and two if by sea;

And I on the opposite shore will be,

Ready to ride and spread the alarm

Through every Middlesex village and farm . . .

Two lamps: the British were crossing the harbor. A silversmith named Paul Revere, who had
helped to organize the communication network, was dispatched on horseback to carry the
news to Lexington. He stopped at houses all along the way and called out the local militia.
By dawn on 19 April, the militiamen were facing the British on Lexington Common. The
first battle of the American Revolutionary War had begun.

In the United States, Paul Revere' is remembered as a hero of the Revolutionary War,
not for his later military career but for his “midnight ride” in 1775. Revere is famous to this
day as a carrier of information.

Information is one of our central themes, and over the course of this book we will
formalize the concept, generalize it, and subject it to extensive analysis. The story of Paul
Revere illustrates several key ideas. What, after all, is information? We can give a heuristic
definition that, though we will later stretch and generalize it almost beyond recognition,
will serve to guide our discussion.

Information is the ability to distinguish reliably between possible alternatives.

! William Dawes and Dr. Samuel Prescott, who accompanied Revere on the ride and helped spread the word, are
almost forgotten — perhaps because they were never immortalized in verse by Longfellow.
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Before Paul Revere’s ride, the militiamen of Lexington could not tell whether the British
were coming or not, or by what route. After Revere had reached them, they could distinguish
which possibility was correct. They had gained information.

We can also distinguish between an abstract message and the physical signal that rep-
resents the message. The association between message and signal is called a code. For
instance, here is the code used by the colonists for their church steeple signal.

Signal  Message

Olamp  The British are not coming.
1 lamp  The British are coming by land.
2 lamps The British are coming by sea.

Mathematically, the code is a function from a set of possible messages to a set of possible
states of the physical system that will carry the message — in this case, the lamp configuration
in the church tower.

There is no requirement that all possible signals are used in the code. (The Boston spies
could have hung three lamps, or six, though their distant compatriots would have been
rather perplexed.) On the other hand, the association between message and signal should
be one-to-one, so that distinct messages are represented by distinct signals. Otherwise, it is
not possible to deduce the message reliably from the signal.

Another very important point is that information can be transformed from one physical
representation to another, so that the same message can be encoded into quite different
physical signals. Paul Revere’s message was not only represented by lamps in a church, but
also by neural activity in his brain and then by patterns of sound waves as he cried, “The
British are coming!”

Exercise 1.1 Identify at least seven distinct physical representations that this sentence has
had from the time we wrote it to the time you read it.

The fact that the same message can be carried by very different signals is a fundamental
truth about information.

This transformability of information allows us to simplify matters considerably, for we
can always represent a message using signals of a standard type. The universal “currency”
for information theory is the bit. The term bit is a generic term for a physical system with
two possible distinguishable states. The states may be designated no and yes, off'and on, or
by the binary digits 0 and 1. These two states may be distinct voltage levels in an electrical
device, two directions of magnetization in a small region of a computer disk, the presence
or absence of a light pulse, two possible patterns of ink on a piece of paper, etc. All of these
bits are isomorphic, in that information represented by one type of bit can be converted to
another type of bit by a physical process.

A single bit has a limited “capacity” to represent information. We cannot store an entire
book in one bit. The reason is that there are too many possible books (that is, possible
messages) to be represented in a one-to-one manner by the two states 0 and 1. Somewhere
in the code, we would inevitably have something like this:
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Signal Message

0 Alice in Wonderland by Lewis Carroll
0 The Guide for the Perplexed by Moses Maimonides

From a bit in the state 0, it would be impossible to choose the correct book in a reliable way.
To represent an entire book, we must use strings or sequences of many bits. If we have
a string of n bits, then the number of distinct states available to us is

#ofstates =2 x --- x 2 =2", (1.1)
—_——

ntimes

Exercise 1.2 A byte is a string of eight bits. How many possible states are there for one
byte?

Suppose that there are M possible messages. If the number of possible signals is at least as
large as M, then we can find a code in which the message can be reliably inferred from the
signal. We can thus determine whether the message can be represented by # bits.

e If M > 2", then n bits are not enough.
e If M < 2", then n bits are enough.

The number # of bits necessary to represent a given message is a way of measuring “how
much information” is in the message. This is a very practical sort of measure, since it tells
us what resources (bits) are necessary to perform a particular task (represent the message
faithfully).

We define the entropy H of our message to be

H =logM, (1.2)

where M is the number of possible messages. (From now on, unless we otherwise indicate,
“log” will denote the logarithms with base 2: log = log,.) The entropy H is a measure of
the information content of the message. From our discussion above, we see thatif n < H,
n bits will not be enough to represent the message faithfully. On the other hand, if n > H,
then 7 bits will be enough. Thus, H measures the number of bits that the message requires.”

We can think of H as a measure of uncertainty — that is, of how much we do not know
before we get the message. It is also a measure of how our uncertainty is reduced when we
identify which message is the right one. In other words, before we receive and decode the
signal, there are M possibilities and H = log M. Afterward, we have uniquely identified
the right message, and the entropy is now A’ = log 1 = 0.

We have called H the “entropy,” which is the name used for 4 by Claude Shannon in
his pioneering work on the mathematical theory of information. The name harkens back to

2 Anticipating later developments, we should note here that our definition of H implicitly assumes that the M
possible messages are all equally likely. To cope with more general situations, we will need a more general
expression for the entropy. However, Eq. 1.2 will do for our present purposes.
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thermodynamics, and for very good reason. Ludwig Boltzmann showed that if a macro-
scopic system has W possible microscopic states, then the thermodynamic entropy Sp is

So =kyIn W, (1.3)

where ky = 1.38 x 10723 J/K, called Boltzmann's constant. This famous relation (which
is inscribed on Boltzmann’s tomb in Vienna) can be viewed as a fundamental link between
information and thermodynamics. Up to an overall constant factor, the thermodynamic
entropy Sp is just a measure of our uncertainty of the microstate of the system.

Exercise 1.3 A liter of air under ordinary conditions has a thermodynamic entropy of about
5 J/K. How many bits would be necessary to represent the microstate of a liter of air?

We will have more to say about the connection between information and thermodynamics
later on.

Suppose 4 and B are two messages, having M, and Mp possible values respectively.
The two messages taken together form a joint message that we denote 4B. If 4 and B are
independent of each other, every combination of 4 and B values is a possible joint message,
and so M p = M Mp. In this case the entropy is additive:

H(A4B) =H(A) + H(B). (1.4)

On the other hand, if the messages are not independent, it may be that some combinations
of 4 and B are not allowed, so that the joint entropy H (4B) may be less than H(4) + H(B).

Exercise 1.4 Suppose 4 and B each have 16 possible values. What is the joint entropy
H(A4B) (a) if the messages are independent, and (b) if B is known to be an exact copy of 4?

How much information was contained in the message sent from the Christ Church steeple
in 17757 There were three possible messages, and so H = log3 & 1.58. This means that
one bit would not suffice to represent the message, but two bits would be more than enough.
That much is clear; but can we give a more exact meaning to H? Does it make sense to say
that a message contains 1.58 bits of information?

Suppose our message is a decimal digit, which can take on values 0 through 9. There are
ten possible values for this message, so the entropy is H = log 10 &~ 3.32. We shall need at
least four bits to represent the digit. But imagine that our task is to encode, not just a single
digit, but a whole sequence of independent digits. We could simply set aside four bits per
digit, but we can do better by considering groups (or blocks) of three digits. Each group
has 10> = 1000 possible values, and so has an entropy of 3 log 10 = 9.97. Therefore we
can encode three digits in ten bits, using (on average) 10/3 = 3.33 bits per digit. This is
more efficient, and is very close to using log 10 bits per digit.

Exercise 1.5 Devise a binary code for triples of digits (as described above) and use your
code to represent the first dozen digits of 7.

This motivates the following argument. Consider a message having an entropy H. If
we have a long sequence of independent messages of this type, we can group them into
blocks and encode the blocks into bits. If the blocks have n messages, each block has an
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entropy nH. Let N be the minimum number of bits needed to represent a message block.
This will be the smallest integer that is at least as big as nH, and so

nH <N <nH+ 1. (1.5)

Calculating the number of bits required on a “per message” basis, we are using K = N/n

bits per message, and |

H<K<H+-. (1.6)
n

If we consider very large message blocks, n > 1 and so 1/n is very small. The two ends
of the inequality chain squeeze together, and for large blocks we will use almost exactly
H bits per message to represent the information. Therefore, if we encode our messages
“wholesale,” the entropy H precisely measures the number of bits per message that we need.

Exercise 1.6 Consider a type of message that has three possible values (like the message
of the colonial spies in Boston). Calculate the minimum number of bits required to encode
blocks of 2, 3, 5, 10, or 100 such messages. In each case, also calculate the number of bits
used per message.

Things become more complicated in the presence of noise. Noise is a general term for
any process that prevents a signal from being transferred and read unambiguously. For
example, imagine that there had been fog on Boston Harbor on that April night in 1775.
In a heavy fog, the church steeple might not have been visible at all from Charlestown,
and no information would have been conveyed. In a lighter mist, the observers might have
been able to see that there were lamps in the steeple, but not been able to count them. They
would then have known that the British troops were on the move, but not which way they
were going. A part of the information would have been transmitted successfully, but not all.

It is possible to formalize this notion of partial information. Before any communication
takes place, there are M possible messages and the entropy is H = log M. Afterward, we
have reduced the number of possible messages from M to M, but because of noise M" > 1.
The amount of information conveyed in this process is defined to be

M
H—H’:logﬁ. (1.7)

Exercise 1.7 A friend is thinking of a number between 1 and 20 (inclusive). She tells you
that the number is prime. How much information has she given you?

The concept of information is fundamental in scientific fields ranging from molecular
biology to economics, not to mention computer science, statistics, and various branches of
engineering. It is also, as we will see, an important unifying idea in physics.

1.2 Wave-particle duality
______________________________________________________________________________|

Since the 17th Century, there have been two basic theories about the physical nature of light.
Isaac Newton believed that light is composed of huge numbers of particle-like “corpuscles.”
Christiaan Huygens favored the idea that light is a wave phenomenon, a moving periodic
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disturbance analogous to sound. Both theories explain the obvious facts about light, though
in different ways. For example, we observe that two beams of light can pass through one
another without affecting each other. In the Newtonian corpuscle theory, this simply means
that the light particles do not interact with each other. In the Huygensian wave theory, it
implies that light waves obey the principle of superposition: the total light wave is simply
the sum of the waves of the two individual beams.

To take another example, we observe that the shadows of solid objects have sharp edges.
This is easily explained by the Newtonian theory, since the light particles move in straight
lines through empty space. On the other hand, this observation seems at first to be a fatal
blow to the wave theory, because waves moving past an obstacle should spread out in the
space beyond. However, if the wavelength of light were very short, then this spreading
might be too small to notice. For over a hundred years, the known experimental facts
about light were not sufficient to settle whether light was a particle phenomenon or a wave
phenomenon, and both theories had many adherents.

Then, in 1801, Thomas Young performed a crucial experiment in which Huygens’s wave
theory was decisively vindicated. This was the famous two-slit experiment.

Suppose that a beam of monochromatic light shines on a barrier with a single narrow
opening, or “slit.” The light that passes through the slit falls on a screen some distance
away. We observe that the light makes a small smudge on the screen. (For thin slits, this
smudge of light actually gets wider when the slit is made narrower, and on either side of
the main smudge there are several much dimmer smudges. These facts are already difficult
to explain without the wave theory, but we will skip this point for now.)

Light passing through another slit elsewhere in the barrier will make a similar smudge
centered on a different point. But suppose two nearby slits are both open at once. If we
imagine that light is simply a stream of non-interacting Newtonian corpuscles, we would
expect to see a somewhat broader and brighter smudge of light, the result of the two
corpuscle-showers from the individual slits.

But what happens in fact (as Young observed) is that the region of overlap of the two
smudges shows a pattern of light and dark bands called interference fringes, see Fig. 1.1.

This is really strange. Consider a point on the screen in the middle of one of the dark
fringes. When either one of the slits is open, some light does fall on this point. But when
both slits are open, the spot is dark. In other words, we can decrease the intensity of light
at some points by increasing the amount of light that passes through the barrier.

-
+ = N

The light patterns from two single slits combine to form a pattern of interference fringes.
(For clarity on the printed page, the negative of the pattern is shown; more ink means higher
intensity.)
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The situation is no less peculiar for the bright fringes. Take a point in the middle of one
of these. When either slit is opened, the intensity of light at the point has some value /.
But with both slits open, instead of an intensity 2/ (as we might have expected), we see an
intensity of 4/! The average of the intensity over the light and dark fringes is indeed 27,
but the pattern of light on the screen is less uniform than a particle theory of light would
suggest.

Young realized that this curious behavior could easily be explained by the wave theory
of light. Waves emerge from each of the two slits, and the combined wave at the screen is
just the sum of the two disturbances. Denote by ¢ (7, f) the quantity that describes the wave
in space and time. In sound waves, for example, the “wave function” ¢ describes variations
in air pressure. The two slits individually produce waves ¢ and ¢;, and by the principle of
superposition the two slits together produce a combined wave ¢ = ¢1 + ¢».

Two further points complete the picture. First we note that ¢ can take on either positive
or negative values. By analogy to surface waves on water, the places where ¢ is greatest
are called the wave “crests,” while the places where ¢ is least (most negative) are called
the wave “troughs.” Second, the observed intensity of the wave at any place is related to
the square of the magnitude of the wave function there: / |$]2.

At some points on the screen, the two partial waves ¢ and ¢, are “out of phase,” so that
a crest of ¢ is coincident with a trough of ¢, and vice versa. At these points, the waves
cancel each other out, and |¢|? is small. This phenomenon is called destructive interference
and is responsible for the dark fringes.

At certain other points on the screen, the two partial waves ¢ and ¢; are “in phase,” by
which we mean that their crests and troughs arrive synchronously. When ¢ is positive, so
is ¢, and so on. The partial waves reinforce each other, and |¢|? is large. This phenomenon,
constructive interference, is responsible for the bright fringes.

At intermediate points, ¢ and ¢, neither exactly reinforce one another nor exactly
cancel, so the resulting intensity has an intermediate value.

Exercise 1.8 In the two slit experiment, in a particular region of the screen the light from
a single slit has an intensity /, but when two slits are open, the intensity ranges over the
interference fringes from 0 to 4/. Explain this in terms of ¢; and ¢».

Young was able to use two-slit interference to determine the wavelength A of light, which
does turn out to be quite small. (For green light, A is only 500 nm.) Later in the 19th Century,
James Clerk Maxwell put the wave theory of light on a firm foundation by showing that
light is a travelling disturbance of electric and magnetic fields — an electromagnetic wave.

But the wave theory of light was not the last word. In the first years of the 20th Century,
Max Planck and Albert Einstein realized that the interactions of light with matter can only
be explained by assuming that the energy of light is carried by vast numbers of discrete
light quanta later called photons. These photons are like particles in that each has a specific
discrete energy £ and momentum p, related to the wave properties of frequency f* and
wavelength A:

(1.8)

E=hf,
h
=
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where i = 6.626 x 10734 J s, called Planck s constant. When matter absorbs or emits light,
it does so by absorbing or creating a whole number of photons.

Einstein used this idea to explain the photoelectric effect. In this phenomenon, light
falling on a metal in a vacuum can cause electrons to be ejected from the surface. If the
light intensity is increased, the number of ejected electrons increases, but the kinetic energy
of each photoelectron remains the same. In a simple wave theory, this is hard to understand.
Why should a more intense light, with stronger electric and magnetic fields, not produce
more energetic photoelectrons? Einstein reasoned that each ejected electron gets its energy
from the absorption of one photon. A brighter light has more photons, but each photon still
has the same energy as before.

Exercise 1.9 The “work function” /¥ of a metal is the amount of energy that must be added
to an electron to free it from the surface. Write down an expression for the kinetic energy K
of a photoelectron in terms of /7 and the incident light frequency /. Also find an expression
for the minimum frequency fy required for the photoelectric effect to take place. (This will
depend on W, and so may be different for different metals.)

This “quantum theory” of light poses some perplexities. In view of Young’s two-slit
interference experiment, there can be no question of abandoning the wave theory entirely.
Photons cannot be Newtonian corpuscles. Nevertheless, the fact that light propagates
through space as a continuous wave (as seen in the two-slit experiment) does not prevent
light from interacting with matter as a collection of discrete particles (as in the photo-
electric effect). Furthermore, this bizarre situation is not limited to light. In 1924 Louis
De Broglie discovered that the particles of matter — electrons and so forth — also have
wave properties, with particle and wave quantities related by Eq. 1.8. It is possible to do a
two-slit experiment with electrons and observe interference effects. The general principle
that everything in nature has both wave and particle properties is sometimes called wave —
particle duality.

The effort to put quantum ideas into a solid, consistent mathematical theory led to the
development of quantum mechanics by Werner Heisenberg, Erwin Schrédinger, and Paul
Dirac. Quantum mechanics has proved to be a superbly successful theory of phenomena
ranging from elementary particles to solid state physics. It is also a very peculiar theory
that challenges our intuitions on many levels. Quantum mechanics involves far-reaching
alterations in our ideas about mechanics, probability theory, and even (as we shall see) the
concept of information.

To illustrate this in a small way, let us re-examine Young’s two-slit experiment with quan-
tum eyes. First, we must understand that the intensity of light is a statistical phenomenon.
When we say that light is more intense at one point than it is at another, we simply mean
that more photons can be found there. But what can this mean when the number is very
small? What can it mean if there is only one photon present?

In the single-photon case, the intensity of the wave at any point is proportional to the
probability of finding the photon at that point. In general, quantum mechanics predicts
only the probability of an event, not whether or not that event will definitely occur. So it
is with photons. The behavior of any particular photon cannot be predicted exactly, but the
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Photons fall randomly on a screen according to a probability distribution given by two-slit
interference. Each image shows four times as many photons as the one before. After many
photons, a smooth intensity pattern emerges statistically.

statistical behavior of a great many photons gives rise to a smooth intensity pattern. See
Fig. 1.2 for an illustration of this.

In the single-photon case, therefore, the wave ¢ is actually a probability amplitude, a
curious mathematical creature that is not itself a probability, but from which a probability
may be calculated. Roughly speaking, the probability’ P of finding a photon at a given point
is just P = |¢|%. Probability is the square of the magnitude of a probability amplitude.

The probability amplitude wave ¢ obeys the principle of superposition. In the two-
slit experiment, consider a particular point X on the screen. With only slit #1 open, the
probability amplitude that the photon lands at X is ¢, so that the probability of finding the
photon there is P; = |¢1|>. Opening only slit #2 yields an amplitude ¢,, which gives rise to
a probability P, of finding the photon at X. But with both slits open, we have a combined
probability amplitude ¢ = ¢1 + ¢2, yielding a probability

P=¢gl*=1¢1 +pl?, (1.9)

for the photon to wind up at X. The two probability amplitudes may reinforce one
another or cancel each other out, enhancing or suppressing the probability that the photon
lands at X.

If the photon can pass through only one slit, the probability of reaching X is P;. If it
can pass only through the other, it is P;. In ordinary probability theory, if there are two
possible mutually exclusive ways that an event can happen, then the combined probability
is P = P1 + P,. For example, if we flip two coins, the probability that they land with the
same face upward is

P(same face) = P(both heads) + P(both tails). (1.10)
3 In the two-slit experiment, where the photon can be found in a continuous range of positions, P is actually a

probability density rather than a probability. This technical detail, and a great many others, will be worked out
carefully in later chapters!
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But quantum probabilities are not ordinary probabilities! In the two slit experiment, the
combined likelihood may be either less than or greater than the sum P + P;, depending on
the relative phase of the two amplitudes ¢ and ¢,. In other words, quantum probabilities
can exhibit destructive and constructive interference effects.

Suppose at a point X on the screen the probabilities P and P, both equal p. This means
that the probability amplitudes at this point satisfy

g1l = I¢2] = /. (L.1T)

If the two amplitudes constructively interfere at X, then the two amplitudes are “in phase”
there: ¢1 = ¢, and so

P=¢* = 2¢1]* = 4p. (1.12)

If the two amplitudes destructively interfere at X, then ¢ = —¢, (the amplitudes are “out
of phase”). Then ¢ = 0 and so P = 0. We can see that the probability P for finding a
photon in this region of the screen will vary over the interference fringes between 0 and 4p.

Exercise 1.10 Consider a point X on the screen at which P; = p and P, = 2p. That is, with
only slit #1 open, the photon has a probability p of reaching X, but with only slit #2 open
this probability is twice as great. Now open both slits. What are the largest and smallest
possible values for P at X due to interference effects?

When analyzing the behavior of a photon in the two-slit experiment, we find that
P = |¢1 + ¢|*. Yet the conventional probability law P = P; + P, does apply to the
two-coin example. So we are faced with an apparent inconsistency. Sometimes we must
add probabilities, and sometimes we must add probability amplitudes. How do we know
which of these rules will apply in a given situation?

The difference cannot be mere size. Quantum interference effects have been observed in
surprisingly large systems, including molecules more than a million times more massive
than electrons (see Problem 1.4). Conversely, we can often apply ordinary probability
rules to microscopic systems. The essential difference between the two situations must lie
elsewhere.

Notice that, in the two-coin example, we can check to see which of the two contributing
alternatives actually occurred. That is, we can examine the coins and tell whether they are
both heads or both tails. But in the two-slit experiment, this is not possible. If the single
photon arrives in one of the bright interference fringes, it could have passed through either
of the slits. Even a very close examination of the apparatus afterward would not tell us
which possible alternative occurred.

Suppose we were to modify the two-slit experiment so that we could tell which slit
the photon passed through. We can for instance imagine a very sensitive photon detector
placed beside one of the slits, which is able to register the passage of a photon without
destroying it. This detector need not be a large device: a single atom would be enough in
principle, if the state of that atom were sufficiently affected by the passing light quantum.
With such a detector in place, we could perform the two-slit interference experiment and
then afterwards determine which path the photon took, simply by checking whether or not
a photon had been detected.
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But, as Niels Bohr pointed out, this new experiment is not the same as the original two-slit
experiment. If we analyze the proposed modification carefully, we will find that the presence
of the detector modifies the behavior of the light. The consistent phase relationship between
the partial waves from the two slits will be destroyed, and so no consistent interference
effects will be observable. The pattern of light intensity (photon probability) on the screen
will show no bright and dark interference fringes. In fact, the probability P of a photon
arriving at a point X will be exactly the sum P; + P, for this experiment.

Exercise 1.11 Suppose that a particle detector is placed beside slit #2 in the two-slit
experiment. As a simplified model, imagine that the effect of the detector on the quantum
amplitude is to randomly multiply the partial wave ¢, by +1 or —1. Show that, on average,
the ordinary probability law holds — that is, that the average of |¢1 + ¢» |2 and |¢p1 — ¢ |2
is exactly P1 + P;. (This is true whether the amplitudes are real or complex quantities.)

Bohr said that the interference experiment and the “which slit” experiment are comple-
mentary measurement procedures. We can do either of them, but choosing to perform one
logically excludes performing the other on the same photon. We can either arrange the
apparatus so that interference effects are present, or we can arrange it so that we find out
which slit the photon passed, but not both.

The essential difference between the two-coin experiment (sum the probabilities) and the
two-slit experiment (sum the amplitudes) is information. In each situation, two alternatives
contribute to a final result. For the coins, there is no obstacle to obtaining information
about which of the two possible alternatives (heads or tails) is realized. In that case, the
total probability is given by P = P; + P;. But for a photon in a two-slit interference
experiment, such information is not available. Indeed, it does not exist, because any actual
arrangement in which the photon’s path is registered will show no interference effects at all,
even if the information is never read by a human experimenter. The quantum rule for adding
probability amplitudes applies when the system is informationally isolated and produces
no physical record of any sort anywhere in the Universe about which possible intermediate
alternative is realized.

Exercise 1.12 Explain the following slogan, which might be suitable for printing on a
T-shirt: Quantum mechanics is what happens when nobody is looking.

The idea that a photon might pass through the slits and leave no trace at all of its
precise route is slightly disturbing and does not accord with “classical” intuitions based on
Newtonian mechanics. Imagine that a Newtonian particle can travel by one of two possible
paths. This particle is continually interacting with all of the other particles in the Universe.
The position of the planet Saturn, say, will be minutely affected by the gravitation of the
particle, which will in turn depend upon the particle’s position. Therefore, by an immensely
precise determination of Saturn’s motion, we should (in principle) be able to tell which
path the particle followed. In classical mechanics, no system can really be informationally
isolated.

In a slightly more realistic example, the path of the photon through the slits should
produce a slight lateral recoil in the barrier, and a careful determination of this recoil
should in principle allow us to figure out which slit was passed. Einstein proposed just
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such a thought-experiment to Bohr in the course of a years-long debate about the internal
consistency of quantum theory. Bohr responded that quantum mechanics must apply to
the barrier as well. The two possible final states of the barrier, which we wish to use
to distinguish which slit the photon went through, do have slightly different quantum
descriptions. Nevertheless, the two states are not reliably distinguishable by any possible
measurement, and so cannot be counted as distinct physical situations.* So it remains true
that no physical record exists of the photon’s choice of slit, and the quantum probability
law applies.

The concepts of information and distinguishability are at the heart of the theory of quan-
tum mechanics. In the chapters that follow, we will develop that theory into a sophisticated
mathematical structure and then apply it to many physical situations. Ideas about probabil-
ity, measurement, and information will be our constant guides. Such guides will not make
quantum mechanics seem less strange to our naive intuition, but they will help us begin to
build a new quantum intuition, one that more nearly conforms to the strange and marvelous
ways of nature.

Problems

Problem 1.1 We said that our definition of H applies when the possible messages are
equally likely. Now consider a binary message in which 0 has probability 1/3 and 1 has
probability 2/3. What value of H should we assign when the probabilities are not equal?

We determine this by “dividing” the message 1 into two messages, la and 1b, which
are equally likely. Then the overall message has three equally likely possibilities (0,1a,1b).
This message is composed of the original (0,1) message, followed (if the first message is 1)
by the (1a,1b) message.

Next we postulate that

entropy entropy
of (0,1a,1b) [ =] of(0,1)
message message

entropy

N probability x | of (1a,1b)
of message 1
message

(Think about why this postulate might make sense.) This becomes
2 2
log3 =H + glogZ and thus H:log3—§10g2%0.918.

(a) Explain intuitively why H should be less than 1.0 in this situation.

4 Bohr also considered the case where a barrier of very low mass is given a sufficient “kick” that the photon’s
slit can be determined. But in this case, the quantum indeterminacy in the barrier’s own position is enough to
“wipe out” any interference effects! (We analyze a related example in Section 10.4.) The Bohr—Einstein debate,
with Einstein challenging and Bohr defending the principles of quantum theory and complementarity, played a
vital role in clarifying the conceptual content of the quantum theory.
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(b) Calculate H if message 0 has probability 1/6 and message 1 has probability 5/6.

(c) Generalize this idea to the following situation. Message 0 has a probability p = k/n
and message 1 has probability ¢ = k'/n, where k, &/, and n are positive integers with
k + k' = n. Find an expression for H in this case that only involves p and q.

Problem 1.2 Five cards are dealt face-down from a 52-card deck.

(a) How many possible sets of five cards are there? How much information do we lack
about the cards?

(b) The first three are turned over and revealed. Knowing these, how many possibilities
remain?

(¢) How much information was conveyed when the three cards were revealed? Is this 3/5
of the total? Why or why not?

(d) Repeat parts (a)—(c) if the five cards are dealt from five independent decks.

Problem 1.3 In his short story “The Library of Babel,” Jorge Luis Borges imagines a
seemingly infinite library containing books of random text. The language of the library has
twenty-five characters, and

... each book is of four hundred and ten pages; each page, of forty lines, each line, of
some eighty letters which are black in color.

Calculate the entropy of one of the books in Borges’ library.

Problem 1.4 In 1999, a research group at the University of Vienna was able to observe
quantum interference in a beam of Cgg molecules. Cgg is called buckminsterfullerene,
and the soccerball-shaped Cgp molecules are sometimes called buckyballs. A buckyball
molecule has a mass of about 1.2 x 107%% kg.

(a) The buckyball wavelength in the experiment was about 3 pm. How fast were the
molecules moving?
(b) What would be the wavelength of an electron moving at the same speed?

Problem 1.5 The kinetic energy K of a particle is related to its momentum p by K =
p*/2u, where p is the particle’s mass. In a gas at absolute temperature 7', the molecules
have a typical kinetic energy of 3k;7 /2. Derive an expression for the thermal de Broglie
wavelength, a typical value for the de Broglie wavelength A of a molecule in a gas. For
helium atoms (1 = 6.7 x 10727 kg), calculate the thermal de Broglie wavelength at room
temperature (7 = 300 K) and at the boiling point of helium (7" = 4 K).

Quantum effects become most significant in matter when the thermal de Broglie wave-
length of the particles is greater than their separation. At atmospheric pressure, gas
molecules are about 1-2nm apart; in a condensed phase (liquid, solid) they are about
ten times closer. How do these compare with the thermal de Broglie wavelengths you
calculated for helium?

Problem 1.6 A single photon passes through a barrier with four slits and strikes a screen
some distance away. Consider a point X on the screen. The probability amplitudes for
reaching X via the four slits are ¢1, ¢, ¢3, and ¢4.
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(a) What is the net probability P that the photon is found at X if no measurement is made
of which slit the photon passed through?

(b) A detector is placed by slit #4, which can register whether or not the photon passes that
slit (but does not absorb the photon or deflect it). What is P in this case?

(c) The detector is now moved to a point between slits #3 and #4 and registers whether or
not the photon passes through one of these slits. However, the detector does not record
which of these two slits the photon passes. What is P in this case?



2.1 The photon in the interferometer
e —

This chapter introduces many of the ideas of quantum theory by exploring three specific
“case studies” of quantum systems. Each is an example of a qubit, a generic name for the
simplest type of quantum system. The concepts we develop will be incorporated into a
rigorous mathematical framework in the next chapter. Our business here is to provide some
intuition about why that mathematical framework is reasonable and appropriate for dealing
with the quantum facts of life.

Interferometers

In Section 1.2 we discussed the two-slit interference experiment with a single photon. In
that experiment, the partial waves of probability amplitude were spread throughout the
entire region of space beyond the two slits. It is much easier to analyze the situation in
an interferometer, an optical apparatus in which the light is restricted to a finite number
of discrete beams. The beams may be guided from one point to another, split apart or
recombined as needed, and when two beams are recombined into one, the result may show
interference effects. At the end of the interferometer, one or more sensors can measure the
intensity of various beams. (A beam is just a possible path for the light, so there is nothing
paradoxical in talking about a beam of zero intensity.) Figure 2.1 shows the layout of a
Mach—Zehnder interferometer, which is an example of this kind of apparatus.

What happens when we do an interferometer experiment with a single photon? We will
consider this question for interferometers that contain only /inear optical devices, which do
not themselves create or absorb photons.' At the end of our interferometer, our light sensors
are photon detectors, which can register the presence or absence of a single photon. Thus,
in our calculations we will be interested in the probabilities that the various detectors will
“click,” recording the presence of the photon in the corresponding beam.

We learned in our discussion of the two-slit experiment in Section 1.2 that the probability
of finding the photon at a particular location is the square of the magnitude of a probability

! These devices are also unchanged by the passage of a photon. For instance, we assume it is impossible to
determine whether or not a photon has reflected from a given mirror, simply by examining the mirror afterward.
The photon therefore remains informationally isolated during its passage through the interferometer. As we will
see in Section 10.4, this is an entirely reasonable assumption for actual interferometer experiments.
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Layout of a Mach-Zehnder interferometer. Light in the input beam is divided into two beams,
which are later recombined. Light sensors measure the intensities of the two output beams.

amplitude. Each beam in our single-photon interferometer experiment will have an ampli-
tude «, and the probability P that a detector would find the photon there (if we were to
introduce such a detector) is just

P=laf. 2.1

Suppose at some stage of our interferometer we know for sure that the photon must be
in one of two beams, which have amplitudes « and B respectively. Then it follows that
ol + B = 1.

Complex amplitudes

One important kind of device that we can introduce into a beam is called a phase shifter.
This could simply be a glass plate through which the beam travels. A phase shifter does
not alter the probability that the photon is found in the beam, so the magnitude |«| is not
changed. However, the phase of @ can be altered. By introducing a particular thickness §
of glass, we can change the amplitude from « to —«. (The exact value of § depends on the
index of refraction of the glass and the wavelength of the light.) This change in phase is
highly significant, for it can turn constructive interference into destructive interference at a
later stage of the interferometer.

If we have two such plates, or a single plate with thickness 24, the amplitude will
become —(—a) = «, and the original amplitude is restored. But suppose we have a plate
of thickness §/2? This plate would produce a change the amplitude « such that (1) the
magnitude |«| is still the same, and (2) if the change were performed twice, the phase
would be multiplied by —1.

Glass plates can be made in a continuous range of thicknesses, producing a continuous
range of phase shifts. For this to be possible, the beam phases o must be complex quantities,
with both real and imaginary parts. A plate with thickness /2 may multiply the amplitude
by a factor of i = +/—1. This does not change the magnitude of the complex phase «, since
la| = lice|. Two such plates (or a single plate of thickness §) multiply the phase by i* = —1,
as required.
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P=lal’

D

(04 (04

Two important interferometer components. The photon detector D will register the presence of a
photon in the beam with probability P = lae]?, where « is the probability amplitude. A phase shift
of ¢ changes the amplitude from « to ea.

In general, a glass plate of some thickness will multiply the amplitude of the beam by
e'®, where ¢ (the phase shiff) is proportional to the thickness of the glass. Changing « to
—a could be accomplished by phase shifters with ¢ = 7, 37, 57, and so on. A phase shift
of ¢ does not change the probability that the photon is found in the beam, since for any «,
see Fig. 2.2,

le%al’ = laf?. 2.2)

The fact that quantum probability amplitudes are complex quantities is one of the oddest
facts about quantum mechanics. Mathematicians introduced complex numbers in the 16th
Century to help solve certain algebraic problems. Such numbers are often viewed as highly
abstract entities, little connected to the physical world. The number i is, after all, said to be
“imaginary.” Complex numbers are sometimes used as an algebraic shortcut in Newtonian
mechanics or electromagnetism. But in quantum mechanics, complex numbers are not just
a convenient trick; they are inescapable and full of significance.

Exercise 2.1 Remind yourself of the rules of complex arithmetic. If «* denotes the complex
conjugate of o, show

(@) |o)? = a*a.
(b) o+ a* =20 ().
(c) Forreal ¢, (ei¢)* =e 9.

Exercise 2.2

(a) Suppose § is the smallest thickness of glass that produces a phase shift of 7 — in other
words, that multiplies the phase by —1. What is the phase shift if the glass plate has a
thickness of 6/5?

(b) Suppose § is the next-to-smallest thickness of glass that produces the same change in
phase (i.e. multiplying the phase by —1). What is the smallest thickness that would do
so? What phase shift would be produced by a plate of thickness §/5?

The beam amplitudes in an interferometer obey the principle of superposition. We will
illustrate this with a simple example. Suppose at some stage of the interferometer, there

2 Anything that changes the optical path length of the beam, including a distance of empty space, will act as
a phase shifter. In our simplified treatment here, we will ignore the effect of distance and think of all phase
shifters as discrete objects that can be either put into or left out of the interferometer beam.
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A graphical representation of Eq. 2.4, showing a superposition of situation A and situation B.

are just two beams available for the photon, which we will call the “upper” beam and the
“lower” beam. Consider two possible physical situations, denoted 4 and B. In situation 4,
the photon is certainly in the upper beam. The probability amplitude for this beam is 1 and
the amplitude for the lower beam is 0. (The upper beam amplitude could be anything of the
form ¢, but we will consider the simplest case.) In situation B, the roles are reversed: the
upper amplitude is 0 and the lower is 1, and so the photon is certainly in the lower beam.

The principle of superposition means that the existence of these two situations implies the
existence of many other situations in which the beam amplitudes are linear combinations of
the assignments for 4 and B. Given complex coefficients o and B, then there is a possible
physical situation which we can formally write as

o (situation 4) + B (situation B) . 2.3)

In this combined situation, the amplitude for the upper beam is just o - 1 + 8 - 0 = «, while
the lower beam amplitude is @ - 0 4+ 8 - 1 = B. Of course, to maintain a proper assignment
of probabilities, we will have to require that la? + | B 1> =1.

This is much easier to express if we describe each situation by a column vector whose
entries are the beam amplitudes. Then the first situation could be written ((1)) and the second

one (?) The principle of superposition tells us that

(5)=+(3)(2)

is also a possible physical situation, provided |« I>+181* = 1, see Fi g. 2.3 for an illustration.
From this we note, first, that a physical situation for the photon in the interferometer can
be summarized by a vector whose components are probability amplitudes. Second, the
principle of superposition means that a complex linear combination of two such vectors
also represents a possible physical situation, provided the amplitudes satisfy a normalization
condition (meaning that all probabilities must add up to one).

Beamsplitters

Now we turn our attention to a key element of an interferometer, the beamsplitter. This is
a device that takes an input beam and splits it into two beams of lower intensity. A typical
beamsplitter is a half-silvered mirror. A beam incident on such a mirror will produce both
a reflected beam and a transmitted beam, each having half the intensity of the original.
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X z

At beamsplitter BS, input beams of unit amplitude produce output beams with amplitudes w, x, y,
and z.

o a'=wa+yf

B =xa+zp

The general situation for the beamsplitter BS. Input amplitudes « and g are transformed into
output amplitudes o’ and g’, each of which is a linear combination of the input amplitudes.

What is the effect of a beamsplitter on the probability amplitudes when the incident
beam has only a single photon? Figure 2.4 summarizes. There are two possible input beams
for the beamsplitter. For an upper input beam with amplitude 1, we denote the resulting
reflected and transmitted beam amplitudes by w and x respectively. A lower input beam
with amplitude 1 yields output beam amplitudes y and z, as shown. If the beamsplitter is
a half-silvered mirror, then the probability that the photon is reflected or transmitted at the
mirror is one-half. That is,

1
wi? = el =yl = Iz = - (2.5)
Now we can apply the principle of superposition to find how the beamsplitter works
for situations in which the photon could be in either input beam. Suppose « and 8 are
the amplitudes for the upper and lower input beam. The beamsplitter transforms these into
amplitudes o’ and B’ for the corresponding output beams. By superposition, these are

o =wa + B,

B x4 2B, (2.6)

as shown in Fig. 2.5. The relation between input and output amplitudes is easy to express
in the amplitude-vector notation introduced above. It is

()= ()= 2)(G) e

This is pretty neat. We represent the photon amplitudes by column vectors () and (g: )-

The beamsplitter is described by the 2 x 2 matrix (;V 7 ) The action of the beamsplitter on
the input amplitudes then corresponds to simple matrix multiplication.
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Exercise 2.3 Verify that Eq. 2.7 is correct.

So far, so good. But what are the elements of the beamsplitter matrix for a particular
device? For a half-silvered mirror, we know from Eq. 2.5 that the matrix elements are
complex quantities with magnitude % The simplest possible choice would therefore be

1
W:x:y:z:—_

2

What would be the properties of such a beamsplitter? Photons incident along one or the
other of the two input beams yield

()= 1))~
(V) =500

These are perfectly reasonable amplitudes for the output beams. In either case, the photon

SI=Sl= Sl=6l1-

2
has a probability ‘\/LE‘ = % of being found in each of the output beams. But suppose we
consider an input that is a superposition of the two beams:

1 1
P=s0D 2 )-0)
V2 V2

Now the photon has probability |1|> = 1 of being found in each output beam. This is
certainly wrong! The “simplest possible” matrix elements for a beam splitter thus cannot
correspond to any actual beamsplitter, because that matrix can lead to illegal probability
assignments. It does not “conserve probability.”

The output probabilities are too large because constructive interference of the amplitudes
takes place in both output beams. This is not possible. If constructive interference happens
in some places, destructive interference must happen elsewhere.

In other words, our “simplest possible” beamsplitter matrix fails because the phases of
the matrix elements cannot be as proposed. On the other hand, this matrix works fine:

wy\_ 1 /1 1
(1)-5(0 )
Exercise 2.4 Show that, for any allowable input amplitudes (g ), a beamsplitter described

by Eq. 2.8 yields output amplitudes such that |o/|2 + |,3/|2 =1.

Equation 2.8 describes a device called a balanced beamsplitter. The negative sign in
the lower-right (z) matrix element means that when the lower input beam is reflected,
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M

DO

A Mach-Zehnder interferometer. Compare Fig. 2.1.

it undergoes a phase shift of 7, but other reflected and transmitted beams have zero net
phase shift.

This accords with classical wave optics. A real half-silvered mirror is a slab of glass with
a very thin metallic coating on one side. When light is reflected at an interface, the wave
picks up a 7 phase shift whenever the incident beam is coming from a medium of lower
refractive index to one of higher index — for instance, from air to glass. Thus, the beam that
is reflected on the metal coating from outside the glass gets a negative sign, but not the one
that reflects from the inside.’

When we include a balanced beamsplitter in our calculations, we will have to be careful
to indicate on which side the reflected beam acquires the negative sign. In diagrams, we will
do this by placing a dot (e) on one side of the beamsplitter. The reflected beam amplitude
on the dotted side is multiplied by —1.

Consider Fig. 2.6, a diagram of the Mach—Zehnder interferometer sketched in Fig. 2.1
above. Two balanced beamsplitters BS1 and BS2 are present, as are a pair of mirrors
(both labelled M) and a pair of photon detectors designated DO and D1. A phase shifter is
present on one of the beams, which introduces a phase shift of ¢. We send photons into the
interferometer along just one of the input beams, so that the amplitude of that beam can be
taken to be 1.

Exercise 2.5 Consider the Mach—Zehnder interferometer set-up in Fig. 2.6, and suppose

¢ =0.

(a) Ignoring any effects of the mirrors M, show that the probabilities Py and P; of the
photon being detected by DO and D1, respectively, are just 1 and 0. In other words,
there is constructive interference for DO and destructive interference for D1.

(b) Is your answer in part (a) changed if you take into account that reflection from a mirror
M introduces a phase shift of 7z into that beam?

See also Problem 2.1.

3 For simplicity we are neglecting other phase shifts due to the thickness of the glass. However, if these are
arranged to be integer multiples of 27, or if the beamsplitter is built so that all beams undergo exactly the same
phase shifts, these may be ignored.
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Matrix methods

At any stage of a Mach—Zehnder interferometer, the photon may be in one of two possible
beams. We have drawn our diagrams so that one beam is the “upper” beam and one is
the “lower” beam. Devices such as phase shifters and beamsplitters alter the probability
amplitudes of those beams in a linear way. This linearity is what permits us to describe the
transformations by matrices.

The physical situation is described by a column vector of probability amplitudes:

v=<z>. 2.9)

The various elements of an interferometer apparatus are described by matrices acting on
the amplitude vector v. The balanced beamsplitter of Eq. 2.8 is described by:

p_ L(1 1 210
-l ) =

The subscript / indicates that the negative phase appears when the lower beam is reflected.
This beamsplitter transforms the amplitude vector v to a new vector v’ according to

v =Byv. (2.11)

A phase shifter can also be described by a matrix. Suppose the phase of the upper beam is
shifted by ¢. This can be represented by the matrix

e 0
Pu(¢)=< 0 1), (2.12)

and the amplitude vector transforms by v/ = P, (¢)v. Once again, the subscript « indicates
that the phase of the upper beam is shifted.

Exercise 2.6 Write down the matrices B, and P;(¢) describing a beamsplitter with the
opposite orientation (negative phase for upper beam reflection) and a phase shifter on the
lower beam.

The full-silvered mirrors that guide the beam around the interferometer introduce phase
shifts by 7 into the beam, so they can be represented by matrices
M, =P, (7). (2.13)

We finish our inventory with two very simple cases. First, we can imagine an arrangement
in which the beams are simply allowed to cross one another, without any beamsplitter
intervening. This just exchanges the upper and lower amplitudes, and so can be represented

. .

Simplest of all is a part of the interferometer in which the beams are not affected by any
sort of optical element, and the amplitudes are unchanged. This is a sort of “device” as
well! Its (trivial) action is represented by the identity matrix:

10
1:(0 1). (2.15)
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4

b
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Representations of various linear optical elements in an interferometer.
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The Mach-Zehnder interferometer. Compare Fig. 2.6.
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Obviously, 1v = v for any amplitude vector v.

We can represent each of these graphically using a modification of our previous diagrams.
From now on we will draw the upper and lower beam paths as parallel lines, except where
they are brought together at a beamsplitter or a beam crossing. The photon is assumed to
go from left to right, see Fig. 2.7.%

What happens when the basic optical elements are assembled into a larger experiment?
In a diagram, we simply string the pieces together in sequence, as in Fig. 2.8. How can we
describe this sort of interferometer arrangement mathematically? Suppose a pair of beams
with amplitude vector v pass through three optical elements. The first is described by a
matrix R, the second by S, and the third by T. To find the final amplitude vector v/, we
must first multiply v by R, then by S, then by T:

v/ = TSRv. (2.16)

The effect of the entire complex apparatus is represented by a single 2 x 2 matrix, the
product TSR. This product is a sequence in time of successive transformations of the
amplitude vector for the beams, with the time order from right to left: R occurs first and T
occurs last. To put it another way, the order of the matrices in the product is the opposite of
the order of the corresponding elements in our left-to-right diagrams.

Exercise 2.7 Write down a matrix product that represents the Mach—Zehnder interferometer
shown in Fig. 2.8. (You may ignore the photon detectors at the end.)

4 Do not be worried by the fact that our beams no longer go in straight lines in our diagrams. The diagrams are
merely schematics of a real optical apparatus. But as a matter of fact, we can build interferometers in which the
beams are guided in curved paths by optical fibers.
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As you thought about Exercise 2.7, you may have noticed a difficulty. The two beams
strike two different mirrors, each of which yields a phase shift of . These reflections
happen at about the same time, as suggested in Fig. 2.8. In which order should we write
the corresponding matrices? Fortunately, it turns out that the order of these phase shifter
matrices does not matter. We will cast the relevant fact as an exercise:

Exercise 2.8 Suppose P and P’ are the matrices for two phase shifters. Show that P and P’
commute:

PP' = PP

when (a) the two phase shifters are applied to the same beam, and (b) the two phase shifters
are applied to different beams.

Some of the matrices commute with each other, but not all of them. For example:
Exercise 2.9 Show that

XP,(7) # P,(m)X.
Explain in words why this makes sense.

The analysis of a two-beam interferometer system has now been boiled down to matrix
calculations. The translation between the physical apparatus and the mathematical expres-
sion is straightforward. The following exercise should give you some easy practice at these
calculations and translations. You will find more examples in the problems at the end of
the chapter.

Exercise 2.10 Verify the following matrix facts, and explain each one in words and pictures
as a fact about interferometer systems. (a) XX = 1. (b) B;B; = 1. (¢) B;P;(w)P,(1)B; =
—1.(d) B/P;(7)B; = X. (¢) B/P/()B, = P, (x0).

Because of the principle of superposition, any linear optical element will produce a linear
transformation on the input amplitude vector v, and can therefore be represented by a 2 x 2
matrix R acting on v. But we saw in our analysis of beamsplitters that not all 2 x 2 matrices
could possibly correspond to an actual optical device. The reason was that some matrices
did not preserve the normalization of the probabilities. Which matrices R do preserve this
normalization, and so might correspond to actual devices?

First, we need to express the normalization requirement in terms of matrices. The
Hermitian conjugate operation is designated by the “dagger” symbol “ § . This indicates
the complex conjugate of the transpose of the matrix. Thus,

vi=(a* B*). (2.17)
Our normalization requirement for the probability amplitudes can then be written as
viv=1. (2.18)

(Note that we are equating the number 1 with the 1 x 1 matrix whose only entry is 1. This
is a harmless abuse of mathematical notation.)
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Exercise 2.11 Verify that this equation is the same as |oz|2 + |8 |2 =1.

The vector v = Rv contains the output amplitudes when the input is v. We are thus
requiring that (v')’v/ = 1 for any input vector that has viv = 1. In other words,

V)V =vIR'Rv = 1. (2.19)

(We have used the fact that, for any complex matrices, (UV)Jr = VTU". This, or at least the
corresponding fact for the matrix transpose, should be familiar.)
We can view Eq. 2.19 as a property of the matrix RTR. Let

R'R = ( 7.7 ) (2.20)

s

What can we say about these matrix elements? First, consider an input amplitude vector
v = (). Then

. 1

'RTRv = ( 1 " =q. 221

V'R'Rv = ( 0)<S t)(O) q (2:21)
So Eq. 2.19 tells us that g = 1.

Exercise 2.12 Verify Eq. 2.21, and then repeat the calculation with v = (9) to show
that s = 1.

The two diagonal elements of RTR must both equal 1. What about the other two elements?
Ifweletv = %(%), we have

s 1

- 1 1 r 1 1
iRT _ _ — _
vRRv_2(1 1)( ><1>—1+2(r+s). (2.22)

Since this must equal 1, we know that s = —r. Finally, we recall that the amplitudes are
complex numbers, so that the input v = \/LE (1) is possible. This yields

i

(1 —i)(_lr ;)(1>=1+n'. (2.23)

From this, we conclude that » = 0.

viIRTRy =

N —

Exercise 2.13 Verify Eq. 2.22 and Eq. 2.23.

Putting it all together, we have shown that, if the matrix R is to preserve the normalization
of probabilities, it must have the property that

R'R=1. (2.24)

Matrices with this property are called unitary matrices. We have arrived at an important
general fact: Any physically possible linear optical element in a two-beam interferometer
is represented by a 2 x 2 unitary matrix.
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Exercise 2.14 Here is what we have proved: If R is to preserve the normalization of
probabilities for any input v, then it must be unitary.

Now you prove the (much easier) converse: If R is unitary, then it will preserve this
normalization for any input v. (Be sure that you understand the distinction between these
statements!)

We can further show that any unitary 2 x 2 matrix R may be physically realized as an
interferometer set-up made out of beam splitters and phase-shifters, see Problem 2.3.

Testing bombs

The components of an interferometer do not register the passage of a photon, so that
the photon remains informationally isolated. This is why the beams exhibit interference.
Consider, for example, the simplified Mach—Zehnder arrangement in Fig. 2.9. The photon
is introduced along the lower beam, so the input amplitude vector can be taken to be ((1))
If nothing else is introduced into the apparatus, the matrix describing the interferometer’s

effect is just
0 1
B/B, = < 1o ) . (2.25)

The output amplitude vector is thus

0 1 0 1
w0 1)(0)=(1) 219

Exercise 2.15 Check this matrix arithmetic.
Therefore, the photon will always reach the upper detector D0O. The probabilities are

outcome P
photon reaches DO 1
photon reaches D1 0.

There is constructive interference in the beam that leads to D0, and destructive interference
in the beam that leads to D1.

Now suppose that we change the interferometer slightly by sticking a hand into the lower
beam at the point A. For simplicity, imagine that the photon is absorbed if it hits the hand.

DO

D1

OD/\
(D/\

simplified Mach-Zehnder interferometer.
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This produces a physical change in the hand that could in principle be detected (“Ow!”).
Thus, the hand is a photon detector that measures whether or not the photon travels along
the lower beam at A.

This will, of course, destroy any interference effects. If we send a photon into the
apparatus, it has a 50% probability of striking the hand. If it travels along the upper beam
instead, when it reaches the second beamsplitter it will be equally likely to go toward DO
and D1. In short, we have

outcome P

photon reaches DO  1/4
photon reaches D1 1/4
photon hits hand 1/2.

Notice that, by blocking one beam with a hand, we have actually increased the probability
that the photon is detected by D1.

This paradoxical result is the basis for a remarkable thought-experiment proposed by
Avshalom Elitzur and Lev Vaidman in 1993. Imagine a factory that produces a type of
bomb triggered by light. So sensitive is the trigger that the passage of a single photon
through its mechanism will explode a bomb.

Because of manufacturing defects, however, many bombs come off the assembly line
without working triggers. Photons pass through these mechanisms without being registered
at all, and the bombs are duds. The factory managers want to be able tell for sure that at
least some bombs are in working order. How can they do this? Of course, if they send a
photon through a given bomb, and it blows up, then they can be sure that the bomb was in
working order — but they have also destroyed that bomb. What the managers want is a way
to identify bombs that are explosive, but are not yet exploded. Since the bomb triggers are
set off even by one photon, this appears impossible.

But in fact, the interferometer arrangement in Fig. 2.9 can do the job. A bomb is placed
at the point A and then one photon is sent through. If the bomb is a dud, it will not register
the passage of the photon, and there will be interference effects. If the bomb is working, it
will function as a photon detector on the lower path. The results are

Bomb is a dud Bomb is working
outcome P outcome P
photon reaches DO 1 photon reaches DO 1/4
photon reaches D1 0 photon reaches D1 1/4
bomb explodes 0 bomb explodes 1/2.

Suppose an unknown bomb is placed in the apparatus and one photon is sent through. If
the bomb explodes, then it was in working order, but this bomb is now lost. If the photon
is detected by DO, the test is inconclusive and may be repeated.” But if the photon ever
arrives at D1, then the managers know that the unexploded bomb is in working order, even
though the bomb never detects the passage of the photon.

5 If the photon always arrives at DO during many trials, the factory managers may confidently conclude that the
bomb is a dud.
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Exercise 2.16 If you do not find the previous paragraph strange and disturbing, re-read it.

Exercise 2.17 Suppose the interferometer test is performed on a large number of bombs
from the factory. When the test is inconclusive on a particular bomb, it is repeated until the
bomb’s status is reasonably certain. What fraction of the working bombs are certified as
working but not detonated?

The Elitzur—Vaidman thought-experiment is a good example of the sometimes perplexing
behavior of quantum systems. It also illustrates why information is such a key idea in
quantum theory. Whether or not a working bomb actually detects a photon in a given trial,
its final state (intact or exploded) provides a record of which beam the photon has traversed.
That means that the photon was not informationally isolated in the apparatus, and so there
can be no interference between the beams.

2.2 Spin 1/2
|

Having analyzed in detail the problem of a single photon in a two-beam interferometer, we
are in a position to identify a few key ideas:

e At any point, the photon can be in one of two distinct beams. Linear superpositions of
the beams are also possible.

e The physical situation of the photon is described by a vector v of two complex probability
amplitudes. If a given beam has an amplitude o, then || is the probability that a detector
would find the photon in that beam. Normalization of probabilities means that viv = 1.

e The effect of a linear optical device like a phase shifter or a beamsplitter is described by
a matrix R. The amplitude vector v is changed to a new vector v/ = Rv. The matrix R
must be unitary to guarantee that the final probabilities are normalized.

e Even a quantum system as simple as this can yield surprising results, as in the bomb-
testing thought-experiment.

In this section, we will apply these same ideas to a quite different type of quantum system.

Particles with spin

A particle has angular momentum by virtue of its movement through space. It may also have
an intrinsic angular momentum called spin. This term suggests an analogy to Newtonian
physics, in which the angular momentum of an extended body like the Earth is due to
both its translational and rotational motion. The quantum situation is a bit more subtle.
Electrons, for instance, appear to be entirely point-like, without any spatial extent at all.
We therefore cannot attribute the intrinsic spin of an electron to mere rotational motion.
Electrons, protons, and neutrons are all examples of spin-1/2 particles. Suppose we
measure the z-component S, of the spin angular momentum for one of these particles. The
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result of such a measurement is always either +4/2 or —h/2, where £ is related to Planck’s

constant 4 by
h

- 227
T (2.27)

and has a value of 1.055 x 1073* J s. In Newtonian mechanics the component S, can take
on a continuous range of values, but as an experimental fact only these two results are
possible. There is, of course, nothing special about the z-axis. The same basic fact holds
true for measurements of Sy, S, or any other component of the spin.

How can a component of a particle’s intrinsic angular momentum be measured? This
was the problem faced by Otto Stern and Walther Gerlach in the early days of quantum
physics. They were testing Bohr’s quantum theory of atomic structure, in which angular
momentum has only discrete values. The angular momentum S is hard to probe directly,
but the magnetic moment /i of an atom is proportional to S:

i=yS, (2.28)

where y is the gyromagnetic ratio, a constant property of the particle. In an external
magnetic field B, the magnetic moment will contribute to the energy of an atom by

E=—ji-B. (2.29)

Given a magnetic field in the z-direction, this becomes £ = —u.B,. If E could be measured
for a given B;, then u, could be found and from this the angular momentum component S,
inferred.

Determining this energy directly was beyond the experimental capabilities available to
Stern and Gerlach in the early 1920s. However, they realized that the trajectory of an atom
in a non-uniform magnetic field depended on this energy. Consider an external magnetic
field B; that is increasing in the positive z-direction, so that % > 0. The energy of a
particle with a given u, will depend on the z-coordinate of its position:

e If u, > 0, then E decreases as z increases:
e If u, < 0, then F increases as z increases.

This contributes to the effective potential energy for the atom, and so in either case there is
a net force on it. The force is upward for @, > 0 and downward for ., < 0. (By “upward”
and “downward” we mean in the positive and negative directions on the z-axis.)

Stern and Gerlach sent a stream of silver atoms through a region of space with a strong
magnetic field gradient. The basic arrangement is shown in Fig. 2.10. If Newtonian physics
were true (so that the S; value is continuous), then the stream of atoms would spread
out continuously in the z-direction. However, as Stern and Gerlach found, the atoms are
actually separated into discrete streams, reflecting the discreteness of the possible values
of ..

Although the original Stern—Gerlach experiment was performed on entire silver atoms,
variations of it can be done with elementary particles. The magnetic fields involved can be
oriented in any direction. In all cases, it is found that a measurement of any component of
the spin of a particle can only produce certain discrete results.
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The Stern-Gerlach experiment. A stream of atoms moving from the right passes between the
asymmetric poles of a magnet. Particles with different values of u, are deflected in different
directions. The final position of the atom determines its u.

Amplitude vectors

In the two-beam interferometer, the photon can be found in one of two distinct beams. A
spin-1/2 particle can be found to have one of two distinct values for S.. The same quantum
rules that apply to the photon also apply to the spin-1/2 particle. That is, in addition to
the “spin up” and “spin down” situations, there are also situations which are complex
superpositions of these two:

a (spin up) + B (spin down) . (2.30)

The coefficients o and g are probability amplitudes for finding the value of S; to be +7/2
or —h/2, respectively. We can represent any of these superpositions by a column vector of
the probability amplitudes. The amplitude vectors

z+=<(1)> and z_=<(l)>, (2.31)

represent situations where the spin component S; definitely has either its positive or negative
possible value. The superposition vector

( Z ) =az, + Pz_, (2.32)

is also possible, but what does it mean?

It turns out® that the superposition vectors describe situations in which some spin com-
ponent other than S; has a definite value. For example, suppose we were to consider S.
The amplitude vectors

— (1) ma =2 ( ) 233
X+_E ) an X__E -1 ) (2.33)

6 What do we mean by “It turns out”? When we use this phrase, we may be appealing to theoretical developments
that we have not yet discussed, or to experimental results, or to both. Physics, unlike mathematics, cannot really
be developed in a linear way from a set of explicit axioms. The justification for any theory lies in experiments,
but experiments cannot be understood without a theory! The best we can hope for in empirical science is a
consistent, testable, mutually reinforcing system of ideas and observations. When we say “It turns out,” we are
simply opening a door into that system.
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describe situations in which S, = +7/2 or Sy = —h/2 respectively. For the spin component
S, the corresponding vectors are

1
y+=%<1> and y_=ﬁ<_ll,>. (2.34)

Exercise 2.18 (a) Suppose a particle is described by x_ and we measure S,. What is the
probability that we will obtain the result —//2? (b) Answer the same question if the
amplitude vector is y.

Indeed, suppose we choose a direction in the xz-plane that is inclined at an angle 6 from
the z-axis. Then the amplitude vectors

cos % —sin %
04 = 8 and 0_ = 0 | (2.35)
sin 5 cos 5

describe situations where the spin component Sy has the definite values +//2 respectively.

Exercise 2.19 If the amplitude matrix is 6, what is the probability that a measurement of
S yields 4+h/2?

Notice the pattern here. For any spin component S,,, we have two amplitude vectors
describing situations in which that component has a definite value in a measurement. The
amplitude vectors u4 and u_ satisfy

p)fup =@ ) u =1

(up)u_ =0. (2.36)
We recognize the first part of Eq. 2.36 as the normalization of probabilities for a

measurement of S,. The second relation is also quite significant, as we will now see.
Suppose our particle is described by the amplitude matrix v = (g ), but the measurement
we perform is Sy rather than S;. The probabilities for the two possible outcomes will not
simply be |a|? and |B]>. How can we find these probabilities? To do so, we must find

amplitudes o’ and B’ so that

v=oa'xy + B'x_. (2.37)
Then the probability of obtaining +5/2 is |o/ |2 and the probability of obtaining —h/2 is

2 . . . .
| B’ } . We can find @’ and 8’ by solving a system of simultaneous equations. But there is an
easier and more direct way:

) v =0 (o'xy + p'x)
=o' (xp) x + 8 (x) x_
=d. (2.38)
(Notice how we have used both parts of Eq. 2.36.) Similarly, (x_)"v = p’. We can find

the probability amplitudes for any spin component by evaluating matrix products of the
form u'v.
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Exercise 2.20 (a) Find o’ and 8’ in terms of @ and B. (b) Find these and the probabilities
for the outcomes of an Sy measurement in the case where v = 6.

The amplitude vectors here play a dual role. First, they describe the physical situation of
the spin-1/2 particle as a superposition of z; and z_. Second, the amplitude vectors u and
u_ (describing situations where the spin component S, has a definite value) also provide
us with a way to compute probability amplitudes for the outcomes of a measurement of S,,.

Basis independence

So far, it appears that the z-axis has been granted special privileges. The amplitude vectors
z, = ((1)) andz_ = ((1)) are especially simple; all other amplitude vectors are “superposi-
tions” of these. But there is nothing special about the z-axis! We should be able to describe
things equally well — and obtain the same predictions — with respect to any axis.

This is rather like the behavior of familiar three-dimensional spatial vectors. A vector a
is often described by listing its components (ay, @y, a;) in a Cartesian coordinate system.
However, a vector is not the same thing as the list of its components. The vector has a
definite geometrical or physical meaning, like the momentum p of a particular particle.
The momentum p does not depend on how we choose to orient our coordinate axes to
describe it.

We emphasize this by using a notation for vectors that does not refer to any specific
coordinate system: 4 rather than (ay, a,, a-). We do the same for vector operations such as
a-+ E, |l ora - B. When we wish to compute these, we often resort to the components of
the vectors involved. But we know that the results of our computations cannot depend on
our choice of spatial coordinate system.

In quantum physics, we need a corresponding notation that is independent of our choice
of “coordinate system.” We use the term sfate to mean a physical situation for a given
quantum system. The state is written as a ket, which consists of a straight line | and an
angular parenthesis ), between which we put a symbol or a short description of the state.
For instance, a situation in which a spin-1/2 particle has S, = +7/2 might be written

|z4) or |spinup) or [1). (2.39)
Similarly, a state in which Sy = —7/2 might be
h
|x_) or |<«<) or |Sy = 5 (2.40)

What sits inside the ket is merely a label for the state; the only requirement is clarity.

The state (written as a ket) is exactly what we have until now been representing as an
amplitude vector. Therefore, the principle of superposition implies that kets can be written
as complex linear combinations of other kets — that is, that the kets are elements of a
complex vector space. For example, we can write

1
x+) = — |z4) + lz_). (2.41)

1
V27
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Exercise 2.21 Write |y_) as a linear combination of |z, ) and |z_).

In order to calculate probability amplitudes, we found it handy to compute u’v, where u and
v were amplitude matrices (see Eq. 2.38). In our new language, we denote the Hermitian
conjugate matrix u' by a bra symbol, which is a reversed ket: (u| . The product is written

ulv=(uv), (2.42)

which is called a bracket (= bra - ket).”
Exercise 2.22 Show that (u |[v)* = (v|u).

We have seen that a measurement of any component S, of the spin of the particle is
associated with two states |uy) and |u_). These are states in which S, has definite values
of +h/2 and —h/2. These states have the properties

(g luy) = (u_u_) =1,

(up lu_) = 0. (2.43)

The first line tells us that the probabilities are normalized; the second line is called the
orthogonality of the states |u4) and |u_). We say that Eq. 2.43 expresses the orthonormality
of the |u4) states.

The states |uy) form a basis for the set of all possible states. This means that any state
|v) can be written as a superposition of them:

V) =ay luy) +aju). (2.44)

The numbers a4 are the probability amplitudes for the outcomes of a measurement of S,
on a particle in the state |v). These amplitudes can be computed by

ot = (us v). (2.45)
In other words, we can represent the state |v) with respect to the |u4) states as an amplitude
vector
(g [v) )
V= s 2.46
( (u_ v) (2:40)

but this representation depends on the choice of the states |u.).

Exercise 2.23 Show that the only kets that with certainty yield a value of +A/2 in a
measurement of S,, are of the form ¢ lug).

Measurements and filters

Suppose we have a Stern—Gerlach apparatus oriented along the z-axis. A stream of spin-1/2
particles passing through the apparatus will be split into two streams, according to the
measured value of S,. If we observe in which of the two streams an atom is found, we have
measured S, for that atom, see Fig. 2.11.

7 This notation and this pun are both attributable to Paul Dirac.
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—h/2

A Stern-Gerlach apparatus.

A very simple sort of observation would be to block one of the two beams, say the one
corresponding to S; = —h/2. The value of S; is registered by whether or not the atom hits
the barrier. This arrangement is not simply a measurement of S., but also an S; filter. Atoms
with S; = +7/2 are permitted to pass, but other atoms are stopped.

If we prepare a particle in the state |z_) and send it through our apparatus, then it is
blocked. If we prepare it in |z4 ), then it will certainly pass through the apparatus. What will
be its state afterwards? This will in general depend on the detailed physics of the apparatus,
since magnetic fields and so forth might produce changes in the spin of the particle. For
now we will consider the simplest case, in which the spin is unchanged: the particle will
emerge with spin state |z ).

Now suppose we introduce a particle in the state |xy ), given in Eq. 2.41. Such a particle
will have a probability 1/2 of being blocked and probability 1/2 of passing through the
apparatus. If the particle passes through, what will be its state afterwards?

We might be tempted to say that the spin will still be |x. ), since we have said that the spin
is “unchanged” by the apparatus. But |x. ) is a superposition of |z, ) and |z_) —in essence,
an interference of these two states — and that interference cannot survive a measurement of
S-. We conclude instead that the final state of the spin, given that it passes through our S,
filter, is just |z4).

This means that a second measurement of S; would produce exactly the same result as
the first measurement.® To put it a different way, consider two S; filters in succession. The
first one passes S; = +7/2 and the second one passes S; = —h/2, as shown in Fig. 2.12.
Any particle that passes the first filter is then in a state |z4), and so has probability zero for
passing the second filter.

Naively, we might think that a filter merely removes particles which do not meet some
specified criterion. If this were an adequate picture of how our filters work, then it would
follow that adding additional filters to a series could never increase the likelihood that a
particle would pass all the way through. This is indeed true if we add filters to the end of
the series. But what if we insert one in the middle?

Let us modify the arrangement in Fig. 2.12 by inserting an S, filter between the two S,
filters. This is shown in Fig. 2.13. A particle that passes through the first filter will then
be in a state |z4). In this state, it will pass the second filter with probability 1/2, and if it
does, it will afterwards have a spin state |x;). But a particle with this state will have some
chance (again, probability 1/2) of passing the final filter and ending up in the state |z_). By

8 This observation, that successive measurements of the same observable quantity will yield identical results, is
sometimes elevated to an axiom of quantum theory. However, as we will see in Section 4.3, this is only true in
the most ideal cases, and is not a general fact about actual measurement procedures.
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Successive Stern-Gerlach filters for opposite values of S;. The probability of passing through both
filters is zero.

If we insert an Sy filter between two opposite S; filters, we can increase the probability of passing
the whole series.

inserting an extra filter, we have increased the probability that the particle passes the whole
series.”

Therefore, the filters, and the measurements they are based on, do more than just “read
off” the value of some variable. They also have an effect on the state of the system that is
being observed. A particle prepared with spin state |z ) and subjected to a measurement of
Sy, will afterwards be found in one of the states |x). The particle will retain no “memory”
of its previous commitment to a definite value of S..

This is because S; and Sy are complementary quantities. We must orient our Stern—Gerlach
magnets one way or the other, choosing one spin measurement or the other. Measuring Sy
precludes measuring S;, and furthermore, any definite value of S, the particle might have
carried is destroyed by the measurement of Sy.

Exercise 2.24 Suppose the particle starts out with a spin state of |x_). What is the
probability that it will pass through all three filters in Fig. 2.13?

This has an interesting implication for the storage and retrieval of information using
quantum systems. Imagine representing one bit of information by the state of a spin-1/2
particle. A simple code would be

Signal Message

|z4) 0
|z_) 1.

When we wish to retrieve the information, all we need to do is measure S, for the particle.
However, suppose we measure S, instead? The result of this measurement would tell
us nothing at all about the bit encoded in the spin. Worse, once we have measured S,

9 This is quite similar to a simple lecture demonstration involving polarizing filters. Polarization is a property of
photons that is exactly analogous to particle spin. A polarizing filter blocks light of one polarization, but permits
light of the other (perpendicular) polarization to pass. No light can get through a pair of “crossed” polarizing
filters. But if a third tilted filter is introduced between the pair, some of the photons do pass through.
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the particle will have “forgotten” all about its previous state. The information will be
irretrievably lost.

Put it this way. The particle can carry a “secret message” encoded in its spin state. If we
read the particle in the right way (measuring S:), the message is revealed. But if we choose
the wrong way (measuring Sy), then the message self-destructs! This suggests that the
quantum physics of a spin-1/2 particle might be used to preserve the privacy of information.
And so it can; we will return to this subject, called quantum cryptography, later on.

2.3 Two-level atoms
]

Energy levels and quantum states

Atoms of a given element can absorb or emit light only at certain discrete frequencies, the
pattern of which is characteristic of that element. (This is the basis of spectroscopy.) That
is, the atoms can absorb or emit photons only with certain discrete energies. As Niels Bohr
realized, this must mean that the atoms themselves can only have certain discrete internal
energy levels. As the atom “jumps” between levels, photons are absorbed or emitted. The
atomic energy levels determine the pattern of light frequencies in the spectrum of the
element.

Viewed abstractly, the atomic energy levels form a kind of irregular ladder, each rung of
which is a possible value for the internal energy of the atom. Suppose an atom is occupying
one rung or another on the ladder. When a photon is absorbed, the atom jumps to a higher
rung. When it jumps to a lower rung, a photon is emitted. The lowest rung of all, the
internal state with the smallest energy, is called the ground state, and all of the others are
excited states. This is illustrated in Fig. 2.14.

Later in this book we will discuss at length how the complicated structure of energy
levels emerges from the quantum physics of the interacting nucleus and electrons in an
atom. For now, we will simply take that structure as a given and begin to explore what
it entails. A particular type of atom generally has many different energy levels. In many
experiments, though, only two energy levels — usually the ground state and one excited
state — play any significant role. In this case, we can adopt a simplified model, the two-level
atom, in which these are the only rungs present in the energy level ladder.

The two-level atom, like the two-beam interferometer and the spin-1/2 particle, is a
simple quantum system. Let us apply some of the quantum ideas we have seen so far to
this new example. Let £y and E| denote the energy of the ground state and the excited state
of our two-level atom. Each of these, of course, corresponds to a state of the atom that is
represented by a ket: |Ep) for the ground state, |E) for the excited state.

We could imagine measuring the energy E of the atom. Such a measurement would have
only Ey and E as possible values, and the states |Ep) and |E) will have these values with
certainty. They are thus analogous to the |zy) and |z_) states for a spin-1/2 particle, which
are the states with definite values for S;. We conclude that the energy level states must be
orthonormal, as in Eq. 2.43:



37

Two-level atoms

Es
. E,
A
il
: —A_E3 El
& : (b)
Q : 2
g
I E1 Eo
E

0

on the left is the energy level “ladder” for an imaginary atom with six energy levels included. The
jump () is accompanied by the emission of a photon with energy £, — Eq, while the transition
shown in (b) absorbs a photon having much lower energy £5 — E;. On the right, the much simpler
ladder of a two-level atom.

(Eo |Eg) = (E1|E1) =1,
(Eo |E1) = 0. (2.47)

The principle of superposition tells us that there are other states as well formed by complex
linear combinations of these two. In general, then, the atom will be in a state

[¥) = ao |Eo) + a1 |EY) . (2.48)

The amplitudes oy = (Ej |y ). If the atom is in the state |i/), then a measurement of its
energy E will yield Ey with probability |a|? and £} with probability |« |%.

Exercise 2.25 Show that any state of the form e |Ey) is a state with definite energy Ey.

The early quantum physicists thought that an atom must always be “in” one or another
of its energy levels, and even today physicists, chemists, and others will often speak and
write in this way. (To see an example, go back a few paragraphs and re-read our description
of an atom “jumping” from one rung of the energy level ladder to another.) But it is not so!
Superpositions such as Eq. 2.48 are perfectly possible quantum states, which means that
we can have interference effects between different energy levels. We will have more to say
on this point a little later. For now, we need to explain why this important fact can so often
be ignored.

The superposition of energy levels in Eq. 2.48, with its potential for interference between
the levels, only makes sense provided that the two-level atom remains informationally
isolated. But if the atom emits a photon (with energy E£; — Ej) then it has announced to
the world that its energy was E1 and has now become Ej. Since the surroundings contain a
record (in the form of the photon) of the atom’s energy E, the superposition can no longer
apply. The same would be true if the atom absorbed a photon from its surroundings.
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In a simple spectroscopic experiment, we probe an atom by studying the photons that
it emits and absorbs. The atom is therefore not informationally isolated. No interference
effects between the levels can be observed, so we can always imagine the atom to be in
some particular energy level at any given time. Because spectroscopy is so important as
a tool for probing quantum-level physics, it is easy to forget the deeper truth that energy
levels are not the only possible quantum states.

When we discuss spectroscopic experiments, we too will happily adopt the simplified
“one level or another” language. We, however, will not forget.

Time evolution

A measurement of energy on the two-level atom is associated with the two energy level states

|Ep) and |E1). Measurements of other variables will be associated with other orthonormal
pairs of states. Suppose |u) is the state associated with some measurement outcome u. Then
if the system is in the state |i), the probability P, that this measurement results in u is

Py = [(uly)*. (2.49)

Now (in principle) we can calculate the probabilities for measurement outcomes for meas-
urable quantities other than energy. What are these other quantities exactly? Without a more
detailed description of the atom, we cannot say. For the present, we will simply assume
that we can measure them when required, and leave the details for later.

A two-level atom that is informationally isolated can exist in an arbitrary superposition
state |v), as given in Eq. 2.48. But how does the state |¢) change over time? In other
words, what is | (#))? The answer will involve a new principle of quantum physics. We
will motivate this principle by recalling the Planck—De Broglie relations from Eq. 1.8. In
particular, the energy E of a photon is related to the frequency f of the light by £ = Af. It
will be a little more convenient to write this in terms of the angular frequency w = 27/

E=hf = % 2nf = ho. (2.50)

(Note: We use the quantity w so much more often than f that from now on we will use the
unadorned term “frequency” to refer to w. Whenever we need to talk about /', we will call
it the circular frequency.)

In Section 1.2 we said that Eq. 2.50 is a general relation between particle and wave
properties for quantum systems. How does this apply to the two-level atom? If the atom
is initially in an energy level state |Ej), its state should somehow oscillate in time with a
frequency wy = Ej/h. But the energy of an isolated atom does not change. We conclude
that it is the complex phase of the state that changes. If at = 0 the state is | (0)) = |Eg),
then at a later time

W () = e |Ey) . (2.51)

As Exercise 2.25 tells us, this is also a state with definite energy Ey, so the energy of the
atom does not change.
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In fact, for an atom in an energy level state, the time evolution in Eq. 2.51 makes no
observable change at all. If u is an outcome of some measurement, the probability P, at
time ¢ is

Py(t) = [y @)

= [ (| Eg)

= [(u|Eg)|* = P,(0). 2.52)

|2

If the atom is in an energy level state, the probability of every measurement outcome is
constant over time. From the point of view of experiment, |1 (¢)) is indistinguishable from
| (0)). In fact, the states of definite energy are sometimes called stationary states.

Given this, why do we even bother with Eq. 2.51? The answer appears when we have
more general states that are not states of definite energy. Suppose that our atom at ¢ = 0
is in the superposition state |y) given in Eq. 2.48. We now make the assumption that the
time evolution acts in a linear way, so that each term evolves independently according to
Eq. 2.51. Then _ _

[¥ (1)) = age™ " |Eg) + are” "V |Ey) . (2.53)
Not only does the overall phase of this state vary over time, but the relative phases of the
two terms will also change, provided wg # wg.

To see some of the implications of this, consider the state |u) of the two-level atom

given by 1 1
lu) = —= |Eo) + —=
2T

We will suppose that |u) is the state associated with the outcome « of some measurement,
and also that the initial state of the atom is | (0)) = |u). At time ¢t = 0 the probability that
our measurement would yield u is

|E1) . (2.54)

Pu(0) = [(u]y(0))* = 1. (2.55)
Over time, however, the atom’s state will evolve into something different:
1 ; 1 .
[ (1) = —= e |Eg) + — eV |EY) . 2.56
=7 N 256

How does the probability P, (f) vary over time?
First, we compute the probability amplitude at time ¢:

(uly @) = % (Eoly ) +(E1 ¥ (D)
= % (e7 0! g7y (2.57)

Notice that we have used the orthonormality of |Ey) and |E) to compute this amplitude.
The probability is

Pu(®) = luly @)
= (u|y @) (uly@)
= % (1 4 cos ((w1 — wo)?)) . (2.58)
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Exercise 2.26 Fill in the algebra to arrive at Eq. 2.58.

As time progresses, the probability P, (f) of the measurement outcome u changes from 1
to 0 and then back to 1 again with an angular frequency wy — w;. At least some of the
observable properties of the atom do vary over time.

Exercise 2.27 Show that, if Ey = E|, then every state of the two-level atom is a stationary
state.

Exercise 2.28 Suppose that a two-level atom goes from its excited state energy E to its
ground state energy Ey via the emission of a photon. What is the frequency w of this light?
Compare this to the frequency in Eq. 2.58.

Exercise 2.29 Let P; be the probability that a measurement of the atom’s energy will yield
Ej. Show that, for any initial state of the two-level atom, Py and P; do not change over
time. (This is what is meant by “conservation of energy” for an atom that might not have a
definite energy.)

Operators

We have postulated that the time evolution of an informationally isolated two-level atom
is linear. That is, if the initial states |¢(0)) and |4 (0)) evolve into later states |¢(¢)) and
[ (£)), then a superposition of the two will evolve by:

a|p(0) + B 1Y (0) — alp®) + B Y ®). (2.59)

Another way of putting this is to say that the time evolution of the system is described by
an operator on the initial state.

An operator is a linear mapping on a set of vectors, in this case the kets describing
the states of the quantum system. Operators play exactly the same role as the 2 x 2
matrices from Section 2.1, which transformed the amplitude vectors for the photon in the
two-beam interferometer. Operators, however, are objects that do not presume a particu-
lar basis for the space of states. If the operator A acts on the state |y), we write the
result A ).

The time evolution from 0 to # is described by the operator U(¢), which satisfies:

o U®0) |E}) = e ™ |E}) for an energy level state |Ey);
e U(#) acts on states in a linear way.

Since U(¢) gives the time evolution of the energy level states, and since any state of the
atom can be written as a superposition of these, it follows that

v (@®) =U® ¥(0), (2.60)

for any state of the informationally isolated atom.
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Exercise 2.30 The product AB of two operators A and B is the operator that acts this way:
AB|y) =A (B |1p)> for any |¢). Show that, for the two-level atom,

U(n) = U — 1) U(ry). (2.61)

If we know the time evolution operator U(¢) for all ¢, then we know everything about how
the two-level atom’s state changes with time. To make an analogy with Newtonian physics,
this is like knowing the future trajectory of a particle for any initial position 7y and velocity
vo. In the Newtonian case, these trajectories are governed by the Newtonian equation of
motion, usually written F = md. What is the equation of motion for the quantum state of
the two-level atom? That is, what equation describes how the state |4 (¢)) is changing at
any given moment?

We recall Eq. 2.53, which gives the time evolution of an arbitrary superposition of energy
levels:

¥ () = age ™" |Eg) + aje ™\ |Ey) . (Re 2.53)

The kets |Ep) and |E7) are taken to be constant over time. The time derivative of [y (¢)) is
therefore

d . .
o [ (1)) = —iwoage™" " |Eg) — iwjaje” " |Ey) . (2.62)

Multiplying both sides of this equation by if, and recalling the relation between frequency
and energy, we have

d : :
ih— Y (0) = Eoage " |Eo) + Evore™ " Ey). (2.63)

The right-hand side of this equation is almost |y (¢)), except that each term is multiplied
by the energy. This suggests that we should define an energy operator (also known as the
Hamiltonian) with the following properties:

e H|EL) = Ej |E)) for an energy level state |Ej);
e H acts on states in a linear way.

Then we have shown that, for a two-level atom,
d
ihjt lv@®)=Hly®). (2.64)

Equation 2.64 is our first look at the Schrddinger equation, one of the most famous equations
in all of physics. It tells us that the energy of a system (represented by the operator H) governs
how that system evolves over time.

The time-evolving state | (f)) = U(¢) [¢(0)) is a solution to the quantum equation of
motion, the Schrodinger equation. The time evolution operator U(f) must therefore have
some connection to the Hamiltonian energy operator H. Some such connection can be
gleaned by comparing the definitions of U(#) and H. A deeper look at this issue will have to
wait for later.

There is another issue that merits discussion right away. The energy of the two-level
atom is a measurable quantity, and a measurement of it can only yield the values Ey and E.
We have here found it convenient to represent the energy by an operator H. This operator
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multiplies energy level states by their energies; its action on other states is then determined
by linearity.

We can do the same thing for any measurable quantity. For instance, recall the spin-1/2
particle of the previous section. A measurement of S;, the z-component of the particle’s
spin, can only yield the values +//2. This motivates us to define an operator S, on spin
states of the particle thus:

h h
e 5 |z4) = ) |z4) and 5 [z—) = —3 lz-);
e 5. acts on states in a linear way.
Exercise 2.31 Evaluate S; |x4 ).

The association of observable quantities with operators acting on kets is an important piece
of the mathematical machinery of quantum mechanics.

Spins as two-level atoms

We said that the magnetic moment ji of a particle is related to its spin S by
i=yS. (Re 2.28)

The gyromagnetic ratio y is positive for protons and most nuclei; it is negative for electrons,
neutrons, and a few other nuclei. If the particle is in a uniform magnetic field, Eq. 2.29 tells
us that it has an energy

E=—ji-B. (Re 2.29)
If the magnetic field points in the positive z-direction, then the particle’s energy is
E = —yBS,. (2.65)

For a spin-1/2 particle, the only possible values of S; are £h/2. Therefore, a spin-1/2
particle in a magnetic field has two energy levels. The spin state |z) has energy —y Bh/2
and |z_) has energy +y Bh/2.

Our analysis of the two-level atom now lets us write down how a general spin state evolves
in time. We define the Larmor frequency Q2 = y B. The two possible energies for the spin
are therefore +A$2/2. If we write the initial spin state as | (0)) = a4 |z4+) + a— |z—), the
state at a time ¢ will be

[ () = ape™? |zp) +a_e ™2 |7y, (2.66)

(see Eq. 2.53). Suppose our particle initially starts out in a spin state [ (0)) = |x4). Ata
later time, the probability that a measurement of Sy would find the particle in |x4.) oscillates
according to

P = % (14 cos ). (2.67)

Exercise 2.32 Adapt the derivation of Eq. 2.58 to derive Eq. 2.67.
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Since the two energy levels are separated by AE = hS2, the Larmor frequency Q2 is
the frequency of electromagnetic radiation that can be absorbed or emitted by the spin-1/2
particle. Consider a proton, which has a gyromagnetic ratio y, = 2.675 x 108 s=1T-1,
If we put this proton in a (very strong) 10.00 T magnetic field, the Larmor frequency
will be

Q=1y,B=2675x10"s7", (2.68)

which corresponds to a circular frequency f = 425.7 MHz. Radio waves of this frequency
will strongly interact with protons in a 10.00 T magnetic field. This is the basic idea behind
nuclear magnetic resonance, which we will discuss in much more detail in Chapter 18.

Exercise 2.33 A !3C nucleus is also a spin-1/2 particle. Its gyromagnetic ratio is almost
exactly one-fourth that of the proton. What radio frequency will strongly interact with 13C
nuclei in a 10.00 T magnetic field? What if the magnetic field were only 5.00 T?

2.4 Qubits and isomorphism
I ———S

In this chapter, we have discussed three very different types of quantum system, each
described by the same mathematical machinery. Each system has two states — that is,
states that can be distinguished from each other by some measurement — together with
an infinite number of superpositions of these. In Section 1.1, we defined a “bit” to be a
physical system with two possible distinguishable physical states. Each of our examples is
a quantum generalization of this, having two distinguishable states and many more possible
ones. Our generic term for this type of quantum system is a qubit.

Just as all bits are isomorphic, so too all qubits are isomorphic, in that they are described
by the same mathematical structures. We have exploited this idea several times already. For
any qubit system, we can choose two distinguishable states and denote them by |0) and |1).
This pair of states is called the standard basis. The choice of the standard basis is arbitrary,
and corresponds to the choice of a standard measurement on the qubit system. The states
in the standard basis are orthonormal; thatis, (0|0) = (1|1) =1and (0|1) = 0.

Any other state of the qubit is a superposition of the states in the standard basis:

[¥) = ap[0) +a; [1). (2.69)

The coefficients oy = (k|1 ), and so they are probability amplitudes for the two possible
outcomes of the standard measurement. Probability amplitudes for other measurements
are given by brackets of |i) with other basis states. If a qubit system is informa-
tionally isolated, the change of its state with time will be described by an evolution
operator U(?).

This same template applies to each of our three examples, though we have used the
examples to emphasize different aspects of it. For instance, in the example of the spin-
1/2 particle, it is clear that the choice of basis states was arbitrary. Fixing our standard
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Measurement apparatus for the |+) basis states in the two-beam interferometer.

measurement to be a measurement of S,, we have

0 =
0)= Iz4). 270
1) =1lz-).

On the other hand, there are many other possible measurements on the system. For example,
the basis states

== (10 + ).
V2 2.71)

1
=== (10— ).
are states of definite Sy. (Note that |£) = |x1).) The choice of S, as the standard
measurement, rather than S or some other spin component, is merely a matter of convention.

For the two-beam interferometer, our remarks about basis independence seem at first to
be a bit strained. We let |0) represent the state in which the photon is in the upper beam and
|1) the state in which the photon is in the lower beam. This choice of standard basis seems
to be especially natural, since we can easily perform the corresponding measurement with
a pair of photon detectors. In fact, we might be tempted to say that this is the only sort of
measurement that makes sense. If the “which beam” measurement corresponds to S., what
could possibly correspond to a measurement of Sy?

In fact, it is possible to measure the photon in any basis we choose. Consider the
apparatus shown in Fig. 2.15. The two beams pass through a balanced beamsplitter and the
resulting beams are directed into ordinary photon detectors D+ and D—. We should think
of this combination of beamsplitter and detectors as a single measurement device, which
can produce two possible results depending on which photon detector is triggered. What
measurement is performed?

It is not the standard measurement on the input beams. If either [0) or |1) is the
input state, the detectors D+ and D— will be triggered with equal probability. In fact,
the apparatus is useless for determining which input beam contains the photon. On the
other hand, suppose the superposition state |+) from Eq. 2.71 is introduced. It is not
hard to show that the photon is found at D+ with probability one. Similarly, if the input
state is |—), then D— must register the photon. The apparatus in Fig. 2.15 performs the
measurement associated with the |%) basis, which is the analog of Sy. More complicated
interferometer arrangements involving beamsplitters and phase shifters can perform other
measurements.

Exercise 2.34 Devise an apparatus to measure the analog of S, in the two-beam
interferometer.
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Thus we see that all sorts of measurements do after all “make sense” for the two-beam inter-
ferometer example. Because qubit systems are isomorphic to one another, commonplace
observations about one can lead us to insights about the others.

Qubit systems can be used to perform tasks such as the storage of information. We can
encode a one-bit message into a qubit in the obvious way, using |0) to represent 0 and |1)
to represent 1. But qubits are not merely bits. There are many states available other than
the standard basis, and many measurements possible other than the standard measurement.
How do these new possibilities affect the qubit’s capacity to perform information tasks?
What new limitations are imposed — and new possibilities afforded — by quantum physics?
These are important questions to which we will return many times as we develop the theory
of quantum mechanics.

Problems

Problem 2.1 Find expressions for the probabilities Py and P; for the Mach—Zehnder
interferometer of Fig. 2.6 for arbitrary values of ¢. From your results, show that Po+P; = 1
for any ¢, as expected.

Problem 2.2 Find all of the distinct interferometer arrangements — that is, arrangements
represented by different matrices — that can be constructed out of only balanced beam-
splitters B; and B,,. (Do not forget to include the arrangement that uses no beamsplitters
at all!)

Problem 2.3 Constructing U(2). The set of all 2 x 2 unitary matrices is called U(2).
We have shown that linear optical elements are always represented by members of
U(2). But do all of the members of U(2) represent physically possible linear optical
elements?

Show that this is so by proving that any matrix in U(2) can be written as a product
of the matrices for phase shifters and balanced beamsplitters. We can therefore use these
basic devices as component parts to construct any imaginable linear optical element. Hint:
Tackle a simpler problem first. Figure out how to construct any unitary matrix with only

real entries of the form
cosa sinw
U= . .
—sinae  cos«

Problem 2.4 The magnetic moment u of a small loop of electric current equals the current
in the loop times its area. Suppose that a particle of mass M and charge Q is really a
spinning charged ring with some tiny radius R. Find the gyromagnetic ratio y for this ring
in terms of Q and M. How well does this model work for the proton?

Problem 2.5 Consider a spin-1/2 particle passing through a series of spin filters, as in
Fig. 2.13. Now, however, there are 13 filters (numbered 0 through 12). The nth filter selects
for the state |ny), the +5h/2 basis state for a measurement of spin along an axis in the
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xz-plane an angle nmr /12 from z. From Eq. 2.35, we can write

Iny) = cos = |zy) +sin 2 |z-)
= Ccos — sin — |z_).
s 24 “* 24
What is the probability that a spin-1/2 particle, initially in the state |z;), will pass all
13 filters?

Problem 2.6 Devise a spin-1/2 analog of the bomb-testing experiment in Section 2.1.
Your bomb will have a trigger that is set off by the passage of a single particle with
state |z_).

Problem 2.7 If we represent the state |) of a two-level atom as a complex column vector
with respect to the |Ep) and |E) basis states, then the time evolution operator U(¢) will be
a2 x 2 complex matrix U(¢). Find this matrix and show that it is unitary.

Problem 2.8 Two boxes each produce a stream of qubits. Box A produces the qubits all in
the state |+) = %( |0) 4+ |1)). Box B randomly produces qubits in states |0) and |1), each
with probability 1/2. We have one of the boxes, but it is unmarked and so we do not know
which kind it is. Describe an experiment on the qubits that can tell the difference between
box A and box B. Can you reliably tell the difference between the boxes by examining only
one of the qubits?
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3.1 Hilbert space

The prototype qubit systems of the last chapter are very simple, but they can be generalized
to more complicated versions. We can send a photon through an interferometer with three,
four or more distinct beams. We can perform experiments on particles with higher intrinsic
angular momentum than the spin-1/2 particles we have discussed. And we can analyze
atomic systems in situations that involve more than two different energy levels. For these
cases and others, we will need a more general version of quantum theory.

That theory will include two pieces. First, we will have a general mathematical structure
that is applicable to many kinds of system. Here the qubit case will be our guide, since
many of the basic concepts for other quantum systems are already present in the qubit case.
Second, we will have to describe how to apply the quantum formalism to specific physical
situations. Though the quantum systems we discuss will appear quite various, they share
strong family resemblances that are expressed in the common mathematical framework.
Keeping the framework in mind will help us understand specific examples; keeping the
examples in mind will help us understand the framework.

The states of a quantum system are described by kets |v), which obey the principle of
superposition. This means that the kets are elements of an abstract vector space H called a
Hilbert space. The key property of a vector space is that any linear combination of vectors
is also a vector. Ifkets |¢) and |¢) are both in H, and a and b are complex coefficients, then

alg) +bly)eH

We remind ourselves that whatever we write within the ket symbol |- - -) is merely a label.
In particular, a ket |0) labelled by the symbol “0” is not the same thing as the zero vector
in ‘H, which we will generally denote by 0 (with no ket). In other words,

V) = 1¥) =0 10). (3.1)

A Hilbert space, however, is more than just a vector space with complex scalars. It also
has an inner product, which is analogous to the familiar dot product for spatial vectors.
Given |¢) and |¢) in H, the combination (¢ | ) is a complex number. The Hilbert space
inner product must have the following defining properties: !

! The technical definition of a Hilbert space also includes the property of metric or Cauchy completeness, which
is related to the existence of limits for sequences. We will not have much to say about metric completeness. The
property automatically holds for finite-dimensional vector spaces, and we will implicitly assume it otherwise.
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Symmetry. For any vectors |¢) and |¥), (¢ |¥) = (¥ |¢)*. (This means that (¢ |¢ )
is real for any |¢).)
Linearity. For any vectors |¢), |¥), and |¢2), and any scalars a and a»,

(@l (a1 [y +azlv)) = an (¢ 191} +az (@ 1v2) (3.2)

Positive-definiteness. For any non-zero vector |¢), (¢ |¢)>0. (Inner products
involving the zero vector are always zero.) We call v/ (¢ |¢ ) the norm of the vector |¢).

The kets representing physical states of quantum systems are normalized to be “unit”
vectors: (Y |[¢) = 1. Two kets are said to be orthogonal if their inner product is zero:
(@ly) =0.

We usually describe a particular element |¢) in H by means of a set of basis vectors. If
{|#n)} is a basis, then |y) can be written as

W) =" caldn). (3.3)

Furthermore, given |i) and the basis, the coefficients ¢, are unique. These numbers are
called the components of |i) with respect to the basis set { |¢,,)}.

If we agree upon a basis set, then any vector is exactly specified by its components. This
is neat, because the various vector operations — vector addition, scalar multiplication, and
the inner product — can be worked out using complex arithmetic on the vector components.

Any two bases for the same Hilbert space will have exactly the same number of elements.
This number is called the dimension of the space. Therefore, the sum over n in Eq. 3.3
ranges from 1 to d = dim’H. (As we have done here, we usually omit the limits of a
summation when it is clear from context that the summed index ranges over all of its
possible values.) All of the qubit systems that we discussed in the previous chapter had
dimH = 2. In fact, we will sometimes use the special symbol Q to denote the qubit
Hilbert space with dimension 2. More complicated systems may be associated with spaces
of higher dimension. For the present we will suppose that the Hilbert space dimension is
finite; later on we will discuss how to deal with infinite-dimensional spaces.

It can happen that only part of the overall Hilbert space H applies to a particular problem.
We saw this in our discussion of “two-level atoms” in Section 2.3. Real atoms have many
energy levels, so the Hilbert space H for the atomic system has a high dimension. In the
case we considered, however, only two energy levels (and their superpositions) had any
physical relevance, so the atom effectively behaved as a qubit.

The Hilbert space Q for the simplified two-level atom is a subspace of a larger Hilbert
space H for the atom. A subspace is a subset of a vector space that is also a vector
space in itself — i.e. is closed under linear combinations. The subspaces of H include two
trivial extreme cases: the null space (which contains only the zero vector) and H itself.
In between the extremes, however, there are some interesting cases. For spatial vectors in
3-D, subspaces include all the straight lines and flat planes that pass through the origin.

The dimension of a subspace is no larger than that of the parent space: If 7 is a subspace
of H, then dim 7 < dim H. This means that a basis for 7 has no more vectors than a basis
for H. In fact, it is always possible to extend a basis for 7 (by including more vectors) into
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a basis for H. Two different subspaces 7] and 73 are said to be orthogonal subspaces if
every vector in 77 is orthogonal to every vector in 75.

Exercise 3.1 Describe in words a pair of orthogonal subspaces for spatial vectors in 3-D.

Exercise 3.2 Show that, if 77 and 7, are two orthogonal subspaces, then the only vector
that lies in both subspaces is the zero vector. Is the converse true? That is, if two subspaces
contain only the zero vector in common, are they necessarily orthogonal?

The restriction of a state to a subspace of H may have some physical basis, such as a
limitation on the total energy of an atom; or it might be assumed simply as a mathematical
convenience. In either case, the subspace acts as an effective Hilbert space for the system.

orthonormal bases

In a Hilbert space, the most convenient sort of basis set is one that is orthonormal. This
means that the basis vectors are orthogonal to each other and normalized. We can summarize
this condition by

((bm |¢n) = Smna (34)
where 8,,;, is the Kronecker delta symbol, defined as
1 m=mn
Smn = { 0 m#n. 3.9

From now on, the term “basis” for a Hilbert space is assumed to mean an orthonormal
basis, unless otherwise noted.

We can easily compute the inner product (« |8 ) whenever we know the components of
the two kets with respect to an orthonormal basis. Suppose that |a) = ), a, |¢,) and

|ﬂ> = Zn bn |¢n> Then
(@lB) = aibn. (3.6)

The proof of Eq. 3.6 is worth going over in detail.
We begin with (« |8), expanding |B) using the { |¢,)} basis and remembering that the
inner product is linear:

(lB) =" bulelpy). (3.7)

In each term of this sum, we want to expand |«) using our basis. To do this, we have to
bear in mind two things. First, we must choose a different index for the new sum, because
the index 7 is already in use. Second, we recall that the inner product is conjugate-linear in
|ae). This yields

(@|p)=> by (Z @, (b |¢n>) . (3.8)
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Each b, is a constant with respect to the m-sum, so we can “bring it into” the m-sum
(distribute the b, factor over the terms of this sum). We then wind up with the double sum

(|B) ZZM (b ) (3.9)

We can clean this up in several ways. First, we will often write multiple sums in a
compact way, as in ) _,,.. Second, because the b,s and the a};,s are complex numbers, their
multiplication is commutative and we can write them in any order. Finally, orthonormality
of the basis makes everything simpler:

(@|B) Za BuSn- (3.10)

The 6§, allows us to do the m-sum immediately. Each term in that sum will be zero except
for the term in which m = n. And so we arrive at our destination, namely

(@|B) Z a’by,. (Re 3.6)

This derivation illustrates a number of the common “tricks of the trade” for dealing with
sums. Some of these may seem obscure at first, but as you think them over, they should
seem plausible, then rigorous, then obvious. (Try to get all the way to “obvious.”)

Exercise 3.3 Show that, if o) = )", a, |¢,) for an orthonormal basis { |¢,)}, then

am = (Gm ) . (3.11)

Orthonormal bases are associated with the simplest type of measurement procedure,
which we will call a basic measurement. Each result of a basic measurement is associated
with a basis vector. Qubit examples included measurements of the spin components Sy, S,
and so on for a spin-1/2 particle, as well as a measurement of the energy of a two-level
atom.

For now, we do not necessarily have to associate numerical values with the various
possible outcomes of an experiment. The outcomes might be “red,” “orange,” “yellow,”
etc. We only require that distinct outcomes are given distinct labels, and that each outcome
is associated with exactly one member of an orthonormal basis of the Hilbert space H for
the system.

Suppose the basis vector |¢y) is associated with the kth possible outcome for the meas-
urement, and the quantum state of the system is given by |¢). Then the probability of the
kth outcome is

pk) = lgw 1Y) 2. (3.12)

The inner product (¢ [ ), which is the kth component of |¢) with respect to the basis
{ |or)}, is also the probability amplitude for the kth possible outcome of the measurement
associated with that basis.

Exercise 3.4 Show that, if the state |¢) = |¢,) for some basis vector |¢,), the
measurement will yield the mth result with certainty.
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Exercise 3.5 Show that, for any quantum state |i) and any basic measurement, the
probabilities satisfy the usual laws:
pk) =0,

> plh) = 1. (3.13)
k

Note that the second of these facts relies on the normalization of the physical state vector:

(Wly)=1

Suppose two state vectors differ only by an overall phase factor: |v) and |y') = € |).
Equation 3.12 tells us that |y) and |¢' > lead to exactly the same probabilities for the
outcomes of any basic measurement. In fact, two vectors that differ only by an overall
phase factor are equivalent, representing the same physical situation. This does not mean
that phases are irrelevant. In general, a |o) + b |B) and a o) + be'® |B) are quite different
states that lead to different predictions. For example, consider the states of the spin-1/2
particle

1 1
|x+>=ﬁ(|Z+>+ 2-)) and |x7>=\—f2(|Z+>— 2-)). (3.14)

These two states, which give opposite results in an S, measurement, differ only in the sign
of the superposition terms — a phase factor of €. We usually express this by saying that
the global phase of |¢) does not have any physical significance, but the relative phases
among the terms in a superposition do.

Equation 3.12 is one of the fundamental postulates of quantum mechanics, because it tells
us how the quantum state [i) is connected to measurement outcomes. We will illustrate
how it works by considering an extended example.

Spin one

We previously studied the behavior of spin-1/2 particles. Examples included electrons,
protons, and neutrons. Now we will introduce spin-1 particles. These include several
types of atomic nuclei, as well as the elementary particles associated with the strong and
weak nuclear forces.” If we measure a spin component of a spin-1 particle, perhaps by a
Stern—Gerlach experiment, we get three possible results: +7, 0, and —7.

Just as the spin of a spin-1/2 particle is described by a Hilbert space Q of dimension 2,
the spin of a spin-1 particle is described by a Hilbert space with dimension 3. One possible
basis for this space is associated with a measurement of the z-component of spin S,. We
denote these three orthonormal vectors |zy), |zo), and |z_). Any state is a superposition
of these three:

W) = a4 |z4) + ao |z0) + a— |z-) (3.15)
Given this state, the probability that a measurement of S; will yield +7, for instance, is
exactly |a|?.

2 The photon is spin-1, but it is also massless and so does not have a “rest frame.” This complicates matters, and
our analysis here does not apply to photons.
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The z-axis is not sacred. We can equally well consider the trio of basis vectors associated
with a measurement of some other component of spin, say Sy. These basis vectors are
related to the S, basis by

1
|x+)=§|+)+ﬁ|20)+§|z ),
|x>_L|Z >—L| )
0 5 + ﬁz—’
_1 1 1 116
|X—>—§|Z+>—E|ZO)+§|Z—>~ (3.16)

Here are two exercises about spin-1 particles.

Exercise 3.6 Verify that the S, basis vectors are orthonormal. (How many inner products
do you have to evaluate to show this?)

Exercise 3.7 The state of a spin-1 particle is |{) = |z9). What is the probability that a
measurement of Sy yields zero? Explain this in terms of a stream of spin-1 particles passing
through various Stern—Gerlach devices.

See also Problem 3.1.

Of course, we have not yet said how we come to identify a particular orthonormal basis
with a particular measurement on a system. At this stage, Eq. 3.16 must be taken on trust!
But once we have made that identification, Eq. 3.12 allows us to predict the results of
experiments on the quantum system.

Matrices and dual vectors

A good way to organize these calculations is to use matrices. Suppose we fix an orthonormal
basis in a d-dimensional Hilbert space H, and the ket |«) has components a, with respect
to this basis. Then we can represent |o) by the d x 1 matrix

aj
a=| : |. (3.17)

ad

As we emphasized in Section 2.2, the column matrix a is not the same thing as the ket |a).
The latter might have an intrinsic physical meaning (e.g. the state of a system at a given
moment), whereas the former depends on our choice of orthonormal basis. Nevertheless,
we can use the matrix representations of vectors to perform operations in the Hilbert space.

Exercise 3.8 Write matrix representations with respect to the S, basis for the |xi), |xo),
and |x_) states of a spin-1 particle. See Eq. 3.16.



53

Hilbert space

For instance, let a and b be column matrices representing the kets |«) and |8) with
respect to some orthonormal basis. Then the inner product is given by

(|B) =a'b, (3.18)

where f denotes the Hermitian conjugate of the matrix, as introduced in Section 2.1.
Examining Eq. 3.18, we are tempted to say that the row matrix a’ represents a “bra” («|,
which appears in the inner product. This is just what we said in the context of qubit quantum
theory in Chapter 2. But what kind of mathematical object is the bra («| ?

A linear functional is a function that maps vectors in H to complex scalars, acting in a
linear way. In other words, if /" is a linear functional, then

@ +az ) = af (1) +aof (192). (3.19)
Many familiar aspects of vector algebra can be expressed using linear functionals.

Exercise 3.9 Suppose we fix a basis set { |¢¢)} and define a function f,, that maps each
vector to its nth component. Show that £, is a linear functional.

Linear functionals are sometimes called dual vectors, since they themselves form a vector
space.

By the bra (|, we simply mean the dual vector (linear functional) that maps the vector
|B) to the scalar (« |8 ). The inner product on H thus allows us to turn regular vectors into
dual vectors. As it turns out, every dual vector on H is the “bra” of some “ket,” as the
following exercise illustrates.

Exercise 3.10 Write the linear functional f, from the previous exercise as a bra (dual
vector).

Note that the relation between ket and bra is conjugate-linear. That is, if |¢) = a1 |¢1) +
az |¢2), then

(@] = aj (1] + a3 (¢a]. (3.20)
Exercise 3.11 Use the properties of the inner product to show Eq. 3.20.

From this it follows that, if |o) = >, a, |¢x), then

(@l =) a (@l (3.21)

The coefficients a* are just the entries of the row matrix a’. Thus, we can take a' to be the
matrix representation of («|, as expected.

Is this talk of dual vectors more than just a new language for talking about inner products?
Not really. We have introduced no additional properties for the Hilbert space . On the
other hand, the dual vector language will make it easier to describe the properties of linear
operators on H — a topic to which we now must turn.
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3.2 Operators
- |

In our development of qubit quantum theory in Chapter 2, we found that we needed to use
operators to describe both the time evolution of a quantum system and a system’s measurable
quantities. This will also be true for more general systems in quantum theory. Since we
are keenly interested in how quantum systems change over time and what quantitative
predictions can be made about them, we clearly need to learn a lot about operators and their
properties!

Elementary concepts

Formally, an operator G on the Hilbert space  is a function that maps vectors to vectors
in a linear way:

G (al lp1) + a2 |¢2)> =a1G|¢1) + a2G|¢n) . (3.22)

An operator is completely defined by how it acts upon “input” vectors to produce “output”
vectors. Indeed, because an operator is a linear map, it is enough to specify how it acts
on a basis of input vectors. Let {|n)} be a basis for H, and consider an arbitrary input
vector |y):

Gly)=G (Z Cn |n)) => cuGln). (3.23)

If we know the output vectors G |n) for basis vector inputs, we can calculate the effect of G
on any input |i).

For any operator G there is a set of vectors that map to the zero vector — a set that always
contains the zero vector itself. This set is called the kernel of G, denoted ker G.

Exercise 3.12 For any operator G on H, show that the kernel ker G is actually a subspace
of H.

If ker G is the zero subspace of H — if it contains the zero vector and no other — then we
say that ker G is “trivial.” The kernel is a useful tool for analyzing the action of an operator.
Here is a good example.

Exercise 3.13 Suppose the operator G has the property that G [x) = G [y) only if |x) = [y).
Then G is said to be one-to-one. Prove that G is one-to-one if and only if ker G is trivial.

The simplest operator is the identity operator 1, which maps every vector to itself:

Ly) = 1y). (3.24)

This is obviously one-to-one, so ker 1 is trivial. Scalar multiplication can also be regarded
as a kind of operator: the map that takes [¢) to a|y¥) for some scalar a is just the
operator al.
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We can multiply operators by scalars and add operators together to make new oper-
ators.” We can also multiply operators together. Given A and B, the operator AB is
defined by

(AB) [y) = A (BIv)). (3.25)

The operator product AB is thus read from right to left: first the operator B acts on the input,
and then A acts on the result. Note that this is nof necessarily the same process as acting
first with A and then B. In other words, operator multiplication is not commutative, and in
general AB # BA. The commutator [A, B] is just the difference between AB and BA:

[A,B] = AB — BA. (3.26)

This is an operator in its own right. The commutator of any operator with itself is zero:
[A,A] = 0.

Another simple type of operator is the outer product of two vectors in H. The outer
product is written |«)(B|. This looks a bit mysterious at first, but its meaning is easy to
understand. When we apply this operator to an input vector |y), we get

@81 (19)) = le) Blv). (3.27)
That is, we compute the scalar (8 |4/ ) and then multiply the vector |a) by it.*

Exercise 3.14 Consider the qubit Hilbert space Q with standard basis vectors |0) and
[1). Let A = |0)(1] and B = |1)(0]. Show that AB # BA, illustrating the fact that
operator multiplication is not commutative. (Hint: Show that the two operator products act
differently on the input vector |0).)

If we have a normalized vector |«), then the outer product IT, = |«){«| is called the
projection on |a). Let us consider a specific qubit example, the projection ITy = |0)(0] on
Q. Clearly, ITy |0) = |0) and ITg |1) = 0. For a general superposition of |0) and |1),

Mo ¥) = 10001 (<0 10) +c111)) = o [0). (3.28)

Intuitively, the projection ITg on |0) just picks out the part of |) that is parallel to |0).
The projection I1; works in the same way for the part of |i) that is parallel to |1). Thus,
if we add these two projections together, we get

3 The set of operators on H is sometimes denoted B (H). Since the linear combination of two operators is also
an operator, B (H) is a vector space in its own right.
4 The only oddity here is a less-than-customary order for the scalar multiplication. The expression is of course

equal to (B [y) le).
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(o +ITy) |[¥) = o [0) +c1 1) = [¥). (3.29)
In other words, for qubits we have the operator relation
[0)(0] + [1){1] = 1. (3.30)

This fact can be generalized from qubits to any type of quantum system. Suppose { |n)}
is an orthonormal basis for H, which may have any dimension. Then

> Inynl =1. (3.31)

This is called the completeness relation for an orthonormal basis, and it will be an extremely
important tool in our analysis of operators.

Exercise 3.15 Prove the completeness relation.

For the qubit Hilbert space Q, the identity operator 1 = [0){(0] + |1)(1]. We now
introduce three other useful operators on Q, called the Pauli operators. These are:

X' = [0)(1] + [1)(O],
Y =—i|0)(1] +[1)(0],
L=10){0] — [1){1]. (3.32)

(Note that the Pauli operators depend on the standard basis. If we choose other standard
basis vectors ’0’ ) and | 1’), then we will obtain a different set of Pauli operators.) The Pauli
operators have many useful and interesting properties, a few of which are suggested by the
following exercises.

Exercise 3.16 Calculate X |0), X|1), Y|0), Y|1), Z|0), and Z |1).
Exercise 3.17 Show that X2 = Y2 =72 =1.

Exercise 3.18 Show that XY = iZ. Also show that we can cyclically permute X, Y, and Z in
this relation.

Operators and matrices

Let G be an operator and { |n)} be an orthonormal basis for the d-dimensional Hilbert space
H. As we saw in Eq. 3.23, if we specify the d vectors G |n), then we have completely
described the operator G. We can specify each of these vectors by giving d components.
Thus, we can describe G by giving d> complex quantities.

Given two kets |a) and |8), we define the corresponding matrix element of G to be the
inner product (| G |8). The operator G can be described by giving the 4> matrix elements
for basis vectors:

Gyn = (m| G |n) = the mth component of G |n). (3.33)
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These can be conveniently arranged as the entries in a d x d square matrix:

G Giz -+ Gu
Gz G G

(Gmn) - . . : . (334)
Gn Goo -+ Gu

This is called the matrix representation of G with respect to the basis { |n)}.
For instance, in Q the Pauli operators have matrix representations (with respect to the
standard basis):

1 —i 1
w=(15) o=(77) @=(y 1) e»

These are called the Pauli matrices.
Exercise 3.19 Start with Eq. 3.32 and confirm Eq. 3.35.

Exercise 3.20 Suppose |«) and |B) have components a, and b,, with respect to the { |n)}
basis. Show that the matrix representation of the outer product |«) (8| has components

(ledtl) =anb; (3.36)

We can compute the action of the operator G on the vector |«) using the matrix represen-
tation of G. Suppose |8) = G |«), and that the input and output vectors |«) and |8) have
components a, and by, respectively. Then

by = <m|ﬂ>
= (m| G o)

= (m|G (Z |n><n|> ler)
= (mlGln) (nla)
bu=Y_ Guntin. (3.37)

(Notice how we introduced the identity operator 1 in the form given by the complete-
ness relation for the {|n)} basis. A handy trick!) We recognize this as simple matrix
multiplication:

b Gt -+ Gu ai

: = : : : ) (3.38)

ba Gai - Gaa aq

Exercise 3.21 Show that Eq. 3.38 is the same as Eq. 3.37.
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Similarly, consider the matrix representation for the product operator AB.

(AB)n = (m| AB |n)
= > (m|Alk) (k| B|n)
k

AB)un =Y _ Ak Bin, (3.39)
k

which is just the matrix product

(AB)H (AB)ld A]] A]d B” Bld
: : =1 : - Co ] (340
A@Bar -+ (AB)dd Aat -+ Add Byt -+ B

Exercise 3.22 Fill in the details of the derivation of Eq. 3.39 by writing AB = A1B for a
suitable form of the identity 1.

Exercise 3.23 Verify that the matrix product in Eq. 3.40 expresses the same fact as Eq. 3.39.

In short, we can do computations with operators and vectors by doing matrix computations
with the matrix representations of those operators and vectors.

The matrix elements G, for the operator G are actually the “components” of the operator
with respect to a “basis set” of operators formed by the outer products of the vector basis
{|n)}. That is,

G=> |m)mlGln)(nl = Guylm)inl. (3.41)

mn

Although not every operator is an outer product of two vectors, we see here that every
operator can be written as a sum of outer products.

Matrices and indices. The connection between component expressions (such as Eq. 3.37
and 3.39) and the corresponding matrix expressions (Eq. 3.38 and 3.40) deserves some
comment. By convention, G,,,, represents the matrix entry in the mth row and nth column,
as in Eq. 3.34. When we write a matrix multiplication in terms of the matrix entries, the
column index of the left matrix factor is equal to the 7ow index of the right matrix factor,
and this index is summed over. This can be seen in Eq. 3.39:

(AB)yn = ) Ak (Re 3.39)
k

The index that is summed over, called a “bound” or “dummy” index, can be freely
renamed. Also, the quantities that appear in a component expression are simply complex
numbers and can be multiplied in any order. Thus,

ZAkakn = ZBknAmk = ZAijj}’l~ (342)
k k J
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When introducing a sum or renaming a bound index, it is important to avoid using an index
that is already used in the expression. In general,

ZAkakn 75 ZAmanrb (343)
k n
Exercise 3.24 Construct an explicit example using 2 x 2 matrices that shows why these
two expressions do not mean the same thing.

Exercise 3.25 Suppose

D= ZA,-kBlekl.
kl
Rewrite this as a matrix expression — that is, the matrix D is a product of A, B, and C.
The question is, in what order do these matrix factors appear?

The trace

Another operator idea having close connections to matrices is the trace of an operator,
denoted Tr A. The trace is a linear functional on operators. It can be defined by the following

property:
Tr |a)(B] = (B la). (3.44)

The trace turns an outer product into an inner product, keeping the bra and ket parts the
same. Since any operator can be written as a sum of outer products, this property is enough
to completely define the trace. Using a matrix representation,

TrA=Tr (ZA,,,,, |m)(n|)

mn

=3 Ao (T ) (1]
= ZAmn(Snm

TrA = ZA,M. (3.45)
n

The trace of an operator is equal to the sum of the diagonal components of a matrix
representation — which, not coincidentally, is also called the “trace” of that matrix. From
this it is easy to see that the traces of the Pauli operators, which have matrix representations
given in Eq. 3.35, are all zero.

Another way to write Eq. 3.45 is

TrA =) (n|Aln). (3.46)

We should emphasize that, although we can calculate the trace via Eq. 3.45 or 3.46 in terms
of a particular basis { |n)}, the trace itself is independent of the choice of basis. Suppose
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that { |«,)} and { | 8,)} are two orthonormal bases. Then

D (el Alen) = (el A (Z Iﬁm)(ﬂml> letn)

n n

= Z (otn| A1Bm) {Bm loty)

= 3" (Bl el AlBi)

=D (Bnl (Z |oen><a,,|> AlBn)

= (Bul AlB) . (3.47)

Exercise 3.26 Write a sentence explaining each step in this derivation.
A handy fact about the trace is that, for operators A and B,
TrAB = TrBA. (3.48)

We can see this most easily by using matrix representations:
D B = AwmBun =Y BunAum = Y _(BA)mm. (3.49)
n nm nm m

This is called the cyclic property of the trace — cyclic because we can easily extend it to a
product of three or more operators,

TrA---BC=TrCA---B. (3.50)

Be careful! We are not asserting that the order of the operators in a product is irrelevant to the
trace, but only that we can “cyclically permute” the factors. Other sorts of rearrangements
might indeed change the overall trace.

Exercise 3.27 In a qubit Hilbert space, let A = [0)(0], B = |0)(1]|, and C = |1){(0|. Show
that

Tr ABC # TrACB. 3.51)

Exercise 3.28 Show that the trace of any commutator is zero.

3.3 Observables
|

An observable A is a basic measurement in which each outcome is associated with a
numerical value. Suppose A4, is the numerical value associated with the nth outcome,
which has a basis element |n). The operator A associated with the observable A4 is
defined by
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Aln) = A, In), (3.52)

for all |n). (As we have already pointed out, knowing how the linear operator A acts on
basis vectors is sufficient for its definition.)

In the measurement basis, which is orthonormal, the matrix representation of the operator
A has components

Amn = (m| Aln) = AnSmn, (3.53)
which yield a diagonal matrix

Ay
(Amn) = . (3-54)
Ag

Equation 3.41 therefore gives us the following expression for the operator A:

A= ZAn [n)(n]. (3.55)

We can illustrate these relations by returning to a familiar qubit example.

Spin components

For a spin-1/2 particle, the Sy, S, and S; components of spin are all observables. Each
one is a basic measurement that associates a numerical value £4/2 with the measurement
outcomes. What are the operators associated with these observables, and what are their
matrix representations?

As our standard basis for matrix representation, we will choose the { |z )} basis of states
with definite S.. In this basis, the observable S; is very simple. Equation 3.55 tells us that

S = 2 kel — 512, (3.56)

This has a matrix representation

h (1 0
(S2) = 5( 0 —1 ) (3.57)
In other words, with respect to the S, measurement basis, the operator
h
S, = > Z, (3.58)

where Z is the Pauli operator from Eq. 3.32.
How about S,.? Once again, we can write

S, = ; ) g | — gL o) ] (3.59)
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We would like to express everything in terms of our standard {|zy)} basis. The Sy
measurement basis states are

L
V2

(see Eq. 2.33 and 2.41). The projections on these states are

oy (es| = [% (124 + |z_>)} [% (el + <z_|)]

1
= 3 (Il + 20 Gl + )] + 12-) 1),

lxt) =

(I % 1-2), (3.60)

1
oyt =5 (0] = -] = ko) + e-). (6D
Thus, the operator Sy is

S =

N>

(CAEREACRIEN) (3.62)

This has a matrix representation

Ao 1
(Sx)=§<1 0>, (3.63)

and therefore
X, (3.64)

for the Pauli operator X in the { |z1)} basis.

Exercise 3.29 Check the algebra in Eq. 3.62. Also show that |xy){(x;| + |x_){(x_| =
|z4){(z4+] + |z=){z—|. (What should each of these be equal to?)

Exercise 3.30 Do all this for the observable S.

Exercise 3.31 Refer to the spin-1 example in Section 3.1. Adopt the S; basis states as the
standard basis. Find the operators S; and S, and their matrix representations with respect to
this basis. (You will need Eq. 3.16.)

Expectation values

Suppose our quantum system is in a state |{) and we measure the observable 4. The nth
outcome occurs with probability

p) = [n ) = (Y |n) (nly). (3.65)

The mean or expectation value (4) is the average of the numerical values 4,,, weighted by
their probabilities. That is,

() =Y Aup(). (3.66)
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As discussed in Appendix A, the term “expectation value” for (4), though entirely standard,
is a little misleading. The value (4) is not necessarily a value that we expect to obtain in any
particular experiment! Instead, we imagine an ensemble, a huge number of similar quantum
systems all prepared in the state |¢). The observable 4 is measured on the members of
this ensemble. Statistically, we then do expect the average of our measurement results to
be about (4).

The expectation value (4) is easily expressed in terms of the operator A:

=Y A, (Y in) (nly)

= (vl (ZAn |n><n|> ¥)

() = (WIAlY). (3.67)

If the state |¢) has a column matrix ¥ of components and operator A has matrix
representation A, then

4) = yTAY. (3.68)

Equation 3.67 tells us that we can make a statistical prediction (the mean of the possible
measurement outcomes) by computing the single matrix element (| A |[¢). We can use the
matrix expression in Eq. 3.68 to do this computation with respect to some basis.’

For example, suppose our spin-1/2 particle is in the quantum state [¢) = 0.6|z4) —
0.8 ]z_). (You should verify that this is properly normalized.) Then the expectation value
(Sy) for a measurement of the x-component of the spin is

Sy =(06 —08) g( (1) (1) ) ( _O('fg > = —0.480. (3.69)

(Note that this is close to —A/2, which makes sense because |¢) is close to |x_) in the
Hilbert space.)

Exercise 3.32 A two-level atom has possible energies Ey and E;. Write down the Hamil-
tonian (energy operator) H as a sum of outer products. Now suppose that the atom is in the

state |y) = % |Eo) + é |E1). Use your operator H to find the expectation value of the
atom’s energy.

Given the observable 4, what is the square A% of the operator A?

)

—ZA Ay |m) S (n] = ZA,, ) (n (3.70)

5 Where convenient, we will sometimes write (A) — using the operator A — to represent the expression in Eq. 3.67.
Despite this apparently suggestive notation, we understand that (A) is a scalar, not an operator.



64

States and observables

This is the operator associated with an observable having the same measurement basis
as A, but whose numerical values are the squares of the A-values — in other words, the
observable 42.

The same idea works for the third and higher powers as well. In general, the observable
A is associated with the operator A% Given a quantum state |y), its expectation value is

(44) = (Wi Ak ). 3.71)

Note that this is not generally the same as (4)*!

Exercise 3.33 A spin-1/2 particle is in the state |x,.). Show that (S.)? = 0, but (S2) # 0.

Finally, we note that expectation values can be conveniently written in terms of the
operator trace. Given a state [|y), we define the density operator p to be the projection

[¥)(¥]. Then
(4) = Tr pA. (3.72)

For now, this is simply a mathematical curiosity. Later on in Chapter 8, we will use this
idea to extend quantum theory to situations in which we cannot assign a definite quantum
state vector to a system.

3.4 Adjoints
|

Given any operator A on H, there is another operator called the adjoint (or Hermitian
conjugate), denoted AT, The adjoint is defined so that, for any vectors |«) and |B) in H,

@l AT18) = (1B1A10)) (3.73)

The adjoint of an operator is related to the Hermitian conjugate of a matrix. The matrix
representation of the operator A’ has entries

(AT)mn = (m| AT |n) = (<n| A Im))* — A (3.74)

The matrix representation of A' is the complex conjugate of the transpose of the matrix
for A.

The adjoint has two very useful properties. First, and pretty obviously, the adjoint of
the adjoint is the original operator: (AT)Jr = A. The second property gives the adjoint of a
product of operators:

(AB)" = BTAT. (3.75)
Exercise 3.34 Prove Eq. 3.75 by considering matrix representations of A, B, and AB.

In this and many other cases, the easiest way to prove a fact about abstract operators is to
work with their matrix representations. This is analogous to proving a relation among 3-D
spatial vectors by a calculation involving their x, y, and z components.
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We can extend the adjoint to any sort of expression involving scalars, vectors, and
operators. Here are the basic rules:

e The adjoint of a scalar is its complex conjugate. The adjoint of a ket is a bra and vice
versa.
e The adjoint distributes over addition:

(this + that)t = (this)™ + (that)T. (3.76)
e The adjoint reverses the order of a multiplication:
(this that)" = (that)™ (this)". (3.77)

The abstract definition in Eq. 3.73 is a straightforward application of these rules. To give
another illustration, suppose we have an operator A with a matrix representation 4,,,. Then

.
= (ZA,M |m><n|)
=3 (A imytnl )’

mn

N nl>
—ZA |n) (m

Since m and #n are bound indices, we can rename m as n and n as m. Then we find that

AT = A, )l (3.78)

mn

from which we see that (47),,, = A4* , as already shown in Eq. 3.74.

nm>

Exercise 3.35 If |8) = B|a), show that (8| = («|Bf. Comment on the meaning of this
expression.

Exercise 3.36 Suppose that A has the form

A= ZAn In)(n], (Re 3.55)

for a basis { |n#)}. Show that

AT = ZA; In)(n]. (3.79)

The operators used in quantum mechanics usually have some special properties with
respect to the adjoint operation t. Below we describe types of operator with one or another
of these properties.
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Hermitian operators

Exercise 3.36 tells us something important about the operators associated with observables.
If the observables are real-valued, so that A = A, for all n, then the associated operator
satisfies

AT = A. (3.80)

Operators with this property are called Hermitian. From now on, we will assume that our
observables are real-valued, so that the operators associated with them are always Hermitian
operators.

Of course, the expectation value (4) for a real observable will always be real, as the
following exercise demonstrates:

Exercise 3.37 If A is Hermitian, show that (/| A |/} is real for any |/).

Positive operators

Another important type of operator is a positive operator: P is said to be positive if it is
Hermitian (so that P* = P) and, for all |y),

(IPly) =0. (3.81)

(This inequality only makes sense because (| P [1) must be real.) The projection I, =
la) (| on any state |«) is positive, since

(W T 19) = (¥ la) (e ) = [ ) > = 0. (3.82)

This, together with Eq. 3.12, means that the probabilities for the outcomes of a basic
measurement can be written in terms of the projections on the orthonormal basis states |n).
For a state |y),

pn) = (Y|, [¥). (3.83)

The probability p(n) is the expectation value for an observable that assigns 1 to the nth
outcome and zero to all the others, an observable given by IT,. Since IT, is a positive
operator, p(n) can never be negative.

Exercise 3.38 What property of the projections IT, for a basic measurement guarantees
that the probabilities always sum to 1?

Exercise 3.39 Given any operator B, show that B'B is positive.

Anti-Hermitian operators

An operator B is called anti-Hermitian if B = —B. It follows that an anti-Hermitian
operator B can always be rewritten /A, where A is Hermitian. Any operator at all can be
written as the sum of a Hermitian and an anti-Hermitian operator:
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Exercise 3.40 Let G be an operator on 7. Show that (a) H = 1 (G + G) is Hermitian, (b)
K = —1 (G — G') is Hermitian, and (c) G = H + iK.

The Hermitian and anti-Hermitian operators are analogous to the purely real and purely
imaginary numbers in the complex plane. The adjoint is then analogous to complex
conjugation of numbers.

Exercise 3.41 Recall the definition of the commutator of two operators: [A, B] = AB — BA.
Show that the commutator of two Hermitian operators is an anti-Hermitian operator.

Exercise 3.42 In the qubit Hilbert space Q, write the operator |0)(1| as the sum of a
Hermitian and an anti-Hermitian operator. Express these in terms of the Pauli operators
given in Eq. 3.32.

Unitary operators

An operator U is unitary if its adjoint equals its inverse:
Uiu=uu' =1. (3.84)

In a finite-dimensional Hilbert space, it turns out that the condition UTU = 1 is enough to
guarantee unitarity, since the rest of Eq. 3.84 follows, (see Problem 3.6).

Exercise 3.43 As we said in Section 2.1, a matrix R is said to be unitary when

R'R=1. (Re 2.24)
Show that a matrix representation for a unitary operator must be unitary.

The action of a unitary operator preserves the inner product between vectors. Suppose
o) and |B) are in H, and let |o’) = Ua) and |B8’) = U|B). If U is unitary,

(' [B) = (@I UTU[B) = (@] 1|B) = («B). (3.85)

This means that a unitary operator U takes any orthonormal basis set to another orthonormal
basis — that is, given a basis { |«,)}, the vectors |B8,) = U|wa,) are also orthonormal (and
thus form a basis). It follows that

Uu=u (Z |an><an|) =D 1ol (3.86)

The next exercise establishes the converse fact.

Exercise 3.44 If { |a,)} and {|B,)} are orthonormal bases, show that

V=" 1B (ol

is a unitary operator.
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As we will see in Section 5.1, unitary operators play a central role in describing the time
evolution of isolated quantum systems.

Normal operators

“Normal” may be the most overused word in mathematics. In the present context, an
operator N is said to be normal if it commutes with its adjoint:

N'N = NNT. (3.87)
The first thing to note is that not every operator is normal.
Exercise 3.45 In a qubit Hilbert space, show that |0)(1]| is not normal.

On the other hand, the special types of operator that we have mentioned so far — Hermitian
(including positive) operators, anti-Hermitian operators, and unitary operators — are all
normal.

As we have pointed out, we can write N = H + iK, where H and K are Hermitian. The
adjoint N* = H — iK. Then

N'N = (H + iK) (H — iK)

=H> + K> —i[H,K], (3.88)
NN = (H — iK) (H + iK)
= H?> + K% 4+ i[H,K]. (3.89)

The operator N is normal if and only if these two expressions are equal — that is, provided
[H,K] = 0. Thus, N is normal if and only if its Hermitian and anti-Hermitian parts commute
with each other. See Problem 3.3 for more about normal operators.

3.5 Eigenvalues and eigenvectors
______________________________________________________________________________________|]

An observable 4 is associated with an orthonormal measurement basis { |n)} and a set of
numerical values 4,,. This has motivated us to introduce the operator A defined by
Aln) = A4, |n). (Re 3.52)
Equation 3.52 has the form of an eigenvalue equation:
(operator) |vector) = scalar |vector) . (3.90)

In Eq. 3.52, the scalar 4, is called an eigenvalue of the operator A, and |n) is the corre-
sponding eigenvector of A. (Eigenvectors are required to be non-zero; otherwise, any scalar
at all would be an “eigenvalue” of any operator. An eigenvalue, however, may happen to
be zero.)
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The German word “eigen” suggests that the eigenvalue of an operator A is proper to or
characteristic of A. It is common practice to attach “eigen” as a prefix to various words
associated with an eigenvalue problem (or eigenproblem). A normalized eigenvector in H
may be called an eigenstate of the operator. A basis composed of eigenvectors of A is often
called an eigenbasis. And so on!

Exercise 3.46 Fix a scalar o and an operator A. Show that the set of vectors for which
AlY) = o |y) forms a subspace of H. This is called the eigenspace for «. It includes the
null vector 0 and all of the eigenvectors of A having eigenvalue «.

Equation 3.52 tells us that the operator A associated with the real observable A4 has a
complete basis of eigenvectors |n), each one associated with a real eigenvalue 4,. As
we have seen, this means that the operator A is Hermitian. Our goal in this section is to
strengthen this connection between observables and Hermitian operators. We will show
that every Hermitian operator has only real eigenvalues and a complete orthonormal basis
of eigenvectors associated with them.

Existence of eigenvalues

The first thing we must note is that every operator on a finite-dimensional H has at least
one eigenvalue and corresponding eigenvector. That is, for any operator A, we can find a
complex scalar @ and a non-zero ket |v) such that A |y) = « [¢). We can rewrite this as

(A —al) [y) = 0. (3.91)

In the language of Exercise 3.13, this is equivalent to saying the operator (A — «1) |¢/) has
a non-trivial kernel.

If d = dim H, consider the set of vectors { |/),A|¥), A2 |¥),...,A?|¥)}). Since there
are d + 1 vectors, this must be a linearly dependent set. Thus, for any vector |¢), the
equation

oo @) +a1Alp) + ... + a,A" @)
= (a0 +alA+...+a,A"|¢p) =0, (3.92)

has a solution with at least one nonzero «;. Let «;, be the last (largest n) of these nonzero
coefficients. We can divide the equation by ¢, and obtain

(Bo+ BIA+ ...+ Bt A"+ A [§) = 0. (3.93)
We can use the same coefficients from Eq. 3.93 to write down the polynomial equation
Bo+PBiz+...+2"=0. (3.94)

The Fundamental Theorem of Algebra tells us that Eq. 3.94 can be completely factored:

Bo+PBiz+...+2"=@E—Ap)...(z— )z — A1). (3.95)
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The algebraic relation between the B; coefficients in Eq. 3.94 and the A;s in Eq. 3.95 will
still hold if we replace the variable z with the operator A. It follows that Eq. 3.92 also
factors:

Bo+BiIA+...+AYp) = A—-1 DA —-A,_11)...(A— A1) |p) = 0. (3.96)

Now we define a sequence of vectors |eg) = |¢) # 0, |e1) = (A — A11) |eg), and in general
leir1) = (A — A1) |e;). According to Eq. 3.96, |e,) = 0, so there must be a smallest &
(with 0 < k£ < n) for which |ez—1) # 0 and |ex) = (A — Agl) |ex—1) = 0. Therefore the
operator A — Ax1 has a non-trivial kernel. The value A is an eigenvalue of A with associated
eigenvector |ej_1).

Exercise 3.47 This argument only works in a complex Hilbert space. Show that the
operation represented by the matrix

A:( cos(/4) sin(w/4) >’

—sin(w/4) cos(m/4) (3.97)

has no real eigenvalue.

Our argument demonstrates the existence of an eigenvalue, but it does not provide a very
efficient method for calculating eigenvalues and their associated eigenvectors. One method,
especially useful when d = dim H is small, is based on the idea of a determinant.

Suppose the operator A has a d x d matrix representation A. An eigenvalue A of the
operator A is also an eigenvalue of the matrix A, so there is a non-zero column vector
¥ with

A=Ay =0. (3.98)

Recall that the determinant of a d x d matrix M has the property that det M # 0 if and only
if M has an inverse matrix M~!. The inverse exists if and only if the mapping described
by M is one-to-one. Exercise 3.13 tells us that this mapping is one-to-one if and only if
the kernel of M is trivial. Therefore, the kernel of A — A1 is non-trivial (as in Eq. 3.98)
provided that its determinant is zero:

Ajp—A --- Aa
det (A — A1) = det : : —0. (3.99)
An oo Agg — A

This is called the characteristic equation for the matrix A. The determinant is a polynomial
in A of degree d, and the eigenvalues of A are exactly the roots of this polynomial. Since
every polynomial has at least one root, we can conclude that every matrix has at least one
eigenvalue.

Determinants are especially simple in the 2 x 2 case:

a b
det( e d ) = ad — bc. (3.100)

The characteristic equation (Eq. 3.99) is thus a quadratic
(A1 — 2)(A22 — 1) — A12421 =0, (3.101)

whose solution is straightforward.
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Exercise 3.48 Find all the eigenvalues of the Pauli matrices of Eq. 3.35, and of the operator
10)(1].

Hermitian operators

It is easy to see that the eigenvalues of any Hermitian operator must be real. If A is Hermitian
and A [y) = A |y) for a non-zero [y), then

= WIAW) (3.102)

(wiy)
Exercise 3.49 Verify Eq. 3.102.

Since both inner products on the right-hand side are real, A must be real as well. The set of
eigenvalues for a given operator is called the spectrum of the operator. The spectrum of a
Hermitian operator contains only real quantities.

Now suppose that A; and A, are two eigenvalues for Hermitian A, with respective
eigenvectors |i1) and [¢5). Then

(W2l AlYr) =21 (V2 |¥1) s (3.103)
(WilA ) =2 (Y1 1Y) . (3.104)

Since A is Hermitian, these two inner products must be complex conjugates of one another.
Since the eigenvalues of A are real,

A (Y2 Y1) =2 (Y ). (3.105)

If X1 = Ay, this is clearly true. But suppose the two eigenvalues are not equal. Then this
equation can only be satisfied if (Y |¢1) = 0. Therefore, given a Hermitian operator A,
the eigenvectors of A corresponding to distinct eigenvalues must be orthogonal.

We will now turn to the main business of this section: to establish that, for any Hermitian
A on a finite-dimensional Hilbert space H, there exists a complete orthonormal basis of
eigenvectors of A.

We proceed by mathematical induction on the dimension d of the Hilbert space H. If
d = 1, then any normalized vector |1) forms an orthonormal basis for 7. The vector |1)
also must be an eigenvector for any operator A on H, because the vector A|1) has to be
some multiple of |1). Therefore, for any Hermitian operator A on the trivial Hilbert space
with dimH = 1, we can find an orthonormal basis of eigenvectors of A.

Now suppose we have established that a Hermitian operator on a space of dimension d
gives rise to an orthonormal basis of eigenvectors. Consider an operator A on a space H
of dimension d + 1. This operator must have at least one eigenvalue; call it A4 and the
corresponding normalized eigenvector |d + 1).
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Let 7; be the set of all vectors in H that are orthogonal to |d + 1). This is a d-dimensional
subspace of H. How does the operator A act on this subspace? That is, if |v) is in 7, what
can we say about A |1)? This vector is also orthogonal to |d 4 1), since

@+ 1AW = (WIAId+ 1) = dagi (d+119) =0, (3.106)

(Note how we have used the fact that A is Hermitian.) The operator A therefore maps
vectors in 7; to vectors in 7;. Within this subspace, A effectively acts as a Hermitian
operator on a d-dimensional space. Therefore, by assumption there exists an orthonormal
basis {|1),..., |d)} for 7; composed of eigenvectors of A. Adding |d + 1) to this set gives
an orthonormal basis of A eigenvectors spanning all of H.

We have proven our claim for the special case d = 1, and we have shown that if the
claim holds for spaces of dimension d then it must also hold for spaces of dimension d 4 1.
It follows that there is an orthonormal eigenbasis for any Hermitian operator on any Hilbert
space of finite dimension.

Real observables are associated with Hermitian operators. But our results also establish
that every Hermitian operator can be associated with a possible observable. For Hermitian
operator A, we can find an orthonormal eigenbasis { |n)} together with eigenvalues A4,
so that

Aln) = A, |n). (Re 3.52)

This is exactly what we would expect from an observable whose measurement basis is
{|n)} and whose possible values are the elements 4,, of the spectrum of A.
It follows from our argument that we can write any Hermitian operator in the form

A= ZAn In)(n] . (Re 3.55)

This is called the spectral decomposition of A. With respect to the eigenbasis { [n)}, A has
the diagonal matrix representation

Ay
(Amn) = : (Re 3.54)
Ag

Note that the diagonal entries in this matrix are the eigenvalues 4.

In a diagonal representation, it is easy to see that the trace Tr A of a Hermitian operator
A is exactly the sum of its eigenvalues. This is sometimes useful. We can compute the
trace using any matrix representation, diagonal or not. The trace then gives us a significant
piece of information about the spectrum of eigenvalues of A — namely, the sum of that
spectrum — without the work of finding the eigenvalues.

To sum up: we previously showed that every real observable — every basic measurement
whose outcomes are real numerical quantities — is associated with a Hermitian operator.
Now we have shown that every Hermitian operator can be associated with an observable.
Given the operator A, we can determine both the measurement basis and the spectrum of
possible measurement results. So close is this correspondence between (real) observable
and (Hermitian) operator that we often say that the operator “is” the observable.
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Spin-1/2 revisited

Let us see how this works out for the case of a spin-1/2 particle, which we discussed in
Section 2.2. In that discussion, several facts about the states and observable properties
of spins were offered as mere assertions. We are now in a position to give them a better
justification.

We will still take as given the operator forms for the Sy, Sy, and S, observables. In the
standard (S;) basis:

h h h
Ss=2X  S=3Y.  S.=21. (3.107)

These operators have eigenvalues and eigenvectors that we already know. But what about
the spin component Sy, where 6 is a unit vector in the xz-plane, tilted at an angle of 6 from
the z-axis?

We can write 6 = sin 6% + cos #2. Given a spin vector S, the spin component

So=60-5= sin9(5c~§) +cos€(2~§)
=sinf Sy + cosb S.. (3.108)

Itis reasonable to assume that this relation also holds for the operators of the spin component
observables:

h
Se = sinf Sy 4+ cos6 S, = E(sin@ X+cosO1). (3.109)

This has a matrix representation

h [ cos@ siné
S0=3 ( sinf —cos6 ) (3.110)

What are the possible measured values for the observable Sg? They can be worked out most
easily using the characteristic equation.

Exercise 3.50 Use Eq. 3.99 to show that the eigenvalues of Sy are +h/2.

The spectrum of eigenvalues of Sy, and thus the set of possible measurement outcomes, is
exactly as we expect for a spin component. In fact, this is true for any component of spin,
not just those in the xz-plane.

Exercise 3.51 Suppose we have a general unit vector # that does not lie in the xz-plane:
it =sinf cos¢ X+ sinfsin¢ y + cosb Z. (3.111)
Show again that the possible outcomes for a measurement of S, are just £54/2.

Now let us return to the spin component Sy in the xz-plane. We can find an orthonormal
basis of Sy eigenvectors corresponding to the eigenvalues of that operator.

Exercise 3.52 Find a pair of states |04) and |6_) that constitute an orthonormal basis
of ecigenstates of the spin component operator Sy. You can find these by solving the
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eigenvalue equations directly (not too hard); or you could consult Eq. 2.35 and verify that
the measurement basis states presented there are solutions to the eigenvalue equations.

Degeneracy

The eigenvalues 4, of a Hermitian operator A need not be distinct. Two or more orthogonal
eigenvectors may have equal eigenvalues. This is called degeneracy. If A has degeneracy,
then A will not uniquely determine an eigenbasis.

For example, consider a three-level atom with an energy observable (the Hamiltonian
operator) H. The energy spectrum consists of £1, E>, and E3. But it might happen that two
of these energy values are degenerate, e.g. E; = E3.

If an atom has only two possible energies £ and 3, in what sense can we still call it a
“three-level atom™? First, there may be other measurements (besides energy) which make
it clear that dim H = 3 for the atom. Another possibility is that the atom’s energy depends
on an adjustable external parameter, such as the magnetic field B experienced by the atom.
For most values of E‘, the atom would have three distinct possible energies, but for some
special value of the field (E = 0, say) two of the levels might be degenerate.

An eigenbasis for H consists of three states |1), |2a), and |2b), having eigenvalues E1,
E;, and E,, respectively. But this is not the only possible eigenbasis that can be formed
from the operator H. We could replace the degenerate states |2a) and |2b) with, say,

L
2a)= — (12 + 120),

o
|26/ = % (|2a) _ |2b>). (3.112)

The new set {|1), [24’), |25')} is also an orthonormal basis of eigenvectors of H.

There is no real surprise here. Exercise 3.46 told us that the set of eigenvectors of H with
a given eigenvalue form a subspace. The E; eigenspace in this example has dimension 2.
There are infinitely many possible basis sets for this eigenspace, including { |2a) , |2b)} and
{|2d'), |2b')}.

We conclude that there are many different basic measurements which could be an “energy
measurement” of the atom. All of these different ways of measuring energy, however,
correspond to the same Hermitian operator H:

H=Ey [1){1] +E2 (12)2al + [26)(2b])
= E 11 +E (a)a| + [20')28]). (3.113)
Since these two spectral decompositions represent the same operator, it must be true that
I = |2a)(2al + 2b)(2b] = |24')2d| + |2b')(25']. (3.114)

We have called this operator IT, by analogy to the projection I1; = |1)(1| that also appears
in the spectral decomposition. In fact, IT, is a projection operator under a more general
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definition than we have yet given. An operator I1 is called a projection if it is Hermitian
and if I1> = I1.

Exercise 3.53 Prove that IT; and IT; are both projections under the general definition.

Exercise 3.54 Show that the only possible eigenvalues for a projection operator are
0and 1.

Problem 3.2 provides a geometric understanding of the projection operator I1. The
projection “collapses” the Hilbert space H to a subspace G, which is itself unchanged
by the operator II. Intuitively, the action of IT gives the “shadow” of any vector on
the subspace G — which is exactly why operators like IT are known as “projections.”®
For the projection IT,, the corresponding subspace is the eigenspace associated with the
eigenvalue E».

The spectral decomposition of the Hamiltonian in Equation 3.113 is thus

H=E | + El,. (3.115)

Completeness tells us that Ty + IT; = 1. Both the spectral decomposition and the
completeness relation are independent of which basic measurement for energy we may
choose.

Suppose the atom is in the state |¢) and we make a basic measurement of its energy.
The probability that we obtain the result £7 is

p(E2) = pQa) + p(2b)
= (¥ 12a) 2aly) + (¥ [24) Qaly)
= (w1 ((12a)(2al + 126) (21 ) 1) = (V| TL2 ). (3.116)

In other words, we can calculate the probability of finding £5 directly from the operator I,
without specifying the particular basic measurement. (Indeed, as we will discuss later, we
can in principle carry out a non-basic measurement procedure in which only the projection
[T, matters.)

What we have found for an energy measurement on a three-level atom holds for any
sort of observable 4. If the operator A has degeneracy, more than one basic measurement
could be used to measure 4. By using projection operators, though, we can do calculations
without specifying which basic measurement (if any) we might be using.

Suppose {4} is the set of distinct eigenvalues of A (so that no value appears twice). Then
each eigenvalue 4, is associated with an eigenspace (which need not be one-dimensional)
and a projection I1,. The spectral decomposition for A is

A= "A,T,. (3.117)
o

6 In mathematics books, you may find that an operator is called a projection if M2 = I, whether or not it is
Hermitian. Our definition actually gives an orthogonal projection. Since we will not need this more generalized
view, however, we have adopted the term “projection” to mean only the orthogonal (Hermitian) ones.
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In a measurement of 4 on a system in state |ir), the probability of obtaining the
result 4, is

pAe) = (Y| g [Y) . (3.118)

Finally, the completeness relation for the projection operators is
> M =1. (3.119)
o

The measurement of a degenerate observable is called an incomplete measurement, because
the result does not always completely specify a particular basis element.

Such measurements can arise in two ways. It could be that the real physical process
is a basic measurement, but the numerical read-out is “coarse-grained.”’ In this case, the
mathematical ambiguity of the eigenbasis due to the degeneracy of the observable is only
apparent. There is a single “real” basis for the measurement. It could also happen that the
physical measurement process is not a basic measurement at all, but something weaker.
This possibility is described in the next chapter. Yet whatever the exact physical nature of
the measurement process, we can calculate probabilities and expectation values using the
operator description of the observable.

Compatible observables

Two observables 4 and B are said to be compatible if there is a basic measurement that can
determine the values of both 4 and B together. That is, they are compatible if they have a
common eigenbasis. In this basis,

A=Y dylnynl and B=) B, ln)nl. (3.120)

Compatible observables are always commuting operators.
Exercise 3.55 Show that [A, B] = 0 for the operators above.

This means that, if two observables are not commuting, then they are not compatible.
Consider, for instance, the observables S, and S, for the spin components of a spin-1/2
particle. These operators do not commute.

Exercise 3.56 Show that [Sy,Sy] = iRS..

Therefore, there can be no single basic measurement that provides us with full information
about both S, and S, for the particle. To use Bohr’s term, Sy and S, are complemen-
tary observables. An experimental procedure that determines the value of S, is logically
incompatible with a procedure that determines S,

7 Coarse-graining means that several distinct possibilities are grouped together. This happens, for instance, when
a continuous quantity is specified with finite precision. If we know the x-coordinate of a particle’s position to
the nearest meter, we have grouped “14.66 m” and “15.021 m” and “15.30421448 m” all under the general
heading of “15 m.”
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We have shown that compatible observables commute — or, equivalently, that non-
commuting observables are not compatible. We will now show the converse: any two
commuting observables are compatible.

Suppose [A, B] = 0. Every distinct eigenvalue 4, of A is associated with an eigenspace,
a subspace that contains the eigenvectors with that eigenvalue. Distinct eigenspaces are
orthogonal to each other. If |¢/) is in the 4, eigenspace for A, what about the vector B |1)?
This is also in the same eigenspace, since

A(BIv)) =BAIY) = 4. Bly). (3.121)

Thus, the operator B acts as a Hermitian operator on each 4, eigenspace individually. For
each of these subspaces, therefore, we can find a basis of B eigenstates. If we collect these
B basis sets for each of the 4, eigenspaces, we obtain a basis for the entire space H, each
of whose elements is an eigenstate both of A and B. Therefore, A and B are compatible.

This is a remarkable connection between the algebraic properties of operators — specif-
ically, whether or not they commute — and the fundamental physical compatibility of
measurement processes. In the next chapter, we will deepen this connection by deriving a
general limit on our simultaneous knowledge of two quantum observables. There, as here,
the commutator [A, B] will play a central role.

Problems

Problem 3.1 Recall the spin-1 S\ basis vectors defined in Eq. 3.16.

(a) Find a quantum state |v) such that neither a measurement of S; nor one of Sy could
possibly yield the result zero. (This state happens to be |yg). In fact, the three states
|x0), |vo), and |zg) form yet another orthonormal basis, as you can easily check.)

(b) Write the S; basis vectors as superpositions of the S, basis vectors.

Problem 3.2 Suppose IT is a projection operator on H. Let G be the set of all vectors in
‘H that are images of the operator IT — in other words, the set of all |) = IT |¢) for some
|¢) in H.

(a) Show that G is a subspace of H.

(b) Show that, if |v) is in G, then [¢) = IT [¢/).

(c) We denote by G the set of all vectors in 7 that are orthogonal to every element of G.
(This is called “G-perp.”) Show that G is a subspace.

(d) Show that, if |¢) is in G, then IT |¢) = 0.

Problem 3.3 In a finite-dimensional Hilbert space H, show that an operator N is normal if
and only if H has a complete orthonormal basis of eigenvectors of N. (Hint: “If” is easy.
For “only if,” use the fact that the Hermitian and anti-Hermitian parts of N must commute.)

Problem 3.4 Show that any Hermitian operator is the difference of two positive operators.
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Problem 3.5

(a) For any Hermitian operator G and unitary operator U, show that UGUT is Hermitian and
has the same eigenvalues as G.

(b) Show that if two Hermitian operators A and B have exactly the same eigenvalues with
the same degeneracies, then there must exist a unitary operator U such that B = UAUT.

(c) For any operator K, show that K'K and KK' are positive operators with the same
eigenvalues. (Provide an example to show that they are not necessarily the same
operator.)

Problem 3.6

(a) Suppose dimH = d, and also suppose that U satisfies U'U = 1. Pick an orthonormal
basis { |k)}, and show that the set {U |k)} is also an orthonormal basis. Use this fact to
prove that UUT = 1 also, so that U must be unitary.

(b) Now imagine an infinite dimensional Hilbert space, with an infinite orthonormal basis
set{|1), |2), |3),...}. Define the operator U by

9]

U= In+1)l.

n=1
Show that UTU = 1, but UUT # 1. Thus U is not unitary.

Problem 3.7

(a) Suppose G is Hermitian, and (¢|G|¢) = O for all |¢). Show that G = 0. (Hint:
Consider |¢) to be an eigenvector of G.)

(b) Prove part (a) for an arbitrary operator G by writing G as the sum of a Hermitian and
an anti-Hermitian operator.

(c) Prove that, given operators A and B, if (¢| A|¢p) = (¢|B|¢) for all |¢p), then A = B.
(Note: This is quite a useful mathematical fact!)

(d) Prove that, if (¢| G |¢) = 1 for all normalized |¢), then G = 1.
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4.1 Quantum communication
e —

We now return our focus to the idea of information. A quantum system may be used as a
medium for the storage, transmission, and retrieval of information. The rules of quantum
physics have implications for this process. In a larger sense, too, the state vector |ir) of
a quantum system provides information about the outcomes of possible future measure-
ments. In this chapter, we will use the quantum theory developed so far to explore these
issues.

We introduced the notion of information in Section 1.1 by discussing the process of
communication. A sender encodes various possible messages by preparing various states
(“signals”) of a physical system. We said that distinct messages should be represented by
distinct physical states. In this way, the receiver could reconstruct the original message
from the signal in a unique way.

This discussion presumed that distinct states of the communication medium were also
distinguishable by the receiver. But this is not the case if the communication medium is
a quantum system. Suppose Alice wishes to send a message to Bob via a single spin-1/2
particle. She uses the following code (see Fig. 4.1):

Signal Message

|z+)  The British are coming by land.
|z—)  The British are coming by sea.
|x+)  The British are not coming.

This appears to be a good code, since each message is represented by a distinct physical
state of the qubit. Yet something seems to be amiss. How can Bob recover the message
that Alice has encoded? If, for example, he makes a measurement of S,, he could draw the
following conclusions:

Result Inference

+h/2  Either the British are coming by land, or not at all.
—h/2  Either the British are coming by sea, or not at all.

Exercise 4.1 Explain how Bob could arrive at these inferences from the result of an S,
measurement on the qubit. What could he infer from the result of an S, measurement?
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2.

x.)

lz)

Alice’s three signal states in the Hilbert space. Note that any diagram of vectors in ¢ must
necessarily be schematic, since H is a complex space, while the Euclidean space of the page
is not.

Bob gains some information — he may, for instance, be able to exclude the possibility
that the British are coming by sea — but he does not learn everything that Alice is trying to
tell him.

The problem is that no measurement exists that can distinguish between the states in
Alice’s code. It is not possible, even in principle, to read all of Alice’s message. This is
not because quantum systems are somehow noisy and unreliable as carriers of information.
If Alice had only wished to encode a single bit of information into the particle (instead
of log3 ~ 1.58 bits), then she could have used the |z;) and |z_) basis states in her
code. By measuring S;, Bob would be able to read the message exactly. Alternatively,
Alice could have used a quantum system with a larger Hilbert space, like a spin-1 particle.
Then her three possible messages could have been encoded in three orthogonal states.
With a suitable choice of decoding measurement, Bob would be able to distinguish these
perfectly.

Information encoded in orthogonal quantum states can be perfectly retrieved by some
possible measurement. If non-orthogonal quantum signals are used, then the information
will not be perfectly retrieved. In this section and the next, we will give more mathematical
substance to these intuitive points by proving a pair of theorems. The theorems provide
limits to how reliably a set of quantum states may be identified by a measurement. They
will give us a quantitative look at the difference between distinguishability and distinctness
for quantum states.

We want to frame our theorem in as general a context as possible. Alice is sending a
message to Bob using a quantum system with Hilbert space H of dimension dimH = d.
She prepares the quantum state in one of N possible states |«), corresponding to the N
possible messages « that she might want to transmit. We assume that each message has an
equal likelihood 1/N.

Bob will decode the signal by making a basic measurement using a basis { |k)}. Now, it
might be that the Hilbert space 7 containing Alice’s signals is only a subspace of a larger
Hilbert space. For instance, Alice might use a two-level atom, a qubit, as her communication
medium. Then d = 2. But the two-level atom is just a simplified picture of the real atom,
which has a much larger Hilbert space. We want to give Bob every possible advantage in
decoding the signal, so we will allow him to make any basic measurement on this larger
space. The number of elements in the basis { |k)} could be much larger than d.
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Since H may be a subspace of a larger Hilbert space, we introduce the projection operator
[T that projects onto H. For every |«) in H, IT |o) = |«). We can write IT as

M=) (¢ (4.1)

where {|¢,)} is an orthonormal basis for the subspace H. This subspace basis has d
elements, so that TrIT = d.

Once Bob obtains a measurement result &, he uses it to infer what Alice’s message was.
That is, the set of possible measurement results is divided into subsets C,, one for each
possible message «. Each measurement result £ must be in exactly one of the subsets. If
the measurement result £ is in C,, then Bob will infer the message « from the result £.

A measurement confined to the Hilbert space H would have only d possible results, and
thus no more than d of the subsets C, could be non-empty. An empty C,, would mean that
Bob could never correctly identify the message «, whatever his measurement result. This
would be a problem if N > d. But we are allowing Bob to make his measurements on
a larger space containing H, so it is possible for all of the C,s to be non-empty even if
N > d. In principle, then, any of the messages « might be correctly identified by Bob. But
how likely is he to come to the correct conclusion?

To proceed, we will need a few facts about positive operators. Recall that an operator P
is positive if (| P [y) > 0 for all |¢). Then:

e |B)(B| is positive for any |B);
e If P is positive and 7 is a projection operator, then 7P is also positive;
e For a positive operator P and a normalized vector |v),

(YIPly) < TrP. (4.2)
Exercise 4.2 Prove the properties of positive operators just listed.

We are interested in the probability Pg that Bob’s measurement result allows him to
successfully identify the message «. This will be

Ps = Zp(message a) X Z p(result k | message ) | . 4.3)
a keCy

(Recall that p(4|B) is the conditional probability that 4 occurs under the condition that B
occurs.) Noting that p(message @) = 1/N for all «,

1
Ps=3 5| 2o Ikl ). (4.4)
o keCy

Then, noting that I o) = |«&),

Ps = }VZ D (o lk) (kler)

o keCy

1
=~ Z Z (| T ) (K| T ) . (4.5)

o keCy
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By Eq. 4.2, (| T1 |k) (k| TT |} < Tr I |k) (k| T1, and so

Pg < ]lvz S (n 1K) (k| n)

o keCy
1
= T Z.,:k; k) (k| | 1. (4.6)

The double sum is actually equivalent to the single sum ) _,, since every k is in exactly one
of the Cys. The expression in parentheses is therefore 1, and
d

1 1
Pg < —TrI1*>= —Trl = —. 4.7
N N N

The probability of error Pr = 1 — Ps. We have now proven the following theorem:

Basic decoding theorem. If Alice encodes N equally likely messages as states in a
quantum system with dim’H = d, and if Bob decodes this by performing a basic
measurement (perhaps on a larger Hilbert space) and inferring the message from the
result, Bob’s probability of error is bounded by

d
Pg>1——. 4.8
E = N ( )

If the number N of possible signals exceeds the dimension d of the Hilbert space
containing the signals, Bob will not be able to reliably (Ps = 1) distinguish between the
signals by any basic measurement. Since H = log N tells us the amount of information
in the message, we conclude that a quantum system described by a Hilbert space of
dimension d has a communication or information capacity of logd. This is the maximum
number of bits that can be stored in the system so that the data can be reliably read by a
measurement.

Exercise 4.3 A quantum system has an information capacity of logd. Suppose that Alice
tries to send one additional bit of information above the capacity. Use the basic decoding
theorem to find a lower bound for Bob’s probability of error Pg.

Clearly, if N < d, we can choose signal states that are all orthogonal to one another, which
can be perfectly distinguished by a measurement. In this way we can achieve Pr = 0.

The capacity of a quantum system for conveying information is not limited by the number
of different states available. Nor is it limited by the number of possible outcomes of some
measurement procedure. Instead, it is limited by the number of states that can be reliably
distinguished, which is given by the dimension d of the system’s Hilbert space.

The lesson of the basic decoding theorem is that quantum systems have a limited capacity
to carry information. Our mathematical machinery so far has allowed us to prove this for
the case of equally likely messages (for which we have a definition of H) and basic
measurements (the only kind that we have analyzed). We will generalize both conditions
later in the book. The lesson holds in these more general situations as well.
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4.2 Distinguishability

Let us put ourselves in Bob’s situation. In the previous section, we were faced with the
task of distinguishing reliably between an entire set of possible signals that Alice might
use. Now suppose that we are trying to distinguish between only two quantum states. Alice
has prepared the system in either |og) (representing 0) or |«p) (representing 1), assumed
to be equally likely. We shall make a basic measurement to try to determine which state is
present. The probability that this measurement succeeds in distinguishing the states is Py.

The two states lie in a subspace 7 of dimension 2, so the basic decoding theorem only
tells us that Ps < 1. If the two states happen to be orthogonal, then we can achieve Pg = 1
by choosing a measurement basis with |0) = |ag) and |1) = |«1). Now imagine that the
two states are not orthogonal, so that (g |1 ) # 0. We will not be able to distinguish these
states perfectly. But if perfection is out of reach, just how well can we do?

As before, we make a basic measurement that may extend to a larger Hilbert space
containing the two-dimensional subspace 7. The measurement results are partitioned into
two sets Cop and Cp, based on the inference that we will draw. The probability Pg that we
infer the right message is

1 1
Ps=5 Y {aolk) (klao) + 5 3 (o 1K) (k). (4.9)
keCy keCy
(see Eq. 4.4). Since the sets Cy and Cj include all of the outcomes £,
DMkl =1=" k) (k] (4.10)
kGC] kGC()

This lets us rewrite our expression for Py as

1 1
Ps=3 + 3 2 (kl (lao) ol = ler)a] ) 1K) (@.11)
kECo
Look at the operator D = |ag){g| — |a1){x1| that appears in this expression: D is

Hermitian, so it will have a complete basis of eigenstates. Furthermore, for any |¢) that is
orthogonal to both |«g) and |a1), D |) = 0. This tells us that D has at most two non-zero
eigenvalues, whose eigenvectors must lie in 7 .

The sum of the eigenvalues of D is TrD = 0. We can therefore write the eigenvalues as
+4, and

D=3[+){+| —8[=)(—I, (4.12)
for an orthonormal pair of D eigenstates |1). Now we write
Ps=1+ + L3 womw
$72 72
kGCO
—1 4 162<k|+><+|k> 152<k| ) (— 1K)
T2 2 2
kEC() kEC()
1 1
=5+ 38 D k1) (+1k). (4.13)

kECO
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4 = lay)

@)
6 )

The states |ag) and |«1), together with the orthogonal basis used for the matrix
representation of D.

Since |+) is normalized, Zkeco |(k |4+)|* < 1. Thus
1
Py < 5(1 =+ §). (4.14)

Exercise 4.4 Show that we can choose a measurement so that equality is achieved in
Eq. 4.14.

The problem boils down to finding the positive eigenvalue § for the operator D. We do
this by solving the characteristic equation for a matrix representation of D. For that we need
a basis for the subspace 7. Choose the first basis vector |¢g) = |og) and let the |¢1) be a
vector orthogonal to this (see Fig. 4.2). Then

leer) = co lgpo) + c1 lg1) . 4.15)

Of course, cg = (g | ). A convenient way of writing the two components is suggested
by the following exercise:

Exercise 4.5 Suppose |co|? + |c1|*> = 1 for complex numbers ¢y and ¢;. Show that we can
find an angle 6 with 0 < 6 < 7/2 together with real phases By and B; so that

co=ePrcos® and ¢ = €Prsing. (4.16)
We can interpret the angle 6 as the angle between |ag) and |o). It satisfies
[{ceo |eeq )| = cos 6. 4.17)

With respect to this basis, the matrix representation for D is

1 —cos? @ —e!Po=PV ¢cos 0 sin 0
D= ; . . . 4.18
< —e!P1=P0) cos @ sin @ —sin® 6 ) (+18)
This gives us, after a little simplification, the characteristic equation
0 = det(D — §1) = 8% — sin? 6. (4.19)

Exercise 4.6 Confirm the matrix representation of D in Eq. 4.18, and obtain from it the
characteristic equation in Eq. 4.19.

The positive eigenvalue is therefore sin 6. We have arrived at the following theorem:
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Basic distinguishability theorem. Given two equally likely states |op) and |ap)
such that (g |a1)| = cos@, the probability Pg of correctly identifying the state by
a basic measurement is bounded by

1
Ps <5+ sinf) . (4.20)

Equality is achievable by a particular choice of observable.

We could of course manage Ps = 1/2 simply by guessing, without any measurement at
all. If two quantum states are close together in the Hilbert space, then siné is small and
we cannot do much better than guessing. Such nearby states are distinct, in that they are
different vectors in the Hilbert space and represent different physical preparations of the
system. But they are not very well distinguishable. Only orthogonal quantum states of a
system are completely distinguishable by measurement.

4.3 The projection rule and its limitations
_______________________________________________________________________________|

In a measurement process, we extract information from a quantum system. But what sort
of information is it? Exactly what does a measurement tell us?

A naive answer is, “When we measure an observable 4, we find out the value of 4.” Yet
this is at best only a partial answer. If the quantum system did originally have a definite
value of 4 — that is, if it were prepared in an A-eigenstate — then the measurement would
reveal that A-value. On the other hand, the quantum system might not have a definite value
of A before the measurement. A spin-1/2 particle prepared in the state |x;) does not have
a definite value for S;. In this case, it is more difficult to say what the measurement tells us.

Another answer often proposed is, “When we measure an observable 4, we find out
about the results of future measurements.” The idea is that, immediately after an 4-
measurement, the system is in an eigenstate of 4 corresponding to the result obtained. A
second 4-measurement performed immediately after the first must yield the same value.

This assertion is sometimes called the projection rule. It does give a straightforward
answer to our question: A measurement provides a definite prediction of the result of a
subsequent measurement of the same type. The only problem with the projection rule is
that, in this simple form, it is usually false.

To see why, recall our example of the two-beam interferometer. When a single photon is
in the interferometer, the system behaves like a qubit, with basis states |u) (photon in upper
beam) and |/) (photon in lower beam). Arbitrary superpositions of these are also possible
quantum states.

There are of course many other possible states of the light in the interferometer. Like the
two-level atom, the one-photon interferometer is a simplification of a more complicated
real system with more possible states. One of these other states, orthogonal to those already
mentioned, is |0), the “no photon” state. If our system is a two-beam interferometer with
exactly one photon, it is described by a two-dimensional Hilbert space spanned by |u)
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Absorbing (left) and non-destructive (right) photon detectors in the interferometer beams.

and | /). This was our qubit example. Now, however, we will consider the system of a two-
beam interferometer that has at most one photon. Our Hilbert space is three-dimensional
and includes |0).

Exercise 4.7 The photon number observable N counts the total number of photons present
in our interferometer system. For our new situation, show that N has two eigenvalues, one
of which is degenerate. Describe the two eigenspaces for these eigenvalues.

We can make a measurement in the {|u), |/), |0)} basis by putting a pair of photon
detectors in the beams. The states |¢) and | /) correspond to photon detections by the upper
or lower detectors, respectively. The state |0) corresponds to an outcome in which neither
detector “clicks.” (Since we have at most one photon in the interferometer, these are the
only possible outcomes.)

But an ordinary photon detector absorbs the photon upon detection. Whatever the meas-
urement result, therefore, the interferometer system is always in the state |0) immediately
afterward. A second measurement using a second set of detectors would always yield the
“no photon” result, whatever the result of the first measurement. The projection rule in this
case would fail.

For the projection rule to hold, we must imagine photon detectors that register the passage
of a photon without destroying it or scattering it out of the beam. Such “non-destructive”
detectors are possible in principle, though they are hard to build (see Fig. 4.3). (We imagined
photon detectors of this type for the two-slit experiment in Section 1.2.) Then if the upper
or lower detectors register a photon, the system is afterward known to be in the |u) or |/)
state, as the projection rule requires. If no photon is detected, the system is in |0).'

We have now described two possible measurement processes for the same observable,
one of which violates the projection rule and one of which obeys it. The validity of the
projection rule depends, not on which measurement we make, but rather on szow we make
it — the details of the physical measurement process. The projection rule is a special
assumption about that process. Roughly speaking, the projection rule works when this

I We are assuming that even these “non-disturbing” photon detectors have 100% efficiency, so that they will
certainly detect a photon if it is present. Real photon detectors are not so perfect and require a more sophisticated
analysis. See Chapter 9, especially Problem 9.11.
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process disturbs the system as little as possible, e.g. by simply registering a passing photon
instead of absorbing it completely.

Why is this assumption called the “projection rule”? The outcomes of the measurement
are represented by the projections

My = lu)y(ul, Ty = 10){I, T =0)0]. (4.21)

If the interferometer starts out in the state |y), the probabilities of the various outcomes
are given by P(U) = (¥ | I, |¥) and so on. After the measurement, if the result is x then
the state has changed according to

) — KTl [¥), (4.22)
where K is a normalization factor.

Exercise 4.8 Since the overall phase of a state vector is physically irrelevant, we can choose
K to be real and positive. Show that the choice K = P(x) ™!/ works.

The projection rule says that the action of the measurement process on the state of the
system is described by the projection operator associated with the outcome.

We could make a measurement in the interferometer using a photon detector in only one
of the beams. Suppose for instance we place a non-destructive photon detector in the upper
beam. This detector would “click” if the system were prepared in state |u), but not if it
were in either | /) or |0) (or a superposition of these). This detector arrangement measures
a “click number” observable C with eigenvalues 1 and 0. The eigenvalue 0 is degenerate,
and the corresponding eigenspace is spanned by |/) and |0).

If the initial state is a multiple of |u) or any state of the form a|/) + b |0), it will be
unaffected by this measurement procedure. A general input state will produce the following
results:

e With probability P(1) = (y| IT; |¢), the result 1 is obtained, and the final state will be
of the form K Iy |¢) (which is a multiple of |u));

e With probability P(0) = (| ITg |¢), the result O is obtained, and the final state will be
of the form K’ Ty |v) (which is a superposition of |/) and |0)).

This measurement process satisfies the projection rule, as it applies to an incomplete
measurement. This means that a second such measurement on the same system would
always obtain the same result.

Exercise 4.9 Consider the overall photon number operator N and the upper-beam click
number operator C. What is [N, (]?

Exercise 4.10 Suppose the interferometer is initially in the state

W) = = (10— 1)~ 10). (423)
7

We introduce an absorbing photodetector into the lower beam and count the number of
times it “clicks” (either zero or one). Find the probabilities of the two outcomes and the
state of the interferometer after each one. Does this measurement satisfy the projection
rule?
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4.4 Quantum cryptography
|

Suppose Alice wishes to send Bob a secret message, one that can be read by Bob but
not by an unauthorized third party, the eavesdropper Eve. If there is a private mode of
communication to which Eve has no access, then Alice can employ it. But what if there
is no such private channel? After all, Eve might bug Alice’s telephone calls, open the
letters she sends, or intercept her outgoing e-mail. What if the only available mode of
communication from Alice to Bob is effectively a public channel? In order to send secret
information over a public communication channel, Alice must encrypt the information that
she sends to Bob.

We will describe one particular procedure for encryption. Let us say that Alice’s message
consists of a string of » binary digits, called the plaintext. (As we discussed in Section 1.1,
any sort of message can be represented in this format.) We also suppose that Alice and Bob
already share a secret string of n bits, called the key. This key string contains no message
in itself, but at least it is completely unknown to Eve. Alice encrypts her information
by adding together the plaintext and the key, creating a new string of n bits called the
ciphertext:

plaintext 0011001100001101110110010011
+ key 1001101001001110110010000110
= ciphertext 1010100101000011000100010101

(The addition is modulo 2, so that 1 + 1 = (.) Symbolically, we write
P+K=C, (4.24)

where P represents the plaintext, K the key, and C the ciphertext. It is the ciphertext C that
Alice sends over the public channel to Bob, and to which Eve potentially has access.

To decrypt the message, Bob (who also possesses K) adds the ciphertext and the key
string:

ciphertext 1010100101000011000100010101
+ key 1001101001001110110010000110
= plaintext 0011001100001101110110010011

This works because, in modulo 2 arithmetic, X +X = 0 for any string X, where “0” means
a string of all zeroes. Therefore,

C+K=P+K+K=P+0=P. (4.25)

Bob can thus use the key to recover Alice’s message from the ciphertext string.

What about Eve? As far as she is concerned, the key string K might be any »n-bit string.
Even if she possesses the ciphertext C, the plaintext P = C + K could still be anything
at all. In other words, at the outset Eve must consider that there are 2" possible plaintext
messages P. With the ciphertext in hand, there are still 2" possible Ps. From the ciphertext
alone, Eve has gained no information at all (see Eq. 1.7).



89

Quantum cryptography

Exercise 4.11 Eve, in desperation, simply guesses at the key K, and then decides that the
plaintext P must be 0000010110010110100111000011. What key did she guess?
What are the odds of successfully decrypting the message by this method?

This method allows Alice to send Bob a secret message over a public channel. But you
may have noticed a difficulty. In order for Alice to send the secret message P to Bob, they
must already share a secret key K of the same length. To send a secret, they must already
have shared a secret. How did they do that?

This is the problem of key distribution, and it is a formidable challenge in practical
cryptography. The usual approach is to use some especially secure form of communication
for the key K — a trusted courier with a locked briefcase, perhaps. The problem is that,
despite all precautions, Alice and Bob cannot be completely sure that the secrecy of K has
not been compromised.

If a particular key K were known to be insecure — if Eve’s fingerprints were discovered
inside the locked briefcase, for example — then Alice and Bob would simply agree not to
use the “blown” key. Since K contains no message and thus has no value in itself, Eve has
gained nothing for her pains. Eve only poses a danger if she can indetectably figure out the
key K.

In 1984, Charles Bennett and Gilles Brassard invented a protocol for secure key distri-
bution that relies on the special properties of quantum systems. Their scheme, sometimes
called “BB84,” is the simplest protocol for quantum key distribution, and was the starting
point for the subject of quantum cryptography. We will now describe the BB84 protocol’
and discuss some reasons why it works.

In the BB84 protocol, Alice begins by generating two random strings of bits, the “basis
string” and the “parent string.” While we can represent the parent string by Os and 1s, it is
more convenient to represent the basis string by Zs and Xs. From each corresponding pair
of bits from the two strings, Alice chooses a quantum state for a qubit system, which she
then passes on to Bob. The states are

basis parent qubit state

Z 0 10)
Z 1

X 0 |+) =

%(|0>+ n)
X o1 |—>=%

> (10— m)

In other words, Alice generates a sequence of qubits that are in one of the four states |0),
[1), |+), or |—), with equal probability. Be sure to note that these states are eigenstates of
the Pauli observables Z or X for the qubit, and that the basis string tells us which. Figure 4.4
lays out an example; so far, we have discussed the first three lines.

2 We will not here give a full proof of the security of BB84 against every sort of “attack” that Eve might mount.
Such a general proof does exist, but it requires ideas and techniques of quantum information theory beyond our
present discussion.
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Alice’s basis string X zZ 7Z X zZ X X Z
Alice’s parent string 1 0 1 1 0 1 0 1
Qubit states =) 10y 1) =) 10) =) [+ D

Bob’s basis string X X Z Z X Z X Z
Bob’s results =) ) ) D =) 10 4 (D)
Bob’s parent string 1 0 1 1 1 0 0 1

Right basis? yes no yes no no no yes yes

Key string K 1 1 0 1
An example of the BB84 protocol in action.

The qubits are now delivered to Bob. If Bob somehow knew Alice’s basis string, then it
would be possible for him to determine the parent string as well. He would simply measure
Z or X on the qubit, as appropriate. But Bob does not know the basis string. So instead, he
just makes up his own random basis string of Zs and X's, then measures accordingly. He
then records his version of the parent string bits as determined by these measurements.

Note that when Bob guesses the right basis (which happens about half the time), he
correctly learns the corresponding parent string bit. But when he guesses wrong, he is
equally likely to get the parent right or wrong. Thus, Bob’s version of the parent string is
only about 75% right. (Examine the next group of rows in Fig. 4.4.)

Next, Bob contacts Alice over a public communication channel and tells her his own basis
string. That is, he announces which measurements he made, but not the results of those
measurements. Alice replies by telling Bob which of his measurements were “correct.”
Alice and Bob discard those qubits on which Bob measured the wrong basis — about half
of the whole sequence. On the remaining qubits, Alice prepared and Bob measured in the
same way. The parent sequences of Alice and Bob therefore agree on these, and so they
can use this subsequence as their key K. (See the last rows of Fig. 4.4.)

Exercise 4.12 Bob’s version of the parent string includes about 25% errors. Yet in the
protocol, Alice and Bob throw away 50% of the bits. Why do they dispose of so many bits
that are, in fact, correct?

What about the eavesdropper Eve? Alice and Bob’s public communication only reveals
their basis strings, not the parent strings from which the key K is extracted. To have any
hope of learning this key string, Eve will have to intercept and examine the qubits using
some measurement. But she cannot reliably determine which of the four BB84 states Alice
is sending for each qubit. The basic decoding theorem in Eq. 4.8 tells us that her probability
of error must be at least

Pre1_2_1 (4.26)
E=""34" 2 :

She will get it wrong half the time.
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Since Eve must sometimes misidentify the state, then the qubit that she sends on to
Bob will sometimes be prepared incorrectly. This will show up as additional errors in the
BB84 protocol. For example, suppose Alice has basis bit Z and parent bit 0. She sends the
state |0) to Bob. Eve, intercepting the qubit, misidentifies this as the state |+), and sends
that state on to Bob. Bob happens to measure in the Z-basis, but by chance obtains the
result |1) instead of |0). Even though Alice and Bob have measured in the same basis, the
key bits they extract do not agree in this case.

Alice and Bob can detect the presence of Eve by checking for errors. They choose some
of their key bits at random and compare them over the public channel. These bits are now
no longer useful as key bits, since they are no longer secret; but they are useful for finding
out whether extra errors are occurring in the protocol. If, after sacrificing a few hundred bits
in this way, they find no cases of unexplained errors, they can be very confident that Eve is
not intercepting and measuring the qubits. The remainder of the key is therefore secure.

Exercise 4.13 Suppose Eve simply measures X on every qubit, inferring that the state is
either |[+) or |—). What is the probability that a given bit in the final key K will actually be
an error? If 500 bits of K are sacrificed to check for errors, about how many errors should
be found?

The disturbance of the qubit system due to Eve’s measurement process acts as Eve’s
“fingerprints,” alerting Alice and Bob to her activities and warning them that their proposed
key is not secure. Of course, in the real world, there will always be some noise in the system,
and some errors will always be present. To be on the safe side, Alice and Bob have to assume
that any noise might indicate the effect of an eavesdropper. But if the error rate is small
enough, it turns out that Alice and Bob are still able to arrive at a shared secret key that
they are confident is completely unknown to Eve.

Distinct quantum states are not necessarily perfectly distinguishable, and this fact has
led to limits on our ability to use quantum systems to perform information tasks. We saw in
Section 4.1, for instance, that a quantum system with Hilbert space dimension d can only
convey up to logd bits reliably as a communication medium. In quantum cryptography,
the lack of distinguishability among the BB84 states is not a limit, but an opportunity. We
can use it to perform a task (establishing a secret key) that may be difficult or impossible
otherwise.

A loophole?

Poor Eve. She does not know what observable to measure in order to determine the state of
the intercepted qubits. What makes this particularly maddening is that, when Alice and Bob
later communicate over the public channel, Eve will actually learn what measurements to
use! By then, of course, it is too late, since the qubits have already been delivered to Bob.

However, suppose Eve has a device that could copy or clone qubits exactly. That is,
when the device is presented with a single qubit in any quantum state |y), it produces two
qubits with the same state |y). Such a machine is not a measurement device, since Eve
does not extract any information from the system.
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If a quantum cloning machine is available, then Eve can beat the BB84 protocol. She
makes perfect copies of the qubits and sends the originals on to Bob. Then she waits until
Alice and Bob discuss their measurement bases before making her own measurements. In
those cases when Alice prepared and Bob measure in the same basis, Eve can do the same
and be sure that her results agree with Bob’s. Eve would end up with the same key that
Alice and Bob share, without introducing any disturbance on the qubits.

Therefore, the security of quantum key distribution depends on the unavailability of
quantum cloning machines. Such machines are in fact impossible, as we will prove in
Section 7.2.

4.5 The uncertainty relation
_________________________________________________________________________________________|]

Knowing the quantum state of a system lets us assign probabilities to the possible results
of various future measurements. In some cases we may be certain of the outcome, but
for other variables the probabilities are spread out over several possibilities. If a spin-1/2
particle is prepared in the state |x;), then a measurement of Sy would surely yield +A/2,
but the result of an S, measurement is not certain. On the other hand, if the state is |z_), we
know that a measurement of S; would find —A/2, but do not know what an Sy measurement
would find. Certainty about one observable comes at the price of uncertainty about the
other. There is no quantum state of a spin-1/2 particle that predicts a certain outcome for
both S, and S.

Our aim here is to give a mathematical formulation of this heuristic point about quantum
physics. This will lead us to a general theorem of quantum physics with far-reaching
implications. We begin by proving a handy inequality about vectors in a Hilbert space.

Suppose |a) and |b) are two vectors in a Hilbert space H. We can pick a vector

|b') = €™ |b), where the phase « is chosen so that (a |5} is real and non-negative. That
means that (a |b") = |(a |b)|. Now define

IA) = la) + A |b'), (4.27)

where A is an adjustable real parameter. For any value of A, it must be true that (A |A) > 0.
Let us define

FO) = (k)
= (ala) + 2> (B |p')+a((a|p')+ (b |a))
= (ala) +2*(b|b) + 21 [{a|b)|. (4.28)

The function f is quadratic in A. We know that (1) > 0 for any value of A; in particular,
we know that this is true for the value Apj, that minimizes f. We can find this minimal
value in the usual way by setting /’ (Amin) = 0:

0= 2hmin (b1b) +2{a|b)]

[{alb)]
(blb)

(4.29)

Amin = —
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Substituting this into f, we find that

N la b))\ l{ab)]
f(xmm)—<a|a>+( (bw)) (b1b) =275 Halb)] = O, (4.30)
and therefore
(ala) (b1b) = [{alb). (4.31)

Equation 4.31 is called the Schwartz inequality, and it is a remarkably useful result about
vectors in H.

Exercise 4.14 Here are a couple of quick questions about this derivation. (a) How do we
know that A, in Eq. 4.29 gives us a minimum of f? Does it matter? (b) We have tacitly
assumed that |b) # 0. Where? Does the Schwartz inequality hold true in the case |b) = 0?

With the Schwartz inequality in hand, we next turn to analyzing the uncertainties of
quantum observables. First, though, we have to give a precise mathematical definition of
what we mean by “uncertainty.” The mean or expectation value of a random variable X is

(X) =" xp). (Re A.12)

The expectation value (X)) is not necessarily the value (or even a value) that we expect to
really occur. Then how far from (X) is an actual outcome x likely to be?

As Appendix A explains, the variance is defined as the mean of the square of the deviation
from the mean. That is,

<AX2> = <(X — (X))2> - <X2> — X2, (4.32)
(see Eq. A.14).

Exercise 4.15 A random variable Q takes on the values 1 with equal probability. Find the
mean and the variance of Q. How would these change if P(+1) = 3/4 and P(—1) = 1/4?

We define the uncertainty of X to be the standard deviation AX = /(AX?). This is a
good measure of how “spread out” the probability distribution is around the value (X). The
actual value of the variable X in an experiment is unlikely to be many times further than
AX away from the mean (X). (Appendix A develops this idea in more technical detail.)

Exercise 4.16 Show that AQ > 0ifand only if more than one distinct value ¢ has p(q) > 0.
That is, AQ > 0 whenever there is actually some uncertainty about the value of Q.

Exercise 4.17 Suppose all of the possible values of Q lie in an interval on the real line
whose length is L. Show that AQ < L.

Applying this idea of uncertainty to a quantum observable A is at once trivial and subtle.
It is trivial, because any state |1) leads to a probability distribution over the spectrum of A
eigenvalues, from which we can calculate the mean and variance. The subtleties arise when
we try to interpret the average in (AAZ) as an expectation value given by some operator.
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Suppose we define the deviation operator A4 by
AA=A—{4)1. (4.33)

This would be a strange definition for an operator, because the expectation value (4) already
presumes a particular quantum state |y) for which (4) = (Y| A|y). If ) does happen
to be the state of the system, then

(W AAZ [Y) = (Y| A% 1) — 244) (W | AT + () (v )
— <A2> —4)? = <AA2>, (4.34)
as we wish. But if the system is in another state |¢) with a different expectation value for

A, then the variance of 4 will not be (| AA? |p).
We have to be more careful. For a real value «, define

AgA=A—al. (4.35)

This is the deviation of the observable 4 from a fixed value « that is independent of any
choice of state. If it happens that @ = (4) for a particular [y), then

W1 (Bl [9) = (ad?), (4.36)

for the distribution of 4-values given by the state |). But if @ 7# (4), then this equality
will not hold. (See Problem 4.2 for a more general relation.)

Now suppose we have two observables A and B for a quantum system. We pick out
values o and 8 and define Ay A and AgB as above. If the system is in the quantum state
[v), we can consider the vectors

la) = AgAlY) and |b) = AgBly). (4.37)
Applying the Schwartz inequality (Eq. 4.31) to |a) and |b), we find

2

(W1 (DA [¥) (Y] (ApB)* ) = (] (AaA)(AEB) |¥) (4.38)

The right-hand side is of the form (/| FG |/) for Hermitian operators F and G. What is
this matrix element? The product FG can be written

1 1
FG = —[F,G] + ={F, G}, 4.39
S[F.Gl+ 2{ } (4.39)
where {F, G} = FG + GF is the anticommutator of F and G.

Exercise 4.18 Given Hermitian F and G, show that (a) the commutator [F,G] is anti-
Hermitian, and (b) the anticommutator {F, G} is Hermitian. (Part (a) was also Exercise 3.41.)

It follows that

1 1
(WIFGIY) = S (WIIFGlY) + 5 (WIHF. G} v) . (4.40)
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The commutator term is purely imaginary and the anticommutator term is purely real.
Therefore,

wirs [ = ¢ |wir.aiv] (441)
Exercise 4.19 Carefully explain the line of reasoning from Eq. 4.40 to Eq. 4.41.
To apply this general operator fact, we note that
[AcA, AgB] = [A,B]. (4.42)
Therefore, Eq. 4.38 implies that
(W1 (DoAY 1) (Y] (ApB)* Y1) = }‘ |wI1A.B] |w>{2. (4.43)

The right-hand side does not depend on « and 8. If we choose @ = (4) and 8 = (B), then
the left-hand side is the product of the variances (AA2> and (ABZ>. Therefore,

1 2

(ad)(a8%) = £ [wita 81| . (4.44)

It is convenient to write everything in terms of uncertainties.

General uncertainty relation. Suppose A and B are two observables on a quantum
system and let K be the observable such that

[A,B] = iK. (4.45)

Then, for any quantum state |i),
1
AA AB > 3 {K)| . (4.46)

Equation 4.46 tells us that there is a trade-off between the uncertainties A4 and AB, and
that this trade-off is governed by the commutator [A, B] of the two operators. If [(K)| > 0,
then it is not possible for both A4 and AB to be close to zero.

If two operators commute (K = 0), then we know that there are simultaneous eigenstates
for A and B. Equation 4.46 therefore gives a lower bound of zero for A4 AB.

We shall illustrate the meaning of the general uncertainty relation by considering our old
friend, the spin-1/2 particle. Recall from Exercise 3.56 that the spin component operators
Sx, Sy, and S, satisfy

[Sx, Syl = ihS.. (4.47)

(If you have not worked out Exercise 3.56 for yourself, you should go back and do it.) This
means that, for any state of the particle,

h
ASy AS), > 5 [(S:)] - (4.48)

We can extract a lot of meaning from this uncertainty relation. If we have an eigenstate of
Sy, then AS; = 0. This can only happen provided (S;) = 0. The same must be true of S),
cigenstates. If the expectation (S;) # 0, then neither Sy nor S, can have a definite value.
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We have called Eq. 4.46 an “uncertainty” relation, but a better name might be an
“indeterminacy” relation. The word “uncertainty” seems to refer to our own state of mind,
to our lack of sureness about the value of 4. This leaves open the possibility that 4 actually
has a definite value. We may be somewhat uncertain about the exact area of Brazil, but
we do not doubt that the territory of Brazil comprises some definite number of square
kilometers. We merely happen to be ignorant of that number.

The situation for quantum systems appears to be quite different. The measured value of
an observable 4 is uncertain, not because of some ignorance on our part, but because the
particular quantum state does not save a definite value of A. The quantities A4 and AB in
Eq. 4.46 describe the indeterminacy of the observables 4 and B, not merely our uncertainty
about them. Nevertheless, the word “uncertainty” has become so standard in connection
with Eq. 4.46 that we will just have to live with it.

Problems

Problem 4.1 In Section 4.2, suppose that the two states |«g) and |o1) have a real, positive
inner product («g |1 ) = cos6. On a diagram like Fig. 4.2, locate the eigenstates |+£) of
the operator D = |og) (o] — |o1) (1] -

Problem 4.2 Consider a random variable Z with a given probability distribution. For a
parameter g, define the mean square deviation from q to be D(q) = ((Z — q)2>. Show that

(a22) < D),

for any choice of ¢, with equality if ¢ = (Z). (Hint: Write out the algebraic form of D(q)
and minimize the function.)

Problem 4.3 Suppose |y) is an eigenstate of both A and B. (This may be the only such
eigenstate of both operators; we are not assuming that A and B commute.) Show that |i)
is also an eigenstate of [A, B] with eigenvalue 0. How does the A4 AB uncertainty relation
work out for this particular state?

Problem 4.4 For a spin-1/2 particle, consider the generic state
W) = e cosb |z) + e @ sinf |z_). (4.49)

Find ASy, AS), and (S;), and show that the spin component uncertainty relation in Eq. 4.48
holds.

Problem 4.5 Derive an uncertainty relation that involves the anticommutator of the oper-
ators A and B instead of the commutator. Your derivation will be the same as ours until
about Eq. 4.40, after which it will take a slightly different turn.

Problem 4.6 Find and prove the necessary and sufficient condition for equality in the
Schwartz inequality (Eq. 4.31).
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Problem 4.7 In 1992, Bennett proposed an alternative scheme for quantum key distribution
that uses only two non-orthogonal states. In the “B92” protocol, Alice sends to Bob the
states |0) and |+) with equal likelihood, and Bob randomly measures them using the X or
Z bases. For some combinations (which ones?) of state and measurement, Bob can deduce
Alice’s state. Rather than announcing his measurements, Bob announces which qubits had
their states determined with certainty.

Complete the description of the protocol, including an analysis of the difficulties Eve
faces in eavesdropping. What percentage of the transmitted qubits are discarded? On which
of our basic information results does B92 depend?

Problem 4.8 Stephen Wiesner has proposed the following idea for quantum money, which
cannot be reliably counterfeited. Each quantum banknote contains a string of N qubits,
which maintain their quantum states unchanged indefinitely. It also has a printed random
N-bit serial number. The bank keeps on file a secret N-bit basis string for each banknote.
When the money is manufactured, the qubit states are set using the BB84 scheme, based
on the basis string and serial number.

The bank tests any banknote presented to it by using the secret basis string to carry out
a series of measurements on the qubits. A genuine note will produce results that exactly
match the serial number. A counterfeiter would like to create fake banknotes that can pass
this test, without knowing the correct basis string. (He must do this by making copies of an
existing note, since the bank has records of which of the notes are in circulation.)

(a) Is a genuine banknote still valid after the bank’s inspection? Explain what assumptions
you make to answer this question.

(b) Consider the kth qubit on the banknote. Given the kth serial number bit printed on the
note, what is the maximum probability that a counterfeiter can determine the bank’s
kth basis bit by a basic measurement on the qubit?

(c) The counterfeiter tries to identify the basis bit as in part (b), then uses this to set the kth
qubit state on a fake banknote with the same serial number. If the fake note is inspected
by the bank, with what probability will the kth qubit pass inspection?

(d) The whole banknote has N = 100 qubits. What is the likelihood that the counterfeiter’s
fake banknote will pass the bank’s test? (Remember, the bank will reject the banknote
if a single error is found.)



Quantum dynamics

5.1 Unitary evolution
e —

Isolated systems

During a measurement, information is extracted from a quantum system, and in this
process the state changes, either via the projection rule or not. But the state of a quantum
system may also change over time even when the system is not being measured, when
it is informationally isolated. Understanding this time evolution means understanding the
dynamical laws governing quantum systems. To this indispensible task, we now turn.

We have already discussed time evolution in the context of qubit systems in Chapter 2.
Section 2.1 analyzed the effect of successive optical elements on the state of a one-photon
interferometer system. Section 2.3 examined in detail how the state of a two-level atom
evolves, as well as the behavior of a spin-1/2 system in an external magnetic field. Much
of what we will develop here has already been foreshadowed there. (If you have by now
forgotten all about Chapter 2, this would be an excellent time to turn back and browse
through it for a few minutes.)

Our basic principle is this: If a quantum system is informationally isolated, then its
evolution respects the principle of superposition. If the states |) and |¢) would evolve
over a given interval of time according to

) — |[¥'),
l¢) — [¢'), (5.1)
then a superposition of the two states would evolve over the same interval by
aly) +blg) — aly')+bl¢’). (52)
The time evolution of the state is a linear map from vectors in H to vectors in H — in other
words, an operator.
Let ¢ and %, be two times, and suppose the operator U(#, 1) describes the time evolution

of an informationally isolated system over the interval from #; to t,. If | (¢1)) and | (12))
are the quantum states of the system at the two times, then

W (1)) = U2, 1) [ (1)) - (5.3)
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From the operator U(#p, ¢1) and the initial state | (¢)), we can calculate the final state
| (12)) of the system.

What are the properties of the time evolution operator U(#, ¢1)? Simplifying our notation
slightly, let us suppose the old state |y/) evolves to the new state U |y/). The first thing that
we note is that the new state must be normalized, just like the old state. So if (Y [{) = 1,
then

(WIUTU ) = 1. (5.4)
The operator UTU must be Hermitian, so it has an orthonormal eigenbasis. If the old state
|) is chosen to be any eigenstate of UTU, then its eigenvalue must be 1. It follows that

vfu = 1. (5.5)

In a Hilbert space of finite dimension, this means that the time evolution operator U must be
unitary, and so UUT = 1 also. We will postulate that U is unitary in the infinite-dimensional
case as well (see Problem 3.6).

Unitary time evolution preserves, not just the normalization of the quantum states, but
also the inner products between states. Suppose }1//’ ) =U|y) and }d)’ ) = U|¢). Then

(W' |¢') = (wIUTUIp) = (¥ Ig). (5.6)

This has an important consequence. The basic distinguishability theorem of Section 4.2
(Eq. 4.20) tells us that the inner product (¥ |¢) governs how well the two states may
be distinguished by a measurement. Their distinguishability is not changed by unitary
evolution. In particular, two states for which [(¥ |¢ )| > 0 — which are therefore not fully
distinguishable — cannot become more distinguishable as they evolve in time.

Exercise 5.1 Show that, if a set of signal states of a system lies within a d-dimensional
subspace initially, after a period of unitary time evolution the states will still lie within a sub-
space having the same dimension d. Comment on the following claim: The communication
capacity of an informationally isolated system is not increased by its time evolution.

Consider a system that evolves in a unitary way through two successive stages. The first
stage runs from ¢#| to #,, and the second from #, to #3. The overall evolution of the system
from # to #3 is described by a single unitary operator:

[V (13)) = U, 1) [ (t1)) . (5.7

But we can also treat this as evolution over the first stage followed by evolution over the
second stage:

(¥ (#3)) = U(53, ) ¥ (12)) = U(t3, 1)U(02, 11) [ (21)) - (5.8)
Since these two expressions must give the same [ (#3)) for any initial state |y (¢1)),
U(ts, 1) = U(t3, 1) U(t2, 11). (5.9)

! The future state of an isolated quantum system is determined by its past state. In this sense, the quantum
dynamical laws are completely deterministic. Indeterminacy and probabilities only arise in the context of
measurement, when the system ceases to be isolated.



100

Quantum dynamics

This is the rule for composing the evolution operators for two successive intervals of time.
It has the form

U(whole period) = U(second stage) U(first stage). (5.10)

So the composition is right-to-left, with the rightmost operator representing the earliest
stage of the overall evolution. This obviously generalizes to time evolution consisting of
three, four or more successive stages.

This result might sound familiar from the discussion of the two-beam interferometer in
Section 2.1. With a single photon present, the system is a qubit whose Hilbert space has
basis states |u) and | /), representing the photon’s presence in the upper or lower beam. We
imagine that the light moves through the interferometer and successively encounters the
various optical elements, the phase shifters and beamsplitters and so forth, each of which
acts to alter the quantum state in some way.

Each optical element is described by an operator. The matrix representations for these
operators were worked out in Section 2.1. For instance, a phase shifter by ¢ in the upper
beam is described by P, (¢), which has the properties

Pu(@) lu) = € u),
Pu(p)I1) = |1). (5.11)

Thus, the operator can be written P,(¢) = €® |u)(u| + |1)(|. (Compare the matrix
representation in Eq. 2.12.)

Exercise 5.2 Review the various optical elements described in Section 2.1. Write the
beamsplitter operator B; and the beam exchange operator X in terms of outer products of
the |u) and |/) states.

Exercise 5.3 Now consider an interferometer with at most one photon, as we did in
Section 4.3. How do you suppose a beamsplitter would affect the |0) (no photon) state?
Write down an expression for the B; operator in this larger Hilbert space, and then show
that it is unitary.

An interferometer arrangement with several optical elements in succession can be
described by a single operator, which is the product of the operators for each element.
These elements appear in the product in time-order from right to left, as in Equation 5.10.
(Refer to Eq. 2.16 and the surrounding discussion.)

For a unitary operator, UTU = UUT. This means that all unitary operators are also normal.
In Problem 3.3, we showed that normal operators always have an orthonormal basis of
eigenstates, just like Hermitian operators. If |k) is an eigenstate of U with eigenvalue Uy,
then

1= (klk) = (k|UTU k) = U} Uy (k k) = |Up|*. (5.12)

Every eigenvalue of U is a complex number of magnitude 1, which can be conveniently
written Uy = ¢/®. Thus we can write

U= e™ lk)(kl. (5.13)
k
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Uniform dynamics

Physically, the unitary time evolution of a system is determined by the internal properties
of the system and various external parameters. For instance, an atom’s behavior depends
on the internal electrostatic interaction among the electrons and the nucleus, and also on
any externally applied electric and magnetic fields. If the external fields were time-varying,
then the dynamics of the atom would be different at different moments, depending on the
field values. Yet it often happens that the basic dynamical laws governing a quantum system
do not change over time. When this is true, we say that the system experiences uniform
dynamics.

In the case of uniform dynamics, the time evolution operator U(#,, #1) only depends on
the difference of the initial and final times:

Uz, t1) = U(r — 11). (5.14)

The unitary operator describing the evolution of the system over a period of ten seconds is
the same regardless of when that ten-second interval begins. Even though the state of the
system changes over time, the rules describing that change are the same from one moment
to the next.

The time evolution of a system having uniform dynamics can be written U(f). This
represents a whole family of unitary operators, one for each possible duration ¢. (This is
often called a “one-parameter family” of operators.) Obviously, U(0) = 1. We will also
assume that the evolution of the system is smooth and continuous. This implies that, for a
very short time interval €, the operator U(¢) is close to 1.

Any two operators U(¢) and U(s) in the one-parameter family must commute with one
another, since

U@®U(s) = Us)U@) = U@+ ). (5.15)

Exercise 5.4 If we take Equation 5.15 to hold for all ¢, both positive and negative, how is
U(—17) related to U(?)?

Now consider the very short time interval €. Then
UQe) = U(e)?, UBe) = U(e)?, Ude) = U(e)?, etc. (5.16)

These obviously all commute and share a common eigenbasis, the eigenbasis for U(e). If e
is chosen small enough, then any time ¢ is very close to a multiple of e.

We conclude that we can find a common eigenbasis for every member of the one-
parameter family of operators U(?). If |k) is one of these eigenstates, then for any time ¢,

U@ k) = O k). (5.17)

The eigenstates of U(f) change over time only by an overall phase factor, which has no
effect on any physical property of the system. Such states are called stationary states of
the system. Every informationally isolated quantum system with uniform dynamics has a
basis of stationary states.

There is some ambiguity in the phase functions o (f), since we may add any multiple
of 277 and leave e/®¥ unchanged. However, this ambiguity can be resolved by insisting
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that a;(0) = 0 and that the functions are all continuous.? With these requirements, it must
be that

op(t+5) = ap () + ai(s). (5.18)
In other words, the phase functions are /inear functions of time. We can write oz (1) = —wyt
for some wy. (The negative sign is purely conventional, since wy itself may be either positive
or negative.) Therefore, for the stationary state |k),

U@ 1K) = e |k). (5.19)
Knowing how U(#) acts on a basis tells us everything about the operator. We see that

u@) = Z eI ey (k| (5.20)
k

If the system follows uniform dynamics, then we only need to know two things: a basis
{|k)} of stationary states, and a corresponding set of (angular) frequencies wy. With this,
we can find the evolution operator U(¢) for any time interval, and from this calculate the
dynamical evolution for any quantum state.

Exercise 5.5 In Section 2.3 we studied the evolution of a spin-1/2 particle in an external
magnetic field directed along the z-axis. We defined the Larmor frequency to be Q2 = y B,
where B is the field strength and y is the gyromagnetic ratio for the particle. The |zi)
eigenstates were stationary states with frequencies €2 /2. Write down the general evolution
operator U(#) for this system, and use it to derive the evolution of an arbitrary spin state
given in Eq. 2.66.

As this exercise reminds us, the superposition of two or more stationary states is not
generally a stationary state. The phase changes in Eq. 5.19 produce relative phase changes
in the superposition states, which do have physical consequences.

It seems paradoxical that we can understand the time evolution of a quantum system
through a knowledge of its stationary states, which apparently do not change at all. It is
also remarkable that these “fixed point™ states are numerous enough to form a complete
orthonormal basis. Compare the situation of a classical harmonic oscillator, for which
only one situation — the system at rest at the equilibrium point — is time-independent. The
stationary states are the key to analyzing a quantum system with uniform dynamics.

5.2 The Schrodinger equation
_______________________________________________________________________________________|]

The Hamiltonian operator

Suppose a quantum system evolves in a unitary way, so that at any time ¢ the state of the
system is |/ (1)) = U(z, 20) |V (10)).

2 We have already assumed that the operator function U(¢) is continuous; here we are just making sure that the
phase functions have no sudden jumps by multiples of 27.
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How is |y (¢)) changing at a given moment of time? The derivative % [ (1)) is itself
a vector; and furthermore, it is a vector that depends linearly on |y (7)) itself. There is
therefore an operator G, possibly time-dependent, such that

d
7 V) =6ly@). (5.21)

What sort of operator is G? The overall normalization of the state does not change, so
d d d
0= Z WO W®) = (3 WOl ) o)+ ol (5 1vo)
= (WI6") W) + Wl (6lv©)
=l (6" +6) ). (5.22)

This is zero for any choice of | (¢)), so we conclude that G" + G = 0. The operator G
must be anti-Hermitian. It is more common to consider the Hamiltonian operator H = ihG,
which is Hermitian. Then

d
Hiy () = ih% V(@) . (5.23)

Equation 5.23 (which we have seen before as Eq. 2.64 in the context of qubit quantum
theory) is called the Schrddinger equation for an informationally isolated quantum system.
The Schrodinger equation is one of the most significant equations in all of physics. On the
other hand, as we have introduced it here, it appears to be nothing but a definition of the
operator H. We need to add something more, and that something is an understanding of the
physical meaning of the Hamiltonian operator.

Exercise 5.6 First, dimensional analysis. What are the units of the constant 4#? What are
the units of the operator G? What are the units of the operator H?

Suppose now that the system has uniform dynamics. This means that the Hamiltonian
operator H cannot vary with time. If we apply the Schrodinger equation to a stationary state
|k), we find that

—lwyt B —lwyt — (i ) —lwyt
H (e |k>) = ihe (e |k>) (ih) (i) e~ [k) ,
and so

H k) = hax [k) . (5.24)

The stationary state |k) is an eigenstate of H with eigenvalue hwy. We interpret this by
recalling the Planck relation between angular frequency and energy: £ = hw (Eq. 2.50).
For a system with uniform dynamics, we come to three highly significant conclusions:

e The Hamiltonian operator in the Schrodinger equation (Eq. 5.23) is the energy operator
of the system;

e The stationary states of the system are its energy eigenstates;

e The frequency wj of the stationary state is related to the energy eigenvalue Ej by
E;, = howy.



104

Quantum dynamics

The energy eigenvalue equation is sometimes known as the time-independent Schrédinger
equation:

Hiv) =EY). (5.25)

The energy eigenvalue problem has a unique importance, because the stationary states
and their frequencies completely determine the dynamical evolution of the system. As
we shall see, a great deal of mathematical effort and ingenuity has been invested in
discovering exact or approximate solutions to Eq. 5.25 for a wide variety of physical
systems.

Even when the dynamics of the system is not uniform, we can still interpret the Hamilto-
nian H as the energy operator for the system. The system’s energy may depend on external
fields and so forth that vary over time, so that H is time-dependent. External forces, in other
words, may do work on the system, but the dynamics of the system may still be unitary. In
such a time-dependent situation, the momentary energy eigenstates of H are not “stationary
states” of the unitary evolution. In non-uniform dynamics there may not even be any states
that remain physically unchanged for all times.

Exercise 5.7 Write down the adjoint of the Schrédinger equation. Use the Schrodinger
equation and its adjoint to verify that the inner product (i |¢) remains constant as both
|v) and |¢) evolve over time.

A remark is in order about terminology and notation. Why do we call the energy operator
the “Hamiltonian” and denote it by H? This seems unnecessarily confusing (particularly in
light of our use of the letter “H” for other important things, like a Hilbert space H and the
entropy H). The reason is historical. The Hamiltonian of classical mechanics is, roughly
speaking, the energy of a system written in terms of position and momentum variables.
For systems with continuous degrees of freedom (such as those described in Chapter 10),
the classical Hamiltonian function tells us the Hamiltonian operator for the corresponding
quantum system. This is no small matter, and such an important connection is enshrined in
our nomenclature.

Observables in time

The Schrodinger equation tells us how a quantum state changes over time. This in turn will
lead to changes in the observable properties of the system.

Suppose 4 is an observable, and let us assume for now that the operator A does not itself
depend on time. The expectation value (4) = (Y| A|¢) will change as the quantum state
[4) evolves.

d

d
7 ) =2 IAT)

(S wt)aw)+wia(Z1w)

1 1
— (YIHAY) + — (V| AH ) . (5.26)
—ih ih
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That is, d 1
7 (4) = 7 (VIAH]IY), (5.27)

for an observable A that is not an explicit function of time.

What if A itself does depend on time? We could, for example, imagine a Stern—Gerlach
apparatus that slowly rotates about the axis along which the particle beam travels. At
different times, such a device would measure different components of the spin of a particle
that passed through it. The resulting observable would require a modification of Eq. 5.27.

Exercise 5.8 Suppose the observable 4 is itself time-dependent. Show that Eq. 5.27
becomes

d 1 dA

E(A) —E(WI[A,H]II//)+(WI (E) V). (5.28)
We will assume, unless otherwise stated, that the observables we are considering are not
time-dependent. The simpler form in Eq. 5.27 will be the result we use.

According to Eq. 5.27, the rate of change of an observable A (or rather, of its expectation
value) is governed by the commutator [A, H]. One immediate consequence of this concerns
operators that commute with the Hamiltonian: [A, H] = 0. Ifthis is true, then the expectation
(A4) has zero time derivative; and if the Hamiltonian is time-independent, the expectation
(A4) will always remain constant over time. In a system with uniform dynamics, observable
quantities that commute with the Hamiltonian are conserved.

The most obvious example is the Hamiltonian itself, in the case of uniform dynamics.
Since [H, H] = 0, the energy of the system is conserved.

Exercise 5.9 Since the Hamiltonian operator commutes with itself whether or not the
dynamics is uniform, why do we add this “uniform dynamics” proviso to our statement
about energy conservation?

If [A,H] = 0, we know that 4 and H are compatible observables. This means that there is
a basis of eigenvectors of both A and H. The states of definite A-value (4-eigenstates) can
also be taken to be stationary states (energy eigenstates). This is another way of looking at
the conservation of 4.

The commutator [A, B] is turning out to be of considerable significance. It is a key quantity
in describing the complementarity of two observables — whether or not they are compatible,
and how their indeterminacies are related. The commutator with the Hamiltonian operator
H governs how an observable property of a system varies over time. In the next section, we
will join these two ideas together and arrive at an important physical principle.

5.3 Quantum clock-making
______________________________________________________________________________|

It is a curious thing that #ime is not itself an observable quantity in quantum theory.
Nevertheless, we do make measurements of time. We do this by building clocks, which
are systems whose dynamics causes their state to change in a predictable way. Making a
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measurement on such a system is “reading the dial” on the clock, and from the result we
can infer an approximate present value of the parameter ¢.

Let us consider the situation in general. Denote by C the clock variable from which we
must determine the time ¢. This might, for example, be the position of a moving hand on the
face of an analog clock. Now imagine that the clock variable C is subject to an uncertainty
AC in its actual value.” Such uncertainty would lead to an uncertainty A¢ in the inferred
time.

Exercise 5.10 Suppose our clock variable is the angular position 6 of a hand on an analog
clock, and suppose this is uncertain by A9 = 6° (1/60 of a full circle). What would be the
uncertainty A¢ in the measured time if the hand is the second hand of the clock? If it is the
minute hand? How about the hour hand?

From this exercise, we can see that the relation of AC and A¢ depends on the rate of change
of C over time. In fact,
AC = dc At (5.29)
Coldrt| T '

Although this resembles a relation between changes in C and ¢, we should remind ourselves
that it is actually a relation between their uncertainties. This accounts for the absolute value
function, since it does not matter whether C is increasing or decreasing. Strictly speaking,
Eq. 5.29 holds only if the uncertainty AC is sufficiently small, but that will be good enough
for our purposes.

Now consider the quantum mechanics of the situation. The clock is a quantum system
whose evolution is given by a Hamiltonian H, which we assume is time-independent. The
clock variable C is an observable on the quantum system represented by an operator C.
We are interested in how the quantum uncertainty AC in the clock observable affects the
precision of our time measurement. The quantum version of Eq. 5.29 is

d(C)
AC = ‘7‘ At, (5.30)
where (C) is the expectation value of the clock observable.

Both sides of Eq. 5.30 are mathematically related to the commutator of C with the
Hamiltonian H. From the general uncertainty relation in Eq. 4.46, remembering that H is
the energy observable, we find

1
ACAE = 2 |(WIICHI ). (5:31)
Similarly, the rate of change of (C) is given by Eq. 5.27
d)| 1
= [wic ). (5.32)

Combining these equations with Eq. 5.30, we discover that

h
AE At > > (5.33)

3 For the moment, we do not inquire about the reason for this uncertainty — poor eyesight, perhaps!
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This is called the time—energy uncertainty relation. Notice that the clock observable C
is nowhere to be seen. Equation 5.33 is independent of the observable used for time
measurement.

A clock in an energy eigenstate would be useless, since its observable properties would
not change over time. A clock in a stationary state is a stopped clock. Thus, a working clock
must have a “spread” in its energy values. Equation 5.33 gives us a quantitative trade-off
between the system’s energy indeterminacy and its possible resolution as a time indicator.

We have derived Eq. 5.33 for a “clock,” but any physical system with a non-stationary
state can function as a clock in our sense. The uncertainty A¢ measures how long it takes
for the system to evolve to a new state that is sufficiently distinguishable to indicate a new
“clock time.” (Problem 5.4 works out a simple example; Problem 5.5, a more complicated
one.) The time—energy uncertainty relation is therefore a general, fundamental fact about
quantum systems.

To get some idea of the scope of Eq. 5.33, consider an unstable particle such as a
radioactive nucleus. The particle, which we can take to be at rest, decays into two or more
other particles. Though the exact moment of decay cannot be predicted, the particle has a
mean lifetime of t. The decay process may be used as a sort of primitive clock, but because
of the randomness of the decay, this clock has a time resolution of about A¢ & 7. This
means that the energy of the system must satisfy AE > h/27. But the initial energy of the
system is just £ = mc?, where m is the particle’s rest mass and c is the speed of light. This
means that the mass of an unstable particle is not a perfectly determinate quantity, but has
an inescapable quantum uncertainty Am related to its lifetime 7.

Exercise 5.11 The AT is a very short-lived elementary particle with a mean lifetime of
6 x 10~%* seconds. Find the uncertainty of the A* mass in MeV/c?, and compare it to the
A mass of 1230 MeV/c?. (“MeV” is a unit of energy equal to 1.60 x 10713 J. The A™ is
closely related to the proton, whose mass is about 938 MeV/c?.)

5.4 Operators and symmetries
________________________________________________________________________________|

Operators in the exponent

We now have two different ways of looking at the dynamical evolution of an informationally
isolated system. Over an interval of time from ¢ to » we can describe the evolution by a
unitary operator:

[V (2)) = U2, 1) [ (1)) - (Re 5.3)

At any given moment ¢, we can describe the instantaneous change in the state by the
Schrodinger equation:

d
Hiy () = ’TLE V(). (Re 5.23)
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Let us take a closer look at the connection between these two descriptions. For convenience,
we will assume uniform dynamics. The evolution operators can be written U(f) and the
Hamiltonian H is time-independent.

The first thing to note is that the Schrédinger equation actually applies to the operator
function U(#). The Schrodinger equation as we have seen it can be written

d
HU® [y (0)) = ik - U (@) [ (0)) - (5.34)

Since the vector |¢(0)) can be anything (but includes no time-dependence), we find an
operator version of the Schrodinger equation:

d
HU@®) = ih —U(®). 5.35
=i 7 ) (5.35)
This is of the general form
d
E(something) = constant x (something). (5.36)

If the quantities involved were scalars, then we would know that the solution would be an
exponential:

something(¢#) = something(0) exp(constant X f). (5.37)

Recalling that U(0) = 1, we are therefore tempted to write down the solution to Eq. 5.35
as follows:

U(r) = exp (—%Ht) . (5.38)

But this looks rather weird. How can we exponentiate an operator?

There are some functions of operators that are easy to define. We can multiply operators
by scalars and add them together. We can find any integer power A” of an operator A. Using
only this set of “natural” operations, we define the exponential function e? by the power

series
Az A3

exp(A):eA=1+A+§+?+-~ (5.39)

In fact, for any function f'(x) given by a power series with coefficients a,, we can define
the operator function by a similar power series:

F(A) = aol +a1A+ arA? + - - (5.40)

There are issues of convergence for these series, just as there are for power series in the
context of numerical variables. It is easiest to address these by computing the power series
using a matrix representation of the operator. Assuming that the operator is normal, it must
have an eigenbasis. In this basis, the representation of A is diagonal:

A
4) = . (5.41)
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When we work out the power series for f(A) in this representation, we find that

SA)
(f ) = . (5.42)
SAa)
Exercise 5.12 Verify Eq. 5.42.

Exercise 5.13 If / is given by a power series, show that [A, f(A)] = 0. Must you assume
that A is normal?

We can see that the power series definition of /' (A) will converge provided that the entire
spectrum of 4-eigenvalues is within the region of convergence of the power series for f
acting on a numerical variable. (The power series for the exponential function converges
everywhere.)

So it does after all make sense to write

uasexponentialhamiltonianU(t) = exp (—%Ht) . (Re 5.38)

Not only does this make sense, it is even the right answer! Let { |k)} be a basis of energy
eigenstates. Then

H=""Eclk)Kl, (5.43)
k

which as a matrix is diagonal with diagonal entries Ej. The exponential solution in Eq. 5.38
tells us that

U@ =) e/ Pk (k) (5.44)
k

This is a correct expression for U(¢), as a comparison with Eq. 5.20 quickly shows. We
can therefore go from the Hamiltonian operator H to an expression for the time evolution
operator U(z) for the system.

The relation between unitary and Hermitian operators is quite general.

Exercise 5.14 If the operator B is Hermitian, show that U = ¢® is unitary.
Exercise 5.15 If U is unitary, show that there is a Hermitian operator B so that U = ¢,

(Equation 5.20 is helpful for both of these exercises.)

Before we go any further, we had better issue a warning. The operator exponential
" does not have all of the familiar properties of the complex exponential function. For
example, if two operators A and B do not commute with each other, then eAeB £ A8 On
the other hand:

Exercise 5.16 If[A,B] = 0, show that ¢*eB = B,

We should be careful not to apply too quickly facts from commutative arithmetic to the
analysis of non-commuting operators.
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Let us make one final point about Eq. 5.38. If we consider a small time interval €, the
power series for U(¢) is

_q_ 1 2
UGe) =1 hHe—i—O(e). (5.45)

When € is small enough, we may be able to ignore the higher-order terms represented
by O (62). This is yet another way of looking at the connection between U(#) and the
Hamiltonian H.

Rotating a spin

The time evolution of our system is described by a smooth and continuous family of unitary
operators U(#), all of which are “generated” by the Hamiltonian H. But time evolution is
only one kind of continuous transformation of the system. We will now apply the ideas we
have developed to another example.

The example we have in mind is the rotation of a system, specifically a spin-1/2 particle.
For every state |¢) of the spin system, there is another state |w’> describing a situation
in which the system has been rotated about the z-axis. The principle of superposition is
respected by this rotation, as is the normalization of the states. Therefore, the rotation is
described by an operator, and this operator must be unitary.

Exercise 5.17 Review the reasoning leading up to Eq. 5.5, and fill in the argument that the
rotation operator is unitary.

Let R;(0) be the operator describing the rotation of the spin-1/2 system through an angle
0 about the z-axis. (We consider the positive direction of 6 to be a counter-clockwise
rotation, when viewed from a point along the positive z-axis.) The rotation operators R.(0)
form a smooth and continuous one-parameter family of unitary operators. Indeed, because
we can apply smaller rotations in succession to obtain rotations through larger angles, the
family should satisfy a “uniformity” requirement:

Rz()R:(B) = Rz( + B). (5.46)

A close mathematical parallel is emerging between rotation and time evolution. But what
plays the role of the Hamiltonian operator for these transformations? What is the “generator”
of rotations?

If we rotate the system about the z-axis, then the z-component of the spin should
not be affected. An eigenstate of S, should not undergo any physical change. The basis
states |z4) and |z_) are therefore the “stationary” states of the R;(6) family. They change
only by overall phase factors, which by Eq. 5.46 must be linear functions of 6. (Compare
the derivation of Eq. 5.19 for details.) We write

R:(9) |z+) = e™+0 |z,

R.() |z_) = ™0 |z_). (5.47)
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We do not yet know the constant scalars AL. We can begin to determine them, however,
by noting that a rotation by 7 /2 will transform the |x;) state to a multiple of |yy):

R.(0) xy) = % (24772 24) + €272 12)). (5.48)

1
For this to be a multiple of |y;) = —2( |z4) +i|z—)), the constants A must satisfy

%

e A-T/2 _ (At DT/2 (5.49)

We have some freedom of choice here, corresponding to an overall choice of phase for the
operator R, (). The simplest choice is the “symmetric” one, in which Ay = —A_. Then
At =F1/2,and so

R-(0) = e /% |z ) (zy | + €/ |z_)(z_|. (5.50)
Exercise 5.18 Show that R, () = —il.
Exercise 5.19 Show that, when a spin is rotated by one full turn around the z-axis (6 = 27),

then
R.Q2m) = e 27%/h = 1, (5.51)

In other words, a spin state |i), rotated by 277, will yield the spin state — |y).

This may seem like an artifact of our choice of phase for the rotation operators R (#), but
Problem 5.7 tells us that it is more or less inescapable. The overall phase of a state vector
has no observational meaning in itself, so the negative sign in Eq. 5.51 seems to be of
only mathematical interest. Nevertheless, it turns out to have some remarkable physical
implications, which are discussed in Section 6.3.

What we have done so far corresponds to our “transformation over an interval of time”
picture of time evolution. Now let us see if we can develop something analogous to the
Schrodinger equation, the “instantaneous rate of change” picture. Let |y (0)) be the family
of rotated versions of the state |1/ (0)):

[ (0)) = R;(6) |¥(0)) . (5.52)
We find that
— [¥(0)) = —R.(0) | (0))

= (—é ez, ) (4] + ée’w 2201 ) 1 (0). (5.53)

If we multiply both sides by i% to make it look more like the Schrédinger equation, we
obtain

d h h
ih% [ (0)) = (5 |z} z4| — 5 |Z><Z|)

x (e 1z el + Pl ) W O).  (5.54)
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We recognize both of the operators in parentheses. Our “Schrodinger equation for rotation”
becomes

_d _
i 1) = S: 1¥/(6). (5.55)

The spin component operator S, generates rotations about the z-axis exactly as the
Hamiltonian H generates time evolution. We can also write

R.(6) = e 01N, (5.56)
Note that, if we rotate the system through a tiny angle €, the rotation operator is

.k 2
Ri(€) =1 7S¢ + 0 (e ) . (5.57)

For very small angles, we can ignore the O (62) terms.

There is nothing special about the z-axis. This link between the spin component and
rotation operators holds for any spatial axis. Furthermore, the link holds for systems
of spin-1 and higher spins as well. The Schrodinger equation tells us that energy (the
Hamiltonian operator) is the generator of time evolution. Now we also learn that angular
momentum is the generator of rotations. (We will return to this idea in Section 12.3.)

Symmetries

So far, operators have played a double role. Hermitian operators describe observable
quantities assigned to a system; unitary operators describe transformations of the state of
the system, including the transformation due to time evolution. As we saw in Exercises 5.14
and 5.15, these two types of operator are related by the exponential function:

unitary = ! Hermitian (5.58)
We have already seen this in the case of time evolution and rotation, where the unitary state
transformations were given by the Hamiltonian H and the spin component operator S;.

A symmetry (or dynamical symmetry) is a unitary transformation on a system that does
not affect the system’s dynamics. That is, a unitary V is a symmetry provided it commutes
with the time evolution of the system. For all ¢,

[V,u@®]=0. (5.59)

Let us explore what this means. We consider two possible initial states, |[¢(0)) and its
transformed cousin V [ (0)). The symmetry condition tells us that

U@ (Vv ©) ) = V(U@ Iy ). (5.60)

In words, “the future evolution of the transformed state is the same as the transformed
future state.” In other words, the dynamical evolution of the system is “transparent” to the
symmetry operator V, evolving | (0)) and V |4 (0)) in exactly the same way.

A dynamical symmetry V must also commute with the Hamiltonian:

[V,H] = 0. (5.61)

In fact, Eq. 5.59 and 5.61 are equivalent.
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Exercise 5.20 (a) Obtain Eq. 5.61 from Eq. 5.59 by taking a time derivative. (b) Obtain
Eq. 5.59 from Eq. 5.61 by examining the power series for the operator exponential.

If V is a dynamical symmetry, then we can always find a basis of stationary states (energy
eigenstates) that are also eigenstates of V. These are “symmetric” states, states that remain
physically unchanged by the transformation V.

Symmetry operators V are sometimes also observables, but the conditions under which
this can happen are very special.

Exercise 5.21 If V is both unitary and Hermitian, show that the only possible eigenvalues
for V are &1 and that V> = 1. (For extra fun, show that any unitary V for which V? = 1
must be Hermitian.)

Most of the time, the connection between symmetries and observables is more indirect.
Suppose that A is a Hermitian operator for which [A, H] = 0. Then both of the following
are true:

e A is a conserved quantity;
e V(s) = ¢ is a symmetry for any real value of s.

Therefore, a conserved quantity generates a family of dynamical symmetries of the system.

For an example of this, we need look no further than the rotation of a spin system. The
z-component of spin angular momentum will be conserved provided [S;,H] = 0. In this
case, the rotation operator

R.(0) = e 01N (Re 5.56)

is a symmetry of the system. The system is rotationally invariant about the z-axis.
The converse is also true. Suppose we have a smooth and continuous one-parameter
family V(s) of unitary operators for which

V) V(s) = V(@ =+ s). (5.62)

Then we can always write V(s) = ¢*? for some Hermitian A. For a very small value € of
the parameter, we have that

V() =1+ ieA+ O (ez) : (5.63)

Now suppose that all of the transformations V(s) in the family are symmetries, so that
[V(s),H] = 0. For the very small parameter €, ignoring terms of order O (62),

0 = [V(e), H] = [1 + ieA, H] = ie [A, H]. (5.64)

It follows that [A, H] = 0. Therefore, the observable represented by A is conserved in the
system.

The connection between symmetries and conserved quantities is now apparent. Every
conserved quantity generates a family of symmetry transformations on the system. Every
smooth and continuous family of symmetries satisfying Eq. 5.62 is generated by a conserved
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quantity. Whenever an observable satisfies [A, H] = 0, there is a basis of energy eigenstates
that are also A4-eigenstates. These states are also symmetric under V(s) = ei‘YA, in that the
transformation yields no observable change in the state. All of these ideas will be immensely
useful in the chapters ahead.

Exercise 5.22 It is certainly not the case that if a unitary operator V satisfies [V,H] = 0,
and if we can write V = ¢® for some Hermitian B, then B also commutes with H. To see
why, show that

47X =1, (5.65)

for the Pauli operator X on Q. Although 1 is a unitary operator that certainly commutes
with H, 27 X does not necessarily do so.

Problems

Problem 5.1 In Equation 5.22 we make an implicit assumption that the “product rule” for
derivatives applies to the inner product of two Hilbert space vectors. Prove it. Let [ (¢))
and |¢(¢)) be a pair of vectors that depend smoothly on the parameter 7. (Do not assume
that this is unitary time evolution!) By writing each vector in terms of a basis { |k)} that

does not depend on ¢, show that the product rule applies to 7 (Vo).

Problem 5.2 The commutation relations for the spin components of a spin-1/2 particle are
[Sxy Sy] = ihsz: [Syy Sz] = ihsx, [Sz, Sx] = ihsy-

The Hamiltonian for the spin in an external magnetic field B in the z-directionis H = —y BS;.
Find a set of three coupled differential equations that relate (Sy), <Sy>, and (S) as functions
of 1.

Problem 5.3 We have described time evolution in the Schrddinger picture, in which a
state |y (¢)) evolves according to the unitary operator U(¢) but observables A are typically
time-independent. An equally meaningful view is the Heisenberg picture, which redefines
states and operators by

‘&) U0 @) and  AQ) =U@TAUQ). (5.66)
(Assume uniform dynamics. What is I:I?)

(a) Show that ‘1}) is independent of time.

(b) The change from one picture to the other preserves the mathematical relations among
operators. Sums and scalar multiples are clearly unaffected. You prove that AB = Cif
and only if AB = C.

(c) Show that observable properties — i.e. the expectations of all observables at all times —
are the same in the two pictures.
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(d) Since all of the dynamics now resides in the observables, derive a “Schrodinger
equation” governing A(t)

(e) What does it mean for A(t1) and A(t2) not to commute with each other? Explain this in
physical (rather than mathematical) terms.

(f) Show that

A+ 8),A()] = %[A(r)z, A1+ 0 (52) : (5.67)

Problem 5.4 Consider a qubit used as a clock. The Hamiltonian for the system is H =
A2 |1)(1|, where Q2 is some constant frequency.

(a) What are the energy eigenstates and their energies?
(b) Write down the time evolution operator U(¢) for this system
(c) We prepare the clock in an initial state |{(0)) = f( [0) + |1)). What is the state

[ (¢)) at a later time?

(d) What is AE for this system?

(e) Let At denote the time it takes for the system to evolve from [y (0)) to some other
distinguishable state. Calculate AE A¢ and compare your result to the time—energy
uncertainty relation in Eq. 5.33.

Problem 5.5 An atom has basis states |0}, |1),..., |d — 1) and a Hamiltonian operator
such that

H|n) = ne |n),

where ¢ is a constant with units of energy. Let the initial state of the atom be

¥ (0) = J_Z In) .

(a) Calculate (E) and AFE for this state.

(b) Find an explicit expression for |y (¢)).

(c) Let At be the smallest length of time for which (¥ (Af) | (0)) = 0. That is, At is
the time it takes for the initial state to evolve into something distinguishable from the
initial state. Find Az.

(d) Under this definition of A¢, calculate AE A¢ and compare it to the time—energy
uncertainty relation in Eq. 5.33.

Problem 5.6 The operator describing a rotation about the x-axis will be Ry(0)=
exp(—iSy6/h). Starting with

h
5S¢ = §(|Z+><Zf| + |z-) (24D,

calculate S2, Si, and so on, until you figure out the general pattern for S”. Then use this to

evaluate the power series and find R, (6). Note: You may need to recall that

02 6! 03 6
cos9_1—§+m—~~ s1n9—9—§~|—§—~-
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Problem 5.7 In Exercise 5.19, an unexpected negative sign arose in a rotation by 2 about
the z-axis. But perhaps this was merely due to some unwise choice on our part. The purpose
of this problem is to suggest that, on the contrary, negative signs inevitably arise in rotation
of spin-1/2 systems.

(a) Suppose the operator R describes a rotation by /2 about the y-axis. We might hope
that such an operator would change the spin states like so:

Rlz4) = Ix4), Rlxy)=lz-),
Rlz—)=Ix-), Rlx_)=l|z4), (5.68)

with no negative signs. Given the relationship between |x+) and |z1) (Eq. 3.14), show
that no linear operator R could act in this way.
(b) Suppose instead that the operator R acts by

Rizq) = |xy), Rixy)=alz_),
Rlz_)=BIx-), Rlx_)=ylz4), (5.68)

with various phase factors «, 8, and y. (We have chosen the overall phase of R to
eliminate any phase factor in the first rotation.) Find all of the phase factors and show
that R* |z4) = — |z4).

Problem 5.8 For operators A and B, we saw that eAeB # A8 unless C = [A, B] = 0. Now
suppose merely that the commutator C commutes with both A and B, though it may not be
zero. Prove that

e = B2, (5.68)

You will need to examine the power series expansions for each side. Equation 5.68 is some-
times called the Baker—Campbell-Hausdorff identity (although this name is also applied to
a more general expression of which this is a special case).



Entanglement

6.1 Composite systems
e —

In this chapter we will discuss the quantum theory of composite systems, systems composed
of two or more distinct subsystems. When our theory is extended to these, we encounter
the remarkable phenomenon of quantum entanglement. As we shall see, the statistical
correlations between entangled quantum systems may be very different from the correlations
that are possible between separated classical systems.

Suppose the composite quantum system AB is composed of two distinct subsystems A
and B. There are certainly situations in which the subsystems A and B can individually be
assigned definite quantum state vectors |¢®) and |¢p®). This would occur, for instance,
if A and B were prepared separately and independently. In this situation, we describe the
joint state of the composite system simply by enumerating the states of the subsystems, like
S0: [Yr®, p®).

There are many different measurement procedures that we can perform on the composite
system AB. Among these are separate basic measurements on the individual subsystems.
We know how to calculate probabilities for the outcomes of such measurements. If |a™)
and |b®) are basis vectors associated with the outcomes a and b of measurements on
A and B respectively, then the probabilities are

Po@ = [fa [y
PUb) = |(p® 6™, 6.1)

(see Eq. 3.12). If the systems have been prepared completely independently, we expect
that there would be no correlation between measurement results on them. Therefore, the
probability that both outcome a and outcome b will occur is

P*(a,b) = P¥(a) P®(b). (6.2)

How can we express this as a quantum mechanical rule? The state vectors |a”) and |[b®)
for the subsystems yield the joint state |a®, 5®). Our quantum probability rule (Eq. 3.12)

says that

P (a,b) = |(a®, b [y®, ¢™)| . (6.3)
We can reconcile Eq. 6.2 and 6.3 by requiring that the inner product of the joint states is
simply

(a(A),b(B) |1/,<A>’¢<B>) — (a(A) |1/,<A>) (b‘B) |¢(B))' (6.4)
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Exercise 6.1 Show that Eq. 6.2 follows from Eq. 6.3 and 6.4.

The principle of superposition tells us that a linear combination of state vectors is also
an allowable state vector. Thus, there must be composite system states of the form

(W) = |9y 67) + e [, 45, (65)

and so on. As we will see, such state vectors may not be of the form [y®,¢®) for any
subsystem states |®) and [¢p®). They do nevertheless represent possible quantum states —
actual physical situations — for the composite system AB.

With this discussion as background, we can now give a more formal account of the states
of composite quantum systems. The subsystems A and B are described by Hilbert spaces
H* and H™. The Hilbert space for the composite system is H*®, which is constructed
from H® and H®. We write

HO = HO @ H®. (6.6)

This is the tensor product of the subsystem Hilbert spaces, defined by the following
properties:

e For any |a) in H® and |b) in H®, the space H“? contains the product vector |a,b) =
la) ® |b).!
e Linear combinations distribute over the product operation ®. For example,

@)@ (e 1) + e lb2)) =ai (I @ b)) +e2 (lo® b)) (6.7)

(A similar property holds for linear combinations in the first vector.)
e The inner product between two product vectors is the product of the inner products of
the constituent vectors. This sounds complicated in words, but is simple in symbols:

(a1,bilaz, by) = (ay laz) (b1 1b2) . (6.8)

The inner products on the right-hand side, of course, are those in H® and H®. We will
often write (a,b| = (a| ® (b| to denote the adjoint of a product vector.

o Since H“Y must be a vector space, it contains arbitrary superpositions of product vectors.
Our final defining property for the tensor product space is that H*® contains on/y these
vectors, i.e. that any |W®*®) in H*® is either a product vector or a linear combination of
product vectors.

To get some facility with the idea of a tensor product space, you should work out the
following exercises:

Exercise 6.2 Is (7 |a)) ® |b) the same vector as |a) @ (7 |b) ), for a scalar n? Explain.

I Note that we use the same symbol ® for the combination of two vectors that we use for the tensor product
of two Hilbert spaces. We will use it again for the tensor product of two operators. Luckily, this never leads
to confusion, just as we are never bothered by using the same symbol + to represent the addition of scalars,
vectors, operators, etc. Context always tells us what sort of operation we mean.

Notice also that we sometimes omit the part of the label that indicates to which system a state, operator, or
probability distribution refers. We will simplify our notation in this way when our meaning is unmistakable.
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Exercise 6.3 If |a;) is orthogonal to |ay) in H™, show that |a, b1) is orthogonal to |az, by)
in H*®, Does this still hold if |b1) = |b7)?

Exercise 6.4 Suppose { |n)} is a basis for H“ and { |k)} is a basis for H®. Consider the set
{|n, k)} that includes all products |n,k) = |n) ® |k) of basis vectors. Show that this set of
vectors is a basis for H*?. To do this, you must show (1) that the set is orthonormal, and
(2) that any vector in H“® can be written as a linear combination of members of the set.
The basis set formed in this way is called a product basis for H*®.

Exercise 6.5 Suppose dimH® = d® and dim H® = d®. Show that dim H*® = d® d®.

Exercise 6.6 You might be tempted to think that the Hilbert space H™ for the subsystem A
is a subspace of the composite system Hilbert space H*?. Explain, as clearly as possible,
why you must resist this temptation!

What are the operators on H“®? Given operators F on H® and G on H®, we can naturally
define the product operator F @ G on H*® by

Fo 6 1v.¢) = (Flv)) @ (Glg)), (6.9)

for any product state” |/, ) = |¥®) ® |¢™). Linear combinations of operators distribute
over the ®-product for operators.

Exercise 6.7 Given |a), |c¢) in H® and |b), |d) in H®, show that
la, b){c,d| = la)(c| ® |b){d]. (6.10)

Exercise 6.8 Show that any operator D on H® can be written as a sum of product operators.
To do this, first choose a product basis { |n,k)} for H*® and write D as a sum of outer
products, as in Eq. 3.41.

When particular clarity is needed, we may denote the operator F on H™® by F®. There is
a natural extension of F to an operator on H“® that acts according to

v.9) — (Flv)) ® 19). (6.11)

This is just the operator F ® 1. For brevity, and when our meaning is unmistakeable, we
will sometimes denote this AB operator by the same name F®.

Exercise 6.9 Show that [, G®] = 0 for any operators for distinct subsystems A and B.
(To make sense of this equation, of course, you will have to read F*¥ and G® as operators
on the tensor product space H*?.)

The states of the composite system AB are normalized vectors in H*®. Some of these
are ®-products of normalized state vectors for A and B individually. We call these product
states. However, some quantum states of AB are not product states, as we now show.

2 Since every vector in H® is a superposition of product vectors, it is sufficient to define how F ® G acts on
product vectors — everything else follows by linearity.
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We can write any joint state |W“®) using a product basis, like so:

W) = " i) @ k) =Y In)® (Z ok |k>) : (6.12)
nk n k

Thus, |W“?) can always be written

(W) =" |n) ® I¢n) (6.13)

where the |¢,) are vectors in H® that need not be normalized. For a product state, these
vectors have a special form. Let |W“?) = |¢) ® |¢), and expand the A-state using the
{|n)} basis:
) =3 ) @ (o{n |¢>) : (6.14)
n

This has the same form as Eq. 6.13 with |¢,) = «,|¢). Each of the B-vectors in this
expansion is a multiple of the same B-state |¢).

Exercise 6.10 Show the converse to this. That is, show that, if |¢,) = «;, |¢) for all n in
Eq. 6.13, then |®“®) must be a product state.

This gives us a simple criterion for identifying which joint states are product states and
which are not. We simply choose a basis for H“ and write the state according to Eq. 6.13.
We have a product state if and only if the various |¢,) vectors are all multiples of a single
vector.

Exercise 6.11 For what value  is K (2 10,0) +30,1) — |1,0) + |1, 1)) a product state
of two qubits? (K is a normalization constant.)

Not all states of the composite system AB are product states. For instance, consider the
state of two qubits !
V2
This is already of the form in Eq. 6.13, but the B-vectors |0) and |1) are linearly independent.
Therefore, |®4”) cannot be a product state.

The physical states for the composite system AB include some states that are not product
states. These non-product states are called entangled states of AB. The existence of entan-
gled states is a remarkable consequence of quantum theory. Remember, whenever state
vectors can be assigned to the subsystems A and B, the composite system is in a product
state. If AB is in an entangled state, it is not possible to assign state vectors to the individual
subsystems.

This is very different from classical physics. When we specify the joint state of a pair
of classical particles, we must always specify the classical state (position and momen-
tum) of each individual particle. The quantum state vector, however, belongs only to an
entire system, and it is not always true that the subsystems have definite state vectors of
their own.

Quantum entanglement is one of the strangest and most far-reaching aspects of quantum
theory. Later in this chapter, we will explore some of its implications.

|04™) = (|o,o> L 1)). (6.15)
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6.2 Interaction and entanglement
|

The principle of superposition, applied to the states of a composite system, implies the possi-
bility of entanglement between systems. But how do entangled states arise in real physical
situations? The short answer is that entanglement is generally the result of dynamical
interaction.

What do we mean by interaction? It is easier to define the opposite. A pair of quantum
systems A and B is said to be non-interacting if the Hamiltonian of the composite system
AB is just the sum of subsystem Hamiltonians:

H*® = H® 4+ H®, (6.16)
We can draw several conclusions about non-interacting systems, including these facts:

e We can find an energy eigenbasis for the system AB that is composed of product states
|, B), where |) is an eigenstate of H* in H™ and |B) is an eigenstate of H® in H®.
e The energy of a product eigenstate is additive:

Eup = Eq + Eg, (6.17)
where E,, is the energy of |a) for A and Ejg is the energy of |8) for B.
Exercise 6.12 Verify these results.

We sometimes say that non-interacting systems are dynamically isolated or uncoupled
from each other. Two systems are interacting if they are not non-interacting.

If A and B are non-interacting, then they cannot become entangled simply by their own
autonomous time evolution. We can show this through a sequence of simple exercises:

Exercise 6.13 Show that ¢*®1 = (eA) ®1.

Exercise 6.14 If A and B are non-interacting, show that
exp (—iH*”t/h) = exp (—iHVt/h) @ exp (—iH"'t/h). (6.18)
(Hint: Use the result from Exercise 5.16.)

Exercise 6.15 Suppose the time evolution of a composite system AB is described by
U* = U» @ U™, (6.19)

(Exercise 6.14 tells us that this must be the case whenever A and B are dynamically isolated
from each other.) If AB is initially in a product state, show that it remains in a product state
after the time evolution.

In other words, if the Hamiltonian for AB is additive, and if the two systems are prepared
independently, then they will remain in a product state. For entanglement to arise from a
product state, the systems must interact.

We illustrate this by a definite example. Suppose two spin-1/2 systems interact with each
other so that their Hamiltonian has the form

H® — 7 ®1, (6.20)
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where ¢ is a constant that determines the strength of the interaction, and Z is the Pauli spin
operator. Even though these spins are interacting, the energy eigenstates turn out to be
product states.

Exercise 6.16 Show that |z;,zy) and |z_,z_) are both eigenstates of H“® with
eigenvalue €. What is the eigenvalue associated with the eigenstates |zy,z_) and |z_,z4)?

These are all stationary states, so they cannot evolve into entangled states over time.
However, suppose we begin with the product state

|\I}(AB)(0)> — |X+,X+)

% (100 + 122)) @ (I24) + 1)

=2 (lrz + vz
¥ olzoze) + |z_,z_)>. (6.21)
If we allow the Hamiltonian H*® to act for a time ¢ = 7 /i/4¢, then the evolution operator is
U (1) = exp (—i% 1® z) . (6.22)
The later state will be

| W (1)) = U™ (1) [ ¥ (0))
1

=5 (67"”/4 |z, z4) + ™4 |z z)

I e )) . (6.23)

With a little algebra, this becomes

o=/

|\I,(AB)(t)>= (|Z+>®(|Z+)+i|z_)>+i|2_>®<|z+) —i|Z—>)). (6.24)

Exercise 6.17 Verify this algebra. Simplify further to show that

1—1i .
W 0) = ——= (I +ilz-0-) ). (6.25)
The final state |W*?(¢)) is clearly an entangled state of AB.

Exercise 6.18 Suppose we allowed the time evolution to run for a total time 2t = 7 //2¢,
just twice as long as before. Is the state |V (2¢)) entangled?

One nice feature of this example is that the Hamiltonian ¢ Z ® 7 actually arises as the
interaction between nearby nuclear spins for a molecule in an NMR experiment. As we will
see in Chapter 18, this allows us to create entangled states of the spins and also to perform
many types of quantum information processing.

Two systems need not interact directly to become entangled; it is enough if they both
interact with a third system. To give an example of this, and to show how ubiquitous
entanglement is, we will return to our archetypical example, the two-beam interferometer.
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In our highly simplified model, the interferometer has basis states |0), |u), and |I),
corresponding to physical situations with no photon or with one photon in the upper or
lower beams. We will now introduce a pair of two-level atoms, one in each beam. Each
atom has a ground state |g) and an excited state |e). We suppose that the overall unitary
dynamics of the system produce the following state changes:

0)® lg.g) — 10) ® |g.g),
lu) @ Ig,g) — 10) ® le,g),
) ® lg,g) = 10)® Ig,e). (6.26)

In words, if there are no photons, no atoms become excited. A photon in the upper beam is
absorbed by the first atom, which becomes excited. A photon in the lower beam does the
same thing to the second atom. The atoms do not interact with each other, but both of them
are coupled to the light in the interferometer.

Now suppose that we prepare the interferometer in the superposition state « |u) + S |/),
while the atoms are in their ground states. Then

(i) +B10) ® le.2) — 10)& (alese) + Blg.e)). (6.27)

The two atoms are now in the entangled state « |e, g) + B |g, e), even though they have not
directly interacted.

We have assumed here that the time evolution is unitary. But is this reasonable? Do not
the atoms “measure” the location of the photon in the interferometer? Not necessarily. As
long as the composite system (interferometer + atoms) remains informationally isolated,
the dynamics will remain linear. If the atoms later re-emit the light and no physical trace
remains to record which atom was excited, the light may still exhibit interference at some
later stage of the experiment. On the other hand, the atoms could be part of a measurement
device, and the absorption of light could be the first part of a measurement process from
which a physical record results. In this case, no interference of the beams would occur.

6.3 A 4x world
]

In the examples we have discussed so far, composite systems comprised distinct physical
“things” — a pair of spins, or a couple of separated two-level atoms, etc. However, the
quantum mechanical idea is more general than this. Consider, for instance, a particle like
an electron that both moves through space and has an intrinsic spin. The Hilbert space for
the electron is of the general form

H = Hpuce ® Qopin- (6.28)

We cannot have an electron without both of these characteristics. However, it is possible
in principle to measure or interact with either one without affecting the other, so in an
abstract sense the electron’s spatial location and internal spin are separate “subsystems” of
the particle. Our next example is of this kind.
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In Exercise 5.19 it was shown that the rotation of a spin-1/2 system by 27 about
the z-axis introduced an unexpected negative sign in the spin state vector. The rotation
operator was

R.(2m) = e 27%/h = 1, (Re 5.51)

To obtain the original spin state, the system must be rotated through an angle of 47, i.e.
through two complete turns about the axis. (Problem 5.7 showed that such negative signs
were more or less inevitable.)

On the one hand this looks paradoxical, since it seems that a rotation by 2z around an
axis should have the same effect as no rotation at all. This is certainly true for rotations
of an ordinary geometrical shape. How could a spin-1/2 system see a “4x world?” On the
other hand, the apparent paradox does not appear to be very serious. The overall phase of
the state vector has no observational meaning, so that the kets |¢) and — |i) are physically
equivalent.

Nevertheless, the negative sign in Eq. 5.51 does lead to physical effects, and these have
been observed in real experiments with neutrons.

Neutrons are spin-1/2 particles, and like protons they have a magnetic moment that can
couple to an external magnetic field. A magnetic field in the z-direction can therefore be
used to rotate the spin of the neutron about that axis. By controlling the strength of the field
and the time over which it is applied, we can apply R, (6) for any angle 8 we wish.

Exercise 6.19 The neutron magnetic moment is © = —1.91uy. Here uy is the nuclear
magneton:
eh
UN = =, (6.29)
2my,

where m,, is the proton mass, 1.67 x 10727 kg. The negative sign indicates that the magnetic
moment vector is opposite to the spin vector of the neutron. Suppose a neutron experiences
a magnetic field with magnitude 0.01 T. How much time is required for the neutron spin to
rotate by an angle 27 ?

Neutrons also move through space. Like other particles, they have a de Broglie wave-
length and exhibit constructive and destructive interference. It is possible to exhibit these
phenomena in a neutron interferometer apparatus. Neutron interferometers are constructed
from large, carefully machined single crystals of silicon. For present purposes, we can
adopt a simplified picture of a two-beam neutron interferometer analogous to the optical
interferometers of Chapter 2.

The neutron in the interferometer is essentially a pair of qubits, one describing the spin
state of the neutron and one describing its location among the beams of the interferometer.
This Hilbert space will be spanned by the product basis states

|u,z) |u,z—) I1,24) 1,z—) . (6.30)

The elements of the interferometer only affect the spatial part of the state vector and are
thus described by unitary operators of the form U,.. ® 1,,,. For instance, a balanced neutron
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beamsplitter would act according to

1
B ® 1luss) = —= (1 + 10) @ ),

L
V2

for any spin state |s). Similarly, if the interferometer is placed in a uniform magnetic field,
the spin will be rotated. The spatial part of the state, however, will be unaffected by the
field, since neutrons have no net electric charge.

Things get more interesting if we arrange for one of the interferometer beams to pass
through a magnetic field. This can be accomplished by sending the lower beam between the
poles of an electromagnet. The spin state of the neutron would be rotated only if it passed
along this beam. If the field is aligned along the z-axis and its strength is adjusted to give a
spin rotation by 6, then the operator describing this device is

8@ 1ILs) = —= (1lu) = 1) @ Is), (6.31)

U= lu){ul @ 1+ [)){ll ®R(6). (6.32)

With this conditional rotation, the spatial and spin “subsystems” of the neutron are no
longer dynamically isolated.

Exercise 6.20 Suppose the magnetic field produces & = 7. How does the resulting condi-
tional rotation operator affect the four product basis states in Eq. 6.30? Describe a situation
in which the neutron evolves from an initial product state to an entangled state of the space
and spin subsystems. (Recall Exercise 5.18.)

Consider now the Mach—Zehnder neutron interferometer shown in Fig. 6.1. The neu-
tron is introduced through the lower beam, so that its initial state is |/,s) for some spin
state |s). With no magnetic field, & = 0 and spins in both beams are unrotated. It is easy to
see that the constructive and destructive interference at the second beamsplitter will lead to
detection probabilities p(u) = 1 and p(/) = 0 — in other words, the neutron is certain to be
detected in the upper beam.

Exercise 6.21 Fill in the glib phrase “It is easy to see that” with a real derivation. If you
need to, go back and review the discussion of two-beam interferometers in Section 2.1.

Oj/\
@/\

A neutron Mach-Zehnder interferometer.
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Now we set the magnetic field so that a neutron in the lower beam is rotated through an
angle of 27r. The neutron state between the two beamsplitters evolves in the field by

% (1.5)+ 11,5)) — % (1.5) = 11.5)) (6.33)
The negative sign from the 27 rotation of the neutron spin induces a relative phase in the
spatial superposition. In other words, there has been no observable net effect on the neutron
spin, but there has been an observable effect on the location of the neutron. At the end of
the interferometer, the detection probabilities are now p(u) = 0 and p(/) = 1, exactly the
opposite of the probabilities with no 27 rotation.

A rotation of the neutron spin by an angle of 27 is therefore not physically equivalent to
arotation by zero. We must rotate the spin by 47 to restore the original interference pattern.
Actual neutron interferometry confirms this prediction.” We must conclude that spin-1/2
particles like neutrons do in some sense “see a 47 world.”

Exercise 6.22 Calculate the probability p(u) as a function of the spin rotation angle 6 in
the neutron Mach—Zehnder experiment.

The negative sign produced by a 27 rotation would be completely invisible if only the
spin itself were involved in the experiment. It is the composite nature of the neutron — both
space and spin — that leads to an observable effect. Or, to put it another way, it is the relative
27 rotation of one beam with respect to the other that differs from zero rotation.*

6.4 Conditional states
|

Composite systems follow the usual quantum rules for calculating the expectations of
observables and the probabilities of measurement outcomes. The trick is to identify
how the mathematical objects (operators, orthonormal bases, etc.) correspond to physical
measurement procedures. Here are a few guidelines.

An observable on the system A is of course also an observable on the composite system
AB. If Q is the observable’s Hermitian operator on H®, then the corresponding operator
on H*? is Q® = Q ® 1, where 1 here is the identity operator on H®. Eigenstates of Q* are
of the form |g;) ® |¥), where |g;) is an eigenstate of Q in H® and |y/) can be any B-state.

Exercise 6.23 Show that there can be an entangled eigenstate of Q ® 1 if and only if the
operator Q has one or more degenerate eigenvalues.

3 This experiment was first suggested by H. J. Bernstein in 1967, and was actually done by S. A. Werner et al.,
in 1975 — a particularly elegant demonstration of a subtle and surprising quantum eftect.

4 For a beautiful geometrical discussion of why this is true, and of its further implications for the physics of
spin-1/2 particles, see Richard Feynman’s lecture in Elementary Particles and the Laws of Physics: The 1986
Dirac Memorial Lectures by Richard Feynman and Steven Weinberg.
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It is also useful to consider algebraic combinations of subsystem observables. Fix an
A-observable Q and a B-observable R. The eigenvalues of Q are {q}, corresponding to
eigenstates |g), while the eigenvalues of R are {r} with eigenstates |r). Then:

o The sum

QY+R?=Q®1+1QR, (6.34)

has eigenvalues {g + 7} (including all combinations) corresponding to product eigens-
tates |g,7) = |q) ® [r).
e The product

Q¥R® =Q®R, (6.35)
has eigenvalues {gr} and the same product eigenstates.

We saw these combinations in Section 6.2, when discussing how systems may interact. Two
systems are non-interacting if the composite Hamiltonian is simply the sum of Hamiltonians
for the individual systems. A product term in the Hamiltonian, on the other hand, describes
an interaction between the systems.

Each of these combined observables could be measured by performing two separate
experimental procedures, one for each subsystem, after which the numerical results are
added or multiplied. The two subsystem measurements may be performed in either order,
or simultaneously.’

Suppose now that AB is initially in the joint state |¥“®) and that basic measurements
are performed on the individual subsystems. We measure A using basis { |a)} and B using
basis { |5)}. The joint probability p(a, b) is

pa,b) = |{a,b|w™)*. (6.36)

From the joint distribution over a and b values, we can calculate the distributions over a
and b individually:

p@ =" pla,b), pb) =Y _pla,b). (6.37)
b a

Exercise 6.24 Consider the joint state |®'") for qubits A and B, defined in Eq. 6.15,
and suppose the two qubits are each measured in the standard {|0), |1)} basis. Find
the probability distribution for the joint measurement results and also for the individual
subsystem results.

According to Eq. 6.13, we can write the joint state as
(W) =" |¢p) ® IB), (6.38)
b

where the |¢p) are non-normalized vectors in H“. These vectors are related to the joint
probabilities as follows:

5 Indeed, if the systems A and B are widely separated in space, special relativity tells us that the time order of the
two measurement events may not be the same in different reference frames.
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Exercise 6.25 Show that
pla,b) = |(algp)I*. (6.39)

The total probability p(b) for the outcome b is therefore

p®) =) (dvla) (alpp) = (dn|¢s) . (6.40)
a
Notice that this expression for p(b) depends only on the decomposition of |W®*?) in
Eq. 6.38, and not on the particular A-basis { |a)}. The probability p(b) is independent of the
choice of basic measurement performed on A. Furthermore, suppose that |W*) is initially
changed by applying a unitary operator for the A system. We have

W) = U D [W™) = U gs) ® 16). (6.41)
b

For this state, the probability p’(b) is

P'(b) = (¢l UTU |gp) = (5 |99 ) = p(b). (6.42)

The probability p(b) is unaftected by a unitary operator affecting only system A.

Think about this as a communication problem. Suppose Alice wishes to send some
information to Bob. To do this, she must choose one of a set of possible physical operations
(encoding her possible messages), and then Bob must make some physical observation.
For information to be transferred, Alice’s choice must have at least a statistical effect on
Bob’s measurement results. Unless Alice’s operations can affect Bob’s probabilities, no
information is conveyed. We have shown the following:

No-communication theorem. Suppose Alice and Bob have access to systems A and
B respectively, and that the joint state of AB is |W*?), which may be entangled. Then
Alice cannot convey information to Bob by either

e choosing from a set of possible basic measurements on A, or

e choosing from a set of possible unitary evolution operators for A.

Exercise 6.26 Explain why this theorem remains true even if Alice involves a third system
C in her operations.

This theorem expresses an important general principle. If it were not true, then Alice could
send information to Bob by some purely local choice of measurement or unitary operation.”
Since Alice and Bob could be very far apart, this would mean that information could be
transmitted faster than the speed of light — instantaneously in fact. Quantum mechanics
does not permit this.

Alice’s choice of measurement cannot affect the probability p(b) of Bob’s measurement
result. On the other hand, the value a that Alice obtains can affect Bob’s probabilities.
(This cannot be used for communication, since Alice does not control the outcome of her

6 We will use the term local to mean that a given operation or statement only pertains to one part of a composite
system — in this case, system A.
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measurement and so cannot use it to encode a message.) The conditional probability of

b given a is

pla,b)
pla)

Conditional probabilities are discussed in Appendix A. (You may also recall the idea from

Eq. 4.3.) For a fixed value of a, p(b|a) is a probability distribution over the various possible

values of b.

p(bla) = (6.43)

Exercise 6.27 Show that, for any «, the conditional probabilities p(b|a) are normalized.

Exercise 6.28 Show that p(b|a) = p(b) forall a and b if and only if a and b are independent
random variables (see Eq. 6.2).

The joint state |W*?) can be written

W) =" |a) ® |yra) (6.44)

where the non-normalized B-vectors [i,) give the joint distribution via p(a,b) =
(D |a) 2. The conditional probabilities are

1
pbla) = — [(b|Ya)1?, (6.45)
p(a)

where p(a) = (Y, |¥,). Notice that these are exactly the probabilities predicted by the
B-state

. 1
al = | a) . 6.46
V) =1V (6.46)

Therefore, this is the quantum state that we would assign to B when Alice’s measurement

results in a. We call ‘@a> the conditional state of B given the A-measurement outcome a.

Like the projection rule discussed in Section 4.3, the conditional state rule is a way of
assigning a new quantum state to a system based on the result of a measurement. But the
projection rule applies only in the special case when the measurement process is “minimally
disturbing.” Real measurement processes are seldom of this type. The conditional state
rule, on the other hand, is more generally applicable. It assumes only that the measurement
process involves system A alone, i.e. that the apparatus does not interact with subsystem
B. If, for instance, A and B are far apart in space, this condition may be easy to achieve.

We can express the idea of conditional states in a particularly elegant way by introducing
the partial inner product. Suppose |a¢®) is a vector in H® and |®*?) is a vector in
H® = H® @H®. Then |¢P) = («® |®“?) is defined to be a vector in H®™ such that, for
any other [B®) in H®,

(,3(3) |¢$)> — <oe(’“,/3‘3) }q)mB))' (6.47)
This is the partial inner product.

Exercise 6.29 Given non-null vectors |a™) and |®“?), show that there is a vector \¢g>)
in H® that satisfies Eq. 6.47. Then show that there is only one such vector |¢®) in H®.
Therefore, Eq. 6.47 defines a unique vector.
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Another exercise makes the relevance of the partial inner product a bit more clear:
Exercise 6.30 Given |W“P) and an orthonormal A-basis { |a®)}, show that

) = 3 ) fa [, (645)

(Does this remind you of the completeness relation?)

If we measure A using the basis { [a*)}, we let |¢®) = (¢ |¥“?). The probability of the
result a is p(a) = <1ﬂ;’3) |1ﬂc‘lB) >, and the conditional state of B given the result a is

N 1
V) = a® [wom) (6.49)
V(@)
The conditional state of B yields all of the correct quantum conditional probabilities for
future B-measurement results, given that the A-result is a.
Let us consider an interesting example. A pair of qubits A and B is in the following
entangled quantum state:
1
4B)
)= — (10,1) = 11,0)). 6.50
o) = — (6.50)
This is sometimes called the “singlet” state of the two qubits, for reasons that will be
explained in Chapter 12. If Alice makes a measurement of Z on qubit A, then the conditional
states of Bob’s system B will be

1
0N |t ) = —
0" )= =
Therefore, the two measurement outcomes have equal probability (1/2), and after the
measurement the qubit B will be in a Z eigenstate opposite to the A outcome.
Something similar happens if Alice instead measures X on qubit A. Here the eigenstates

of X are |4) = % (|o> + |1>) and
I

(+2 W) = ~ 7 —) and (=W |WiV)= % +). (6.52)
Again, the outcomes are equally likely, and after the measurement the state of B will be
an X eigenstate opposite to the A outcome. In either case, a measurement performed on A
allows one to predict with certainty the outcome of an identical measurement performed
on B.
Suppose Alice could choose to measure either Z or X on A. After Alice’s measurement
(but before he learns of its result), Bob is presented with one of two situations:

1) and (1¥]|W*")=——10). (6.51)

Situation Z. If Alice measures Z, then the state of B is either |0) or |1), each of which
occurs with probability 1/2.

Situation X. If Alice measures X, then the state of B is either |+) or |—), each of which
occurs with probability 1/2.
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The no-communication theorem tells us that Alice’s choice of A-measurement cannot have
any effect on the probabilities for any B-measurement Bob may perform. Thus, Situation Z
and Situation X must be experimentally indistinguishable to Bob. Otherwise, Alice and
Bob could use the singlet state | W) for instantancous communication.

The situations outlined for B — after one of the possible A-measurements but before any
particular result is disclosed — are cases in which there is incomplete knowledge of the
quantum state of B. We know only that the state vector is one of a set of possibilities. As we
will see in Chapter 8, this kind of thing is most naturally described by a density operator.
It will turn out that Situations X and Z, though they are two quite different collections of
B-states, nevertheless have exactly the same density operator description.

Exercise 6.31 Consider the entangled state |®'”) in Eq. 6.15. For Z and X measurements
on A, find the probabilities and the conditional B-states for the two possible results. How
do the details differ from the singlet state?

6.5 EPR
|

In a famous paper in 1935, Albert Einstein, Boris Podolsky, and Nathan Rosen (collectively
denoted EPR) called attention to the strange properties of entangled states of quantum
systems. They made the startling claim that the statistical correlations between entangled
systems prove that quantum theory is an incomplete description of nature. Their argument
is worth exploring in detail.

Consider a single qubit system. No quantum state of a qubit can be an eigenstate of
both Z and X observables. If the qubit has a definite value of Z, its value of X must be
indeterminate, and vice versa. If we take quantum theory to be a complete description of
nature, then we must say that it is impossible for both Z and X to have definite values for
the same qubit at the same time.

But we might have a different view. We might consider quantum theory to be an incom-
plete description, in which case we could imagine that Z and X both do have simultaneous
definite values, although we only have knowledge of one of them at a time. This is some-
times called the hypothesis of “hidden variables.” In this view, the indeterminacy found in
quantum theory is merely due to our ignorance of underlying variables that are present in
nature but not accounted for in the theory.

In order to decide whether quantum theory is a complete description of physical reality,
EPR proposed a definite criterion of what constitutes “physical reality”:

If, without in any way disturbing a system, we can predict with certainty (i.e. with
probability equal to unity) the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.

In other words, if we can exactly predict the result of a measurement without “touching”
the system in any way, that measurement result must in some sense already exist in physical
reality before the measurement.
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Recall the singlet state of a pair of qubits:

AB)\ __ 1
W) = 7§(|O’1> - |1,0)). (Re 6.50)

Our previous analysis of this state tells us that, if qubit A is subjected to a Z-measurement,
then the conditional state of B is always the opposite Z-eigenstate. The same thing is true
of an X-measurement: after an X-measurement on A, qubit B will have a conditional state
that is the X-eigenstate opposite to the measurement result.

Now apply EPR’s criterion of reality. If the pair AB is in the singlet state |¥“"), we can
come to predict either Z or X on qubit B by performing one measurement or the other on
qubit A. If we assume that our choice of A-measurement does not constitute a disturbance
of B — a reasonable intuition, given that A and B could be as far apart as we like — then
we are forced to conclude that the values of Z and X for B must simultaneously exist
as elements of reality before any measurement of B. Since the quantum description of B
cannot include simultaneous definite values for Z and X, the quantum description of the
situation must be incomplete. This is the EPR argument.

We may summarize this argument in a schematic way as follows:

Quantum Locality Hidden variables
mechanics A-measurement Both Z and X
Correlations choice does not = can have

in |W4?) disturb B definite values

According to EPR, the properties of the entangled quantum state |W“"), together with our
assumption that the choice of A-measurement creates no disturbance at B, imply that there
are hidden variables in nature that the theory does not account for.

Niels Bohr responded to the EPR paper with characteristic subtlety. He said that the
concept of “disturbance” in the EPR criterion of reality is ambiguous when applied
to quantum systems. True, there is no possibility that the measurement applied to
qubit A exerts any sort of force on or causes any mechanical interaction with qubit
B. Nevertheless, the two proposed procedures — measuring either Z or X on A — are
still complementary, because they cannot both be done in the same experiment on
the same qubit pair. They are logically exclusive, like the “which slit” or “interfer-
ence” options in the two-slit experiment (see Section 1.2). It is therefore not legitimate
to conclude that both the Z and X values of B exist simultaneously in the same
experiment.

Although Bohr’s critique showed that the EPR argument was not logically compelling,
the EPR point of view retained considerable intuitive force. It stood for three decades as
the most significant theoretical challenge to the completeness of quantum theory. Then,
in 1964, John Bell turned the EPR argument upside-down. He showed that the statistical
correlations between entangled quantum systems are far stranger and more mysterious than
EPR — or anyone — had previously supposed.
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6.6 Bell’s theorem
]

We will give an elegant version of Bell’s argument that was introduced in 1969 by
John Clauser, Michael Horne, Abner Shimony, and Richard Holt (CHSH). Imagine
a source that produces pairs of physical systems, which are then routed to separated
observers Alice and Bob. Alice can measure one of two possible observables on her sys-
tem, which we will denote 4; and A>. Similarly, Bob can measure either By or B> on
his system. There are thus four possible joint measurements on the composite system:
(41,B1), (41,B2), (42,B1) and (42, B>). In any given run of the experiment, we can only
measure one of these, but by repeating the experiment many times we can sample the
statistics of all of the possible joint measurements. To make things as simple as possi-
ble, we will assume that all of the observables have only two possible measured values,
+1 and —1.
We now make two hypotheses about the behavior of the composite system:

Hidden variables. We assume that the results of any measurement on any individual
system are predetermined. Any probabilities we may use to describe the system
merely reflect our ignorance of these hidden definite values, which may vary from one
experimental run to another.

Locality. We assume that Alice’s choice of measurement does not affect the outcomes
of Bob’s measurements, and vice versa.

As we have seen, these two hypotheses more or less capture the point of view advocated
by EPR.

The role of the locality hypothesis deserves some comment. A statement like “The value
of By is +1,” means, “If Bob were to measure B, then the result +1 would be obtained.” We
want to assume that, prior to the measurements, such a statement is definitely true or false.
Without the locality hypothesis, though, the statement as it stands is ambiguous, since the
value of B could depend on whether 4| or 4> will be measured by Alice. The locality
hypothesis allows us to speak of the predetermined definite values of 41, 42, B1, and B3
without further qualification.

Given that all four observables have definite values, we can form the combination

O =4,(B1—B2) +42(B1+ B2). (6.53)

Since each value can only be +1 or —1, the quantity O = £2. Therefore, any statistical
average of Q must satisfy —2 < (Q) < +2. Therefore,

—2 < {41B1) — (A1B2) + (42B1) + (A2B2) < +2. (6.54)

Equation 6.54 is called the CHSH inequality. 1t is a special case of a Bell inequality, a
generic name for a statistical inequality implied by the local hidden variable hypotheses.
Alice and Bob cannot perform a measurement to determine the value of Q in any
particular experiment, but they can measure any of the products 41Bj, etc. By repeating
the experiment many times, each of the statistical averages in the CHSH inequality can
be estimated. Thus, Eq. 6.54 is an experimentally testable statement that must hold if the
statistical behavior of the systems can be explained by any theory of local hidden variables.
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What about quantum systems? Let us consider a quantum experiment that matches the
general arrangement we are considering. Our source produces two qubit systems in the
entangled singlet state |¥“"), after which the A qubit is delivered to Alice and the B qubit
to Bob. It is easy to confirm the following:

Exercise 6.32 Let |U“"”) and |®"”) be defined according to Eq. 6.50 and 6.15,
respectively. Show that

I®7® |\p(AB)>
XA X® |‘~IJ(AB)> |qjt/\B> ,
)

)
)

-Jo),
]

(AB)
- [w2),

X(A)z(B) ’\IJ(AB) —
IVX® W) = + |94 (6.55)
Alice and Bob will measure observables of the form Wy, where
Wy = sinf X 4 cos6 L. (6.56)

If the qubits are spin-1/2 systems, we recognize Wy as the component of the spin along
an axis in the xz-plane at the angle 6 from the z-axis, measured in units of //2 (compare
Eq. 3.109).

Exercise 6.33 Verify that the eigenvalues of Wy are +1 and —1, so that the possible results
of a Wy measurement are like those assumed in the derivation of the CHSH inequality.

Suppose Alice measures Wy and Bob measures Wj. Then for the quantum state ]\IJ
the expectation (Wy Wy/) will be

AB)>

(WgWyr) = sinfsinf’ (X“X®) + sin6 cos ' (XVZ®)
+ cos 6 sin0’ (ZXX™) + cos 6 cos 0 (ZVZ™)

= —sinfsinf — cosf cosh’. (6.57)

Therefore,
(WoWy) = — cos (9 — 9’) . (6.58)
If 6 = 0, we see that (WyWy/) = —1. This occurs because the two parallel measurements

always produce exactly opposite results, as we have already noted for Z and X.
Alice and Bob choose the following observables for their experiment:

A=Wy, Bi=Wgs,

(6.59)
Ay =Wzp2, Bo= Wiy s,
(see Fig. 6.2). With these choices,
(41B1) = —L, (41B2) = L,
*{5 21 (6.60)
(42B1) = VA (42B2) = VA

and so
(41B1) — (41B2) 4 (42B1) + (42By) = —2v/2. (6.61)
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\Bz

Spin components measured by Alice and Bob.

This obviously violates the CHSH inequality (Eq. 6.54)! Therefore, the expectations
predicted by quantum theory are inconsistent with the assumptions that led to that inequality.

Exercise 6.34 Find other observables 41, By, etc., so that
(41B1) — (A1B2) + (42B1) + (42B2) > 2. (6.62)
The general lesson here can be summarized as follows:

Bell’s theorem. The statistical properties of entangled quantum states cannot be
accounted for by any theory of local hidden variables.

This is an amazing result, and a stunning reversal of the reasoning of EPR. We can
summarize Bell’s theorem this way:

. . Localit Not quantum
Hidden variables y q .
A-measurement mechanics
Observables have + . = . .
. choice does not CHSH inequality
definite values .
disturb B always holds

EPR saw entanglement as evidence of the incompleteness of quantum theory. We can now
come to almost the opposite conclusion: the phenomena of quantum systems cannot be
explained by hidden variables that function locally.

What about actual laboratory experiments? Entangled quantum systems can be produced
in a variety of ways, and several careful tests of Bell’s theorem have been done. The
observed data agree with the quantum mechanical predictions to a very high degree of
statistical confidence. For example, a 1998 experiment by G. Weihs et al. found that the
CHSH inequality was violated by 30 standard deviations, with “Alice” and “Bob” located
on opposite sides of a university campus, 400 meters apart.

From a philosophical point of view, Bell’s theorem and the experimental confirmation
of quantum theory constitute one of the most remarkable results in all of physics. The dual
hypotheses of hidden variables and locality have a pretty good claim to be the “common
sense” view of the world. Nevertheless, at least one of them must be wrong. We must
either give up the idea that hidden determinate variables underlie the indeterminacy of
quantum systems, or we must give up the idea that widely separated parts of the universe
act independently.
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6.7 GH1
- |

In Bell’s theorem, we find that the statistical properties of entangled systems are inconsistent
with any local hidden variable theory. A very striking argument due to Daniel Greenberger,
Michael Horne, and Anton Zeilinger (GHZ) goes further, and shows that the individual
deterministic outcomes of experiments on entangled systems — outcomes that occur with
probability 0 or 1 — are likewise inconsistent with local hidden variables.

We imagine three systems distributed among Alice, Bob, and Charles. Alice can measure
either XY or Y™ on her system, Bob can measure either X® or Y®, and Charles can measure
either X© or Y©. Each of these measurements can produce only the result +1 or —1.

It happens that the systems are correlated in such a way that, whenever one X-
measurement and two Y-measurements are made, the product of the results is always
+1. That is, either all three results are 41 or exactly two of them are —1. Call this fact
“Condition XYY.” The question is exactly how the correlation described by Condition
XYY comes about. If we assume that the measurement results are due to local hidden
variables, then there are simultaneous definite values for X, Y@, X® etc. It follows that

( XOy® Y(C)) (Y(A> xX® Y(C)) (Y(A) Y® X(C)) = XWxY® X(C)’ (6.63)

since (Y®)2 = (Y®)2 = (Y©)2 = 41, no matter what the values are. Since all three factors
on the left equal +1, it follows that X*X®X© = +1. If we make an X-measurement on
all three systems, the product must always be 4+1. We can call this “Condition XXX.” We
have shown that

Local hidden n Condition N Condition
variables XYY XXX '
Now consider a quantum-mechanical situation in which Alice, Bob, and Charles each

possess a qubit. The joint state is

1
|GHZ) = = (|o,o,o> 1,1, 1)). (6.64)

The observables X and Y can be measured on each qubit. Next, we note the following fact:
Exercise 6.35 Show that
X®Y® Y|GHZ) = |GHZ). (6.65)

Thus, the state |GHZ) is an eigenstate of X ® Y ® Y with eigenvalue +1. Show also that
|GHZ) is an eigenstate of Y @ X ® Y and Y ® Y ® X with the same eigenvalue.

It follows that the three-qubit system in the state |GHZ) satisfies Condition XYY above.
But what if we measure X @ X ® X? We find that

X®X®X|GHZ) = — |GHZ), (6.66)

so a measurement of X ® X ® X must always yield the result —1. In short, the qubit triple in
the |GHZ) state exactly contradicts Condition XXX every time. Therefore the correlations
exhibited by this system cannot be ascribed to the effect of hidden variables that act locally.
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Exercise 6.36 Show that the qubit operators satisfy
XYV (YRIXRYV)(YRYRX)=—-XRXX®X. (6.67)

Compare this with Eq. 6.63, which refers to classical variables with values 1.

Problems

Problem 6.1 Suppose the state |W“?) has the form given by Eq. 6.14 for some particular
A-basis { |n)}. Show that it must also have the same general form for any other choice of
A-basis. Thus, we can recognize a product state by expanding it in any basis we choose.

Problem 6.2 This problem provides an alternate proof for the existence of entangled
(non-product) states. Consider the two-qubit state |®'”) defined in Eq. 6.15. If this were
a product state, then there would be normalized states |ir) of A and |¢) of B such that

(@21, ¢ = 1.

Expand |¢) and |¢) in terms of the standard basis and use the Schwartz inequality to show
that this equality cannot hold.

Problem 6.3

(a) Suppose X and Y are two observables, and that (X) = (Y) for every state [i). Show
that the operators satisfy X =Y.

(b) Let H*® be the Hamiltonian for a composite system AB, and suppose there are
subsystem observables G* and G® such that

) = () +(6”).
for all joint AB states. Show that A and B are dynamically independent.

Problem 6.4 Consider random variables 4, B, C, etc., all of which have two possible
values £1. Define the “distance” between any two of these to be the likelihood that they
disagree:

d(4,B) = Pr(4 # B). (6.68)

(a) First, show that d(-,-) has the usual properties of a distance function: d(4,4) = 0,
d(4,B) = d(B,A), and d(4,B) + d(B,C) > d(4, C). (The last property is called the
“triangle inequality.”)

(b) Find a relation between d(4, B) and (4B).

(c) Show that one-half of the CHSH inequality (Eq. 6.54) can be written

d(A1,B1) + d(B1,42) + d(A2, By) > d(42, By). (6.69)

Show that this “quadrilateral inequality” is a consequence of the basic properties of
d(-,-). Draw a simple picture to illustrate this relation of distances.
(d) Findasetofspin component measurements on the state |\W_) that violate this inequality.
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Ponder where the concept of “local hidden variables™ enters into this version of the Bell
argument.

Problem 6.5 Artur Ekert suggested that entangled pairs of qubits could be used for quantum
key distribution. (Review Section 4.4 if necessary.) Suppose Alice and Bob possess many
pairs of qubits in the state |W_). Since these qubits are in a pure state, they have no
correlations with any other systems, including those available to the eavesdropper Eve. By
making appropriate measurements, they can arrive at a shared secret string of key bits.

Explain in detail how this should be done. Also explain how Alice and Bob can make
sure that their qubits are really in the |W_) state, and not, for example, in a GHZ state with
a qubit of Eve. What percentage of the qubits do they have to discard (not counting the
ones sacrificed to check for Eve’s activity)?

Problem 6.6 Consider the GHZ state of Eq. 6.64:

(a) Suppose that Alice makes a Z measurement on her qubit. Show that the qubits of Bob
and Charlie are in a product state, regardless of the measurement result.

(b) Suppose Alice makes an X measurement on her qubit. Show that Bob and Charlie’s
qubits end up in an entangled state, regardless of the measurement result.

Problem 6.7 Synchronized quantum clocks. A qubit subject to a Hamiltonian hwY
evolves according to
[ (¢)) = coswt [0) + sinwt |1) . (6.70)

(a) Verify that this state is a solution to the Schrodinger equation.

(b) We use this qubit as a simple clock. Suppose the value of the time ¢ is equally likely
to be anything between ¢ = 0 and ¢ = T, so that Pr(¢ < T/2) = Pr(¢t > T/2) = 1/2.
At this unknown time, we measure the qubit clock using the {|£)} basis. Show that
p(+) = p(—) = 1/2, and calculate the conditional probabilities Pr(¢ < T7/2|+),
etc. Show that the result of this measurement does provide information about the
value of 7.

(c) Consider two identical, independent clocks that are both in the same time-dependent
state:

|62 (0) = [y 0)® [v20). (6.71)
If we make simultaneous |+) measurements on both clocks, show that the clocks can
sometimes disagree. The clocks are not quite “synchronized.”
(d) Now imagine that the clocks are prepared in a “superposition of times,” which we can
write

T
|1%) = 4 /O | W (1)) dt. (6.72)

Evaluate this integral and find the normalization constant 4. Show that the result is an
entangled state of the two clocks, and show that |+) measurements on the clocks will
always exactly agree.

(e) Show on the other hand that |®"?) is a stationary state of the two-qubit Hamiltonian
hoY® + hoY®. Although the clocks are now perfectly synchronized with each other,
they are no longer of much use for time-telling!



139

Problems

Problem 6.8 Suppose Alice and Bob each possess a subsystem of a larger, entangled
system. Alice makes a basic measurement on her subsystem, a process which obeys the
projection rule of Section 4.3. Afterwards, both Alice and Bob make further measurements
on their subsystems. Show that, conditioned on the result of Alice’s initial measurement, fur-
ther measurement results from the two subsystems are independent. (Thus, no correlations
“survive” Alice’s basic measurement.)

Problem 6.9 In Section 6.6 we showed that, if two qubits are in the singlet state |W_),
then measurements of parallel spin components (in the XZ plane) always yield opposite
results.

(a) Show that this is also true for ¥ measurements on |W_).

(b) Does there exist an “anti-singlet” state of two qubits, for which measurements of
parallel spin components always yield identical results? If so, write down the state
vector. If not, give a proof that no state, product or entangled, can do this.

Problem 6.10

(a) Starting with the definition of the tensor product of operators (Eq. 6.9), show that
A®B) =A"®B".

(b) If A and B are both Hermitian, prove that A ® B is also Hermitian.

(c) Do part (b) again, replacing the word “Hermitian” with “positive,
“normal.”

(d) If A ® B is Hermitian, does it follow that both A and B must be Hermitian also?

<

unitary,” and



Information and ebits

7.1 Decoding and distinguishability
e —

Communication

The quantum description of composite systems raises (and resolves!) a few issues about
distinguishability and information transfer. We shall deal with these in this section.

The basic decoding theorem from Section 4.1 tells us that, if we try to encode more
than d different messages in a quantum system with dim H = d, then we will not be able
to decode the message reliably by any basic measurement. This allows us to say that a
quantum system with Hilbert space dimension d has an information capacity of log d bits.

But log d may not be an integer. For a spin-1 particle with d = 3, the capacity would be
logd = 1.58 bits. As we saw in Section 1.1, this only makes sense when we consider coding
our messages “wholesale,” using many quantum systems to represent many messages. That
is, we need to consider coding messages by the states of a composite quantum system.

Suppose we have a quantum system composed of #n identical subsystems, each one
described by a Hilbert space H of dimension d. The Hilbert space describing the whole
thing is

H"=H® --QH. (7.1)
n times

The dimension of this space is d”. Thus, its information capacity is n log d, exactly n times
as large as the capacity for an individual subsystem.

This fact is exactly what we need. Suppose we wish to represent H bits of information
per subsystem. This means that we will represent nH bits in a composite system of n
subsystems. This information corresponds to 2" distinct messages. The basic decoding
theorem tells us that the probability of error is at least

—1- (2<1°gd—H))". (1.2)

For reliable communication (Pg = 0), it follows that H < logd. In fact, though, we have
an even stronger result. When H > logd, then P — 1 as n — oo. If we try to represent
“too much” information in each quantum system, the probability of error is non-zero, and in
fact approaches unity as n becomes large. In the long run, an error is essentially guaranteed.

n

d
PEzl_ZnH

Exercise 7.1 Suppose we attempt to encode 1.01 bits of information per qubit system. How
many qubits can be used before Pg is guaranteed to be at least 50%? At least 99%?
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Multiple copies

Now consider just two states, |xg) and |oj), which we imagine to be equally likely.
The distinguishability theorem of Section 4.2 tells us that, if |{«g |1 )| = cos 9, then the
probability of correctly distinguishing the two states by a measurement is no larger than

1
Ps < 5 (1+sin6). (Re 4.20)

By the best choice of distinguishing measurement, we can achieve equality.

But suppose we have not just a single quantum system, but n copies of the quantum
system in the same state. Then our problem is to distinguish two different states of the
composite system, namely [09)®" = |op) @ - -+ ® |ag) and |)®" = |a)) @ -+ ® |ay).
The inner product of these joint states is

(twol @ & (ol ) (le) @+ ® Jar)) = (o )" (7.3)

Let |{g a1 )|" = cos" 6 = cosB,. Then we can distinguish the two situations (n copies
of |ag) versus n copies of |o1)) with probability Pg = (1 4 sin6,)/2. There are now two
possibilities:

e If [{xo |1 )| = 1, then the two states are physically equivalent, and 6, = 0 for all n.
Then Pg = 1/2 is the best we can do — no better than guessing.
o If |{ag|a1)| < 1, then 8, — /2 as n — 0o, and we can arrange Py — 1.

Therefore, if |ap) and |oy) represent physically distinct states, we can pretty well
distinguish » copies of |og) from n copies of |a1), provided that n is large enough.

What does this mean? First, the mathematical meaning. Even if the angle 6 between |o)
and |er1) in H is small, the angle 6, between |ag)®” and |or1)®" in H®" will be nearly /2
for sufficiently large n. The exception, of course, is when the angle is actually 0. In every
other case, sufficiently many copies of the two states can be distinguished pretty well by
some measurement.

Now a physical explanation. Imagine a machine that emits spin-1/2 particles, one after
the other. The machine has two settings: one prepares particles in the state |zy) and the
other prepares them in |x4). The control that determines this setting is hidden from view.
It might with equal likelihood be set either way, but the setting does not change during the
experiment. Our job is to determine the unknown setting by examining the output of the
machine.

If we examine only one particle from the machine, we will not with certainty be
able to determine the machine’s setting, since the states |z4) and |xi) are not perfectly
distinguishable.

Exercise 7.2 In this situation, show that Ps < 0.854 for any measurement.

On the other hand, if we have n > 1 particles from the machine, we can do much better. For
instance, imagine that we measure S, for each particle. If every one yields the result +7/2,
then we conclude that the state is |z), but otherwise we know that it is |x4). The only
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possible error is if the setting is for |x, ), but by chance every S. measurement happens to
yield +7/2. This happens with probability

1/ 1
Pr=>(5) =5 (7.4)

Asn — oo, Ps = 1 — P — 1. (This is not the optimal measurement for distinguishing n
copies of |z ) from n copies of |x), but it works pretty well.)

Exercise 7.3 How many particles do we need to distinguish the two machine settings with
a probability better than 99.9%, using the S, measurement? What if we use an optimal
measurement?

7.2 The no-cloning theorem
|

Cloning machines

At the end of our discussion of quantum key distribution in Section 4.4, we pointed out a
potential problem based on a quantum cloning machine, a hypothetical device that exactly
duplicates the state of a quantum system. Such a machine would allow an eavesdropper
to break the security of the BB84 key distribution protocol. But we can now see that a
quantum cloning machine would have an even more fundamental consequence.

Essentially, a cloning machine would allow us to produce the state |a)®” from |a)
and |o1)®" from |aq). Since the multiple-copy states can be distinguished more reliably
than the single-copy states, the machine would be able to evade the limitation of the basic
distinguishability theorem. Any two distinct quantum states would be distinguishable with
any desired reliability. Quantum cloning machines, if they existed, would manufacture
distinguishability.

This would have quite disturbing consequences. Suppose Alice and Bob share a qubit
pair in the singlet state |W“”) described above in Section 6.4. Alice’s choice of Z or X
measurement on her qubit leads to two different situations for Bob’s qubit. Either Bob
has |0) and |1) with equal probability (Situation Z), or Bob has |+) and |—) with equal
probability (Situation X). These two situations cannot be distinguished by Bob.

But if Bob possesses a cloning machine, the situations can be distinguished. If Alice
measures Z and Bob uses a cloning machine on his qubit to create n copies, they will either
be in the state |0)®" or |1)®". A repeated Z-measurement on these will yield # identical
results. If Alice measures X and Bob uses the cloning machine, he has either the state |+)®"
or |—)®". A repeated Z-measurement on these will not necessarily produce » identical
results — indeed, if n > 1, this would be very unlikely. Thus, with a cloning machine Bob
can pretty reliably distinguish Situation Z and Situation X — and therefore, as we noted,
Alice and Bob can use the entangled state IKIJ(L*B)) to send information instantaneously. A
quantum cloning machine would permit faster-than-light communication!
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However, it turns out that quantum cloning machines cannot exist. This is the well-known
“no-cloning theorem” of quantum theory, first proved by William Wootters and Wojciech
Zurek, and independently by Dennis Dieks, in 1982. The theorem is remarkable both for its
simplicity and its fundamental importance. Even more amazing is the fact that the theorem
was not formulated and proven until quantum mechanics was over a half-century old.

To state and prove the theorem, we need a more precise notion of what we mean by a
“cloning” process. Think first of an ordinary photocopying machine. Its function involves
three distinct physical components: a piece of paper to be copied; a second piece of paper,
initially blank, on which the copy is to be printed; and the machine itself, which starts out
in a “ready” condition.

By analogy, we posit that the cloning process involves three subsystems: an input A, an
output B, and the cloning machine M. Note that A and B are systems described by identical
Hilbert spaces, while M may be very much more complicated than either one. The initial
state of the input system A is variable, but the output system B begins in a fixed “blank
paper” state |0), and the cloning machine M starts out in a standard “ready” state |M). We
assume that the overall system is informationally isolated. After all, we could in principle
isolate the entire cloning system, including all necessary equipment, power supplies, etc.,
from the rest of the world, and this should not affect its operation.' Then the action of the
cloning machine will be represented by a unitary time evolution operator U, acting on the
joint state of the composite system ABM.

The important thing to notice is that the initial quantum state |0) ® |My) of BM and the
overall time evolution U, are both independent of the initial state of the input A. Consider
two initial states of the composite system

W) = |¥) ® |0) ® M),
|®) = 1¢) ® [0) ® M), (7.5)

where |¢) and |¢) are two possible initial A-states. After the cloning process, the state of
the input is unchanged, but the output system B must now be in an exact copy of that state.
Thus, the two final states must be

W)= U 19) = [¥) ® [¥) @ [My),
@) = U |0) = 19) ® 16) ® |My). (7.6)

We allow for the possibility that the final states of the cloning machine depend on the exact
input state that is cloned. A system that functions as described is called a “unitary cloning
machine.” Our main result can be stated thus:

No-cloning theorem. No unitary cloning machine exists that works on arbitrary initial
states of the input A.

Our next task is to prove this theorem. In fact, we will prove it in two different ways.

1 We are arguing here that informational isolation is a relatively harmless assumption. Nevertheless, this question
involves some important issues about open quantum systems, which we will discuss at greater length in Chapter 9
and Appendix D.
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First proof

Our first proof was devised by Wootters and Zurek. Suppose that our unitary cloning
machine works as advertised for two orthogonal input states |y) and |¢), and consider its
action on the superposition input state

1
o) = — () +19)). .7
The initial state of the composite system is
1
B =l0)@ 0 ® Mo = 5 (19 + |9)). (7.8)

Because the time evolution of an informationally isolated system is linear, a superposition
of initial states evolves to a superposition of output states. That is, |X) evolves to the final
joint state

=)=

(1w)+ 1o9)

(e e [My)+ 18 @ I8)® [My)). (7.9

Sl- 6l -

But this is certainly not the correct cloned state |o) ® |0) ® |M,). How can we be so
sure? For one thing, |X’ ) is not even a product state between A and BM. It has the general

form of Eq. 6.13, since |) and |¢p) are orthogonal, but it clearly fails the product state
criterion, since |Y¥) ® |./\/l¢) and [¢) ® ‘M¢,> are not multiples of each other (and in fact
are orthogonal).

At the end of the process, we see that our input and output systems are entangled — with
each other, and possibly with the cloning machine as well. They do not even have definite
quantum states of their own, much less exact copies of the initial input state |o). Therefore,
our unitary quantum cloning machine fails for at least some input states of A.

Exercise 7.4 Show that the unitary quantum cloning machine fails for any superposition
of |) and |¢) with non-zero coefficients.

Second proof

The second proof was discovered independently of the first, and is due to Dieks. For this
proof, we suppose that |) and |¢) are distinct but non-orthogonal states of A, so that

0<Kylg)l <L (7.10)

Since the initial state of BM does not depend on the initial A-state, the overall initial states
have the same inner product: (¥ |®) = (Y |¢ ).
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Because the time evolution operator U, is unitary, it preserves the inner products of
states. In terms of magnitudes,

(W @) = (W [®)] = (¥ |¢)]. (7.11)

On the other hand, consider the inner product of the cloned final states |\If/ ) and |<I>’ ) of
Eq. 7.6:

(W |@)] = 1w 1) 17 |[(My [Mo)| < (¥ 1)1 (7.12)

Therefore |<\Il/ |<I>/ )| # [(¥ |¢ )|, which is a contradiction. It follows that no unitary cloning
machine can work on two distinct, non-orthogonal input states.

Implications

Each proof emphasizes a different aspect of quantum theory. In the first proof, it is the prin-
ciple of superposition itself that defeats the cloning machine. Any machine that functioned
properly for two orthogonal input states would inevitably produce entangled outputs from
a superposition input state. Since the principle of superposition is arguably the most basic
idea in quantum theory, the no-cloning theorem is quite a basic result of that theory.

The second proof emphasizes the idea of distinguishability. The quantity | (i |¢ )| governs
how well we can distinguish |y) and |¢) by a measurement. The closer this magnitude
is to zero, the better we can tell the two states apart. A working cloning machine would
improve the distinguishability of non-orthogonal input states by creating outputs that are
more nearly orthogonal. But unitary time evolution preserves inner products, and thus
cannot increase the distinguishability of the states. No unitary cloning machine can exist.”

Notice that the proofs of the no-cloning theorem leave open the possibility of a cloning
machine that works for some input states. From the second proof, we see that the machine
could clone distinct states successfully only if they also happen to be orthogonal. And
indeed, it is easy to imagine a way to clone any one of a basis { |n)} of A-states. A basic
measurement on A can determine which of the inputs is present, and these data may be
used to set up a machine that produces as many copies of the state as we like. (Strictly
speaking, this would not be a unitary cloning machine, since it depends on a measurement
process. But it is not hard to adapt the essential idea into a unitary scheme.)

It is also possible to imagine an approximate cloning machine, which would create
imperfect copies, or a conditional cloning machine, which would work perfectly with some
probability but would otherwise fail (producing an “error” message). More sophisticated
analyses are required for these new situations (see Problems 7.1 and 7.2). In general, for
non-distinguishable inputs |¢) and [¢), an approximate cloning machine cannot produce
very accurate copies, and a conditional machine cannot succeed with very high probability.

2 We should add that the unitarity of the time evolution is almost as basic as the principle of superposition itself.
In Section 5.1 we derived this unitarity from the principle of superposition, plus the simple requirement that
state vectors must remain normalized — in effect, that total probability is conserved.
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From an information point of view, the no-cloning theorem reveals one of the most
significant truths about the quantum world. Quantum information cannot be copied exactly.
In classical information theory, there is no obstacle to making exact copies of any signal.
But if a quantum communication system uses non-orthogonal signal states, no process
can perfectly duplicate them. This is the very reason why quantum cryptography is more
powerful than classical cryptography.” It is also, rather unexpectedly, the principle that
guarantees the no-communication theorem and prevents entangled quantum states from
providing faster-than-light information transfer.

Exercise 7.5 We previously imagined a machine that, depending on its control setting,
could produce arbitrarily many copies of the spin state |z1) or |x1). Explain why such a
machine is not a violation of the no-cloning theorem.

7.3 Ebits
|

The Bell states are a set of entangled two-qubit states introduced by John Bell. They are

1
|<I>;‘§’)=E(|o,0>i L),

1
W) = = (|o, 1)+ |1,0>). (7.13)

(Some of these are familiar; see Eq. 6.15 and 6.50.) The four Bell states are orthonormal
and thus form a basis for the two-qubit Hilbert space. A basic two-qubit measurement using
this basis is called a Bell measurement.

The Bell states have the property that any one of them can be transformed into any other
by a unitary operation on just one of the qubits. For example, the Pauli operator Z is
unitary, and

1V |0P) = |0). (7.14)
Exercise 7.6 Arrange the four Bell states in a square:

@) )

| W) | W), (7.15)

Show that the operator 7 exchanges columns in this array, while X® exchanges rows.
Show that Z® and X do almost the same, except for some overall changes of phase.

3 No classical communication system can accomplish the task of secret key distribution between Alice and Bob,
since the eavesdropper Eve can make her own copies of all of the exchanged messages. But the BB84 quantum
key distribution protocol uses non-orthogonal quantum signal states, and these cannot be cloned by Eve.
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To get a physical picture of these mathematical results, suppose Alice and Bob share a pair

of qubits in one of the Bell states. Then they can come to share any one of the Bell states

simply by performing a local operation on one of the qubits.

Exercise 7.7 Consider the two-qubit state
1

V2

where |a) and |b) are an orthonormal pair of one-qubit states. Show that |[I""®) can be
converted into a Bell state by means of an operation on either qubit.

r®) = (I0>a> + Il,b>), (7.16)

As we saw in Section 6.2, independent systems cannot become entangled by local
operations. However, local operations can transform one entangled state to another. This
reminds us of the discussion in Section 1.1 of the transformability of information. A
one-bit message can have many different equivalent physical representations, and one
representation can be changed to another by a physical operation. This motivates the
following definition: When Alice and Bob jointly possess a qubit pair whose state is
locally equivalent to a Bell state, then we say that they share an ebit, or a “bit of
entanglement.”

The idea is to think of “ebits” as one kind of resource with which Alice and Bob may
perform various tasks. To formalize this notion, we suppose that Alice and Bob each have
separate laboratories in which they can perform any local unitary operations and local
measurements on the quantum systems in their possession. In addition, they have three
types of resource that might be used for information tasks:

e Bits. Alice can send an ordinary one-bit message to Bob, or vice versa.

e Qubits. Alice can transfer a qubit quantum system to Bob, or vice versa.

e Ebits. Alice and Bob can share an entangled qubit pair in a Bell state (or some equivalent
state).

Note that the first two types are directed resources; it matters whether Alice sends to Bob
or Bob sends to Alice. Ebits, however, are not a directed resource.

To compare resources, we will use the symbol “>" (pronounced “is at least as strong
as”), so that

this > that, (7.17)

means that the resources enumerated in “this” can be used to do any task that can be
performed using “that.” Since Alice could always use a 10-bit message to send 5 bits of
information, we write 10 bits > 5 bits. To take a more interesting example, it is always
possible for Alice to encode a one-bit message in the basis states of a qubit, then transfer
this qubit to Bob. Bob can recover the message by measuring the qubit in Alice’s basis. We
represent this as

1 qubit > 1 bit. (7.18)
Exercise 7.8 Explain why

1 qubit > 1 ebit. (7.19)
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Resources are not always comparable, of course. As we have seen, shared entanglement
does not in itself allow Alice to send messages to Bob using only local operations. It is
also true that exchanging classical messages cannot produce entanglement in otherwise
independent systems. This means that, for any N,

N ebits i/ 1 bit,
N bits / 1 ebit. (7.20)
Classical communication and entanglement are not comparable resources.
Exercise 7.9 Explain why 1 qubit / 2 bits. Is it true that 2 bits > 1 qubit?

So far, we have not said what sort of task is made possible by shared entanglement. This
will be the business of the next section. For now, we will simply note the fact (worked out in
Problem 6.5) that shared ebits would enable Alice and Bob to create a secure cryptographic
key that could be used to communicate secret messages.

7.4 Using entanglement
________________________________________________________________________________________|]

Superdense coding

The basic decoding theorem (Eq. 4.8) tells us that Alice cannot reliably send two bits of
information to Bob via a single qubit, because the number of possible messages (N = 4) is
larger than the dimension of the Hilbert space (d = 2). Suppose, however, that Alice and
Bob initially share an ebit. By a local unitary transformation on her own member of the
qubit pair, Alice can change the state of the whole system into any of the four Bell states.
She can use this to represent two bits of information:

Message Bell state

00 @)
01 |®_)
10 W)
11 W)

Now Alice transfers her qubit to Bob. Bob, possessing both qubits, performs a Bell
measurement to distinguish the four possible states. From the result he can exactly determine
Alice’s message. Therefore,

1 ebit + 1 qubit > 2 bits. (7.21)

Entanglement by itself is no help for communication, but it apparently allows us to send
two bits via a single qubit! For this reason, the technique just described is sometimes called
superdense coding.

To appreciate how peculiar this is, consider how Alice and Bob obtained their ebit in the
first place. One possibility is that Bob created an entangled qubit pair in his own lab and
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then transferred one qubit to Alice. The overall process then involves two qubit transfers,
one in each direction. We can indicate direction with arrows, and write

—_— <~ —
1 qubit + 1 qubit > 2 bits. (7.22)

By sending one qubit in each direction, we can send a two-bit message in one direction. This
would be impossible to understand if we regard a qubit merely as an ordinary message-
carrier with a one-bit capacity. The relation between bits and qubits is far more subtle
than that.

Teleportation

When Alice sends a qubit to Bob, the system is transferred with its state intact, whatever
that state may be. This process is similar to the process of sending a message, but there
are some essential differences. For instance, when Alice transmits an ordinary message she
may retain a copy for herself; but the no-cloning theorem tells us that this cannot occur
in a qubit transfer. Nevertheless, it is natural to refer to the transfer of an intact quantum
state as the quantum communication of quantum information, by analogy with the classical
communication of classical information in an ordinary message.

We know that we can accomplish classical communication by means of quantum
communication. Can we do the opposite? Can Alice send a qubit to Bob using only
bits?

The answer is no, because Alice cannot completely determine the state of the qubit by
any measurement process, and therefore cannot provide enough classical information to
Bob to construct the correct qubit state. But suppose Alice and Bob also share one or more
ebits?

Let us analyze this in a more definite way. At the outset, Alice possesses a qubit (qubit
#1, or the “input” qubit) that is in an arbitrary quantum state |¢) = « |0) + 8 |1). Alice and
Bob also share a qubit pair (qubits #2 and #3) that are in the Bell state |<I>f_3)). The overall
three-qubit state is

)= vl [o2)
o B
V2 V2
Now Alice makes a Bell measurement on the qubit pair in her possession (qubits #1 and
#2). Each possible outcome of this measurement will have a certain probability and will

result in a conditional state for Bob’s qubit (qubit #3). These can be computed using the
partial inner product. For example,

(|0,0,0> + |0,1,1>) n (|1,o,o>+ |1,1,1)). (7.23)

1
(q>(41:) ’F(123)> _ 3 (Ol ’0(3)> +B ’1(3>>) ) (7.24)

This means that the |®,) outcome occurs with probability (%)2 = %, and that whenever
this outcome occurs the conditional state of qubit #3 is « |0) + S |1).
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In other words, after Alice performs her measurement and obtains the outcome |®.),
the state of Bob’s qubit is exactly the state |vr), the original state of the input qubit. This is
remarkable, especially considering the fact that Alice and Bob may be widely separated in
space. It is as if the quantum state has instantaneously vanished from one location (due to
Alice’s measurement) and reappeared someplace else.

Of course, Alice cannot count on obtaining the result |® ) for the measurement, and Bob
cannot know the outcome of Alice’s measurement without some further communication.
Suppose instead that Alice obtains the result |®_). Then we find that

((D(ln |1—~<m)> _ % (a |0<3>> ~B ‘1(3)>> ) (7.25)

indicating that this outcome also occurs with probability }‘ and leads to the conditional
state o |0) — B |1) for qubit #3. This is almost the same as before, and in fact Bob can
turn this conditional state into the input state |y) by applying the unitary operator Z on his
qubit.

Exercise 7.10 For the Bell measurement outcomes |W, ) and |W_) on Alice’s qubit pair,
show that the probability of each outcome is again Alf, and that the conditional state of Bob’s
qubit can be transformed into the input state |y) by the application of a simple unitary
operator that depends on the measurement outcome but not |).

Here is the upshot: Alice has the input qubit and one part of an ebit. She performs
a Bell measurement on these qubits and obtains one of four possible results. She then
communicates her result to Bob (requiring two bits of ordinary communication), and Bob
uses this information to make one of four possible unitary transformations on his own qubit.
At the end, Bob’s qubit is in exactly the same state as the input qubit was — in effect, one
qubit has been transferred from Alice to Bob. This process is called teleportation, and it
provides another relation between communication resources:

1 ebit + 2 bits > 1 qubit. (7.26)

Once again, teleportation challenges our intuitions about classical and quantum information.
The original ebit shared by Alice and Bob could have arisen from quantum communication
from Bob to Alice. This implies

«—— — —_
1 qubit + 2 bits > 1 qubit. (7.27)

If quantum communication is possible from Bob to Alice, and classical communication
is possible from Alice to Bob, then teleportation allows quantum communication from
Alice to Bob. The “quantum” part of quantum communication can be provided by shared
entanglement (ebits), without regard to the process by which this entanglement is initially
established.

Exercise 7.11 Comment on the following aphorism: “If entanglement is free, then one
qubit is worth exactly two bits.”
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Teleportation and superdense coding tell us that quantum entanglement is a useful
resource for the communication of quantum and classical information. The idea of compar-
ing the resources required to do various quantum and classical tasks has become a common
theme in quantum information science. One of its first and most enthusiastic proponents has
been Charles Bennett, one of the discoverers of both superdense coding and teleportation.
We have exhibited some of the basic relationships between bits, qubits, and ebits, which
we summarize for convenience:

1 qubit > 1 bit, (Re 7.18)

1 qubit>1 ebit, (Re 7.19)

1 ebit + 1 qubit > 2 bits, (Re 7.21)
1 ebit + 2 bits > 1 qubit. (Re 7.26)

These expressions were first written in this form by Bennett. Collectively, we may call
them Bennett'’s Laws.

7.5 What is quantum information?
|

We have discussed the transmission of bits and qubits as if they involved the actual
transport of particular physical systems from one point to another. But of course, our
experience with classical communication tells us that the matter may be more complicated
(see Exercise 1.1!1). We say that a classical bit is communicated from Alice to Bob if the
final bit possessed by Bob (call it ») is in a 0/1 state identical to that of the initial bit &
possessed by Alice, whether or not this bit is represented in the same physical system.
Similarly, we say that a qubit is communicated from Alice to Bob if Bob’s final qubit Q' has
the same state as Alice’s initial qubit Q, whether or not they are the same physical system.
(Indeed, in teleportation the two systems are never the same.)

The qubit is the one type of resource that appears in each of Bennett’s Laws. But careful
reflection reveals that this resource is used in two apparently different ways:

e Alice’s Q may be initially in a definite pure state |1/‘?), which during the communication
process becomes the final state |W‘Q/)> of Bob’s qubit. This is how things work when we
use a qubit for transmitting classical messages (Eq. 7.18), or in teleportation (Eq. 7.26).

e Alice’s Q may be entangled with another system R, so that their joint state is |W®?).
During the communication process, this entanglement is transferred to Bob’s qubit Q’, so
that the final state of RQ’ is | \IJ‘RQ’)>. This is the process used in both sharing entanglement
(Eq. 7.18) and superdense coding (Eq. 7.21).

We will call these “Type I’ and “Type II” quantum communication, respectively. They
embody two distinct answers to the question, “What is quantum information?” For Type I,
quantum information lies in the (possibly unknown) state vector of the system Q. This is
more analogous to classical communication, in which a definite classical state is faithfully
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reproduced at the destination. For Type 11, quantum information lies in the entangled state
of system Q and a “bystander” system R, which does not participate in the communication
process but merely serves as an “anchor” for the entanglement carried by Q. This seems to
be a very different picture.*

The two types, however, are very closely related. We will now argue that the ability to
do Type II quantum communication for a single entangled input state guarantees the ability
to do Type I quantum communication for any input state.

Suppose R and Q each have Hilbert space dimension d and start out in a maximally
entangled state, a uniform, “diagonal” superposition of product basis states:

|q)(RQ)) — % Z ikm)’ k<0>>. (7.28)
k

(The Bell states are maximally entangled states of two qubits.) If any basic measurement
is performed on R, each outcome has probability 1/d. The outcome associated with the
R-basis element |a®) leads to the conditional Q-state

|1/,((1Q>> — \/g (a(R) |©(RO)>, (7.29)
(compare Eq. 6.49).

Exercise 7.12 Show that, for any Q-state |{/?), there is an R-state |a™) so that | @) =
}d)éf’). That is, given |®®?), any Q-state could arise as a conditional state for some
R-measurement outcome.

Suppose the entanglement of Q with R is transferred to Q" by a Type II quantum
communication process. As in the no-cloning theorem, we assume that the entire system
(including all parts of the communication mechanism, which we will collectively call C)
can be regarded as informationally isolated during the process. It is also isolated from the
bystander system R. The overall time evolution will be described by a unitary operator of
the form 1® @ U,

Now consider the following exercise:

Exercise 7.13 The composite quantum system AB is initially in the state |W*®), and B
evolves by the unitary operator V®. Show that, for any A-state |a®),

(a(A’| (I(A) ® V(B)) |\I,(AB>) —y® (a(A’ |\IJ‘AB)>. (7.30)

We can interpret this exercise by comparing two processes:

4 From another point of view, however, Type II quantum communication is not so different from classical
communication. If Alice sends a bit b to Bob, what does it mean operationally to say that Bob’s received bit 5’
is correct? This presumes the potential existence of a “reference bit,” a fiducial copy of b to which 5’ may be
compared. Alice, for example, could retain her own copy of the transmitted message, and later on this can be
compared with Bob’s version. The communication is accurate provided the two bits are properly correlated. In
quantum communication we cannot make and keep copies, but the bystander system R plays a similar role. The
quantum communication from Alice to Bob is successful provided R and Q’ are properly correlated (i.e., in the
correct entangled state).
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e First we evolve the joint state |W*?) according to 1 ® V®, then we use the result to
find the conditional state for |a™).

e First we use |W™“P) to find the conditional state for |a“), then we evolve this state
according to V®.

Both processes lead to exactly the same final state of B. The dynamical evolution of B
commutes with the measurement process on A.’

Let us apply this fact to our communication problem. By assumption, our procedure
produces a final RQ’ state ]@“‘Q/)) that is the same as the initial state. A subsequent R-
measurement with outcome basis state |a®) will result in a conditional Q’-state |¢;Q/)).
But the R-measurement must commute with the communication process. If we do the
R-measurement first, the pure state |¢(‘1Q)) is the input to the communication process, and
this process must lead to the same output state ’qbg?’)). Exercise 7.12 tells us that any Q-state
could arise in this way. Therefore, a Type Il communication procedure for Q that accurately
transfers the entangled state |®*?) will also work as a Type I communication procedure
for any input Q-state.

It is also true that any perfect Type I quantum communication process will also convey
entanglement equally well. (We will defer a general argument for this until Problem 9.3
of Chapter 9, but see Problem 7.5 at the end of this chapter.) The two apparently dis-
tinct ways of thinking about the quantum information in Q — as the definite unknown
state of Q or as the entanglement between Q and an outside system R — are really
equivalent.

So far, we have discussed perfect quantum communication. But suppose the process
is not perfect? In classical information, we often characterize this by the probability of
error Pg, which is the probability that the output of the communication process disagrees
with the input. This is, for example, the “figure of merit” we used in the basic decoding
theorem of Section 4.1 and the basic distinguishability theorem of Section 4.2. If Pg
is small, then the probability of success Ps = 1 — Pg is nearly 1. This would mean
that our process is nearly perfect, and in many practical situations this will be good
enough.

For quantum information, the corresponding “figure of merit” of a communication
process is fidelity. If the desired state is |y) but the actual state is |1//’ ), then the fidelity F
of the process is

F=|wv). (7.31)

The fidelity satisfies 0 < F' < 1. It is zero when the two states are distinguishable, and is
close to 1 when they are nearly indistinguishable. If F = 1, the two states must be identical
up to overall phase.® (We are implicitly supposing that the input and output states are states

5 A variant of this argument is the key step in the proof of the representation theorem for generalized quantum
evolution maps, given in Section D.2 of Appendix D.

6 Some authorities define the fidelity to be |<1// |1/f’) , which we would call ~/F. This alternative definition has
some mathematical advantages. We prefer Eq. 7.31, however, because it has a simple interpretation: F is the
probability that |¢/> would pass a basic measurement test designed to determine whether the state is |). The
fidelity F will be generalized to mixed states in Problem 8.4.
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of the same system Q, rather than isomorphic systems Q and Q'. This useful simplification
will be used for the rest of the discussion.)

The general idea of fidelity is applied in somewhat different ways to Type I and Type II
quantum communication schemes. In the Type I situation, we imagine that the input state
[¥%) is sent with probability py, and that it winds up as the output state ’1//,/{) Then it makes
sense to compute the average fidelity F:

F =3 pellvn [wi)f. (7.32)
k

In a Type II situation, an entangled state |¥®?) is sent, yielding the output state |W""?),
Then we compute the entanglement fidelity F:

Fe= |(wr [/ (7.33)

In either case, a fidelity of 1 means that the quantum communication is perfect.
The two fidelities are connected. Suppose that, for some basis states [k®) for R, we can
write the entangled (Type II) input state as

W) = 3 i 60 34
k

If we make an R-measurement in this basis, we will produce the conditional Q-state |v/;”)

with probability pj, exactly as in the Type I problem. Since the R-measurement must
commute with the quantum communication process, the final Type II state must be

’\IJ/(RQ)) — Z \/]7_]( ‘k(R), 1//]1((?)) , (7.35)
k

for the Type I output states |yr;).

Exercise 7.14 Explain in detail why this is so.
The entanglement fidelity is

2
Fo = |<w(RQ) |\I,/(RQ)>|2 _

> pkpi (K1) (v [
ki

2

(7.36)

> plve [vi)

What can we do with this last expression? Let the complex number (’ﬁk |w,2> = X + ik
for real x; and y;. These real numbers are the values of two real random variables X and Y
with common probabilities px. Then
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Fe= (X +iY)* = |(X) + i (V)]?
= (X)2 4+ (Y)?
=) +{r)
_ <|X+ iY|2> =F (71.37)

Exercise 7.15 Explain each step in this derivation.

Therefore F, < F. The Type I problem is “no harder” than the related Type II problem,
since its fidelity is always at least as large. If the entanglement fidelity approaches 1,
then the average fidelity must do so as well. The reverse is not necessarily true; it may
be that F = 1 for some particular collection of input states, but that F, is nevertheless
small.

Exercise 7.16 A unitary Z rotation of one qubit can transform the Bell state |®,) into
|®_). Use this fact to construct an example in which 7' = 1 for some set of inputs, but the
corresponding entanglement fidelity Fe = 0.

How shall we answer the question posed in this section: “What is quantum information?”
We have proposed Type I and Type II ideas and argued that they are, in some sense,
equivalent. However, two facts suggest that the Type II viewpoint is primary. The exact
transfer of a single entangled input by a quantum communication process is enough to
guarantee that every pure state input is transferred correctly. Furthermore, we know that
F. < F for related Type I and Type II problems; and we can find examples where F = 0
and F = 1. This suggests that F, is a stricter, more comprehensive way to characterize the
overall “quantum fidelity” of the process.

For these reasons, we conclude that the deepest answer to the question is that quantum
information lies in the entanglement between systems. Quantum communication, in this
view, is fundamentally about the transfer of that entanglement from one system to another.
The essential role of Bennett’s qubit resource is to move ebits around.

Problems

Problem 7.1 Quantum cloning machine I. In this problem and the next, you will try your
hand at designing a possible quantum machine that does something akin to cloning two
non-orthogonal qubit states |0) and |+). The first is an approximate cloning machine, and
is required to have the following characteristics:

e The inner workings of the machine are completely unitary.
e The states update according to

[0,0) — |coo) [+,0) — lcyy), (7.38)

where |cgp) and |c4 ) are the “cloned” |0) and |+) states.
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e The cloning fidelity F, = |(00 lcoo))? = [{(++ lc44)1?, equal for the two possible
states, is as close to 1 as possible. (F. = 1 would mean perfect cloning.)

Design your machine. How large can you make F?

Problem 7.2 Quantum cloning machine II. Here is another approach at almost-cloning
for non-orthogonal input states |0) and |+). This second device is a conditional cloning
machine, and is must have the following characteristics:

e The inner workings of the machine may employ random choices (“coin flips”) and
measurements.

e The machine does not always succeed in its task. When it fails, it announces “FAIL” and
destroys the input qubit state.

e When the machine does succeed, it can produce as many exact duplicates (F; = 1) of
the input state as may be required.

e The machine is equally likely to work on either of the two inputs.

Design your machine. What is the probability that it works?

Problem 7.3 Preparation machines. A device P interacts with a quantum system Q as
follows: initially, Q is in the standard state |0), while P is initially either in |s;) or |s3).
The unitary time evolution of PQ maps

Is)) ® 10) — Is1) ® |¥1),
Is2) ® [0) —  Is2) @ [¥2).

In other words, the state of P is unchanged, but Q is changed to one state or another.
You should interpret |s1) and |s2) as two different “settings™ of the device P, and these
settings determine which of the two Q-states |[i1) or |i) are prepared. Show that, if
|(Yr1 |¥2)| < 1, then |s1) and |s») are orthogonal.”

Problem 7.4 Bennett also introduced a fourth information resource, the sbit. Alice and
Bob possess an sbit if they share a random classical bit of data that is secret from everyone
else, including any potential eavesdropper. Sbits can be used as the key in a cryptographic
scheme, so the problem of key distribution is exactly the problem of distributing sbits.
Devise some extensions of Bennett’s Laws to show how sbits are related to bits, qubits,
and ebits.

Problem 7.5 Suppose in the teleportation protocol, Alice’s input qubit is entangled with
another qubit, which we will designate #0. The initial state of the four qubits involved
is thus

|1"(0123>> _ |\IJ(01>> ® |<D(_f)>- (7.39)

7 Let us explain this result in more concrete terms. In a laboratory, the equipment configuration that creates |1 )
must be entirely distinguishable from that which creates |y, ), even if [/ ) and | ) are not very distinguishable
as Q-states. Thus, if we need to make a preparation machine P that can create 10° different Q-states, then we
need dim H® > 10°, even if Q itself is just a qubit.
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The teleportation process on qubit #1 proceeds just as before. Show that, at the end of
the procedure, qubit #0 is entangled with qubit #3 in the state |W®). This shows that the
teleportation protocol may be used for either Type I or Type II quantum communication.

Problem 7.6 If we have more than two communicators, then the laws governing quantum
information resources become less well understood. Suppose Alice, Bob, and Charles
(our “players”) can share entanglement and send quantum messages to each other. Further
suppose that classical communication is so easy that we do not even keep track of it as a
resource. Any number of bits may be transmitted for free. (This makes ebits equivalent to
qubits.)

Let us keep track of two kinds of resource: ebits (between various pairs of players) and
ghzbits, in which the three players share a triple of qubits in a GHZ state (see Eq. 6.64).
Prove the following two relations:

1 ghzbit > 1 ebit™”,
1 ebit™ + 1 ebit®™ > 1 ghzbit. (7.40)



Density operators

8.1 Beyond state vectors
e —

We cannot always assign a definite state vector |¢) to a quantum system Q. It may be that
Q is part of a composite system RQ that is in an entangled state |¥®?). Or it may be that
our knowledge of the preparation of Q is insufficient to determine a particular state |¢).
Consider, for instance, a qubit sent from Alice to Bob during the BB84 key distribution
protocol from Section 4.4. The state of this qubit could be |0), |1), |+) or |—), each with
equal likelihood. In either case — whether Q is a subsystem of an entangled system, or the
state of Q is determined by a probabilistic process — we cannot specify a quantum state
vector |y) for Q.

Nevertheless, in either case we are in a position to make statistical predictions about the
outcomes of measurements on Q. In this chapter we describe the mathematical machinery
for doing this.

Mixtures of states

Suppose the state of Q arises by a random process, so that the state |y ) is prepared with
probability p,. The possible states |[v/,) need not be orthogonal (as you can see in the
BB84 example above). We call this situation a mixture of the states | ), or a mixed state
for short.

One way to interpret a mixed state is to return to the idea of an ensemble of systems,
which we introduced in Section 3.3. The individual systems in our ensemble are prepared
in one of the various possible states, with a fraction p, of them prepared in |[v/,). Now
suppose we measure an observable A on this system. For the subset of the ensemble with
the state [¢), the average measured value will be (4), = (Y| A|Yy). Over the entire
ensemble the average will be

() =" pa ()

=D e Tr [Wa) (Yl A @.1)

(To remind yourself of the definition and properties of the trace, refer to the discussion that
begins with Eq. 3.44.) We now define the density operatorp to be
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P= Pala)(Val. (8.2)

This operator depends on the possible states and their probabilities, but not on the observable
A. Since the trace operation is linear, the expectation is

4y =TrpA. (8.3)

The density operator p therefore lets us compute the (ensemble average) expectation for
any observable A.

Exercise 8.1 We have introduced the density operator before, at the end of Section 3.3.
The state vector |i) was associated with the density operator p = |)(y|. Eq. 8.3 here
is identical to Eq. 3.72 there. Explain how the previous concept of the density operator is a
special case of the present one.

This sort of probabilistic combination of states is called a mixture of states, and the
resulting situation (described by p) is a mixed state. A mixture of states is a very different
thing from a superposition. A superposition yields a definite state vector, whereas a mixture
does not and so must be described by a density operator. The following exercise makes this
distinction clearer:

Exercise 8.2 Think of a qubit with basis states |0) and |1). Consider (a) a superposition
of 10) and |1) with equal amplitudes, and (b) a mixture of these two states with equal
probabilities. Show that these two situations lead to the same value for (Z) but different
values for (X).

Those situations for which a definite state vector exists are also known as pure states.
Different mixtures of states can lead to the same density operator. Consider an
equiprobable mixture of qubit states |0) and |1). Then

L. (8.4)

1 1
p =5 10001 + Sl = 7

Alternatively, suppose |+) and |—) appear with equal likelihood:

1 1 1
P—EH-)(-H +§|—)(—| —51- (8.5)
Imagine two ensembles, one composed of equal numbers of |0) and |[1) states and the
other composed of equal numbers of |+) and |—) states. Since the two mixtures have the
same density operator p, Eq. 8.3 tells us that the two ensembles have exactly the same
expectations (4) for any observable. In other words, the two ensembles are statistically
indistinguishable.

Exercise 8.3 Devise a mixture of three equally-likely qubit states that also yields the density
operator p = % 1.
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Subsystems of entangled systems

Now suppose that a composite system RQ is in an entangled state |[W®?). As we saw in
Section 6.4, a basic measurement on R will lead to a mixture of conditional states on Q.
For the R-basis element k™), we use the partial inner product to write:

VE [97) = [0, 6)

where py is the probability of the kth measurement result and |1//(Q’) is the corresponding
conditional Q-state. The density operator for the mixture of Q-states is

(Q) Zpkhp@) (o>|

- Z(k‘“ | ) (o o) 8.7)
k
We can formally write this as
o = Z (R>| p(RQ) ikm) (8.8)
k

where p®? = |W®R) (Y|

The expression on the right-hand side of Eq. 8.8 needs a bit of explanation. It resembles
the trace operation on p®? (compare Eq. 3.46), except that it involves only the basis
for H®.

We make sense of this by introducing the partial trace of an operator on H®?. Suppose
we have an operator that is an outer product of product vectors: GR? = |a®, @) (B®, @]
Then we define

Tr(R)G(RQ) — TI'(R) ( |0[(R)’ ¢(Q)>(ﬁ(m, .(//(Q)| )
= Trg, ( |a(R))(ﬁ(R)} ® }¢(Q))(w(Q)} )
_ (ﬂ(’” |ot““) |¢(o))(¢«)>| ' (8.9)

The partial trace turns the outer product on H® into the corresponding inner product. We
can extend this definition to arbitrary operators by requiring that Tr, is linear. In any case,
the partial trace Trg, of an operator on H*? is an operator on H@.

The partial trace can be computed using a basis for H®. For the operator G*? above

TI_(R)G(RQ) — (Z (ﬂm) |k(R))(k(R) |06(R) >> |¢(O))(w(0)|

k

Z k(k) ‘ ot(k) ¢(Q) ,B(R) I/j@) | k““)

= (k]G [k®). (8.10)
k
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This result can be extended via linearity to an arbitrary operator on H"®. Because our
original definition of Trg, did not depend on a choice of basis for H®™, this expression for
the partial trace is basis-independent.

The density operator p@ from Eq. 8.8 (describing the mixture of conditional states after
a measurement on R) is thus

PQ@ = Trgp®?. (8.11)

Because the partial trace is basis-independent, the same density operator would arise for
the conditional Q-states for any R-measurement. Therefore, the choice of R-measurement
cannot have any effect on the ensemble averages of any Q-observable.

Even if we have not made any R-measurement at all, it makes sense to use the density
operator p@ from Eq. 8.11 to describe the state of subsystem Q. For a composite system
RQ in the joint state |W®?), the expectation value of an observable A9 on Q is

<A(Q)> — (\IJ(RQ)’ (1““ ® A(Q)) |\D(RQ)>

— Z(W(RQ)| (|k(R>)(k(R>| ® A(Q)) |‘_IJ(RQ)>
k

— Z <q,(RQ> |k‘R))A‘°) (k“” |\IJ(RQ))

k
= Tr, (Z (k™ [@) (oo g )) A©, (8.12)
k
Therefore,
(A(Q)> — Tr(Q)p@)A(Q)' (8.13)

The density operator p@ = Tr, | ") (W®?| gives us the expectation value of any observ-
able on Q. If RQ is in an entangled state, we cannot assign a pure state to Q. But when we
consider only the observable properties of Q by itself, we can reasonably assign to Q the
mixed state p© given by the partial trace.

Exercise 8.4 Consider the entangled states |®,) and |W_) for a pair of qubits, defined in
Eq. 6.15 and 6.50. In each case, find density operators to describe the subsystem states of
each qubit. Do the subsystem density operators completely determine the joint state of the
composite system?

General considerations

We have used the density operator p@ to describe two distinct situations:

e The exact preparation of Q is not known, but various possible states |y ) have prob-
abilities py. In this case, p'@ describes the statistical properties of the mixture of
states.
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e Qs part of a composite system RQ that has a definite state vector |W®?); however, only
experiments on Q alone are to be performed. In this case, p@ describes the statistical
properties of the subsystem Q.

These two situations are related. Suppose the composite system RQ is in a known joint
entangled state |W®?), but R and Q are located in two separated laboratories. Experimenters
working with system Q will ascribe a density operator p'? to this system, since they are in the
second situation above. Now word comes that the other laboratory has made a measurement
on R (though the measurement result is not announced). The Q-experimenters retain the
same density operator p©, though their interpretation of it is now different. Depending on
the result of the R-measurement, the system Q is in one pure state or another, but it is not
possible to say which one. In other words, the experimenters now say that p© describes a
mixture of states, the first situation above.

Exercise 8.5 Imagine that the composite system RQ is itself described by a mixture of joint
states. Show that Eq. 8.11 still makes sense to define the state of the subsystem Q.

Here is a trio of important facts, which we will present as exercises:

Exercise 8.6 Show that any density operator p must be a positive operator.

Exercise 8.7 Consider the density operator p on H?. Show that
Trp =1, (8.14)

whether p arises from (a) a mixture of Q-states, or (b) a pure (possibly entangled) state of
a composite system RQ.

Exercise 8.8 Suppose p is a positive operator on H? whose trace is 1. Show that p is a
possible density operator arising from either (a) a mixture of Q-states, or (b) a pure state of
a composite system RQ.

Together, these establish that the set of possible density operators for Q is exactly the set of
positive operators on H@ that have unit trace. A final exercise shows that a probabilistic
mixture of mixed states is a possible mixed state:

Exercise 8.9 Suppose p; and p, are density operators, and let p; and p; be non-negative
real numbers with p; + p» = 1. Show that

p =pipy+p2p2, (8.15)

is a possible density operator — i.e. is positive and has unit trace.
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8.2 Matrix elements and eigenvalues

Populations and coherences

Let us write the density operator p in terms of the basis { |n)}:

p= omnlm)in|. (8.16)

The matrix representation of a density operator is called, reasonably enough, a density
matrix. The diagonal matrix element p,,, = (n| p |n) is the probability that a basic measure-
ment in this basis will yield the result #. If we imagine performing such a measurement on
the members of an ensemble of systems described by p, then p,,, is the fraction of those
systems that produce the result n. For this reason, the diagonal elements p,, of a density
matrix are sometimes called populations.

The off-diagonal density matrix elements tell us something different. Suppose we know
only that the diagonal matrix elements ppg = p11 = % for the density operator of a qubit
in the standard basis. There are many possible states consistent with this information. For
example, an equal mixture of |0) and |1) will have a density matrix

1/1 0
(omn) = 5 < 0 1 >5 (8.17)
whose off-diagonal elements are zero. On the other hand, the superposition |+) has the
density matrix
=2 (1! (8.18)
Po) =3\ 1 1) '

The distinction between a mixture and a superposition of |0) and |1) can be found in the
oft-diagonal elements of the density matrix.

These matrix elements encode the relative phases (if any) between the basis elements in
the state, as illustrated in the following exercise.

Exercise 8.10 Show that the state |) = % (lO) + e II)) has a density matrix in the
standard basis

1/ 1 ™
(omn) = 5 ( it 1 ) . (8.19)

In a superposition of basis states, there is a definite phase relation between the terms of the
superposition. We say that a superposition is coherent, and the off-diagonal elements of
the density matrix are called coherences. But suppose that the relative phase ¢ in the state
|r) above is not known. Instead of a single state |ir) with a single ¢, we have an equal
mixture of all possible values of ¢ between 0 and 27. The density matrix will then be an
average of matrices like Eq. 8.19 over the possible values of ¢. The populations (diagonal
elements) are unaffected by the average, but the ensemble average (¢/) = 0. The resulting
density matrix will look like Eq. 8.17, an “incoherent” mixture of |0) and |1). A mixture
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of superposition states with random relative phases is thus equivalent to a mixture of the
basis states.

The difference between a superposition and a mixture is the possibility of interference
effects. Neither |0) nor |1) has a definite value of the observable X, but the coherent
superposition |+) does, because the probability amplitudes for the measurement outcomes
interfere (constructively for X = +1, destructively for X = —1). A mixture of |0) and |1)
will show no such interference effects; the probabilities of the measurement results £1 will
be simple mixtures of the probabilities given by the basis states.

Exercise 8.11 Explain the preceding paragraph in terms of the two-beam interferometer
from Chapter 2, using the |u) and |/) states as the standard basis. What measurement
corresponds to the observable X?

Between the two extremes — between a perfectly coherent superposition and a completely
incoherent mixture — there are intermediate cases in which the coherences of the density
matrix are smaller in magnitude but not zero. Interference effects are observable for these
states, but are weaker.

Exercise 8.12 Consider the qubit state with density matrix

1/ 1 K
(omn) = 5 ( K 1 ) s (8.20)

where 0 < K < 1. A measurement of X is made on this qubit. Calculate |P(+1) — P(—1)|
as a function of K. (In the two-beam interferometer realization, this is sometimes called the
visibility of the interference effects.)

Any physical process which has the effect of suppressing the coherences of the density
matrix (in some particular basis) is called a decoherence process. We will discuss such
processes in Chapter 9. For now, we simply note that a decoherence process destroys
interference effects between probability amplitudes. Problem 8.5 analyzes an explicit
example.

Schmidt decomposition

Next, suppose that our basis { |k)} is composed of eigenstates of the density operator p.
The density matrix in this basis is diagonal. The eigenvalue spectrum {X;} is a collection
of non-negative real numbers that add up to 1 — in other words, a probability distribution.
We can write p in its spectral decomposition:

p =7 hilk)kl. (8.21)
k

This looks like a mixture in which the eigenbasis state |k) appears with probability Ax, and
indeed this is one possible mixture that leads to p. (As we have seen, it is by no means the
only such mixture.)
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Imagine that the density operator p® of system R arises from the pure entangled state
[W®) of the composite system RQ. We can use the eigenbasis of p® to expand the
entangled state:

(W) =" k%) ® |yy?). (8.22)
k
The density operator is thus
o = Trg [W0) 0| = 37 (0 i) (K] (8.23)
k!

R)

Comparing this to the spectral decomposition of p®, we conclude that

(W [0 ) = M i (8.24)

The vectors |} = (k™ |¥*?) are orthogonal. We can find an orthonormal set of vectors
|k9) such that
) = Vi [K9). (8.25)

We can, if need be, extend this set into a basis for H?. Our entangled state is

|\D(RQ)> - Z N/ |k‘R’,k(Q)>. (8.26)
k

This is called the Schmidt decomposition of the entangled state |W®?),

Here is what we have proven: Given a joint state vector |W®?) for RQ, there exist
bases { [k®)} for H® and { |k?)} for H? such that Eq. 8.26 holds. This is remarkable!
If dimH® = dimH® = d, then a joint state vector |W®?) would typically require d*
complex coefficients when written in terms of a product basis. Equation 8.26 has only
d real coefficients 4/A;. There must be something very special about the Schmidt bases
{1k®)} and { |k?)}. And indeed there is: these are eigenbases for p® and p'?, respectively.
Choosing these bases gives us a much more compact expression for |W®?),

Exercise 8.13 For a pair of qubits, find the Schmidt decomposition for the state
1
V2

The Schmidt decomposition is a powerful tool for analyzing the states of a composite
system. Here are some useful results that are easy to prove using the Schmidt decomposition:

1) = — (10,00 + 11,4)). (8.27)

Exercise 8.14 Show thatif RQ is in a pure state, p® and p© have exactly the same non-zero
eigenvalues.

Exercise 8.15 The Schmidt number of ajoint state |W®?) is the number of non-zero terms in
its Schmidt decomposition. What is the Schmidt number of a product state? If dim H® = 3
and dim H? = 5, what is the maximum possible Schmidt number?

Exercise 8.16 Consider a mixed state p® of R. A state |W®?) is said to be a purification
of p® in Q if Tryg, |PEO)(WRY| = p®™. Show that any two purifications of p® in Q are
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related by a unitary operator acting only on system Q. That is,

W) = (1% @ UQ) |wi), (8.28)

for purifications |W5®) and |W{*?).

8.3 Distinguishing mixed states
_______________________________________________________________________________________|]

In Sections 4.1 and 4.2 we proved two fundamental results about how well we can distin-
guish between quantum states. These theorems were proven for pure states described by
state vectors; now we need to adapt them to mixed states described by density operators.

First, consider a situation in which Alice wishes to send Bob a message by preparing a
quantum system in one of a collection of “signal” states. It might be that these are mixed
states of the system described by density operators. Then we need the

Basic decoding theorem for mixed states. If Alice encodes N equally likely messages
as mixed states in a quantum system with dim’H = d, and if Bob decodes this by
performing a basic measurement (perhaps on a larger Hilbert space) and inferring the
message from the result, Bob’s probability of error is bounded by

d
Ppz 1. (Re 4.8)

Let us prove this. Each message « is encoded in a state described by the density operator
P> Which operates on the Hilbert space /. This space may be a subspace of a larger space.
If IT is the projection onto H, then p, = I1p,IT and TrI1 = 4.

Now, as in Section 4.1, we suppose that Bob makes a basic measurement using the basis
{ |k)}, then groups the various outcomes into disjoint subsets Cy. If the measurement result
lies in C,, then Bob will infer that Alice’s message is «. In other words, we can assign to
each message « the projection operator

ma= Yy lk)kl, (8.29)

keCy

such that ), w, = 1. Then the probability that Bob infers the correct message is
1
Ps = Z 5 T PaTe
1
=y Z TrIlp, Ilx,
o

_ ]lv ;Tr po (M TD). (8.30)
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For any positive operator P and density operator p, Tr pP < TrP. Thus,

1
Ps < N;Trl'[nal'l

=—Trll = —. (8.31)

The probability of error Pg in this procedure must therefore satisfy Eq. 4.8. In other words,
our basic decoding theorem generalizes without change to embrace the possibility of mixed
signals.

Exercise 8.17 Compare this proof to the one given in Section 4.1, and fill in any details
that have been skimmed over. Is the present argument fundamentally more complicated
than the previous one?

The basic decoding theorem led us to say that the information capacity of a system with
dim H = d is just log d bits. This point still holds if mixed signals are allowed.

We can actually arrive at a stronger result if we know something about the signal states
Po- Suppose that each p, is a uniform density operator on a subspace of dimension s.
That is,

1
P = —Da, (832)
N

where Dy, is a projection operator. Then we find that

1
Ps =+ ;Tr Dy (T o IT)

1 d
< —Trll = —. (8.33)
Ns Ns

Exercise 8.18 Fill in the gaps in this derivation.

It follows that the error probability is

d
Pg>1——. 8.34
Ezl— (8.34)
Exercise 8.19 Explain why the information capacity of a system with dim’H = d using
such uniform signal states is logd — logs. Show that this can be achieved by some code.
(The situation in which d is not a multiple of s requires some thinking.)

The basic distinguishability theorem of Section 4.2 can be generalized to mixed states
as well, although we need to formulate the new version carefully. We imagine that we have
two equally likely mixed states p( and p, and we define the operator A = py — p;. The
difference operator A is Hermitian and has zero trace. If A = 0, then p; and p, are the
same and make identical predictions for all measurement. This means that no procedure for
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determining which state is present will succeed with a probability better than mere chance,
ie. Py = % If A is non-zero, then we can do better.

Let 8 be the sum of the positive eigenvalues of A. This is non-zero if and only if the two
states are different. Our generalized theorem is this:

Basic distinguishability theorem for mixed states. Suppose a system is prepared in
one of two equally likely mixed states py and p;, with A and § as defined above. Then
the probability of correctly identifying the state by a basic measurement is bounded by

Ps < ——, (8.35)

where equality is achievable by a suitable choice of observable.
The proof is a straightforward adaptation of the one given in Section 4.2. We will
therefore leave it as an exercise:

Exercise 8.20 Prove the basic distinguishability theorem for mixed states.

Exercise 8.21 Explain why our new result is really a generalization of the original basic
distinguishability theorem.

One final point. If p; = p,, then the two states are entirely indistinguishable. However,
if p; # p,, then § > 0 and the best possible Pg > 1/2. This is better than guessing. Even
if we cannot distinguish the two states perfectly, we can always obtain some information
about how the system was prepared. Whenever two situations are described by different
density operators, they are at least slightly distinguishable.

8.4 The Bloch sphere

There is an elegant way to visualize the set of density operators for a qubit system, which
we will now describe.

Given a Hilbert space H of finite dimension, the set B (), the set of all operators on H,
is itself a vector space, since the linear combination of two operators is also an operator.
Note that B (H) is in fact a Hilbert space with inner product

(A,B) = TrA'B. (8.36)

Exercise 8.22 Show that (A, B) has the required properties of symmetry, linearity, and
positive-definiteness.

Exercise 8.23 Ifdim H = d, show that dim B (1) = d?. Given an orthonormal basis { |n)}
for H, show that the operators |m)(n| form an orthonormal basis for 5 (() H).

The density operator p, of course, is an element of 5 (H).

For a qubit system, dim Q = 2. A convenient basis set for 5 (Q) is {1, X, Y, Z}. This is a
set of 22 = 4 operators, but how do we know that it forms a basis? The following exercise
does show this:
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Exercise 8.24 Show that the operators 1, X, Y, and Z are orthogonal to one another in 3 (Q).

We call this basis set the Pauli basis for B (Q). Any operator at all can be written as a linear
combination of the operators in the Pauli basis.! Since the basis operators are Hermitian,
any Hermitian operator is a real linear combination. We note that Tr1 = 2 and all of the
other basis operators are traceless. It follows that any unit-trace p can be written

1
p =7 (1 +axX+ayY+azl). (8.37)

A density operator for a qubit system may be specified by three real numbers ay, ay, and
az — the components of a vector a in real 3-D space. Formally, we can introduce a “vector”
o whose components are X, Y, and Z operators, and write

1 ..
p=501+a-q). (8.38)

The vector a is called the Bloch vector for the density operator p.

But we are not quite done. Any real Bloch vector a defines a trace-1 Hermitian operator
p, but in order for p to be a density operator it must also be positive. Which Bloch vectors
yield legitimate density operators? We will first answer this question for pure states of a
qubit system, for which the following characterization is useful:

Exercise 8.25 Suppose p is a Hermitian operator on a qubit Hilbert space Q. Show that
p is the density operator for a pure state if and only if Trp = 1 and Tr p?> = 1. (Hint:
Consider the eigenvalues of p.)

(See Problem 8.2.) In terms of the Bloch vector a, we have:
1
Trp? = 5 (14 @) + @) + (@) (8.39)

Exercise 8.26 Prove this. You will use the fact that X2 = Y2 = 72 = 1, and that the traces
of other products of Pauli operators (XY, YZ, etc.) are all zero.

Therefore, the pure states can be identified with the a vectors for which
a-a=1 (pure state). (8.40)

The Bloch vectors for pure states form a sphere in our real 3-D space. This is called the
Bloch sphere, and is shown in Fig. 8.1.

The “north and south poles” of the Bloch sphere are the states with Bloch vectors (0,0, 1)
and (0,0, —1). With respect to the standard basis { |0), |1)} for H these are

1 Our basis elements are not normalized in B (), since Tr X2 = TrY2 = TrZ? = Tr1 = 2. We could normalize
them by dividing by +/2, but we will find it a little more convenient here to relax our usual convention and use
a non-normalized basis set.
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00|

[1){1]

The Bloch sphere describing qubit density operators. The outer surface is made up of pure states,
for which |@| = 1. Some familiar states are shown. Points inside the sphere represent mixed qubit
states; the very center is identified with the density operator %1, for which @ = 0.

lIZ—IOO 1)(1 0)(0 I)(1
5 W+ =2 (10)(0] + (1] + 001 = [1)(1])

= 10)(0], (8:41)
1 1
5 =D =2 (10001 + [1){1] = 10)(0] + [1)1])

= |[1)(1]. (8.42)

The orthogonal state vectors |0) and |1) yield antipodal points on the Bloch sphere. Angles
between Bloch vectors are not angles in Hilbert space.

Exercise 8.27 What is the Bloch vector associated with the pure state |+)? What is the
state vector associated with the Bloch vector (0, 0.6,0.8)?

Exercise 8.28 Suppose our qubit is a spin-1/2 system with |0) = |z ), etc. We make a
measurement of S, on a spin with Bloch vector a. Show that (S.) = azh/2. What are (S)
and (S,)?

Exercise 8.29 Given a unit vector 72 with components (ny, n,,n.), we can form the spin
component observable S, in that direction. Show that the eigenstate |ny) of S, with
eigenvalue +%,/2 has the Bloch vector @ = 7.

These exercises show that the Bloch sphere is an easy way to visualize the pure states
of a qubit. The representation is particularly straightforward if the qubit happens to be a
spin-1/2 system.
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What happens when we consider mixtures of states? For example, consider

p=pp;+ 1 —=p)p,. (8.43)
Let @) and a; be the Bloch vectors for p; and p, respectively. Then

=P

. 1 - - S
p_2(1+a1~a)+Tp(1+a2-a)

1 - oy o
=5 A+ @ar+ (1 —=p)az) -0). (8.44)

The Bloch vector for p is pa; + (1 — p)ay, which lies on the line segment between a; and
ay. This means that the mixed states of a qubit system have Bloch vectors that lie in the
interior of the Bloch sphere. Mixing simply “fills in” the sphere, producing the Bloch ball.”
A mixed state has a Bloch vector satisfying

a-a <1 (mixed state). (8.45)
Exercise 8.30 What mixed state has a = 0?

One might hope that there is an equally nice picture of the density operators for other
quantum systems. Unfortunately, things are not so simple when dim H > 2.

We will conclude our introduction to the Bloch sphere with a final exercise, which proves
a very useful fact.

Exercise 8.31 Suppose p; and p, are qubit density operators with Bloch vectors @; and
d>. Show that

1 - o
Trppp = 7 (14+a-ar). (8.46)

8.5 Time evolution
]

The state vector | (¢)) of an informationally isolated system evolves in time according to
the Schrodinger equation

d
Hiy @) = ih% 1) . (Re 5.23)

We describe the evolution over the interval from time 0 to 7 by the unitary operator U(?):
v (®) =U@® ¥(0)) . (8.47)

2 The “filled-in” Bloch sphere is also sometimes called the “Bloch sphere,” though mathematically speaking the
sphere is only the outer surface.

3 For dim’H = 3, for instance, the density operators are represented as vectors in a 15-dimensional space, and
the outer “boundary” of the set of possible density operators has a more complicated shape.
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The density operator corresponding to this pure state is p(f) = [ (¢)){¥ (¢)| . The unitary
time evolution of this operator is thus given by

p(t) = U(®) p(0) (U(D)", (8.48)

the general rule being, if [) — U |y) then p — UpUT.

What about the Schrodinger equation? For a tiny interval of time df, the evolution
operator is ;
Udn=1- ﬁH dt, (8.49)

where we have omitted terms of order O (dtz) and higher. Then the time evolution from ¢
to ¢ + dt yields

p(t+df) = (1 - %H dt) (1) (1 + %H dt)

I
=p(t) - 7 (Hp(t) — p(OH) dt. (8.50)
Therefore, at the time ¢,
dp 1
— = —[H, p]. 8.51
5 l.h[ , 0] (8.51)

This is the Schrodinger equation for the pure-state density operator p = |y) (V] .

Exercise 8.32 Derive Equation 8.51 in a different way, by taking the time derivative of
[v) (| and using the product rule for the derivative of the outer product.

Equations 8.48 and 8.51 also apply to mixed states. To see this, consider an initial mixture
of pure states:

P(0) =" pu 1Y (0)) (e (0)] . (8.52)

If the initial state is actually the pure state |14 (0)), then it evolves over time to |/, (¢)) =
U(?) |« (0)). The final mixed state is just the corresponding mixture of the possible final
pure states

P(1) = pulVa(®) (Ve (®)]
=" Pa V@) [¥0(0)) (¥ (0)| (U()'

=U(®) p(0) (U()T, (8.53)

as before. A similar argument generalizes Eq. 8.51. The essential mathematical point is that
both Eq. 8.48 and 8.51 are linear in the density operator, and that probabilistic mixtures
yield density operators that are linear combinations of the states in the mixture. It is also
true that the Schrodinger equation, Eq. 8.51, holds for each subsystem of a non-interacting
composite system (see Problem 8.8).

Exercise 8.33 Derive the generalization of Eq. 5.27 describing the time evolution of the
expectation (A4) of an observable A.
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For qubit density operators, we can visualize the time evolution of the state as a trans-
formation of the Bloch vector of the state. How do Bloch vectors change under unitary
evolution? Suppose two different qubit states p; and p, evolve via the same unitary U.
Then

Trp,py — TrUp,UTUp,UT = Trp, p,. (8.54)

From Exercise 8.31, we can conclude that the dot product a1 - @, of the states’ Bloch vectors
remains unchanged in time. This means that the angle between two pure-state Bloch vectors
(each with unit magnitude) is constant under the action of U. Unitary time evolution must
therefore correspond to a rigid rotation of the Bloch sphere.

8.6 Uniform density operators
|

Suppose we know that the state of a quantum system lies in a subspace 7 of its Hilbert
space H, but we do not have any additional reason to consider one state vector more likely
than another. Then the most reasonable density operator to assign is a uniform density
operator on the subspace 7

1
=—TI, 8.55
p=- (8.55)

where IT is the projection operator onto 7 and d = dim7 = TrII1.

The uniform density operator is analogous to a uniform probability distribution over a
set. And indeed, the two ideas are connected. If we choose a basis { |k)} for 7 and assign
each basis vector the same probability 1/d, then the resulting mixture has our uniform
density operator. But the same density operator could be produced by other mixtures, some
of which do not have equal probabilities.

Exercise 8.34 Suppose a qubit system has a uniform density operator on its entire Hilbert
space. Devise a mixture of pure states with unequal probabilities that yields this density
operator.”

As we saw in Section 1.1, if we have a uniform probability distribution over M
possibilities we assign an entropy H according to

H =logM, (Re 1.2)

where the logarithm has base 2. By analogy, if we have a uniform density operator on a
d-dimensional subspace 7, we will assign a quantum entropy S according to

S = logd. (8.56)
4 We thought of three different easy ways to do this. One was based on the BB84 states from Section 4.4. Another

used the geometry of the Bloch ball. A third applied the result of Problem 8.3. The same problem can be attacked
from many directions!
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A uniform density operator on the Hilbert space of a qubit system has the numerical value
S = log2 = 1; therefore, we say that S is measured in “qubits” (just as H was measured
in “bits”). The quantum entropy S is a measure of how “spread out” a uniform density
operator is. (Later, we will generalize both H and S to non-uniform situations.)

Exercise 8.35 A system of five qubits is in a mixed state described by a uniform density
operator over its Hilbert space. What is the quantum entropy S of this density operator?

A mixture of states has values both of A (for the probability distribution of possible states)
and S (for the resulting density operator), but these do not need to agree.

Exercise 8.36 Consider the following mixtures of states for a qubit system.

(a) Suppose we have a mixture of |0) and |1), each with equal likelihood. Show that both
H and S have numerical value 1.

(b) Consider the BB84 mixture, an equal mixture of |0), |1), |+), and |—). What is H?
What is S?

Consider a situation in which we know various “external parameters” of a quantum
system — the number of particles present, the volume of the container enclosing the system,
the value of an externally applied magnetic field, etc. These parameters determine the
Hilbert space for the system and its Hamiltonian H. We also know one additional piece of
information: the energy £ of the system. This tells us that the quantum state of the system
must lie in the eigenspace of H with eigenvalue E. The projection onto this subspace is
denoted IT(E). In the absence of further information, we will assign the system a density
operator that is uniform on this subspace:

1
p(E) = ) (E), (8.57)

where Q(F) = TrI1(F) is the dimension of the eigenspace. In statistical mechanics, this
situation is sometimes called the microcanonical ensemble, and can be summed up by
saying that every state with the known energy E is equally likely.

Alternatively, we might know only the energy to finite precision — that is, we know
that the energy is between £ and E + §E. (This is a more realistic assumption for very
large systems.) Then IT(£) will be the projection onto the subspace spanned by energy
eigenstates in the specified range. The microcanonical density operator is then defined
exactly as before.

A macroscopic system will have a huge number of energy levels with a lot of degeneracy
and near-degeneracy. For such systems, we will assume that the degeneracy function 2 (E)
has the following properties for some range of energies:

o QE)> I;
e Q(E) is an increasing function of E;
e Q(F) is continuous and differentiable.

The third property cannot be literally true, of course, since 2 (E) takes only integer values.
However, because of the first property, changes in Q2 (£) can be small compared to Q2 (E).
This fact permits us to treat Q2 (E) as an effectively smooth function.
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The quantum entropy of the microcanonical state p(E) is
S = log Q(E). (8.58)
This is related to the thermodynamic entropy Sg of the macroscopic system:
So =kyInQ(E) =k;In2 S, (8.59)

where &k, = 1.38 x 10723 J/K is Boltzmann’s constant. (Equation 8.59 is the quantum
version of Eq. 1.3.) From thermodynamics, we recall that if heat is added to a system, the
changes in the energy E and thermodynamic entropy Sy are related by

dE = T dSp, (8.60)

where 7 is the absolute temperature. Therefore,

1 _ dSy
T  dE
d

= de—E InQ(E). (8.61)

Because Q2(F) is increasing, T > 0.

Exercise 8.37 The heat capacity C of a system tells how changes in temperature are related
to changes in energy: dE = C dT. For most systems, an increase in temperature corresponds
to an increase in energy, so C > 0. For such systems, show that

d2
—m Q@) <0. (8.62)

8.7 The canonical ensemble
]

Consider a system composed of three independent qubits. For each qubit, the energy levels
are the standard basis states, with £y = 0 and £ = €. The total energy for the three-qubit
system ranges from 0 to 3¢. Suppose we know that the total energy is €. The uniform
density operator on this eigenspace is

1
p" = 3 (|0,0,1><0,0,1I +10,1,0)(0,1,0] + |1,0,0)(1,0,0|>~ (8.63)

(The degeneracy function 2'*(¢) = 3.) Now consider the state of just one of these qubits:

(1) (123)

P =T p

= 2100l + 1+ 1)1 8.64
= 3 10001 + 3 11)(1]. (8.64)

A uniform density operator for the global system can yield a non-uniform density operator
for a subsystem, and the energy of the subsystem need not have a definite value even though
the overall system energy does.
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Exercise 8.38 What is the expectation of the energy of qubit #1? Explain why this makes
sense.

Exercise 8.39 Suppose we have five independent qubits like the ones above, with a total
energy of 2e. What is Q"**(2¢)? Given a uniform density operator for the entire system,
what is p? How about p®?

The microcanonical state of the previous section is an appropriate assumption when a
system is isolated. The system cannot exchange energy with its surroundings, and so its
energy must remain at one fixed value. But if it can exchange energy with its surroundings,
then it may have any one of many different energies, and we do not expect the density
operator to be uniform. How can we describe a situation like this?

Imagine a quantum system Q is in contact with another quantum system R. We assume that
the systems are nearly non-interacting, so that their energies are additive (see Section 6.2).
On the other hand, we do allow the possibility of a small interaction between Q and R
so that they can exchange energy over time. We further assume that R is a macroscopic
system (as described above), and that it is so much larger than Q that its properties do not
change significantly as it gains or loses energy from Q. (We call such a system R a thermal
reservoir.)

The total energy of QR is £, and we ascribe a microcanonical state to the joint system.
What is the resulting density operator? To find this, we need to find the projection [TV (E)
onto the eigenspace with energy E. Since the systems are non-interacting, we can find a
joint eigenbasis of product states of QR. Let { |n)(n| } be an energy eigenbasis for Q with
corresponding energy eigenvalues E,,. The QR basis elements are of the form |n) ® |¢>,,,a),
where |¢>n,a) is an energy eigenstate for the reservoir R with energy £ — E,,. Thus

ME) =Y n){nl ® |pna)dnal

n,o
= Z In)(n| @ I®(E — E,). (8.65)
n
The trace of this operator is Q@ (F), and so
1
P = X0 Z In)(n| @ I®(E — E,). (8.66)
n

The state of the subsystem Q is p@ = Tr,p®, which is
1
@ — ®(F —
PO = on 2L NE = Ey) In)nl. (8.67)
n

This is not a uniform density operator, since Q® depends on the energy of R.
Now we will estimate Q®(E — E,)). The energy E,, is a small fraction of the total energy
E, and so we can use the approximation

d
InQ®(E — E,) = In Q®(E) — E, 5l QP(E)

E,

= InQ(E) — 7,
B

(8.68)
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where T is the absolute temperature of the reservoir R. Exponentiating this to obtain Q®,
we arrive at

QUE) « _
0" = e > e BT k) (k. (8.69)
k

We can conveniently express this in terms of the Hamiltonian operator H? for system Q:
1
pQ = Z ©XP (—H‘Q’/kBT) , (8.70)

where Z = Tr exp(—H?/k,T), a normalization factor also called the partition function.

Equation 8.70 gives the density operator we would assign to a system that can exchange
energy with a thermal reservoir, in the absence of additional information. It depends only
on the temperature 7" and not on any other details of the reservoir. In statistical mechanics,
this situation is called the canonical ensemble; the canonical state is the equilibrium state
of a system that can exchange energy with its surroundings. Both the microcanonical and
canonical ensemble are idealizations. The microcanonical ensemble supposes the system
to be completely isolated, while the canonical ensemble supposes it to be just a tiny part of
a much larger isolated system.

As an example, consider our qubit with energies 0 and €, in equilibrium with a large
thermal reservoir at temperature 7. The canonical state is

1

p=> (|0)<0| 4 e€/hT |1)(1|). (8.71)

Exercise 8.40 Find the partition function Z for this state.

This looks like a mixture of |0) (with probability 1/2)and |1) (with probability e=¢/%s7 / Z).
If we take this view of p, then we see that the lower energy state |0) is always more probable
than |1), with the probabilities being nearly equal for &z T > €. However, we need not
assume that this is the actual probabilistic mixture of states for the qubit. The density
operator p by itself yields all statistical predictions for the system.

Exercise 8.41 For the qubit state p, calculate (E), (Z), and (X).

Here is a related example. Suppose we have a spin-1/2 particle like a proton in an external
magnetic field, which we take to lie in the z-direction. Then the Hamiltonian of the spin
is H = —yBS;, where y is the gyromagnetic ratio for the spin. The energy eigenstates for
this are || ) and |1), with energies +@ and —# , respectively. The canonical density

operator for the spin at temperature 7 is
1 -
p == (72T 1)1+ BT ), (8.72)

where Z = eVBW2kT | o—vBI/2keT
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Exercise 8.42 A spin is in a canonical state inside a magnetic field in the z-direction.

(a) Show that

(Z) = tanh ( "Bh) , (8.73)

where tanh is the hyperbolic tangent function.’
(b) Show that, fora given B, (Z) — 0as T — oo, and (Z) — las T — 0.
(¢) If the temperature T > y Bh/2k, derive the approximate expression
__ vBh

7) ~ .
) 2k, T

(8.74)

Exercise 8.43 A proton has gyromagnetic ratio y, = 2.675 x 108 s~!T~1. Suppose this
proton is in a 10.00 T magnetic field and is in equilibrium with its surroundings at room
temperature, about 7' = 300 K. Calculate (Z) and show that (Z) <« 1. How low would we
have to make T so that (Z) = 0.5? How about (Z) = 0.99?

An external magnetic field causes nuclear spins to tend to “line up” with the field, since this
state has a lower energy. However, for typical magnetic fields and ordinary temperatures,
this tendency is weak. Nuclear magnetic resonance experiments exploit this slight effect,
which works because a macroscopic sample of hydrogen contains a large ensemble of
protons. See Chapter 18 for more details.

Exercise 8.44 Both the microcanonical and canonical states of a system are time-
independent under the system’s internal dynamics. Explain.

Problems

Problem 8.1 Angles between Bloch vectors are not angles in Hilbert space, but the two
are related. Suppose pure states |) and |¢) satisty [(¢ |¢ )| = cos 6. Show that the Bloch
vectors for these states form an angle 26.

Problem 8.2 The characterization of pure state density operators in Exercise 8.25 does not
extend to higher-dimensional Hilbert spaces.

(a) Construct an explicit counter-example if dim 7 = 3. That is, find a Hermitian operator
psuch that Trp = 1 and Tr p?> = 1, but p # |¢) (| for any state |v/).

(b) For arbitrary finite dim , suppose we know that Trp = 1, Tr p> = 1, and Tr p> = 1.
Prove that p is the density operator for a pure state.

Problem 8.3 Suppose {(p«, |¥«))} and {(gg,
density operator p. (The notation {(py, |¥¢))} means that the state |v,) occurs with

¢,3))} are two mixtures that yield the same

5 The hyperbolic sine and cosine functions are sinhx = (¢* —e ™) /2 and coshx = (¢*+e)/2, respectively. The
hyperbolic tangent is the ratio sinhx/ coshx. If you are unfamiliar with the hyperbolic trigonometric functions,
consider it an additional exercise to work out a few of their basic properties, analogous to familiar ones for sin,
cos, and tan.
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probability p,.) By including states with probability zero, we may assume that & and § run
over the same range. Show that there exists a unitary matrix Ugyg such that

VPa Wa) = Uap \/4a |08)- (8.75)
B

(Hint: Append an additional system and find purifications that give rise to the mixtures as
mixtures of conditional states. Recall that every two purifications are related by a unitary
operator on the purifying system.)

Problem 8.4 The fidelity F between two pure states was introduced in Eq. 7.31. This can

be generalized to mixed states. Suppose ;0<1A> and p(zA> are two density operators for system

A. Then we define

2

F (o, p3) = max |(wi™ [wy™) 2, (8.76)

where |W/*P) is a purification of p{*”

over all choices of such purifications.

in the larger system AB, and the maximum is taken
6

(a) Show that, if the two A-states are pure, this definition reduces to Eq. 7.31.
(b) Show that F' = 1 if and only if the two states are exactly the same.
(c) If py = |¢1){(¢1]| is pure but p, is not, show that

F = (g1l py1¢2) . (8.77)

Hint: You will need the fact that

2
Do aBf| < (Zmﬁ) <Z|ﬁk|2>, (8.78)
k k k

with equality if and only if gy = Coy for all k. (This is just a form of the Schwartz
inequality of Eq. 4.31.)

(AC) (AC)

(d) Consider mixed states p; ' and p5" of a composite system AC. Show that
F (o7, p3") < F (07, 05) - (8.79)

The fidelity between the states can only increase if we discard the subsystem C. This
property is called the monotonicity of the fidelity. Devise a qubit example in which the
fidelity of the AC states is 0 but that of the A states is 1.

Problem 8.5 For a quantum system with basis {|k)}, consider all unitary operators of
the form

U= axlk)(kl, (8.80)
k

where « = £1. These operators flip some of the phases of the basis states |k) and leave
the rest unchanged.

6 Itis possible, but much more difficult, to derive an explicit formula for the fidelity F in terms of the two density
operators. The interested student is advised to consult a more specialized text in quantum information theory.
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There are 2¢ such phase-flipping operators, where d = dim . We consider a physical
process D that consists of choosing one of these unitary operators at random (with equal
probability 27¢) and applying it to an initial state of the system. This process can be viewed
as a map on density operators:

p — D(p), (8.81)

where D(p) is the final density operator, averaged over the random choice of U.

Write the density operator as a density matrix with respect to the basis { |k)}. Show that
the effect of D is to wipe out the coherences of this matrix while leaving the populations
unchanged. In other words, random phase-flipping produces complete decoherence.

Comment on the connection between this problem and Exercise 1.11 in Chapter 1.

Problem 8.6 A qubit system undergoes a decoherence process in the standard { |0), |1)}
basis, perhaps by way of the random phase flip in Problem 8.5. Show how this process
changes vectors in the Bloch ball.

Problem 8.7 Show that the no-communication theorem of Section 6.4 also holds for mixed
states of the composite system AB. (You will need to devise the mixed-state generalization
of the idea of conditional states.)

Problem 8.8 Let AB be a composite system with joint state |W®*®).

(a) For a B-state [8®) and the operators G® and K®, show that

(IB(B>| GY @ K® |\p<AB>> = GW <<,3(B)| K(B)) |‘~II‘AB’>. (8.82)

(b) If the joint state |W“?) evolves according to the joint Hamiltonian H*®, and the
subsystems A and B are non-interacting, then show

dp™ 1
Zt = —HY, "], (8.83)

In other words, the Schrédinger equation (Eq. 8.51) holds for the subsystem A.

Problem 8.9 A pseudo-pure state is a mixture between a uniform density operator on a
Hilbert space and the density operator for a particular pure state |i). It thus has the form

1_
™= (7’7) 1+ nly) vl (8.84)

where d = dimH. The parameter n is the “purity” of the state, and ranges between
Oand 1.

(a) Under unitary time evolution, show that the pseudo-pure state for [¢) with purity n
evolves into the pseudo-pure state for U [y/) with the same purity.
(b) Suppose A is an observable with zero trace. Show that for a pseudo-pure state

() =n(YIAlY). (8.85)

(c) Show that the qubit canonical state in Eq. 8.71 is pseudo-pure. What is its purity?
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For very noisy systems, like nuclear spins at room temperature, pure states may be
impractical to make. Pseudo-pure states are a convenient substitute for many purposes.

Problem 8.10 Suppose I1, and II, are projection operators onto subspaces 7, and 7p,
respectively. Show that I1, and IT, are orthogonal (in the sense of the operator inner
product of Eq. 8.36) if and only if the subspaces 7, and 7 are orthogonal in H.

Problem 8.11 A Werner state of two qubits has a density operator
1—2A
pr = 1V (W] + — (19400 ] + () (@4] + [0_)(O-]),  (8:56)

for a parameter 1/4 < A < 1 and Bell states |W.) and |®4) defined in Eq. 7.13. The
family of Werner states ranges from a pure entangled state (A = 1) to a uniform density
operator (A = 1/4) on QO ® Q.

(a) Rewrite p, in terms of |W_)(W_| and the identity operator 1 on Q ® Q.
(b) Suppose each qubit is subjected to the same unitary transformation U. Show that

UU) p, UL =np,. (8.87)

Since U may represent a rotation of a spin-1/2 state in three dimensions, we may say
that the Werner states are “rotationally invariant.”

(c) In Section 6.6 we used the Bell state |W_) (Werner state p;) to prove Bell’s theorem.
Repeat this analysis for the general Werner state p, and find an expression analogous
to Eq. 6.58. Over what range of A will the Werner state violate the CHSH inequality
(Eq. 6.54) for the spin measurements shown in Fig. 6.2?
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9.1 Open system dynamics
e —

Any quantum system Q in our laboratory is a subsystem of something bigger. Nevertheless,
we can often ignore the rest of the world and consider only states, dynamics, and measure-
ments pertaining to Q itself. When can we do this? That is the question that concerns us in
this chapter.

Consider two quantum systems, a system of interest Q and another, external system E.
We will suppose that Q can have any initial state, but E starts out in a fixed pure state
that we will call |0)." Thus, Q and E initially have no correlations with each other. The
two systems now interact, evolving via the unitary operator U on H". In the situation
described, we call Q an open system, and the external system E is its environment. The time
evolution of Q cannot in general be described by an “internal” unitary operator — that is, an
operator on H©. What sort of description is possible?

If the initial state of Q is |¢), then the final state of Q will be described by the density
operator TrgU ( [pY (P ® |0)(0|) U'. This is easily generalized to mixed initial states
of Q. If Q starts out in the state p, then its final state will be

o' ="TroU (o [0)(0] ) U" ©.1)

With both |0) and U fixed, the final Q-state p’ is a function of the initial Q-state. We can
write p’ = £(p), where £ is a map on operators defined by

£(G) = Ty U (G ® |0><0|) ut. 9.2)

Although we have expressed the function £ using the environment E, it is important to
remember that £ itself only refers to Q — that is, to the relation between initial and final
states of the open system. The function £ provides a way of describing the evolution of the
state of Q.

Exercise 9.1 Show that the map £ is linear and trace-preserving. That is, given operators
A and B and a scalar ¢, show that the following are true:

! The fixed initial state of E means that we are considering fixed “external conditions” for the evolution of Q. The
requirement that E is in a pure state is not very restrictive. If E were initially in a mixed state, we could always
regard E as a subsystem of some larger E’ in an entangled pure state.
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(@) £(cA) = cEA).
(b) £E(A+B) = EA) +£(B).
(c) TrEA) = TrA.

Exercise 9.2 A map on operators is said to be positive if positive operators are always
mapped to positive operators. Show that £ is a positive map. Why is this important?

The map £ is a linear operator that acts on operators, an object that is sometimes called a
superoperator.

Letus consider an example. Suppose that Q and E are both qubits and that their interaction
is described by the evolution operator

U =1® [0)(0] +X® [1){1]. (9.3)

(This is the CNOT operator of Chapter 18, where Q is the “target” qubit and E is the
“control” qubit.) The effect of this interaction on the Q-state will depend on the initial state
of the environment E:

e If the initial state of E is |0), then Q evolves unitarily according to the identity
operator 1.

e Ifthe initial state of E is |1}, then Q evolves unitarily according to the operator X.

e Forinitial E-states that are superpositions of |0) and |1), the evolution of Q is not unitary.

Consider the third case with an initial E-state |[+) = Lz(|0) 4+ |1)). Then the interaction

leads to a map F on Q-operators:

-

F(6) =TrUe (6 [+)(+] ) U, 9:4)

What is F? Any operator for qubit Q can be written as a combination of the outer products
[0)(0], [1)(1], |0)(1]|, and |1)(0]. Thus, we need only to determine how F acts on these
four operators. We can do this in a couple of simple exercises:

Exercise 9.3 Show that

1
Uel0.4) = 7= (10,0)+ |1.1) = 14,
1
Uello#) = —= (1L0)+ [0.1) = 194, 9.5)

where |®,) and |W, ) are two of the Bell states from Eq. 7.13.

Exercise 9.4 Use Exercise 9.3 to show that

1 1
F0)0D) = 51, F({) =51,
1 1
FA0KID = 5 X, FL0D) = 5 X, (9.6)

where X is the Pauli operator.
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This completely defines . To understand the implications of this, let us take our analysis
a further step. Section 8.4 shows how to represent qubit density operators geometrically as
vectors in the Bloch sphere. If p is represented by the Bloch vector a, then

1
p= 3 A4+ axX+ ayY + azl). (Re 8.37)
To understand F, we just need to know how it affects the Pauli operators.
Exercise 9.5 Show that F(1) =1, F(X) = X, F(Y) =0, and F(Z) = 0.

Thus, F has a very neat description: the Bloch vector (ay,ay,az) maps to (ay,0,0),
projecting @ onto the X-axis.

Exercise 9.6 Repeat this entire analysis if the interaction is
Us=1® [0)(0] +Z® [1)(1], .7

and E is initially in the state |4+). How is the Bloch vector of the initial Q state affected by
the resulting map on Q-states?

The map £ defined in Eq. 9.2 takes initial Q-states to final Q-states. Is there a way of
representing that map without an explicit reference to the environment E?

There is. Choose a particular basis { |e;)} for the Hilbert space of E. For each k define
the operator A by

Ar |p) = (ex| U9, 0), -8)

for any |¢) in H?. Although we have used the environment E and the interaction U in this
definition, the Ay operators themselves act on H© alone. We can use the { |ex)} basis to do
the partial trace in Eq. 9.2. If we act on a pure state |¢), then

(DY@ = Y (el U (I8)(@] ® 1000 ) U fex)

k

= " Aclg) (@l AL 9.9)
k

Since any density operator for Q is a linear combination of pure state density operators, we
have in general that

E(p) =Y ArpAl. (9.10)
k

This is called an operator—sum representation or Kraus representation of the map &£, and
the operators Ay are called Kraus operators.

Exercise 9.7 Pick a basis for the environment E and find an operator-sum representation
for the map F of Eq. 9.4.
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The Kraus operators satisfy a normalization condition. If p’ = E(|@){¢]) for a
normalized pure state |¢), then

Trp =Y (6| AjAI9)
k

= (¢| (ZA,W) 6. (0.11)
k

We must have Tr p’ = 1 for every normalized |¢), and thus

> AA=1. (9.12)
k

We can describe the map £ entirely in terms of Kraus operators A, satisfying Eq. 9.12. It is
often more convenient to describe £ in this way, without dragging in the whole environment
E and its dynamics. This can be a very good thing, since E might be very large and complex.
An operator—sum representation is a compact description of how E affects the evolution of
the state of Q.

Exercise 9.8 Explain why the unitary evolution of a density operator (Eq. 8.48) is a special
case of Eq. 9.10. In the unitary case, what is the significance of the normalization condition
in Eq. 9.12?

We have seen how to go from unitary evolution on the system QE to a map on density
operators of Q, represented by a set of Kraus operators. Problem 9.1 shows how to do the
reverse, starting with a set of Kraus operators on Q and arriving at a unitary evolution on a
larger system. In Appendix D, we outline the proof of an even more powerful result, which
we can state informally as follows. Suppose £ is a linear map on Q-operators. Then these
three conditions are equivalent:

e & represents a “physically reasonable” evolution for density operators on Q. (For a clear
definition of “physically reasonable,” see Appendix D.)

e & is given by unitary evolution on an extended system, as in Eq. 9.2.

e & has a Kraus representation (Eq. 9.10), where the Kraus operators are normalized
according to Eq. 9.12.

In short, the type of quantum dynamics we have described here is the most general type
that can be represented by a superoperator £.

9.2 Informationally isolated systems
______________________________________________________________________________|

We can now give a precise mathematical description of a heuristic principle that we
introduced as long ago as Section 1.2. There we said that a quantum system evolves
in a way that respects the principle of superposition — and thus could exhibit interference
phenomena — provided that the system is “informationally isolated.” By this phrase we
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meant that no record is produced anywhere in the Universe of the system’s exact state. But
what does it mean for a system to be “informationally isolated”?

Once again, we imagine that our system of interest Q is part of a composite system QE,
that E is initially in a fixed state |0), and that the overall evolution of QE is described by
the unitary operator U. For the input state vector |¢) for Q, the final joint state for QE is
W) =Ulg,0).

We can define an evolution map £ for Q according to Eq. 9.2, as before; but now we are
interested also in what happens to the external system E. We say that Q is informationally
isolated if there is no information transfer from Q to E in this process — that is, if the final
state of E is independent of the initial state of Q. That final E-state is

o =T (W) (W] =TroU (19)(6] @ 0)(0] ) U ©.13)

The system Q is informationally isolated if o is the same for every possible input state
of Q.

Assume that Q is informationally isolated. The final density operator o for E has eigen-
values A and yields a basis of eigenstates |ez). Since o is independent of |¢@), so are its
eigenvalues and eigenstates. For the initial |¢), we can construct a Schmidt decomposition
(see Eq. 8.26) for the final joint state |W):

W) = Vxlgsen), (9.14)
k

where the Q-states |gj) are orthonormal and are the only parts of the right-hand side that
may depend on |¢).
How do the |gi) kets depend on |¢)? For every k with A; > 0, define the operator V. on
Q-states by
1 1
Vilp) = —= (el U, 0) = —= (ex |¥) = Iqx) (9.15)
Ak Ak
Exercise 9.9 Compare the definitions of the Kraus operators A; in Eq. 9.8 and the Vi
operators of Eq. 9.15. How do they differ, and why?

The assumption of informational isolation of Q means that A; and |e;) are independent of
|¢), which shows that V, acts as a linear operator. Because the |gy)s are normalized, then
for any Vg,

(@IVIVe1d) = (qklqx) = 1, (9.16)

for all Q-states |¢). Thus, we know that V,th = 1, and so V; must be unitary (see
Problem 3.7).

Now imagine that we have Vi and V; with £ # [. The operator V;EVI must be unitary.
However, for any state |¢),

(@IVIVI 1) = (qklq1) = O, (9.17)

and so V};V; = 0, which is certainly not unitary. This contradiction tells us that there can
be only one Vj operator. The final E density operator o has only one non-zero eigenvalue
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A = 1 and so the Schmidt decomposition for |\W) has only a single non-zero term |g, e):
U1g,0) = 1¥) = Ig.e) = (VIV)) ® le). 9.18)

The state of the system Q has evolved from the pure state |¢) to the pure state V |¢), where
V is unitary.

We have shown that informational isolation of Q implies that the system Q evolves via
a unitary operator V. The converse is also true. Suppose we know that the net effect of
the joint evolution U on the initial state |¢,0) is to take the Q-state from |¢) to V|¢) for
some unitary V. The final state of QE must be a purification of V |¢), which is of the form
Vig) ® |e¢). In this notation, we have left open the possibility that |e¢> depends on the
initial Q-state |¢) — that is, that Q is not informationally isolated. However, consider the
final states for two different inputs |¢) and ]q&’):

Ul 0)=VIg) ® |ep),
Ul¢',0)=V¢')® [eg).
The inner product between these two states is
(9.01UTU[¢",0) = (@I VIV [9) fep [ey ).
(@]¢") = (@16} es [eg)- (9:20)
If (¢ |¢') # 0, it follows that |ey) = |eg).

(9.19)

Exercise 9.10 Show that this is also true in the case where (¢ |¢) = 0. (You will need a
third Q-state |¢”) that is not orthogonal to either |¢) or |¢’).)

In other words, the final state of E does not depend at all on the initial state of Q, so no
information is transferred from Q to E. Thus Q is informationally isolated. We have now
established an important result:

Isolation theorem. Suppose the composite system QE evolves according to the unitary
operator U, and that E is initially in some fixed pure state |0). Then the evolution of Q
itself is unitary if and only if Q is informationally isolated.

This is a deeper fact than may first appear, and it encompasses several of our previous
theorems. Here is an example:

Exercise 9.11 Use the isolation theorem to give yet another proof of the no-cloning theorem
of Section 7.2.

Exercise 9.12 Consider the interaction U, between qubits Q and E defined in Eq. 9.3. We
have seen that the Q-state evolution is not unitary when the initial state of the E qubit is
%( |0) + [1)). In this situation, find an explicit example to show that the final state of E
can depend on the initial state of Q — that is, that Q is not informationally isolated.

When Q is informationally isolated, we can describe its time evolution by a simple
unitary operator on H©. But even when this is true, the unitary operator may depend on
the particular state of the external system E. This is a significant conceptual point. A spin
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with a magnetic moment is not really dynamically isolated from its surroundings, since
it interacts with the external magnetic field. However, for a given external field, the spin
may be informationally isolated, with a time evolution described by a unitary operator that
depends on the field.

9.3 The Lindblad equation
|

For the open system Q, the map & represents the system’s evolution over a finite interval of
time. As Exercise 9.8 suggests, this is analogous to the unitary evolution of an information-
ally isolated system. As we have seen, there is also an “instantaneous” way of expressing
unitary evolution, via the Schrédinger equation for density operators:

cj{—f = %[H,p]. (Re 8.51)
Is there a generalization of this for open systems?

This is a delicate question. Suppose we consider the evolution of Q over a time interval
that includes the times 0 < #; < f,. In the unitary case, the operator U(¢{,0) describes
the evolution from 0 to ¢, while U(#, ¢;) describes the evolution from ¢; to #,. The whole
interval from 0 to #, is described by

U(t2,0) = U(ro, 1)U(#1, 0), (9.21)

(see Eq. 5.10). In other words, the time evolution over a larger interval of time is just a
composition of separate unitary time evolutions over the subintervals composing the larger
interval. We arrive at the differential equation in Eq. 8.51 by considering how the state of
Q evolves over very short intervals at various times.

What about open systems? The existence of the evolution map £ depends on our assump-
tion that the system E begins in a fixed initial state, independent of the state of Q. But as
Q and E interact, they do become entangled. If our assumption about the E-state holds at
the time ¢ = 0, then we can find a map & that tells how the state of Q evolves from 0 to
t1, and another map &, that describes the evolution from 0 to #,. Since Q and E are most
likely in an entangled state at t = #;, however, no such map exists to describe how the
Q-state changes from ¢; to #,. The evolution of an open system is not in general a sequence
of separate stages. Therefore, we should not expect to be able to arrive at a differential
equation describing that evolution in the manner of Eq. 8.51.

Having explained carefully why a generalization of the Schrodinger equation for open
systems is not feasible, we will now proceed to derive such a generalization, called the
Lindblad equation. How can we possibly justify such a contradictory approach?

To begin with, our derivation will simply establish the necessary form of the Lindblad
equation, without making any claim that it is exactly applicable to any given system.
Moreover, the Lindblad equation may be a good effective model for the evolution of the
Q-state in some physical situations, even if we cannot take it to be an exact description.
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Our equation will be a good model if the environment E has internal dynamics that “hides”
any entanglement with Q as quickly as it arises.

Consider the example of an atom Q in the surrounding electromagnetic field E, which
is initially in the “vacuum” (zero-photon) state |0). If Q emits a photon into E, it quickly
propagates away. Once this has happened, the immediate vicinity of Q again appears to be
empty, and any entanglement of the atom’s state with the distant photon has no effect on
the subsequent behavior of Q. It may be a reasonable approximation to suppose that, at any
point in time, the evolution of Q proceeds as if the environment E is in a fixed uncorrelated
state.

Now we derive the form of the Lindblad equation. Over a short interval of time &z, the
state of Q evolves from p to £(p) = p + p, where §p is small.” The map & is given by
an operator—sum representation:

p+3p=> ApAl. (9.22)
k
We assume that one of the Kraus operators (call it Ag) is nearly the identity operator 1,
while the other terms in Eq. 9.22 are of order O (§¢). To this order we write

Ap =1+ (Ly — ih)se,
Ar = L6, 9.23)

where £ 7# 0. (From this point on, we will consider the £ = 0 case separately, and treat
k as ranging over all other values.) The operators Ly and h are Hermitian. The terms in
Eq. 9.22 are

AgpAl = p + (Lop + pLlo — ihp + iph) 81+ O (6t2> ,
AcpAl = Lipl] 5t. (9.24)

To first order in 4z, therefore,

1

sp = <{L0, P+ ;[h, pl+ Z Lka,t> 8t. (9.25)
k

(You should recognize the commutator [-,-] and the anticommutator {-,-} of various

operators.) Our differential equation for p is

dp

1
= o.p)+ —Th o]+ 3 S Liply. (9:26)

k
To finish our derivation, we need two more ingredients. First, by comparing our results
so far to Eq. 8.51, we recognize that the Hamiltonian of the open system Q must be H = hh.
This Hamiltonian may include both the internal dynamics of Q and correction terms due to
the interaction of Q with its environment. The following exercise completes the analysis:

2 The physical assumptions behind our derivation can be expressed this way: 8 < T, the timescale over which
changes in the Q-state take place; but §¢ > T, the timescale over which entanglement is “lost” in the dynamics
of system E.
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Exercise 9.13 Since Trp = 1 for all times, the trace of ‘2—’; must be zero whatever p may
be. Show that this implies that

1 +
Loz—EE:Hu. (9.27)
k
We arrive at the Lindblad equation:
dp 1 1
=l ) (Lkpt,i - E{L,Itk,p}) : (9.28)
k
-1/2.

The L. are called Lindblad operators. These operators have units of (time)

How do we know what Lindblad operators to use for a given physical situation? Since
we regard the Lindblad equation merely as a plausible model of open system dynamics,
valid only when the entanglement is rapidly “lost” in the environment E, we will not try
to derive the Lindblad operators from the overall Hamiltonian evolution of QE. Rather, we
will choose the L operators in a pragmatic way to describe the dynamical phenomena for
Q that we wish to model.

As a first example, suppose Q is a two-level atom with ground state |0) and excited state
[1). Over time, the atom decays to its ground state, perhaps by the emission of a photon.
This is not a unitary process, since any initial state should eventually approach |0). To
model this process with the Lindblad equation, we will need Lindblad operators to produce
the transition |1) — |0). We therefore consider a single Lindblad operator

L= A |0){1], (9.29)
where A is real. For simplicity, we shall take the system Hamiltonian H = 0. The Lindblad
equation with a single Lindblad operator is

dp

.1 .
= =Ll — = (LTL L7L). 9.30
o o 2( ptp ) (9.30)

How does the state of the two-level atom evolve under this equation?
Noting that L'L = AZ|1)(1], our Lindblad equation becomes

dp

=A2(<1|p|1> 0)(0] —3(|1><1|p+p|1><1|)> 931)
dt 2 ' '

To solve this, we write the density operator using its matrix elements with respect to the
standard basis:

P = poo 10)(0] + po1 10)(1] + p10 [1)(O] + p11 [1)(1], (9:32)

where pgg, etc., depend on time. From Eq. 9.31 we obtain the system of differential

equations
d ( poo po1 ) 2( pir - —po1/2 )
— =A . 9.33
dt( P10 P11 —p10/2 —p11 ©-33)

Exercise 9.14 Fill in the steps to derive Eq. 9.33 from Eq. 9.31.
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Exercise 9.15 Solve the system in Eq. 9.33 and show that

( 00 (®)  po1(?) >
p10(®)  p11(0)

1= o @ gy (0)e=A2
p10(0)e 212 p0)e A )

Any initial density operator will over time approach the density operator [0)(0|. The
population p; 1, which is the probability that the atom would be found in the state |1), decays
exponentially with time constant T = 1/A2. The off-diagonal elements (coherences) also
decay exponentially, with a longer time constant 2.

(9.34)

Exercise 9.16 How would this result change if we introduce a Hamiltonian H = € |1)(1]
for the atom Q? (This Hamiltonian gives |0) zero energy and |1) an energy €.)

Here is another qubit example. If we randomly flip the relative phase of |0) and |1), then
the effect will be to wipe out the coherences in the density operator p. This “decoherence”
process was analyzed in Problem 8.5. The relative phase flip could be accomplished by
the Pauli Z operator. Thus, to model a continuous decoherence process using the Lindblad
equation, we again introduce a single Lindblad operator L = AZ. Since 7% = 1, the Lindblad
equation (Eq. 9.30) has a very simple form:

ar _ p2 (Zpl — p). (9.35)
dt
This can be solved as before.

Exercise 9.17 Show that under Eq. 9.35 the density operator populations pgy and pi;
remain constant, while the coherences pg; and p1¢ decay exponentially with time constant
T =1/Q2A?).

As the time t — o0, the coherences are suppressed.
Further examples of Lindblad dynamics can be found in the problems at the end of the
chapter.

9.4 Heat and work
]

Our discussion of open system dynamics can shed some light on the basic ideas of ther-
modynamics. A thermodynamic system can exchange energy with its surroundings in two
ways, called heat and work. The heat dQ transferred to the system represents energy
changes in the microscopic degrees of freedom of the system. The work @ W done by the
system is associated with changes in its external parameters — changes in volume, external
magnetic field, etc. The net change in the thermodynamic energy Ey of the system is

dEy = dQ — aw. (9.36)

This is known as the First Law of Thermodynamics. The signs in Eq. 9.36 — heat trans-
ferred o the system, work done by the system — are a customary, if slightly confusing,
convention. The symbol d denotes an inexact differential. The heat and work involved
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in a process generally depend on the exact “path” that the process follows, not just the
beginning and ending states of the system. The net change in the energy, on the other hand,
depends only on the starting and ending states, so we represent that change by an exact
differential dEy.

The thermodynamic system is a quantum system whose state is described by a density
operator p. The thermodynamic energy of the system is the expectation value of its energy:
Eg = (E) = Tr pH, where H is the system Hamiltonian. Adopting the convenient “dot”
notation for time derivatives, the rate of change of Ey is

Eg = Tr pH + Tr pH. (9.37)

Heat transfer is associated with changes in the microscopic state of the system, while the
external parameter changes in work affect the system by modifying its Hamiltonian. Thus,
we can identify the two terms in Eq. 9.37 as the heat transfer rate Pg and the work rate Py :

Pop=TrpH and Py = —TrpH. (9.38)

These rates are defined so that @Q = Ppdt and @ W = Pyydt for a small interval of time d.
They have units of power (J/s).
Suppose our system is informationally isolated during some process. The time evolution
will be unitary, described by a (possibly time-dependent) Hamiltonian according to
dp 1
— = —[H, p]. Re 8.51
5 = plthel (Re 8.51)
Then we have

1 .
Ep = 71Tr (HoH — pH?) + Tr pH. (9.39)
i

But TrHpH = Tr pH?, so there is no heat transfer. Thermodynamically, a process in which
a system remains informationally isolated is also an adiabatic process.’

A particularly simple case arises when the Hamiltonian changes suddenly, much more
rapidly than p changes. No heat is transferred in such a process. If the Hamiltonian changes
from H, to Hy, the net work done by the system is

W = —AEy = Tr p(Hy — Hp). (9.40)

We are sometimes interested in the external work done on the system in a transformation.
We shall denote this by W = — . A sudden change in the Hamiltonian requires external
work W = AEy.

Imagine that the system evolution can be modeled by the Lindblad equation, Eq. 9.28.
The work rate for the system is still Py = —Tr pH, and the heat rate is given by the
Lindblad operators L.

3 The term adiabatic is also used in quantum theory to describe a gradual change in the Hamiltonian of an
informationally isolated system. According to the adiabatic theorem, a system in an energy eigenstate will
“follow” a slow change in the Hamiltonian of the system, remaining in an energy eigenstate at every stage. This
use of the term adiabatic is related to, but distinct from, the thermodynamic usage here. We apply the term even
to processes involving rapid changes in H, provided there is no heat transfer.
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Exercise 9.18 Show that
1
Po=-Trp (Z LETH, Ll + [L, H]Lk> ) 9.41)
2 k

One special case is of interest. If the Ly operators commute with the Hamiltonian H, then
Po = 0. No heat is transferred, so the process is adiabatic in the thermodynamic sense.
However, the system is not at all informationally isolated from its environment. The typical
effect of this type of evolution is to destroy coherences between energy eigenstates of H.
Here is a simple example.

Exercise 9.19 A qubit evolves by the Lindblad equation with Hamiltonian ¢Z and a single
Lindblad operator AZ. Show that the system’s evolution is thermodynamically adiabatic,
but that the system is not informationally isolated.

A slightly more elaborate example is given in Problem 9.8.

The interaction of a thermodynamic system with a thermal reservoir brings it to thermal
equilibrium, leading to the canonical state given in Eq. 8.70. This process could be modeled
with an appropriate set of Lindblad operators. Suppose the system continues in contact with
a reservoir at fixed 7 while its Hamiltonian undergoes a very slow change. If this happens
slowly enough, the system will essentially remain in a canonical state at any given moment:

1
p() = Z0 exp (—H(0)/kT), (9.42)

where we recall the partition function Z = Tr exp(—H/k,T). If the system continually
remains in equilibrium with the reservoir, we say that it undergoes an isothermal process.
The isothermal work rate is

TrH e /T Z d
Py = = kBTE = (ksTIn Z). (9.43)
We define the free energy Fyp = —k;T In Z. This is a function of the system’s (canonical)
state, not the process by which it arrived at the state. The work done by the system in a
small interval of time is thus @ W = —dFj. For an isothermal process, the total work done
by the system is given by the net change in the free energy function:

W = —AF,. (9.44)

(Again, the external work required is W = —W = AFy.)

Equation 9.44 is reminiscent of the relation between the work done by forces in a
mechanical system and the change in the potential energy function for those forces. For this
reason, the free energy Fy is called a thermodynamic potential for isothermal processes. We
will return to this subject, armed with more powerful mathematical tools, in Section 19.5.
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9.5 Measurements on open systems
|

A quantum system Q that undergoes a measurement is certainly open. However, we have
found that we do not need to provide a detailed description of the measuring apparatus
in order to figure out the probabilities and expectations of measurement results. That is,
the effect of the measurement can be represented using vectors and operators for Q itself.
This is very much in the spirit of our discussion of open system dynamics in the previous
sections. The map £ describes how Q’s own state is changed by its interaction with the
environment, without giving any details about how the environment itself is affected. In this
section, we will delve a little deeper into the mathematical description of the measurement
process.

Our most elementary type of measurement is the basic measurement, in which each
outcome k is associated with an element |k) of an orthonormal basis for the Hilbert space
H@. If the system is in the pure state |y), then the probability that the outcome k occurs
is p(k) = [{k |y )|?. In terms of the density operator p = |¥) (],

pk) = (k| p |k) = Tr p Iy, (9.45)

where Iy = |k)(k| is the projection onto the basis state |k). In the measurement of a
real-valued observable, the basis state |k) is associated with a numerical value 4. The
same basic probability rule also holds for mixed states.

We have also discussed incomplete measurements, which correspond to observables with
degeneracy. Each outcome « is associated with a projection operator I1,. For a real-valued
observable, this is the projection onto the eigenspace of eigenvalue 4,. The probability of
measurement outcome « is

ple) =Trp g, (9.46)

(compare Eq. 3.118). The projection operators IT, map to orthogonal subspaces and satisfy
the completeness relation

dom, =1 (Re 3.119)
o

The role of the projections I, in the measurement process was further explored in
Section 4.3.

Again, note that these rules refer to Q itself and not to the details of the external apparatus
that performs the measurement.

Now suppose that Q is part of a larger system QE, where the external system E is in the
fixed initial state |0). We make a measurement on the joint system QE described by a set
of projection operators I1,. If Q is in the state p, the probability of the outcome « is

p@ =T (p @ 10)(0] ) M. (9.47)

We can think of this in a different way, as a measurement procedure applied to Q only.
The external system E is to be regarded merely as a part of the apparatus for making this
measurement. What sort of mathematical description can we give for this? For each o,
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define the Q-operator E, by the partial inner product

By = (0] Iy |0) . (9.48)
It follows that

pa) = Tr pk,. (9.49)

This has the same form as Eq. 9.46, but the operators E, are not necessarily projection
operators. The following exercise, however, tells us two important facts:

Exercise 9.20 Use Eq. 9.48 to prove:

(a) E, is a positive operator.
(b) Y, Ex = 1. (Compare Eq. 3.119.)

Nothing we have said involves any real extension of the quantum theory. The measure-
ment we perform on QE is one of the usual sort. But if we regard E as part of the apparatus
and treat the process as a measurement on Q alone, we are forced to consider it as a new
and more general type of measurement. The possible outcomes « of the procedure are
associated with positive operators E,, rather than projections. These outcome operators
sum to the identity operator 1. The rule for calculating outcome probabilities is given
in Eq. 9.49. We call this new type of measurement procedure a generalized or positive
operator measurement, to distinguish it from the ordinary or projection operator variety.

A generalized measurement can differ from an ordinary one in many ways. For example,
suppose that dim H© = d. Then a basic measurement on Q has exactly d possible outcomes,
and a projection operator measurement has no more than d. But a generalized measurement
is really a measurement on the larger system QE, and so may have more than d possible
outcomes. Here is an example of a four-outcome generalized measurement on a qubit:

Exercise 9.21 Suppose Q and E are qubits and E is initially in the state |4) = Lz( [0) +

[1)). We make a basic measurement on QE using the following basis:

10,0) W),

9.50
11, 1) w-), 650

where |W1) are two of the Bell states from Eq. 7.13. Verify that these do indeed form an
orthonormal basis, and then determine the outcome operators for the resulting generalized
measurement on Q.

Now suppose that we wish to describe the most general possible type of measurement
procedure. Such a procedure would be characterized by a set of outcomes «, each with a
corresponding rule that takes the quantum state p as input and calculates the probability
p(a) as output. We could denote this function by p(«|p). What sort of probability rule is
possible?

We first note that p(«|p) should be linear in p. Consider an ensemble of systems, a
fraction p; of them in the state p; and the remaining p, of them in the state p,. The overall
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ensemble is described by p = p1p + p2p,. If the same measurement is made on each
member of the ensemble, then for a given outcome «,

plalprpy +p2p;y) = prp(alpy) + paplalp;). (9.51)

We conclude that the function p(«|p) must be a linear functional on density operators.
Exercise 9.22 Explain this reasoning in more detail.

A linear functional on the operator Hilbert space B (H) is always given by an operator
inner product with some element in 5 (H). By Eq. 8.36, we conclude that there must exist
operators E, such that for each «

p(a|p) = Tr pkE,. (9.52)

This is just the same as Eq. 9.49. It remains only to show that the outcome operators E,
satisfy the appropriate properties.

Exercise 9.23 From the fact that probabilities are non-negative and sum to unity, show that
the outcome operators E, must satisfy the two properties in Exercise 9.20.

Although we have derived the positive operator measurements by thinking about projection
operator measurements on a larger system, we now see that this generalized framework
will suffice to describe any sort of experimental procedure.

9.6 Information and open systems
I ————————

Let us review our discussion by considering a prototype of a quantum physics experiment.
We prepare a system Q in a state |¢) and then subject it to time evolution described by
the unitary operator U, after which the state is |¢’> = U |¢). At this point we make a basic
measurement using the basis { |k)}, obtaining the result £ with probability |(k |¢/ )|2

The experiment thus consists of three stages: state preparation, dynamical evolution, and
measurement. In each, we consider Q “in itself,” without reference to any external systems.
But an external system E may intrude at any stage, or indeed at all three. How do we handle
this? One possibility is simply to include E in the system, and describe the preparation,
dynamics, and measurement of QE. In many cases, this may be the best and easiest thing
that we can do. But if the external system is only involved in one of the three stages, we
can get away with something simpler:

e Suppose E is involved only in the preparation stage, so that QE is prepared in some
joint state |W). Then Q and E do not interact afterwards, and the final measurement
only involves Q. Then we can adopt a generalized description of the initial state of Q,
ascribing to it a density operator

p = Try W) (¥]. (9.53)
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This evolves according to p — p’ = UpU', and the result k occurs in the final
measurement with probability Tr p’ |k) (k]| .

e Suppose E is not involved in the preparation stage, but instead is always in a fixed initial
state |0). Systems Q and E do interact during the dynamical evolution; but since our final
measurement only involves Q, we need only to know the final state of that subsystem.
In this case, we can adopt a generalized description of the dynamics of Q. If the initial
state is given by the density operator p, we get

p—> p' =E(P) D). (9.54)

Again, the final result k occurs with probability Tr o’ |k) (k| .

e Finally, suppose that E has a fixed initial state and does not interact with Q at all during
its time evolution, but that the final measurement is actually a joint measurement on QE.
Then we can adopt a generalized description for this measurement process. If the final
state of Q is p’, then the outcome & occurs with probability

plk) = Tr p' Ey, (9.55)
where Ey is a positive outcome operator.

In each case, the fact that E is involved in only one stage of the experiment allows us to
arrive at a generalized description of that stage that only refers to Q itself. Density oper-
ators, general evolution maps, and positive operator measurements are the mathematical
expressions of the preparation, time evolution, and measurement of open quantum systems.

All of this generalization raises important issues. At various places in this book we have
derived results about the information properties of quantum systems. These have been
important guiding principles for our understanding of quantum states. A list of the key
theorems would certainly include:

the basic decoding theorem of Section 4.1;

the basic distinguishability theorem of Section 4.2;
the no-communication theorem of Section 6.4; and
the no-cloning theorem of Section 7.2.

Our original proofs of these theorems involved pure states, unitary time evolution, and
basic measurements. In Section 8.3 and Problem 8.7, we adapted all but the last for mixed
states. How well do these results hold up when we consider the generalized forms of time
evolution and measurement appropriate for open systems?

All four of our key theorems still hold good in the open system context. A close review
of the original proofs will show why. In each case, we could append an external system
E in the state |0) and allow any measurement or dynamical evolution to involve E. For
the basic decoding and distinguishability theorems, our proofs explicitly allowed that the
measurements might take place in a larger Hilbert space. The no-communication theorem
is unchanged by the involvement of an external E (as pointed out in Exercise 6.26). The
details are left to the following exercises.
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Exercise 9.24 Review the proof of the basic decoding theorem in Section 4.1, and show
that it still holds if we allow a measurement that involves an external system E. What if we
also allow mixed states, as in Section 8.3?

Exercise 9.25 Review the proof of the basic distinguishability theorem in Section 4.2 and
show that it still holds if we allow a measurement that involves an external system E. What
if we also allow mixed states, as in Section 8.3?

Exercise 9.26 Explain why the availability of an external system E for Alice does
not alter the no-communication theorem of Section 6.4. State a general form of the
no-communication theorem for open systems.

The no-cloning theorem is even easier to generalize. Since we can always regard an
external system E to be part of the cloning machine M, the theorem stands for open systems
without any changes.”*

We have now established our key information theorems for a system Q that interacts
in a unitary way with an external system E. But are the resulting generalized dynamical
evolution and measurement processes the only possibilities? Or could we imagine even
more generalized dynamics and measurements, for which our information results could
fail? Within quantum theory, the answer is (roughly speaking) that no further generalization
is possible; therefore, the various information theorems are secure. The technical details of
this answer may be found in Appendix D.

Problems

Problem 9.1 Consider a quantum system Q described by a Hilbert space H.

(a) Suppose we are given a subspace 7 of H and a linear map from kets in 7 to others
in H: |[¢) — |gﬁ’> (linear). This map preserves inner products of vectors in 7,
so that <¢’ W’ ) = (¢ |¥). Show that there exists a unitary operator V on H such
that |1/// ) = V|y) for any |¢) in 7. Hint: Use the fact that any orthonormal set of
vectors may be extended to a complete basis.

This allows us to build up a “unitary-like” map on a subspace into a full unitary
operator — a handy fact in some mathematical arguments. For example:

(b) Start with a map £ on density operators for Q that has the operator—sum form (Eq. 9.10)
for a set of Kraus operators satisfying Eq. 9.12. Append a system E in state |0) and
consider the following linear map on kets:

W) ® 10) — > (Aclv)) @ lex), (9.56)
k

for an orthonormal set of E-states |e;). Show that there exists a unitary U that
does this.

4 The generalization of the no-cloning theorem to mixed states — called the no-broadcasting theorem — is outside
the scope of this book.
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In other words, every £ on Q that has a normalized operator—sum representation can be
realized as the result of unitary evolution on a larger system QE.

Problem 9.2 Given systems Q and E with an interaction U, show that Q is informationally
isolated for every initial E-state if and only if Q and E are dynamically isolated. Note: “if”
is easy, but “only if”” is much harder. For each initial E-state |x), we have

Ulg, x) = Vy 18) ® |ey), (9.57)

where the Q evolution operator V, and the final E-state |eX) might depend on |yx), but
not |¢). The essential trick is to adjust the phases of the ]e x) states so that the corresponding
V, operators are all the same.

Problem 9.3 Suppose Q interacts with an external environment E according to Eq. 9.1, and
suppose the net effect of this is to leave every pure initial Q-state fixed: |@)(p| — |d) (@] .
Show that the same dynamics will also preserve any entangled state between Q and a
bystander system R. In the language of Section 7.5, an evolution that preserves Type |
quantum information will also preserve Type II quantum information.

Problem 9.4 Describe the qubit density operator p by its Bloch vector a. Express the
Lindblad equation for a decaying atom (Eq. 9.31) as a system of differential equations for
the components of @, and solve this system. Compare your results to those in Eq. 9.34.

Problem 9.5 Suppose that a two-level system Q is subject to both decay and excitation
processes — that is, both |1) — [0) and |0) — |1) may occur as a result of the interaction
of Q with its environment. (This could happen, for example, if the environment of an
atom already contained photons that could excite it.) Model this situation using a Lindblad
equation with two Lindblad operators:

L= A_[0)(1], L = A4 [1)(0]. (9.58)
For simplicity, take the Hamiltonian H = 0.

(a) Write down and solve the Lindblad equation for the evolution of the density operator
p for Q.

(b) Ast — oo, show that the density operator p must approach a particular equilibrium
density operator p,,. Show that p., is diagonal in the standard basis and find its
diagonal elements in terms of the A4 coefficients.

Problem 9.6 Suppose £ is a map describing the evolution of an open quantum system,
represented by n Kraus operators Ay.

(a) Let Uy be an n x n unitary matrix of complex numbers, and define the operators

B =) UuA:. (9.59)
)

Show that the By operators form an operator—sum representation of the same map £.
(b) How is Uy, related to a change of basis for the partial trace in Eq. 9.2?
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(c) Given a set of Lindblad operators Ly, show that another set of operators

K = Unly, (9.60)
]

gives rise to an equivalent Lindblad equation.

The equivalent representations for the time evolution of an open system are sometimes
called different unravelings of that evolution.

Problem 9.7 A qubit with a Hamiltonian &Z is in thermal equilibrium with a reservoir at
absolute temperature 7.

(a) Find the canonical state of the qubit. Express this as a Bloch vector a.

(b) Suppose the Hamiltonian suddenly changes to éX. How much work is done by the
system? (Negative work means that the external agency that changed H had to do work
on the system.)

(c) Suppose instead that the Hamiltonian is slowly changed from ¢Z to X, so that the
process is isothermal. How much work is done by the system? Explain the difference
between your answers in parts (b) and (c).

Problem 9.8 A system has a fixed Hamiltonian H with energy eigenvalues E, and eigen-
states |n). Its interaction with the environment is modeled by Lindblad operators of the form
A |n)(n| (one for each |n)). Show that the interaction of the system with its environment
involves neither work nor heat transfer. Also show that the effect of the Lindblad evolution
is to suppress the coherences between the |n) basis states.

Problem 9.9 Even though the operator—sum representation gives an “internal” view of the
dynamics of an open system, we can still learn something about the environment from the
A operators. For a given evolution map £ and an input state p, define Wj; by

Wi = TrALpA]. (9.61)

Show that these numbers are the matrix elements of the final density operator of the
environment E, if the initial state of E is pure (as in Eq. 9.1).

To make this more definite, suppose the Kraus operators for a qubit system are al and
b1, where a and b are real parameters such that > 4+ b*> = 1. First, confirm that this pair
of operators is normalized according to Eq. 9.12. Then find the eigenvalues of the final
environment state when the input qubit states are |0)(0], |+)(+], and %1.

Problem 9.10 Suppose two similar systems R and Q are initially in a maximally entangled
state |W®?), System Q undergoes time evolution involving interaction with the environment
E, initially in |0®). System R, meanwhile, has no external interactions or internal dynamics
of its own. Show that the following two conditions are equivalent:

e The final (mixed) state of RE is a product state — that is, there are no correlations between
Rand E.
e The evolution of Q is unitary.

Comment on the relation, if any, between this result and the isolation theorem of Section 9.2.
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Problem 9.11 Return to the two-beam interferometer example of Section 2.1, as extended
in Section 4.3. The interferometer has basis states |0) (no photon), |u) (one photon in the
upper beam, and |/) (one photon in the lower beam). Suppose a measurement is made
on the interferometer system using non-ideal photon detectors. These devices are plagued
with two imperfections:

e The detectors are not 100% efficient. If a photon is present, there is a probability » that
the detector does not “click” at all.

e The detectors are also noisy. Even if a photon is not present, there is a probability v that
the detector will click anyway.

Show how to represent the measurement procedure by a set of positive operators in the
cases where (a) only one detector is used, on the upper beam; and (b) a detector is used on
each beam. The second case has four possible outcomes, even though dim H = 3. Why?



A particle in space

10.1 Continuous degrees of freedom
e —

The quantum systems we have discussed so far have been described by finite-dimensional
Hilbert spaces. Basic measurements on such systems have a finite number of possible
outcomes, and a quantum state predicts a discrete probability distribution over these. Now
we wish to extend our theory to handle systems with one or more continuous degrees of
freedom, such as the position of a particle that can move in one dimension. This will
require an extension of our theory to Hilbert spaces of infinite dimension, and to systems
with continuous observables.

There is a philosophical issue here. How do we know that there really are infinitely
many distinct locations for a particle? The short answer is, we don’t. It might be that
space itself is both discrete (at the tiniest scales) and bounded (at the largest), so that the
number of possible locations of a particle is some very large but finite number. If this is
the case, then the continuum model for space is nothing more than a convenient approxi-
mation. Infinity is just a simplified way of describing a quantity that is immense, but still
finite.

In this section, we will adopt this view of infinity. We will imagine that any continuous
variable is really an approximation of a “true” discrete variable. This idea will motivate
the continuous quantities and operations that we need. But we can always appeal to the
underlying finiteness to resolve any mathematical perplexities that arise.

Continuous probability

Suppose we have a discrete probability distribution Py (k), where k takes on 2N + 1 distinct
integer values from —N to +N. The real variable x; takes on 2N + 1 values that are
symmetric around zero and are evenly spaced by Ax. Thus, x;z = kAx. The values of xi
range between —L and +L, where L = N Ax.

We are interested in the situation where the values xj are very closely spaced and have
a wide range — and, in the limit, can take on any real value. We will take this limit in a
careful way. Fix a parameter £ (with units of length) and let

Ax = T (10.1)

As we take N — 00, Ax becomes arbitrarily small. The limiting size of the x; values
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L:N%:A/ﬁ—mw. (10.2)

Thus, in the limit N — o0, we can regard the xxs as values of a continuous variable x that
ranges over the entire real line.

Instead of the N'th probability distribution Py (k), we will be interested in the N'th density
function

Pr) = VB (10.3)
Ax
We restrict our attention to families of probability assignments Py (k) for which, as N — oo,
the density functions Py (xx) converge to a continuous real function P (x). This means that,
for large values of N, no particular k£ can have a large probability. Furthermore, nearby
values of k (with nearby values of x;) must have probabilities that are about equal. The
limiting function P(x) is called a probability density.
Each property of the continuous probability density P (x) can be viewed as the limiting
case of the corresponding properties of the discrete distributions Py (k) that converge to it.
For instance, the normalization of probability is

+L
1= ZPN(k) = Z Py (xp) Ax. (10.4)
k xp=—L
As N — 00, this sum becomes an integral over x:
+00
1= P(x) dx. (10.5)
—0oQ0

Similarly, suppose we wish to find the probability that the value of x; is in the interval
[a, b]. We have

Pr(x; € [a,b) = Y Pn()Ax, (10.6)

x€la,b]

which in the limit becomes
b
Pr(x € [a,b]) = / P(x) dx. (10.7)
a

Finally, consider some function F'(x;) of the real variable x;. The expectation value of this
function is

+L
(F) = ZF(xk)PN(k) = Z F(xx)Pn () Ax. (10.8)
k xp=—L
This also becomes an integral expression in the limit:
+00
(F) = / F(x)P(x) dx. (10.9)
—00

What we have found is that for “regular” families of distributions — i.e. those that are
not too concentrated on particular values and which are not too rapidly varying — we can
replace discrete quantities by continuous ones for large N. Finite sums are replaced by
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integrals. In the limit, the probability that the variable x takes on any specific value is zero.
Only intervals of non-zero length can have non-zero probability.

Quantum states and wave functions

We can take the continuous limit for quantum states in a similar way. For each N, we have
a quantum system described by the Hilbert space Hy of dimension dimHy = 2N + 1.
There is an observable Xy on this system with eigenstates |k) and eigenvalues xj, where as
before k ranges from —N to +N and the values of x; are evenly spaced by Ax. Once again,
we will let N — oo and Ax — 0 according to Eq. 10.1.

Instead of the orthonormal eigenstates |k), we will find it more convenient to consider
the related vectors

|k)
VAX

These are all orthogonal like the |k)s, though their magnitudes diverge as Ax — 0. Rather
than a sequence of distributions Py (k), we will consider a sequence of state vectors |yy)
in Hy. In the X eigenbasis, these have components (k [y ). But we are more interested
in the functions

b)) = (10.10)

k
Yy () = % = (xk Y ). (10.11)

We require that the quantum states [y) yield “well-behaved” functions ¥y (xz), so that
in the limit N — oo we arrive at a continuous limiting function ¥ (x). That is, for large
N, the probability amplitude (k |4y ) for any particular |k) is small, and the amplitudes for
nearby values of k are nearly equal.

As before, we will rewrite sums over the index k as sums over the eigenvalues x, and
then interpret these sums as integrals in the continuum limit. That is, our approach can be
symbolically written as

+00
Z(...) = Z(...)Ax — f (--+) dx. (10.12)
k Xk e

However, we must include a caveat. In the large-N limit, the non-normalized eigenvectors
|xx) diverge in magnitude. Thus, when we write |xz) — |x), we do not mean |x) to be an
actual vector. The improper ket |x) only makes sense inside an integral over the continuous
variable x. In that situation, we may suppose that the integral actually represents an
approximation of a discrete sum over an immense number of closely-spaced values of xz.'

! In much the same way, when we write Ax — dx, we do not mean that the infinitesimal dx is an actual number.
We are simply choosing our notation to remind ourselves how the continuous integral arises from a discrete
sum.
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For example, we can write the quantum state |yy) as

+L
[w) =Y Gklyw) k)= ) Y ) Ax, (10.13)

k Xp=—L

and obtain in the continuum limit an expression for the limiting quantum state [i):

+00

) = Y (x) |x) dx, (10.14)

—0o0

where ¥ (x) = (x|} is called the continuous wave function for the quantum state |y).
This is a complex function that is the x-representation for the state |v). (In this expression,
you should note that, even though |x) has a divergent magnitude and thus is not literally a
vector, the amplitude ¥ (x) = (x |¢ ) is well-defined in the limit.)

A typical application of the wave function idea is the quantum theory of a particle moving
in one dimension. The variable x is then the position of the particle, and the wave function
¥ (x) is a full description of the quantum state. If the particle’s state |¢) depends on time,
then the wave function ¥ (x, £) = (x| (¢)) is a function of both x and ¢. (We will ignore for
now the time dependence of 1 and return to it when we discuss the dynamics of a particle
moving in one dimension.)

The wave function 1 (x) can be used to calculate probabilities. The likelihood that xy is
found to be in an interval [a, b] is

Pr(x; € [a,b]) = Z (¥ |xk)|2 Ax. (10.15)
xi€la,b]
This becomes
b
Pr(x € [a,b]) = / |1//(x)|2 dx. (10.16)

Comparing this to Eq. 10.7, we can identify P(x) = | (x)|? as the probability density for
x-values in a measurement of the system.

+o00
Exercise 10.1 Show that (x) = / x Y @) d.

—00

Exercise 10.2 Assuming the coordinate x has units of length, what are the physical units
of the 1-D wave function v (x, £)?

It is difficult to draw a graph of 1 (x), since its value at any point is complex. It is much
easier to visualize the probability density |1p(x)|2, see Fig. 10.1.

We can write down various relations of the x-representation in the continuous limit. We
shall do that as a set of easy exercises. In each one, you should identify the original finite-
dimensional expression from Chapter 3, then show how the appropriate limit is taken. The
arguments leading to Eq. 10.14 and 10.16 should give you the general idea.
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lp@)|?

At the top, overlaid graphs of the real and imaginary parts of the wave function y (x). At the
bottom, a graph of the probability density function v (x)|2. The total area under this curve is 1.

Exercise 10.3 Normalization. Show that

+00
f [ )] dx = 1. (10.17)
—00
Exercise 10.4 Completeness. Show that
+00
/ |x) (x| dx = 1. (10.18)
—0oQ

Exercise 10.5 Inner product in x-representation. Show that

+00
(Pply) = ¢* (x) ¥ (x) dx. (10.19)
—0o0
Each of these should be readily recognizable as a continuous analog to a familiar discrete
Hilbert space expression.
One more issue deserves more careful attention: the “orthonormality” of the |x) kets.
The underlying discrete basis { |k)} for Hy is orthonormal, so

Sk

)= = 10.20
bk g ) = — ( )
This is zero if x; # x . Furthermore, the sum
+L
> o) Ax =1, (10.21)

xg=—L
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is independent of N. Therefore, in the continuum limit, we should say that (x|x") = 0
whenever x # x’, and

+00
/ (x|x) dx = 1. (10.22)

—00

These are the properties of the delta function (see Appendix B). We conclude that
(x|¥')=8G"—x). (10.23)

This is the continuous version of the orthonormality condition, and based on this we say that
the |x)s form a continuous orthonormal basis for the infinite-dimensional Hilbert space.
The delta function is not literally a function, just as the kets |x) are not literally elements of
a Hilbert space. Nevertheless, Eq. 10.23 does make sense within integrals, as a continuous
approximation of Eq. 10.20.

Using the continuous orthonormality condition, we can see that

+00 +00

1x) = / ) (¢ 1x) dx’ = / )8 —x)dx' = Ix), (10.24)
—0oQ —0o0

as we would expect. The delta function “collapses” the integral, just as the Kronecker delta

“collapses” discrete sums.’

When we pass to the continuous limit for probability distributions, we make the assump-
tion that the limiting probability density P(x) exists. This automatically excludes from
consideration a great many discrete distributions that are too concentrated or too rapidly
varying. These do not have nice continuous approximations, and we ignore them entirely.

In the same way, when we use the continuum approximation in quantum mechanics,
we must supplement the mathematical limiting procedure with an additional physical
requirement, namely that the “regular” states are, in the limit, the only physically possible
quantum states. Our physical Hilbert space consists of those states for which a continuous
wave function v (x) exists. Whether or not we believe that physical space is really at
some level discrete and finite — whether or not we believe that other, highly “irregular”
and discontinuous states could in principle exist — we readily accept this restriction for
everyday use.

10.2 Continuous observables
]

Position representation of operators

In a Hilbert space of finite dimension d, quantum states and operators are represented
by matrices. Given a basis {|n)}, the state |¢) is represented by a dx 1 matrix whose
elements are

2 Notice that, when we use the completeness relation, we choose a new symbol x’ for the integration variable.
This is the continuous version of the rule that, when a discrete sum is introduced, the bound summation index
should not be the same as any index already being used in the expression.
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Y= (nly). (10.25)

An operator A is given by a d x d matrix with elements
Ay = (m|Aln). (10.26)
The operator acts via matrix multiplication. If |¢) = A [y), then

Om = ZAmnw;'r (10.27)

The same sort of machinery can be put in place for a quantum system with a con-
tinuous degree of freedom. The wave function values ¥ (x) = (x| ) are the elements of
a continuous matrix representing the state |ir). An operator A has a continuous matrix
representation

ACxe,x') = (x| AlX). (10.28)

If |¢) = A|y), then we can write

+00
Px) = / ACe,x ) () dx. (10.29)
—0oQ
Exercise 10.6 Justify Eq. 10.29. (You might start with the continuous completeness relation
in Eq. 10.18.)

Therefore, the x-representation of an operator is a function of two continuous variables,
and the action of the operator is given by the continuous matrix product in Eq. 10.29.

In practice we can often make things much simpler. Consider the operator X, defined by
a continuous spectral decomposition

+00

X = f x |x) (x| dx. (10.30)
—00

This is the “position observable” for a particle moving in one dimension. The operator X

has the expected effect on an improper “eigenstate” |x):

Exercise 10.7 Show that X |x) = x |x).

The x-representation of X is
X(x,x) = x| x[x)=x{x|x) =58 —x). (10.31)

If we start with vector |x) having a wave function v (x), the vector X |¢) has a wave function

+oo “+o00

X0, x) ) dx = / X6 —x) Y (x)dx = x ¥ (x). (10.32)

—0o0 —0oQ
Another way to describe the x-representation of the operator X would simply be to say that
it affects the wave function by X : ¥ (x) — x ¥ (x). This rule contains exactly the same
information as the matrix X (x,x’) = x’8(x’ — x), but in a more intuitive form.

Here is another easy example. The 1-D parity operator { is a reflection about the point

x = 0, sothatq|x) = |—x) for any x. The operator  is Hermitian, so we can also write that
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(x| 4 = (—x|. A state |¢) with wave function ¥ (x) is mapped to a state 4 |yr) with wave
function

ol Ay) = (=x [y ) = ¥ (=x). (10.33)

The parity operator is expressed by the simple rule that 4 : ¥ (x) — ¥ (—x).
Exercise 10.8 Find the continuous matrix representation d(x, x") for the parity operator.

Exercise 10.9 Show that the only possible eigenvalues of 4 are &1. (Hint: What is 4%?)
What can we say about the wave functions for the eigenstates of parity?

Parity will be useful in Chapter 15, as we consider the stationary states of particles in 1-D
potential wells.

We have shown that, instead of writing down a continuous matrix for an operator, it
can be much more convenient to describe the x-representation of the operator by giving
a rule about how wave functions are changed by the application of the operator. This is
particularly true of the X operator. It is also true for various functions of X. We define f(X),
as we defined the operator exponential, by a power series in X:

FX) =col + X+ eax> + ... (10.34)
Exercise 10.10 From Equation 10.34, show that

S 1x) =f(x) [x) . (10.35)

Also show that (x| f(X) = f(x) (x| . Why does the complex conjugate not appear in this
relation?

The vector £ (X) |¢) has a wave function

LSO 1Y) =1 () ¥ (x). (10.36)

Therefore, any function f(X) of the position operator X can be expressed by the rule

SX) @) = fOP ).
Exercise 10.11 Can the parity operator d be expressed as a function of the X operator?

Finally, we note that the expectation values of functions of X are given by simple integrals:

+00

(f@) = W1/ [¥) =/ (W 1x) (el f OO |[¥r) dx

—00
+00

= Y x) (X)) ¥ (x) dx. (10.37)

This last expression is clearly equal to f j;o ) [ (x) |> dx, which makes sense when we
recall that |y (x) |2 is the probability density over possible measured values of x.
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Momentum wave functions

Our system is a particle moving in one dimension. The position x is not the only continuous
variable that we could imagine measuring for such a particle. There is, for instance, also
the momentum p. We can easily write down momentum analogs for the expressions we
have already written for the |x) states:

The momentum operator p has eigenvalues p and eigenstates |p).

A physical state |1/) can be represented by a momentum wave function ¥ (p) = (p | ).
The likelihood of obtaining various results in a measurement of p is given by the
probability density |1ﬁ ®) |2.

Completeness: fj’;o lp)(pl dp = 1.

Orthonormality: (p’ [p) = 8(p — p').

The momentum “eigenstates” |p), like the |x)s above, are not literal vectors in the Hilbert
space. Nevertheless, as before, we can formally treat them as if they were.

How is the {|p)} basis related to the {|x)} basis? The Planck—De Broglie relations
(Eq. 1.8) tell us that the momentum of the particle is related to the wavelength of the wave
function. Thus, a state of definite momentum p must have a wave function with a definite
wave vector (a scalar in 1-D) £&. We conclude that

x|p) = Ce*, (10.38)
where hik = p and C is a constant. Note that | (x |p)|*> = |C|?, independent of x. This is not
really a probability density, since |p) is not an actual physical state. But informally, we can
say that, if the particle has a definite momentum p, then it is equally likely to be found at
every position x.

What is the constant C? We can choose our momentum eigenstates so that C is real and
positive. To determine its magnitude, we consult the continuous orthonormality relation
for the |p) states: (p |p') = 8(p" — p). We find that

pl)= [ el s

oo
=|C)? / PP/ gy (10.39)
—0o0
From the theory of Fourier transforms, we remember that the delta function is given by

1 +oo
8(z) = — / & dy. (10.40)
2w

—00

We conclude that C = 1/+/27h, and

1 .
(x|p) = T P/, (10.41)
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Now we can work out the relation between the momentum wave function
(p-representation) ¥ (p) and the more familiar position wave function ¥ (x).

_ +00
Yp)={{ply)= (plx) (x|yr) dx
1 too
== / e~ Py (x) dx. (10.42)
T —00
Exercise 10.12 Also show that
1 +oe inx/h 7
Yo = ﬁ/_ P/ (o) dp. (10.43)

In other words, the momentum wave function is essentially the Fourier transform of the
position wave function:

V() = ﬁ v (%) (10.44)

This is a highly useful result, and it sheds a lot of light on the basic properties of Fourier
transforms developed in Appendix B. For instance, consider two quantum states |¢) and
|Y). We can compute their inner product using either the position or momentum wave
functions:

+00 +00

Ply) = " ()Y (x) dx = ¢*(p) ¥ (p) dp. (10.45)

—00 —

The fact that these two expressions must be equal is just a restatement of Parseval’s theorem
for Fourier transforms (Eq. B.26).

The momentum operator

The momentum operator is

+00
p= / » 1Pl dp. (10.46)

—00

If we represent a state |v/) using its momentum wave function v (p), then we expect that
the momentum operator has a simple expression.

Exercise 10.13 Show that the momentum wave function of the vector p ) is just p ¥ (p).
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Suppose instead we use the position wave function ¥ (x) to describe the state of the particle.
How does the operator p affect ¢ (x)?

“+o00
<x|p|1//>=/ p0rlp) 1) dp

—00

1
V2mh

1 +00 9 . _
- = 1 — ih— (e‘Px/h)w(p) dp

too
/ p P!y (p) dp
—00

0 1 oo -
—] ipx/h
= ’hax <m/_ Py (p) dp>. (10.47)

Equation 10.43 now tells us that the p operator acts on a state |y/) so that the position wave
function changes according to

P Y () = —ih (). (10.48)
dax

For a quantum state |v), the expectation value of momentum is

p) = ¥Iply)
+00
=/ (¥ lx) (x| p ) dx
+00 9
p) = ¥*(x) (—ifia) ¥ (x) dx. (10.49)

The p operator acts as a derivative operator on position wave functions. We can use this
fact to compute the commutator of the X and p operators. Given a vector |¢), the vector
Xp |¢¥) has a wave function

0 d
(x) (—ih—) Y (x) = —ihx — Y (x). (10.50)
0x ox
The vector pX |¢) is not quite the same:
0 0
—ih— (x ¥ (x)) = —ihx — Y (x) — ihy (x). (10.51)
ox ox
The commutator [X, p] = Xp — pX thus changes the wave function according to the rule
[X,p]: ¥ (x) = iy (x). (10.52)
We conclude that
[X, p] = ihl. (10.53)

This is called the canonical commutation relation for the position and momentum operators.
(With a name like that, you may safely infer that Eq. 10.53 is an important result!)
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The commutator, of course, tells us a great deal. For instance, the uncertainty relation in
Eq. 4.46 has an especially simple form for X and p observables. Since (1) = 1 for any state,

h
AxAp > o (10.54)

This relation was first discovered by Heisenberg (before the more general uncertainty
relation of Eq. 4.46), and is often called the Heisenberg uncertainty principle. The position
and momentum of a particle are complementary observables, and there are inescapable
trade-offs in our knowledge of them. The more precisely one is determined, the more
uncertain the other must be.

This is sometimes explained by physical arguments involving the measurement processes
for position and momentum variables. For instance, if we determine a particle’s position by
scattering light from it, the best possible resolution of the measurement will be limited by
the wavelength A of the light. A measurement with fine resolution (small 1) must therefore
use photons with greater energy and momentum, which necessarily disturb the momentum
of the particle.

Interesting as such heuristic arguments may be, they do not get to the heart of the matter.
The Heisenberg uncertainty principle does not depend on this or that particular physical
realization of a measurement process. Nor does it actually refer to the disturbance produced
by a measurement. It is a statement of the basic structure of quantum states of a particle
with a continuous degree of freedom. Our simultaneous information about X and p — that
is, our ability to predict the results of measurements of these two variables — is limited by
Eq. 10.54, however we come to obtain that information.

Exercise 10.14 Compare and contrast Eq. 5.33 and 10.54.

The canonical commutation relation between X and p leads to more general commutation
relations between functions of these operators. We can work these out through a series of
exercises.

Exercise 10.15 For an integer n > 0, show that
(X", p]l = ifin X" 1. (10.55)

Exercise 10.16 Suppose the function f is given by a power series. Show that

[f (%), p1 = il f’ (x). (10.56)
Exercise 10.17 In a similar way, show that
[X,g(P)] = ihg'(p). (10.57)

10.3 Wave packets
_________________________________________________________________________________|

The eigenstates of momentum |p), like the position eigenstates |x), are not actual physical
states of a particle moving in one dimension. A plane wave C ¢’ is not an acceptable wave
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Construction of a wave packet from a plane wave e* and an envelope function ¢ (x).

function, since it cannot be normalized. Nevertheless, we do observe particles moving with
pretty well defined momenta — and pretty well defined positions as well. What sort of wave
function would we need to describe such a situation?

Here is a simple model that is reasonably easy to analyze: the wave packet. A wave
packet is a wave function of the form

Y (x) = p(x) €™, (10.58)

where ¢ (x) is a well-behaved envelope function, which differs significantly from zero only
in a bounded region. The envelope ¢ (x) thus trims the perfect (but infinite) plane wave
down to something that can be normalized. Figure 10.2 gives the general idea. (The wave
function sketched in Fig. 10.1 is a wave packet.)

The envelope function ¢ (x) determines a lot about the properties of the wave function
¥ (x). For example, the probability density for this wave function is

PE) =y @ =lp@?, (10.59)

independent of k. The particle is as localized in space as the envelope function ¢ (x) makes
it, and the expectation (x) is the same for both ¢ (x) and v (x). The momentum wave
function corresponding to ¥ (x) is given by

V(p) = ¢(p — hik), (10.60)

where ¢ would be the momentum wave function if the ¢ (x) were the actual position wave
function. In other words, a modulation of the envelope ¢ (x) by e corresponds to a
momentum shift of the wave function by hk.

Exercise 10.18 Use the properties of the Fourier transform discussed in Appendix B to
derive Eq. 10.60.

Exercise 10.19 Show that the envelope function ¢ (x) determines the uncertainties in both
position (Ax) and momentum (Ap) for v (x), even if we do not know the value of k.
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A useful special case arises when the envelope function is real: ¢ (x)* = ¢ (x). Symmetry
properties of ¢ (x) can sometimes simplify matters further.

Exercise 10.20 Suppose the real envelope ¢ (x) is symmetric about some point a, so that
¢(a —x) = ¢(a+ x). Show that (x) = a.

Unless we specify otherwise, we will henceforth consider wave packets with real envelope
functions.
The expectation value (p) is

+00o 9

(p) = —ih 1W(JC)B—I/I(X) dx
oo X
+00

= —ih ¢ () (¢'(x) + ik (x)) dx

+00 +00

= —il ()P (x) dx + hk/ (¢ () d. (10.61)

—00 —0o0

Now we take a shortcut. Both integrals in the last equation are real. Since p is Hermitian,
we know that (p) must be real. Therefore, the first integral can only be zero.

+00
Exercise 10.21 Integrate directly to show that o) (x)dx = 0.
—0o0
The remaining part becomes
+00
(p) = hk / (¢ (x))? dx = hk. (10.62)
—00

So the plane wave part of our wave packet determines the expectation value (p) of the
momentum.

We can construct wave packets with various specific envelope functions ¢ (x). A common
choice is the Gaussian wave packet, in which the envelope function has a Gaussian form.
Since |q§(x)|2 would then be a Gaussian probability distribution, Equation C.8 from the
Appendix tells us that

lp()|* =

! x (10.63)
Nrs: exp| = | .

(Here (x) = 0 and (Ax?) = o%.) The probability density does not determine ¢ (x) uniquely,
of course. Choosing ¢ (x) to be real and positive,

1 2
B0 = s exp (—4%) . (10.64)

The full wave function is ¥ (x) = ¢ (x) ¥, as before.
It is a straightforward exercise to determine the momentum wave function from all this,
using the Fourier transform.
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Exercise 10.22 Do the suggested calculation, arriving at

_ J 202 o2(p — hk)?
vp) = 2 &P (—T> (10.65)

The probability density over momentum is |1pfp) 2, which is also a Gaussian. In fact (by
once again comparing to Equation C.8), we can “read off” the variance in p:

<Ap2> - %. (10.66)

Exercise 10.23 Explain where the factor of 4 comes from in this expression.

Therefore, for the Gaussian wave packet,

(a2 o) =" £

h
Ax Ap = 5 (10.67)

The Heisenberg uncertainty principle tells us that Ax Ap > %‘ , S0 we can see that a Gaussian
wave packet has the smallest joint uncertainty possible. Thus, it is sometimes called the

minimum uncertainty wave packet.

10.4 Reflection and recoil
]

Since we can now describe a quantum system with a continuous degree of freedom, we can
do an analysis that illuminates some of the important ideas of the last few chapters.

Consider a photon in the two-beam interferometer from Section 2.1, one of our prototype
qubit systems. The interferometer apparatus changed the state of the photon in a unitary
way. In Section 9.2, we found that unitary evolution occurs only when the system is
informationally isolated. But is it reasonable to suppose that the photon is informationally
isolated in the interferometer? For example, when the photon encounters a beamsplitter, the
light interacts with the material of the mirror. Is it reasonable to suppose that this interaction
leaves no trace whatsoever behind in the mirror? Or could a detailed examination of the
mirror afterwards determine whether the photon had been reflected or transmitted — and
hence determine the photon’s state?

If a record were made of the photon’s state (|u) or |/)) during its interaction with the
beamsplitter, then it would not be possible to observe interference effects in the resulting
beams. In the laboratory, however, such effects are not hard to produce. Our job is to
reconcile this experimental fact with our theoretical description of the situation. We want to
show that it is reasonable to treat the photon as informationally isolated, despite its strong
interaction with the mirror.
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Suppose the photon approaches the beamsplitter in the upper beam. In our previous
treatment, the beamsplitter changes the photon state according to

) —> %(lu)+ |z>). (10.68)
Now we imagine that the mirror is free to move perpendicular to its face. Its position is
given by a continuous degree of freedom x, and its initial state is |1) with wave function
Yo(x) = (x|¥o). It is reasonable to assume that vy (x) for the mirror is fairly well localized,
so that it differs from zero only in the close vicinity of x = 0.

The interaction of the photon with the beamsplitter affects the mirror’s state. For simpli-
city, we assume that photon transmission leaves the mirror in state |y); but if the photon
is reflected, then the mirror recoils. The effect of this recoil is described by an operator
R on the beamsplitter state. The joint state of the photon and the beamsplitter evolves
according to

1

0@ o) — —= (1) ® R Iyo) + 1) ® yo)). (10.69)

To what degree is the final beamsplitter state a physical record of whether the photon
has been transmitted? If we examine only the beamsplitter, how well can we determine
whether the photon is finally in state |u) or |/)? This is the problem of distinguishing the
beamsplitter conditional states |¥g) = R|yp) and |¥y), each of which is equally likely.
The basic distinguishability theorem of Section 4.2 (generalized in Section 9.6) gives us the
answer. If we define 6 so that [(y |¥r )| = cos6, then the probability Pg of successfully
distinguishing between the states is bounded by

1
Pg < 3 (1 +sin0). (Re 4.20)

If |(¥o |¥r)| ~ 1, then Pg =~ 1/2, which is what pure guessing allows. In this case,
an examination of the beamsplitter would provide almost no information at all about the
photon’s path, and so the photon would be approximately informationally isolated.

If the photon reflects from the mirror, it transfers some momentum ¢ to the mirror. Thus,
the effect of R is to shift the mirror’s momentum wave function by ¢. If ¥ (p) = (p |¥o) is
the initial momentum wave function, then the final one is Yz (p) = (p [Yr) = Vo — q).
We know from Eq. 10.60 (and Exercise 10.18) that a shift in v corresponds to a modulation
of ¢. Thus, the spatial wave function for the recoiling mirror is related to its initial wave
function by

Yr() = Mo (). (10.70)
Therefore, the inner product is
+oo 5
(Yo lYr) 2/ I o ()12 dix. (10.71)
—00

The mirror’s initial wave function ¥y (x) is pretty well localized in space, so we can see
how this works out in two extreme cases:



218

A particle in space

e If ¢ is very small, then the function &/ I varies much more slowly than Iwo(x)lz.

This means that ¢#/" ~ 1 in the bounded region around x = 0 where o (x)|? is
non-negligible. In this situation, [(y¥o|¥g)| =~ 1, and the two states are practically
indistinguishable.

e On the other hand, if the momentum transfer ¢ is very large, then the oscillating factor
€'%/™ yaries much more rapidly than |y (x) 2. In this case, [(v¥o |¥r )| =~ 0, and the two
states are almost perfectly distinguishable (Ps = 1).

That is, the distinguishability of the mirror states depends on how much momentum g is
transferred and on the spread of the undisturbed wave function g (x).

To make this argument more definite, suppose that the initial mirror state is given by a
Gaussian wave packet with position uncertainty Ax. Recalling Eq. 10.64,

1 400 x2
— iqx/h -
(Yo lYR) = 27 () [m et exp( 2(Ax)2> dx. (10.72)

This is almost the Fourier transform of a Gaussian function, which is also Gaussian.

Exercise 10.24 Consult Eq. C.9 and show that

2 A 2
(Vo [¥r) = exp (—%) . (10.73)

Thus, if gAx < h, then the two mirror states are practically indistinguishable. If gAx > A,
then they are almost perfectly distinguishable.

Consider now the mirror in the interferometer. For a definite phase relationship to be
maintained between the beams in the apparatus, the mirror must be localized to a small
fraction of the wavelength X of the light used. If £ = 27/, we require that kAx < 1 for
the mirror.> The wavelength of the light is also related to the momentum carried by the
photons, which is fk. In the geometry of the Mach—Zehnder interferometer, this means
that the momentum transfer to the mirror is +/2 hk. From this it follows that gAx < /2 h,
and so Eq. 10.73 tells us that (¥ |¥g) =~ 1. The unrecoiling and recoiling mirror states
are almost indistinguishable, and the photon is effectively informationally isolated, just as
originally supposed.

Exercise 10.25 Recast this argument in terms of the momentum uncertainty Ap of the
mirror. What can we say about the distinguishability of the two mirror states when g << Ap?
When g > Ap?

10.5 More dimensions of space
_________________________________________________________________________________________|]

What if a particle moves, not simply along a one-dimensional line, but in a space of two or
three dimensions? We can easily generalize our discussion to describe this.

3 Thisis easy to achieve for a macroscopic mirror made of trillions upon trillions of atoms.
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The position of the particle in space is described by Cartesian coordinates x, y, and z,
which are the components of a 3-D position vector 7. The quantum particle has improper
position eigenstates |x,y,z) = |F'), and its state is represented by a wave function

v(r) = (Fly). (10.74)

The squared magnitude | (¥ ) is a probability density for the position of the particle in
an experiment. Thus, the normalization condition for the wave function is

/// W@ &r=1, (10.75)

where the integral ranges over all space, i.e. all values of 7. (Our 3-D integrals will be
assumed to extend over all space unless otherwise specified.)
The position eigenstates |7) have continuous completeness and orthonormality relations.

First, completeness:
[/ 7)Y (7| d*r =1. (10.76)

The |F) improper vectors also satisfy
7y =8¢ -7, (10.77)

where §° (F" —7) is a 3-D delta function, which can be written in terms of the Cartesian
coordinates of the vectors:

S —7) =80 —x)8(/ =8 —2). (10.78)

Exercise 10.26 Suppose |¢) and |i/) are two states of a particle moving in space. Write
down an integral expression for the inner product (¢ | ).

Exercise 10.27 Consider the 3-D wave function ¥ (7) = Ae“”z, where ¢ > 0 and /2 =
x? +y% + z%. Find the normalization constant 4 (which may be assumed real and positive).
Also calculate () and (r2> for this state.*

There is also a momentum representation for the quantum state of a particle in three
dimensions. The momentum eigenstates |» ) correspond to plane waves with a wave vector
k that satisfies p = hk. We can express this as follows:

oo 1 57
Flp) = Gt ePrIh (10.79)

compare Eq. 10.41. The momentum wave function ¥ (p) = (p |¢) for the state |y/) is
related to the spatial wave function via a 2-D Fourier transform.

Exercise 10.28 Show that
e 1 —iIR
V() = G ///e PRy () dPr. (10.80)

4 The expression (7) indicates a vector whose components are (x), (), and (z).
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What about the 3-D vector “momentum operator” p? This is simply a heuristic way of
considering three component operators at once. Each component operator py, p,, and p,
is exactly like the 1-D momentum operator for the corresponding coordinate. That is, we
can write

Py — —ihVy ). (10.81)
.2 a 0 a
The gradient V has “components” —, —, and —.
ax  dy dz

Exercise 10.29 Consider the commutation relations among the X, Y, Z, Py, Py, and p. Show
that all of the commutators are zero except

10.6 How not to think about
I —————————

A particle moving in space is described by a wave function v (7, ¢) that evolves in time
according to the Schrodinger equation (Eq. 11.26), which is a linear partial differential
equation. The function v (7, 7) is the “wave” part of the wave—particle duality discussed in
Section 1.2.

This invites analogies to other wave systems — the vibrations of a stretched wire or
membrane, sound waves in the air, or electromagnetic waves. Each of these is a disturbance
in a field described by a function of space and time variables. For instance, a sound wave
traveling in space can be described by the function P(7, £), the air pressure as it depends on
7 and ¢. This function is governed by a partial differential equation, and the mathematical
machinery used in its analysis contains many elements also found in the analysis of quantum
wave functions: initial-value problems, boundary conditions, separation of variables, vector
space methods, Fourier transforms, etc.

Nevertheless, the mathematical analogy can be misleading. The wave function ¥ (7, ¢) is
not a physical field like the air pressure P(7, 1).

To see why, consider a situation in which two sound wave pulses move in opposite
directions. The pressure field function P(7, ¢) consists of two separate disturbances moving
to the left and the right. After a long time, the waves may impinge on two widely separated
sound detectors. These detectors will behave completely independently.

This is true whether the detectors have a deterministic response to sound or they act in a
noisy, probabilistic way. Because the physics of sound and sound-detectors is entirely local,
the left-hand detector only “sees” the left-hand part of the sound wave, and its response only
depends on that part of the wave, no matter what is happening on the right side. Knowing
the experimental set-up, we gain no information about the response of the left-hand detector
from knowledge of the response of the right-hand detector. Or, to put it another way, the
local values P(#,t) and P(2,1) of the field at two different locations have independent
experimental meaning, in terms of the responses of local sound-detectors.
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The situation is not the same for a quantum particle described by a wave function
Y (7,1). We can prepare this system in a state that is a superposition of two localized
wave packets moving in opposite directions: ¥ (7, 1) = ¥ (7, f) + Wr(7, ). Yet here we
must be careful in our thinking. There may be two wave packets in ¥ (7, f), but the wave
function still represents the state of a single particle. If a measuring device on the right-
hand side detects the presence of the particle, we know for certain that a detector on
the left-hand side will not. The detection probabilities Py and Pg are parts of the same
probability distribution, not probabilities for independent events. Unlike the local values
of a physical field, the local values of the wave function do not have an independent
meaning.

A second (and even more compelling) reason why the wave function cannot be considered
as a physical field arises whenever the system includes more than one particle. If ¢ were a
field, then we would expect the two-particle situation to be described by a i with greater
magnitude (e.g. a normalization of 2), or perhaps by two distinct fields v and ¢, for the
two particles. But, as we will see in Chapter 14, neither of these is correct. The two-particle
system is described by a single wave function that depends on both particle coordinates and
time: v (1,72, ¢). In other words, the wave function is now a function of a six-dimensional

space. For more particles, things get even worse. The wave function ¥ (71,...,7y,?)
for an N-particle system in one spatial dimension depends on 3N spatial coordinates
(and time).

In this way, the quantum wave function ¥ (7, f) seems more like a probability distribution
than a physical field. Imagine a classical particle that moves in space, described at any
time ¢ by its position 7 and momentum p. We may not have exact knowledge of x and p, so
we will describe the particle by a probability distribution P(#, p, f) that depends on time.
Newtonian motion of the particle produces a time evolution of P that can be expressed
as a partial differential equation. Furthermore, if we have more than one particle, the
probability distribution will be a function of all of the variables describing the classical
state of the system. For two particles, the joint distribution function will have to be written
P\, p1,72,P2, ).

Yet this analogy, too, can be misleading, as the phenomenon of interference shows.
The quantum wave function ¥ (7, f) is neither a field nor a probability distribution. It is
a creature of a new and different sort, and we must regard all such analogies with an
appropriate suspicion.

Problems

Problem 10.1 The continuous collection of “cigenstates™ |x) for our regular Hilbert space
is a linearly independent set, although the exact formulation of this idea is a bit tricky. After
all, the kets |x) are not themselves regular states. Here is a simple way to express it: For
any continuous function c(x) such that

+00
f c(x) |x) dx = 0, (10.83)

—0o0
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then c¢(x) = 0 for all x. (You should compare this definition with the usual condition of
linear independence in a finite-dimensional space.) Use the fact that the |x) are linearly
independent to show that the wave function for a given state |¢) is unique.

Problem 10.2 A quantum wave function is given by

_ A(a2 —x2)2 x| < a
V(x) = 0 X >a (10.84)

where 4 is a constant chosen to normalize ¥ (x).

(a) Show that v (x) and its derivative v/ (x) are both continuous, and find a suitable constant
A. What are the units of 4?

(b) Calculate (x), Ax, (p), and Ap for this wave function. Verify the Heisenberg uncertainty
principle (Eq. 10.54).

Problem 10.3 Repeat all parts of Problem 10.2 for the slightly modified wave function

Bx (a2 —x2)2 x| < a

10.85
0 |x| > a ( )

¢x) = {

Are the quantum states in this problem and that one orthogonal to one another?

Problem 10.4 A wave packet is a finite train of plane waves with an envelope function
that is a square “pulse” over the interval [a, b],

Cé™ ag<x<b

v = { 0 otherwise (10.86)

(This v (x) is not continuous, but for now ignore that difficulty.) First, find the (real)
normalization constant C. Then calculate (x), (Ax2>, ¥ (p), and (p). Also show that (Apz)
is infinite.

Problem 10.5 A wave function is a superposition of two wave packets moving in opposite
directions: ¢1(x)e™ and ¢, (x)e~**, for real envelope functions ¢ and ¢. Is it possible
that the two wave packets might exactly cancel out, so that ¥ (x) = 0 everywhere?

Problem 10.6 Suppose Q and P are Hermitian operators on a Hilbert space of finite dimen-
siondim H = d. Show that these operators cannot possibly have the canonical commutation
relation [Q, P] = iAl.

Problem 10.7 The remarkable Wigner function was introduced by Eugene Wigner in 1932.
It is a useful alternative representation of quantum states. Suppose a particle is moving in
1-D and is described by a wave function v (x). Then the Wigner function is

+00

1 )
Px,p) = 7 P+ /209 (x — y/2)eP M ay. (10.87)

The Wigner function has many of the characteristics of a joint probability distribution over
x and p. Prove the following properties of P(x, p):
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(a) P(x,p) is real.

) [TXPCpydp = [y 0.

© [TZPa.pde= i)

(d) For two states |v1) and |¢) with Wigner functions P; and P,

+o0 p+oo
(1 192 ) = 27th/ P1(x, p) P2 (x, p) dx dp. (10.88)

—00 —00
If we integrate over either x or p, we obtain the correct quantum probability distribu-
tions over p and x. However, the Wigner function cannot be properly regarded as a joint
probability distribution. To prove this, construct an example in which P(0,0) < 0. (Hint:
Consider an odd, real wave function.)

Problem 10.8 The state of a particle moving in 1-D may be described by a density operator
p. In the position representation, this will be described by a function o (x,x).

(a) What is the normalization condition (Eq. 8.14) for p(x,x")?

(b) Denote by |G, (p)) the state described by a Gaussian wave packet with an envelope
function ¢ (x) from Eq. 10.64 and a plane wave ¢ with ik = p. Find the position
representation o (x,x’) for the density operator p = |G, (p)){Gs (p)| .

(c) Suppose that the particle is in a mixture of Gaussian wave packet states with a
continuous range of momenta near zero:

1 4
p= 2—/ |G (@) Gs ()| dg. (10.89)
q.J—q

Show that the coherences of the density operator are suppressed — that is, show that
o(x,x’) is closer to zero than in part (¢), if x and x’ are different enough. (Part of your
job is to pin down the phrase “different enough.”)
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11.1 Dynamics in 1-D
e —

The 1-D Hamiltonian

It is time to think about time. The quantum state |y (f)) of a particle in 1-D depends on
time ¢, and so do the position and momentum wave functions:

Yt = (x|y®) and Y@,0=plY®). (11.1)

All of our previous results about these wave functions and their relationship to one another
still hold true. The improper |x) and |p) eigenstates are not time dependent; nor are the X
and p observables.

The time dependence of the state is governed by the Schrodinger equation:

d
Hly () =ih 7 Y (@) . (Re 5.23)

But what Hamiltonian operator are we to use? Our answer is based on two ideas. First, the
Hamiltonian operator is the energy operator for the particle. Second, the particle’s energy
is the sum of its kinetic and potential energies, and these are functions of the momentum
and position of the particle.

Thus, the kinetic energy K for a non-relativistic particle moving in one dimension is

related to the momentum p by
2
4

K==,
2u

(11.2)

where p is the particle’s mass. The potential energy is a function of the position x only:

U= U(). (11.3)
The total energy of the system is thus
»
E=K+U="—+4+U®). (11.4)
2p

The Hamiltonian operator should be related to the operators X and p by

H= ip2 + U(X). (11.5)
2u
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This is the operator that governs the time evolution of the quantum state via Eq. 5.23, as
follows:

1, o d
(EP + U(X)) W (@®) = ih— 1Y ®). (11.6)

Notice that our procedure here is to begin with a prior understanding of a classical
system (a particle moving in one dimension) that is analogous to the quantum system of
interest. We adapt classical relations between position, momentum, and energy variables
into quantum relations between operators, from which we derive the dynamics of the
quantum system. This procedure is called guantization. This is a good strategy for guessing
the Hamiltonian operator governing a quantum system of a given sort. But it is not the way
that Nature works. Quantization is a heuristic procedure, not a physical process. Yet the
analogy between classical and quantum systems, so useful to us here, is by no means an
accident. The real connection runs in the opposite direction, from the underlying quantum
physics to the approximate, effectively classical picture that emerges from it.

How can this “emergence” happen? This is a difficult question, some aspects of which
are still poorly understood. However, we can give a partial answer. Recall that, for a
time-independent observable 4, the expectation value (4) evolves according to

d

dt
We can use this to determine how (x) and (p) change over time, relying on the canonical
commutation relation and its corollaries. For instance,

1
() = - (WIAHTIY) . (Re 5.27)

=L (2 vow) 1w (1L.7)
—{x) = — , | — . .
dt ih 2
Since X commutes with any function of X, this reduces to
d 1 5
d—t<x>—m<W|[X,P 1) . (11.8)

Equation 10.57 tells us that [x, p?] = 2ihp. Therefore,

d ()
— (x) = —. 11.9
il " (11.9)
This has a familiar look to it! The average position (x) of the wave function moves with
a velocity equal to the average momentum (p) divided by w. The classical connection
between momentum and velocity holds good in the quantum realm — at least in expectation
values.

In a similar way, we can examine how (p) evolves:

d 1 p2 Utx
E(IJ)_%(I//' P, ﬂ+ X)) | ¥

(WITUX),pIIY). (11.10)

1
ih
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aU
Recall that F(x) = ——— is the classical force acting on a particle subject to a potential
X
U(x). Then Eq. 10.56 lets us write that

d
=) = (Fe). (11.11)

Once again, we have recovered an expression that strongly resembles a classical law — in
this case, the Newtonian equation of motion of a particle in one dimension.

Equations 11.9 and 11.11 are together known as Ehrenfest’s theorem. Let us compare
these results explicitly to the classical equations of motion for a particle in one dimension,
with x. and p. representing the classical position and momentum variables.

Classical Quantum

dx. Pc d 12

e _f¢ =)= 22

dt 7 dt "
dp. d
—=F —(p) = (F(x)). 11.12
0 (xe) 7 (p) = (F(0) ( )

If we replace x. and p, by the quantum expectations (x) and (p), the two sides are almost
in agreement: almost, but not quite.

Exercise 11.1 What is the difference between F({x)) and (F(x))? Construct an example —
that is, describe a function F'(x) and a wave function v — for which these are quite different.
Under what circumstances should these two be about the same?

A particle is in a “quasi-classical” state if it is described by a wave packet that is pretty well
localized in both position and momentum (subject to the requirements of the Heisenberg
uncertainty relation, of course). From the macroscopic point of view, the expectations (x)
and (p) are the actual effective position and momentum of the particle. In this case, the
classical equations of motion will work pretty well.

The Schrédinger equation for wave functions

Since we have been describing our state via its wave function ¥ (x, 7), it makes sense to
find the position representation for the Schrodinger equation — that is, a representation as
an equation governing v (x, ). We take each part of Eq. 11.6 in turn:

2

1 h
- P2y (0) = — ¥ (x,0),
"

2p 0x2
U Y (0)) = U) ¥ x,0),

d 9
ih (x| (E |w(z)>) = ih=- Y (x.1). (11.13)
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We arrive at the following equation for the wave function:

n 9 L9
BT Y, +UX) Y, :lha_t v(x,1). (11.14)
The Schrodinger equation thus becomes a partial differential equation governing the wave
function ¥ (x, 7).
The x-representation of the 1-D Schrédinger equation contains an enormous amount of
physics in highly compressed form. For instance, consider what it says about stationary
states of a particle moving in one dimension. Such a state evolves in time according to

[y (6)) = e BV 1y (0)) (11.15)
The wave function is therefore
Y0 = &Y ) = y&)e BN, (11.16)

where ¥ (x) = (x|¥(0)), a function that depends only on the position x. Notice that we
have “separated the variables” x and ¢, writing v (x, ) as the product of a function v (x) of
x and a function e £/ of ¢,
The state |4 (0)) is an eigenstate of the Hamiltonian operator, so 1 (x) must satisfy the
position representation of the energy eigenvalue equation:
n? d?
BT Y (x) + U) ¥(x) = EY¥(x). (11.17)
W dx

(Note that the derivatives are now total derivatives, since the wave function ¥ (x) =
(x|¥(0)) only depends on x.) We can also get this from Eq. 11.14 and 11.16 directly.

Exercise 11.2 Substitute Eq. 11.16 into Eq. 11.14 and obtain the “time-independent
Schrodinger equation” (Eq. 11.17).

We have already noted the importance of finding energy eigenstates, so solving Eq. 11.17
for E and ¥ (x) will deserve some considerable attention. The whole of Chapter 15, in fact,
is devoted to that problem.

The flow of probability

As the quantum state evolves and the wave function v (x, #) changes, the probabilities for
finding the particle in various locations will also change. The Schrodinger equation can
tell us something about how this happens. At any given point, the probability density
changes by

Y™ oy

9 * _ *
5V =—-v+y -

1 ( B2 92y

=i _ﬂ_axz +U(x)1ﬁ*> 14

1 By
+ %1/, (—Zﬁ—l—U(x)l/f). (11.18)
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(Note that we have used both Eq. 11.14 and its complex conjugate.) This looks like a mess;
but the terms involving the potential U (x) cancel. After some simplification, we get

_(w V) = (azij U/ 8;5) (11.19)
Now we define the probability flux J to be
S =52 (al/’*w v —1/’). (11.20)
Then
—w V) = zi (11.21)

Our claim is that J represents the “flow of probability” along the x-axis. This is a slightly
weird idea, but it does make sense. Consider, for instance, a particular interval from a to b.
The total probability that the particle is found in that interval is

b
=/ Yy dx. (11.22)

As the wave function changes, this probability changes. How? Like this:

Ly
a =) YUY dx
2—/ a—de
¢ 0x
=J(a,t) —J(b,?). (11.23)

In other words, the probability P that the particle is in [a, b] only changes due to probability
flows across the boundaries of the interval at the points a and b. Probability within [a, b]
cannot just appear or disappear.

Imagine that the wave function v (x,?) is only appreciably non-zero in two disjoint
regions on the x-axis. This might represent a particle that is confined to a pair of boxes, but
is completely excluded from the region between the boxes. The wave function v allows us
to calculate the probability of finding the particle in one box or the other. But if the particle
can never be found between the boxes, then ¢ = 0 there, and so J = 0 as well. In this
case, the probability for each box must remain constant over time.

Exercise 11.3 If x has units of length, what are the units of J?

Exercise 11.4 Suppose at a given moment, the wave function is a wave packet ¢ (x)e’®*,
where the envelope function ¢ is real. Show that the probability flow J satisfies

J = (probability density) x (classical velocity). (11.24)

Which classical velocity do we mean?
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Wave functions in three dimensions

All of this can easily be generalized to 3-D space. The Hamiltonian for a particle of mass
1 moving in 3-D space typically has the form

1 -
H=—p>+ U, (11.25)
2p

where p? = p)zc + pf, + pg, and U is the potential energy, a function of position. From this,
we can derive the Schrodinger equation for the time-dependent wave function ¥ (7, 1) =

1y ®):

2 . 3
oy vy = 2L (11.26)
21 ot
You should recall that in Cartesian coordinates the Laplacian V? is given by
9? 9? 9?
NG A A (11.27)

ax2 - 9yr 9z
Expressions for V2 in other coordinates are also very useful, as we will see.
If the particle is in an energy eigenstate with energy E, then its wave function must satisfy

2

—§4ﬂ¢+U®¢=Eu (11.28)
"

The time-dependent wave function for a stationary state is ¥ (7, 1) = ¥ (¥, O)e_iEt/ h.
Finally, in three dimensions the probability flux is a vector:

I A -
.J:-L-(wvw*—-w*vw). (11.29)
2p
The connection between J and changes in probability density is worked out in

Problem 11.13.

Exercise 11.5 This is the generalization of Exercise 11.4 to three dimensions. If ¢ () =
¢(7)eik" , where ¢ (7) is real, then show that
5 hk

J=lp> —. (11.30)
"

11.2 Free particles in 1-D
|

Time evolution

A particle is a free particle if the potential function U(x) = 0. Then the Hamiltonian
operator for the system is

H=—. (11.31)
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Clearly, the momentum eigenstates |p) are also energy eigenstates for the system:

p2

Hlp) = M Ip) . (11.32)

Because of this, the time evolution of a quantum state |y (¢)) of a free particle is particularly
simple in the momentum representation. That is,

e ood
i (p.t) = ih (pl (2 v ()
= (IHIYO)
2
= )
0

L0 - P’ -
ih—=¢(p,t) = —v¥(p,0). (11.33)
at 21
We can solve this to find ¥ (p, £) in terms of the initial momentum wave function ¥ (p, 0):

U(p.t) = e P20 G, 0), (11.34)

Alternatively, we can use the momentum representation to write down the time-evolution
operator U(7):

. too

U@r) = e M/h =f e~ P2 by (o] dp. (11.35)
—0Q0

Exercise 11.6 Show by evaluating (p |y (¢)) = (p| U(?) | (0)) that Eq. 11.35 leads to the

solution given by Eq. 11.34.

We have now completely solved the Schrodinger equation for a free particle moving
in one dimension! The fact that our solution is given in terms of the momentum wave
function is a slight inconvenience, of course, since we are often more interested in the
x-representation of the quantum state. Nevertheless, if we know the initial position wave
function ¥ (x, 0), we can find 1 (x, ¢) at any later time ¢ by a three-step procedure:

e We first find ¥ (p, 0) via the Fourier transform of v/ (x, 0).
e We then find v/ (p, 1) from Eq. 11.34.
e Finally, we use the inverse Fourier transform to obtain ¥ (x, £).

An alternative, somewhat more direct method is suggested in Problem 11.5.

Moving wave packets

Can we get more insight than this into the behavior of a free particle wave function
¥ (x,7)? We can — indeed, we are able to draw surprisingly general conclusions about this
time evolution. Let (- - -)o represent the initial expectation value of a quantity, taken with
respect to the initial state [y (0)). Since p commutes with the Hamiltonian H, the particle’s
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momentum is conserved, and so (p) = (p), at all times. The first half of Ehrenfest’s
theorem, Eq. 11.9, now tells us that

d
— (x) = %. (11.36)
dt 7
The expectation value (x) moves uniformly with time, according to
) = %H— o (11.37)

The uniform motion of (x) and the value of (p), do not tell the whole story. The wave
function v (x, ¢) is spread out around (x) in some way, which we measure by the uncertainty
Ax. In a similar way, the uncertainty Ap measures how spread out the momentum wave
function is. Initially, these have values Axg and Apg. How do the uncertainties change over
time?

It is mathematically easier to deal with the variances (Ax?) and (Ap?), which are the
squares of the uncertainties Ax and Ap. Consider first the momentum. Since (Apz) =
(p*) — (p)?, and since both p and p? commute with H, the variance in momentum remains
at the constant value (Ap?),.

PG+ (Ap?)

Exercise 11.7 Show that (E) = 7 9 which stays constant.
"

To find how <Ax2) changes, we will need two more commutation relations.

Exercise 11.8 Starting with the canonical commutation relation [X, p] = i/, show that

(a) [xz, pz] = 2ih(Xp + PX).
() [xp + px), p? | = 4ip?.

Then

dya_ [l PP \_1
dt<x>_ih<[x,2/J>_H<xp+px>. (11.38)

This expression is not constant, but the second derivative
2, 1d
— = —— (X X
dt2<x> Mdt(p+p)
= s [0+ 0.7
= 2 LR TPOP

e Y R N e

is constant. Therefore, (x*) can be written

2 2
<x2> - (%—j@)o) £+ Ct+D, (11.40)
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where C and D are constants. Clearly, D = <x2)0, and

=G,

1
"
Exercise 11.9 From the above, show that
A 2
<Ax2> - ﬂ 2+ ! — ((xp +pX)g — 2 (p)g (X)) t (Ax > . (11.42)
w? B

The variance (Ax2> of an arbitrary free particle wave function v (x, ) depends on time
according to the quadratic expression in Eq. 11.42.

Things become even simpler when the initial wave function v (x, 0) is a wave packet
¢ (x)e™ with a real envelope function ¢ (x). The minimum uncertainty (Gaussian) wave
packet of Eq. 10.64 is an example of this type. In this case, the linear term in Eq. 11.42 can
be computed explicitly.

First, we recall that (p), = hk for the wave packet. Also, the canonical commutation
relation implies that

Xp 4+ px = iAl + 2xp. (11.43)
Thus,

+o0 )
(Xp + PX)g = cb(x)e*’kx

(lh¢ () — 21hx (¢> (x)e’kx)>

+o0 +o0
=ih % dx — 2ih / xp¢’ dx

—00 —00

400
+ 2hk f x¢? db. (11.44)
—00

Now we take a shortcut, the same one we used to derive Eq. 10.62 above. All of the integrals
in the last equation are real. Because the operator Xp -+ pX is Hermitian, its expectation must
be real. Thus, the integrals that are multiplied by i must add up to zero. The remaining term
yields

(Xp +Px)g =2 {p)g x (11.45)

This means that the the linear coefficient of ¢ in Eq. 11.42 exactly vanishes. If ¥ (x,0)
is a wave packet with a real envelope function ¢ (x), the variance of x varies with time

according to ,
<Ax2> - (%) £+ <Ax2>0. (11.46)

The initial value (Ax2)0 of the variance is also its minimum value. With time it grows
quadratically, depending on the value of the momentum variance (Apz)o.
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Actually, as Problem 11.6 shows, Eq. 11.46 has nothing distinctively “quantum” about
it. Any uncertainty we have about the initial velocity of a particle will contribute to our
uncertainty about its later position. What is distinctively “quantum” is that the uncertainties
in position and momentum are related by the Heisenberg uncertainty principle. That is,

2 hz
<Ap )0 > A (11.47)
At a later time,
2 hz 2 2
(a2) = (m)f +(ad),. (1.49)

Equality holds in both expressions if ¥ (x,0) is a Gaussian wave packet. The quantum
trade-off between uncertainties in x and p means that, the narrower we make the initial
wave packet, the more rapidly the wave function will spread out over time.

Exercise 11.10 Let us put some rough numbers to this. We can estimate 4 ~ 10734 J s,
and the mass of an electron is about 10730 kg. A free electron moves along the x-axis.
We prepare the electron in an initial Gaussian wave packet. Find the uncertainty Ax in the
electron’s position after 1 ns if the initial uncertainty is (a) 10 nm, (b) 1 nm, and (c) 0.1 nm.
(See if you can do this without touching a calculator.)

It is not difficult to write down the analogous development for a particle moving in 2-D
or 3-D. We can analyze the dynamics of 2-D and 3-D wave functions, including the motion
and spread of wave packets, as we have already done for 1-D wave functions. In fact, the
multidimensional analysis adds almost nothing, as the following exercise shows.

Exercise 11.11 For a free particle moving in 3-D, show that the three Cartesian coordinates
x, y, and z behave as three dynamically independent 1-D particles.

11.3 Particle on a circle
]

So far, we have considered a free quantum particle moving in one dimension along an
infinite line. It may be, however, that the space in which the particle moves is bounded in
some way.

For example, consider a particle that is constrained to move on a circle of finite cir-
cumference L, rather than a straight line. We still describe the particle’s position by the
coordinate x, but now this coordinate is wrapped around the physical space in a periodic
way. The physical location designated by coordinate x is the same as the location designated
by x + L, x — L, etc. It follows that the improper position eigenstates satisfy |x) = |x + L)
for any x. For the wave function,

YO+ LD=&+LIY)=(xlYy)=9v0®. (11.49)

Thus v (x) is a periodic continuous function with period L.
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We say that this quantum system is subject to periodic boundary conditions. The math-
ematical development proceeds just as before, except that all integrals over the variable x
are restricted to one period of length L, which we can take to be the interval from 0 to L.
The completeness relation becomes

L
/ ) (x| dx = 1. (11.50)
0

Exercise 11.12 From the completeness relation, show that the inner product for the particle
on the circle is given by

L
@) =/O 6 () ¥ (x) . (11.51)
Compare Equation 10.19.

Now consider the momentum eigenstate |p). As before, we suppose that this has a wave
function of the form
(xIp) = C
where hk = p and C is a constant. However, there are a couple of new wrinkles. Since
xlp) = x+Llp) = e (x|p), the possible values of k are restricted so that kL is a
multiple of 27r. In other words,

, (Re 10.38)

p=hk==n n=..-1012.. (11.52)

The discrete index » is called a quantum number. The momentum p is restricted to discrete
values related to n, which we may conveniently call p,. Since the physical space on the
circle is bounded, the momentum states |p) are actually normalizable quantum states. This
allows us to fix the value of the constant C in Eq. 10.38:

eipnx/ h
(xlpn) = 11.53
Pn VL ( )
Exercise 11.13 Show that the momentum states |p,) are orthonormal.
The completeness relation for the momentum states is discrete:
> ) (pal =1. (11.54)
n

For a particle moving along an unbounded line, the momentum wave function v (p) is
essentially the Fourier transform of the position wave function ¥ (x) (see Eq. 10.42). With
periodic boundary conditions, the momentum representation of a state |y) is the infinite
discrete set of Fourier coefficients

- 1 L
= (pal¥) = — / eIy (x) dix. 11.55
Y P 1Y \/Z o ¥ ( )
A free particle moving on a circle has the familiar Hamiltonian

p2

H=—.
2u

(Re 11.31)
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Because of the periodic boundary conditions, the energy eigenvalues are now discrete:

22 h?
E, = < ”L2 ) 2, (11.56)
%

where # is an integer and  is the particle mass. The stationary states can be taken to be the
momentum states |p;).

Exercise 11.14 Describe the degeneracies of the energy eigenvalues for the free particle
on a circle.

Periodic boundary conditions imply many convenient properties, such as the normaliz-
ability of the momentum states and the discreteness of the energy spectrum. However, there
are some other properties that are much less easy to understand. For instance, because the
coordinate x is not a unique function of position (x is the same point as x 4+ L and so on) the
operator X is not well defined. We cannot calculate the expectation (x) in an unambiguous
way. Momentum, on the other hand, is a different story. We can still define an operator p
so that

Py — —m%, (11.57)

as before. The expectation (p) has a clear meaning and can be calculated using either the
position or momentum representation of the state.

Exercise 11.15 Even though we cannot give an unambiguous meaning to the operator X or
the expectation (x) for the particle on a circle, explain why we can nevertheless define the
expectation (cos(2wx/L)).

Exercise 11.16 The momentum eigenstates |p,) are also energy eigenstates for the free
particle on the circle. All of these have a probability density |(x |p, )|? for position that is
completely uniform over the circle. Construct other energy eigenstates whose probability
density is not uniform — the particle is more likely to be found in one place than another.

11.4 Particle in a box
]

A second type of boundary condition arises when a particle moving in one dimension is
confined to some limited region of the line. For example, we can imagine that the particle’s
position is required to be on the positive half-line. The Hilbert space describing such a
particle is a subspace of the Hilbert space describing an unlimited particle. The subspace
is “spanned” by the improper position eigenstates |x) with x > 0. The wave function
Y (x) = (x|¢) for states in our subspace must satisfy ¥ (x) = 0 for x < 0. Since the wave
function is continuous, it must be that ¢ (x) — 0 asx — 0.

Physically, we can interpret this situation as motion in the presence of a perfectly
impenetrable wall at x = 0. A particle initially located on the positive side of this wall can
never later be found at any point beyond it, no matter what its energy. (As we will see in
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Chapter 15, we can regard this ideal type of barrier as a limiting case of a more realistic,
hard-to-penetrate barrier.)

In the presence of the wall boundary condition, the position observable X poses no
difficulties, since the relation between physical location and coordinate x is one-to-one.
Momentum, however, is now problematic. The improper momentum eigenstates have
wave functions Ce’® that extend over the whole line, so they cannot be approximated by
the physical states in our subspace.

We may also consider a particle confined between two impenetrable walls. This is
sometimes called the particle in a box. One wall is at x = 0 and the other is at x = L,
where L is the length of the box. The position eigenstates |x) with 0 < x < L satisfy a
completeness relation (on the limited subspace)’

L
/ ) (x] dx = 1. (11.58)
0

Wave functions for the particle in a box must satisfy ¥ (0) = ¢ (L) = 0.

Again, the momentum observable p is problematic, since momentum eigenstate wave
functions do not vanish at the walls. However, the squared momentum p? is more promising.
Consider the wave function

A sin(kx) O<x<L

v = { 0 elsewhere (11.59)

This satisfies the wall boundary condition provided k<L = wn forn = 1,2, ... In the interior
of the box, the squared momentum acts on this state according to

82
p? : Asin(kx) — —h? ﬁA sin(kx) = h*k*A sin(kx). (11.60)
X

The only difficulty lies at the wall, where the wave function has a step discontinuity in its
first derivative (and thus a delta function in the second derivative). A careful resolution of
this apparent problem will be given in Chapter 15. Meanwhile, we will “resolve” it simply
by agreeing to apply operators only in the interior of the box, in the open interval (0,L).
The walls themselves are excluded from consideration.

Since p? makes sense, we can consider a free particle moving between walls, with the
free-particle Hamiltonian (Eq. 11.31) in the interval (0, L). The energy eigenstates |n) have
wave functions

Yn(x) = \/g sin(kyx), (11.61)

where k, = wn/L andn = 1,2,... Again, we have a discrete quantum number 7 labeling
the possible states. They have energies

h2k2 2h2
Ey= = (”—2 . (11.62)
nw 2uL

! This of course looks just like Equation 11.50. The subtle difference lies in how we treat the boundary points
x = 0 and x = L. On the circle, these are the same location; in the box, they are both excluded from the set of
possible locations.
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Energy levels and stationary state wave functions for the particle in a 1-D box. It is a common
convention for the wave functions to be drawn on the corresponding energy level.

The first three energy eigenstates and eigenvalues are shown in Fig. 11.1.

Exercise 11.17 (a) Verify the normalization of the wave functions ¥, (x). (b) Verify the
energy eigenvalues E,,.

Exercise 11.18 The energy eigenvalues E,, for the 1-D particle in a box appear similar to
those for a particle moving on a circle (Eq. 11.56). Both can be written E,, = n*E. Identify
two crucial differences in the two expressions. Can you give an intuitive explanation for
the differences?

Exercise 11.19 Do the following rough calculation without touching a calculator. An
electron with a mass of about 1073° kg moves in a 1-D box of size L = 1 nm. It is
convenient to approximate 7 &~ 10734 J s and 272 a 20. Find the ground state energy £
for the electron, and compare it to the electron-volt (1 eV = 1.6 x 107! J), a convenient
unit of energy for atomic-scale problems.

How should we understand the stationary states of the particle in a box? We can get an
insight into their physical meaning from the identity

sin(kx) = % (e”“ _ e—“’“) . (11.63)

Within the box, it appears that the energy eigenstates for the particle are superposition of
rightward and leftward moving waves. This suggests that we should imagine our particle
to be bouncing back and forth between the two walls.

This intuitive picture of a bouncing particle in a box has obvious limitations for describing
a stationary state of the system! So let us consider time-dependent states. Since we lack
a nicely behaved momentum operator p, the approach we followed for a free unlimited
particle (via commutation relations and Ehrenfest’s theorem) will not work. Instead, we
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Time-dependent probability density | (x, t)|? for a particle in a box. At any time, the particle is
most likely to be found in a region that moves back and forth between the walls.

suppose that at time ¢+ = 0 we have a simple superposition of the two lowest eigenstates.
That is,

1
oy =—(10+ 1),
S
JL

with k) and &, defined as above. At a later time ¢, the wave function will be

¥ (x,0) = — (sin (k1x) + sin (kax)), (11.64)

v(x,f) = % (e~ sin (kyx) + e~ sin (kox)) (11.65)

where hw, = E,. We are interested in | (x, £)|%, the time-dependent probability density
over the location of the particle. This is

[ (e, )1 = Y, DY (x, 1)
= %(sinz (k1x) + sin? (kox)
+ 2 cos ((w2 — w1)1) sin(kx) sin(kax)). (11.66)

We sketch the result in Fig. 11.2. Over time, | (x, #)|* sloshes back and forth in a way that
suggests the bouncing of a classical particle.

Exercise 11.20 Confirm Eq. 11.66 and explain how it leads to the behavior in Fig. 11.2.
What time is required for |y (x, ) 2 to return to its initial configuration?
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11.5 Quantum billiards
|

A rectangular box

We may also consider 2-D and 3-D problems with boundary conditions. Suppose a quantum
particle moves inside a 2-D rectangular box. The allowed region is aligned with our
coordinate axes — or, more precisely, we have chosen our (mathematical) coordinates to
line up with the (physical) box — and it ranges from 0 to L, on the x-axis and from 0 to L,
on the y-axis. The wave function of the particle is zero outside this region.

We regarded the 1-D particle in a box as a particle bouncing back and forth between
two walls. Our 2-D system is therefore something like a particle bouncing around inside a
rectangular enclosure, like a ball on a billiard table. Quantum particles in 2-D enclosures
are in fact called quantum billiard systems, and have been extensively studied in connection
with quantum chaos. (Our aims in this section, however, are less ambitious.)

What are the stationary states of the particle in a 2-D rectangular box? Inside the box,
they have wave functions of the form

>y . nyT . I’lyﬂ.r
VYnen, (r) = A4 sin 7 x| sin L—y , (11.67)

X

where n, and n, are two independent quantum numbers that can take on values 1,2,. ..

Exercise 11.21 Show that the wave function Vnn, (¥) satisfies the boundary condition at
the walls of the box. Also evaluate the normalization constant 4.

Exercise 11.22 Verify that ¥y, (¥) represents a stationary state of the 2-D free particle
with energy

272h% [ n? n}z}
Epn, = - (L—’§ + ) (11.68)
X y

The rectangular box is easy to analyze because there are independent boundary conditions
for x (¢ = 0 except between 0 and Ly) and y (¥ = 0 except between 0 and L,). Also, the
free particle Hamiltonian is

1 1
H=—p+ —p? 11.69
2Mpx+2MPy, ( )

the sum of x and y terms. As in Exercise 11.11, the x and y degrees of freedom for the
particle amount to non-interacting subsystems of the particle. The stationary states are
product states with wave functions of the form 1 (x) x (v), and their energies are the sum of
two independent terms.

Unfortunately, things are almost never this simple. For any other shape of box, the
boundary conditions will not be expressible as independent conditions on x and y.
In situations with a high degree of symmetry, however, the problem may still be
tractable.
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A circular box

Now imagine that a free 2-D quantum particle is inside a circular box of radius a, at whose
center we place our coordinate origin. In terms of the Cartesian coordinates x and y, our
boundary condition is that the wave function ¥ (x, y) = 0 when x? + y* = a?. We certainly
do not have separate boundary conditions for x and y.

On the other hand, the problem is much simpler if we re-cast it in plane polar coordinates
r and ¢. These are related to the Cartesian coordinates by

x=rcos¢ and y=rsing. (11.70)
The wave function now depends on r and ¢. There are two boundary conditions:

e Y (a,¢) = 0 for any ¢; and
o U (r,¢ +2m) = Y (r,¢) for any r and ¢.

There are separate boundary conditions for the two coordinates. (The second condition
arises because the angular coordinate ¢ wraps around the plane with period 27.)

To find the stationary states of the particle, we need to solve the energy eigenvalue
equation, which in the coordinate representation is

h2
— 2—v21/, = Ey, (11.71)
"

subject to our boundary conditions. To do this, we need a polar coordinate form for the
Laplacian. This is derived in Problem 11.11. The equation we wish to solve is

2y 1oy 1 3%y 2uE
—— e =Ty, 11.72
arr  ror 2 og? g ( )

Now we try a product form for the wave function, ¥ (r, ) = R(r) ®(¢). We are motivated
to do this because our boundary conditions affect R and & separately: R(a) = 0 and
(¢ + 27) = ®(¢p). Our equation becomes
P R 2uE
PR+ —R + =" = L2 R, (11.73)
r r? h2
Here R', R”, and ®” represent derivatives of these functions with respect to their arguments.
There is a trick that makes this equation much simpler. If we multiply by 72/R® and
rearrange terms, we have

—R'+ =R+ —r =——9d". (11.74)

The left-hand side of this equation is a function only of the radial coordinate , while the
right-hand side depends only on ¢. The two sides can be equal only if both of them equal
the same constant K. We therefore arrive at two separate ordinary differential equations for
R and ®:

P’ = —-K P, (11.75)

2mE
PR + R + 7’:2 R = KR. (11.76)
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The same K appears in both equations, but otherwise they are independent. This general
trick is called separation of variables, and the linking constant K is called a separation
constant.

The angular equation (Eq. 11.75) is easy to solve:

D(p) = ™M, (11.77)

where m?> = K. The quantum number m must be a positive or negative integer to satisfy
the boundary condition ® (¢ + 2) = D(¢).
What is the meaning of the angular quantum number m? Recall first that the chain rule

for partial derivatives is
0 a 0 0 0
S 0 Py (A B (11.78)
¢ d¢p ) ox ap ) dy

From this, it is easy to work out the following exercise:

Exercise 11.23 For a particle moving in 2-D, consider the operator Xp,, — ypx. Show that
this affects the wave function by

Loy
(Xpy — YPx) : ¥ — —ih—. (11.79)

99
The combination Xp, — YPx, of course, is just the angular momentum of the particle about
the origin, which we denote L.. (The z label reminds us that the 3-D angular momentum
vector is perpendicular to the plane of the particle’s motion.) For 2-D wave functions with

an angular quantum number m, the angular momentum operator acts according to
L : R(r) €™ — mhR(r) ™. (11.80)

States with angular quantum number m are angular momentum eigenstates with eigen-
values mh.

2u1E
We now turn to the radial part of the problem, Eq. 11.76. The combination % has

units of (length) —2. If we define k = /2uE/h2, then we can replace the radial coordinate
r by the dimensionless coordinate p = kr. The radial function R(r) will be

R(r) = CJ(kr), (11.81)

where the constant C takes care of any necessary wave function normalization. The function
J(p) satisfies

02"+ pJ + (p* —m*)J =0, (11.82)

where m has a fixed integer value corresponding to some angular momentum.
Equation 11.82 is known as Bessel s equation. Its solutions, known as Bessel functions,
are well understood and discussed in detail in any text on mathematical methods of physics.”

2 See, for instance, Mathematical Methods for Physicists (6th edn) by G. B. Artken and H. J. Weber, Chapter 11
(Burlington, MA: Elsevier Academic Press, 2005).
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Graphs of the first three Bessel functions.

We denote by J,, the Bessel function for a given non-negative integer value of m. This can
be expressed as a power series:

AR S S G VI
In(p) = 55 ; 20w +ml P (11.83)

Exercise 11.24 Write down the first five terms of the power series for Jy. Show that Jy
solves Eq. 11.82.

What about a negative index? The Bessel function J_,, solves the same equation as J,,. By
convention, we let J_,, = (—1)"J,,.

A few Bessel functions are plotted in Fig. 11.3. Notice that, for p < 1, the function J,
is about proportional to p™. Thus, for m # 0, the wave function of the particle vanishes
at » = 0. If the particle has non-zero angular momentum, it cannot be found exactly at the
center of the circular box.

Of particular interest to us are the roots of the Bessel functions, the points where J,, = 0.
Figure 11.3 shows that each Bessel function has a whole sequence of distinct roots. Define

Pnm = the nth non-zero root of Jj,,, (11.84)
forn =1,2,... Here are a few of these roots:
Jo Ji Jo J3

n=1]24048 3.8317 5.1356 6.3802
n=2/55201 7.0156 84172 9.7610
n=3]8.6537 10.1735 11.6198 13.0152

Exercise 11.25 Seven of these roots appear on the graphs in Fig. 11.3. Identify the ones
shown.



243

Problems

The boundary condition at the wall of the box is that R(a) = CJ,,(ka) = 0, from which we
conclude that ka = p,,;, for some value of n. This condition tells us the possible energies
of the particle:

h2
2ua?
As in the rectangular box, the energy depends on two quantum numbers — in this case, a
radial quantum number # and an angular quantum number .

Eym = (,Onm)2~ (11.85)

Exercise 11.26 Derive Eq. 11.85. Comment on the degeneracy of the energy levels,
explaining any assumptions you make.

Exercise 11.27 Our stationary state wave functions are

Yum (1, @) = C Iy (knmr) eimq}’ (11.86)

where kyna = pnn. For all of these, the probability density [V |? depends only on 7, not
on ¢. The distributions are radially symmetric. Verify this. Then construct some stationary
state wave functions for the circular quantum billiard system whose probability densities
are not radially symmetric.

Compare the circular quantum billiard system to the 1-D situations we considered at the
beginning of this chapter. For a particle with periodic boundary conditions, we could not
really define a position observable X, owing to the way the coordinate wrapped around the
physical space. We did, however, have a perfectly sensible momentum operator p, which
had a discrete spectrum of eigenvalues. For the circular billiard system, we cannot really
define an angular position operator ¢, but the angular momentum L, exists and has a discrete
spectrum.

For the 1-D particle in a box, the wall boundary conditions posed no difficulties for the
position operator X. However, the momentum operator became problematic. The radial
wall boundary condition in the quantum circular billiard system works the same way. We
can define a radial position operator I, calculating expectations like (r), etc., but there is no
radial momentum operator. Nevertheless, in either case the energy operator of the system
(which is quadratic in the momenta) is well defined and has a discrete spectrum.

Problems

1
Problem 11.1 The kinetic energy part of the Hamiltonian is K = 2—p2.
m

(a) Show that the kinetic energy satisfies

{ap?)

(K)z — -

(11.87)

(b) Calculate the minimum (K) for an electron whose position uncertainty Ax = 0.1 nm,
the size of a typical atom. Express your answer in electron-volts (1 eV = 1.6 x
10-197).
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Problem 11.2 We can write any wave function ¥ (x) = R(x)e’*™), where R and « are real
functions. Write the probability density and probability flux for this wave function in terms
of R and «.

Problem 11.3 We can devise an analog to the probability flux J (x, #) for systems in a finite
dimensional Hilbert space. Given a basis { |r)} for the space, the probability amplitudes are
Y, = (n|¢¥ ). We wish to know how the probabilities P,, = |y, 2 change with time. Given
the Hamiltonian operator H, define

1 * *
Jum = ﬁi (wanmwm - memnwn) . (1 188)
We interpret J,;,, as the probability flux from state m to state n. Show that

dPn
f ( )

d

Explain in words the meaning of this equation. If (m| H [n) = 0, what can we say about the
flow of probability from state m to state n?

Problem 11.4 A particle is moving in one dimension subject to some potential function
U. At the instant # = 0, the wave function of the system happens to be completely real.
Show that the wave function at all times satisfies

V(x,0) =¥ (x, ). (11.90)

Comment on the following: If the wave function is ever real, the future of the system is a
perfect reflection of its past.

Problem 11.5 For a free particle, find the position representation of the time evolution
operator:

Ux,x'; 1) = (x| U() |x). (11.91)

(To evaluate this explicitly, use the fact that the Fourier transform of a Gaussian function in
Equation C.9 also applies when the constant a is imaginary.) Write down the wave function
¥ (x,t) as an integral expression involving v (x, 0).

Problem 11.6 Suppose a random variable Z is the sum of two independent random
variables Z = X 4 Y. Show that the variance of Z is

<AZZ> - <AX2> n (AY2>. (11.92)

(Note that, if X and Y are independent, then (XY) = (X) (Y).)

Imagine a classical free particle of mass m moving in one dimension. Its position and
momentum are not exactly known, and so are described by a probability distribution. At
t = 0, the variables x and p are independently distributed with variances (Ax?), and (Ap?),.
Show that, at a later time, the variance of the particle’s position is

<Ax2) - (%) 2+ <Ax2>0, (Re 11.46)
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exactly as we found for a quantum wave packet. (Here, of course, the uncertainties arise
from our ignorance of x and p, not any quantum indeterminacy.) In this classical problem,
are x and p independent variables at time ¢ # 0?

Problem 11.7 At = 0, we prepare a free particle moving in one dimension. Our aim is
to minimize the uncertainty Ax of the particle at a later time #. We can create an initial
wave packet with a real envelope function of any shape. Notice that Ax at time ¢ will
have to be large if Axg is either very large or very small. The optimum initial Axp is
therefore somewhere in between. Find this optimum in terms of 7, m, and ¢. Using the
approximate values in Exercise 11.10, find minimum uncertainty Ax for a free electron
after 1 ns.

Problem 11.8 For a particle moving on a circle of circumference L, let T; be the shift
operator defined by

Tolx) = [x+s). (11.93)
Devise an expression for T in terms of the momentum states |p,), and prove that your
expression has the correct effect on wave functions.
Problem 11.9 For a particle on a circle, define the operator ® by
®|x) =R e ™R x), (11.94)

where R = L/2m, the radius of the circle. First, verify that ® is well defined despite the
many-valued nature of the x-coordinate. Then answer the following:

(a) How does @ affect the wave 1/ (x) of a particle on the circle?
(b) Find ®". (Note that this operator is not Hermitian!)

(c) Whatis @ |p,) for the momentum state |p,)?

(d) Compute the commutator [®, p].

Problem 11.10 This problem investigates connections between the classical and the
quantum particle in a box.

(a) Imagine a classical free particle of mass u and energy E is bouncing back and forth
between walls separated by a distance L apart. Show that the period of this motion is

2L (11.95)
T = . .
V2UE
(b) A quantum particle is in a superposition of the 1, and v,,1. Initially, the state is
1
Y(x,0) = Wi Y (¥) + Yng1(x)) - (11.96)
Show that the probability distribution |1//|2 changes over time. Find (x) as a function

of time.

(¢) The probability || returns to its original configuration after a time v. Compute 7 in
terms of L, i, and E,,. How does this compare with the classical expression? How do
they compare when n > 1?
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Problem 11.11 Prove that, in polar coordinates, the Laplacian operator is

2f 1of | 19%

2
LA 11.97
V= 8r2 ror 12 og? ( )

where f = f (7, ¢).

Problem 11.12 Consider a wave function for the circular billiard system that at = 0 is a
superposition of the two lowest stationary states:

V¥ (r,,0) = ado(kror) + bJ1 (kiir)e®. (11.98)
For simplicity, suppose that both a and b are real, positive, and non-zero.

(a) Show that the initial probability distribution |y/|? is not circularly symmetric. In which
half of the circle is the particle most likely to be found?

(b) Show that over time |1/|*> moves around the circle. How long does it take to return to
the original probability distribution?

If you have access to the necessary computer software tools, create an animation of the
dynamical behavior of [¥|% over time, given a = b.

Problem 11.13 The divergence of a vector field is, in Cartesian coordinates,
oF, 0F, OF;

F = :
oax ay 0z

<

(11.99)

According to the divergence theorem, the integral of V - F over a bounded volume V is
related to the integral of F’ over the closed surface ¥ enclosing the volume:

///%ﬁd%://ﬁ-ﬁd/:, (11.100)
V )

where 7 is an outward-pointing unit vector perpendicular to the surface X.

(a) Show that, if the wave function v (#,7) for a particle in three dimensions satisfies
Eq. 11.26, then it follows that

3|y
at

(b) Let Py be the total probability that a quantum particle is found in 7. Show that
dpP
= //J i dA. (11.102)

+V.J=0. (11.101)




Spin and rotation

12.1 Spin-s systems
e —

Angular momentum is one of the fundamental quantities of Newtonian physics, and in
quantum physics its importance is at least as great. In quantum mechanics we often dis-
tinguish between two types of angular momentum: orbital angular momentum, which
a system of particles possesses due to particle motion through space; and spin angular
momentum, which is an intrinsic property of a particle.' The distinction will be important
later, but for now we will ignore it. We will here refer to angular momentum of any sort as
“spin” and develop general-purpose mathematical tools for its description.

We have already dealt with spin systems, particularly the example of a spin-1/2 particle.
Our approach began with the empirical observation that a measurement of any spin com-
ponent of a spin-1/2 particle could yield only the results +/4/2 or —h/2. We introduced
the basis states |z4) for the two-dimensional Hilbert space H. We also gave other basis
states such as { |x+)} and {|y+)} in terms of the |z1) states. From basis states and meas-
urement values we constructed operators for the spin components Sy, Sy, and S;. With the
operators in hand, we could then examine the algebraic relations between them (such as
the commutation relation in Exercise 3.56).

Our job here is to generalize our analysis to systems of arbitrary spin. To do this, we will
reverse our chain of logic. We now begin with spin component operators that are assumed to
satisfy the same commutation relations we obtained for the spin-1/2 operators. Amazingly,
this will be a sufficient foundation to derive everything — the eigenvalues, eigenvectors, and
matrix representations for all of the spin operators. Later, in Section 12.3, we will see how
the commutation relations themselves follow naturally from the geometry of 3-D rotations.

Spin commutation relations

Here is our basic postulate (which previously appeared in Problem 5.2):

[S:,S,] = ihS.,  [S,,5.] = ihSy,  [S,S:] = iRS,. (12.1)

! The terminology calls to mind a planetary analogy. The Earth has angular momentum due to its orbital motion
about the Sun and also due to its rotation about its axis. But this analogy, like most analogies in quantum
physics, is dangerous if pressed too far. Both orbital motion and rotation of a planet involve masses moving in
space, and so yield angular momentum of the “orbital” type. Intrinsic spin is a property peculiar to quantum
systems.
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A cyclic permutation of the x, y, and z axes gives an equivalent right-handed spatial
coordinate system, so it is no surprise to find that our three basic commutation relations in
Eq. 12.1 are connected by just such a permutation.

We sometimes speak (and are tempted to think) of Sy, S,, and S; as the components of a
vector quantity §, the “spin vector.” We did this in Section 10.5 for the momentum vector
p of a particle moving in three dimensions. The spin operator vector S is more problematic
than that example, however, because the components do not commute with each other. For
this reason we usually cannot have eigenstates of S — states with “definite spin vectors.”
Nevertheless, the formal vector S is valuable as a heuristic, a way of suggesting what
calculations are useful and meaningful. For instance, we can combine the component
operators to determine the magnitude S? = .S

S =S+, +52. (12.2)

Despite our qualms about §, the definition of S? is straightforward and accords with our
classical understanding of angular momentum as a spatial vector quantity.

Each of the squared component operators S)zc, etc., is positive, so their sum S? is also
positive. This means that the eigenvalues of S? are real and non-negative. Since 52 has the
units of the square of angular momentum, we can write any such eigenvalue in the form
s(s + 1)h2, where the dimensionless parameter s > 0, though it is at the moment otherwise
unrestricted.”

What commutation relations does S? have with the spin component operators S, Sy, and
S.? This is easy to answer if we first establish the following handy fact about commutators:

Exercise 12.1 Given three operators A, B, and C, show that
[A,BC] = [A,BIC + B[A, C]. (12.3)
Now we find that
[5-,5%] = [S,521 + [S-. 53]

=[Sz, SxISx + Sx[Sz, Sx1 + [Sz, 5,15y + 5,152, Syl

= ihS,Sx + ihS:S, — ihS,S, — ihS, S«

=0. (12.4)
The spin operator S? commutes with S, and by a similar argument with the other spin
components as well.

To simplify things a bit, we will focus our attention on H,, the eigenspace of 52 with
some particular eigenvalue s(s + 1)72%. If the state of the system is restricted to such a space,

2 Why do we write s(s + 1) instead of 5% or even just s? This is one of those places where we are anticipating
how things work out later on. If we write the eigenvalues of $2 in this way, later expressions become simpler.
At any point in a mathematical derivation, we generally have two questions in mind. First, we ask whether
the step is logically sound. The answer should be clear — and had better be “‘yes”! Second, we ask why the step
is taken. The exact reason for the step might be hard to see right away, but usually becomes apparent later on.
To give an analogy: as we observe a game of chess, we can tell at once whether or not a given move is legal,
but we sometimes do not understand the player’s strategy until the game develops further.
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then we say that it is a spin-s system. Because the component operators all commute with
52, they will act as operators within H,.

Exercise 12.2 Prove that S, S, and S, must map vectors in H; to vectors in H,.

What do the states of a spin-s system look like? We can choose one component, S, for
instance, and find its eigenstates in 7. These can be written |m, o). The number m indicates
the S, eigenvalue by

S; |m,a) = mh|m,a) . (12.5)

The additional label « allows us to identify different eigenstates with the same S, eigenvalue.
At this point we know nothing about the possible values of m except that they, like s, are
dimensionless.

Raising and lowering operators

We now define a pair of operators
S+ =5, %15, (12.6)

Note that Sj_ = S_. At first, the significance of these operators may not be apparent. We
start to uncover that significance by evaluating the commutator of S; with S:

[S2, 541 =[5z, 5] + 152, 5)]
= ihS) + hSx
= hSy. (12.7)
From this, we know that S;Sy =SS, + AS...
Exercise 12.3 Also prove the corresponding result’® for S_:
[S;,S—]1= —hS_. (12.8)
Therefore S;5_ =S_S, — hS4.

The operator S acts on an S, eigenstate |m,«) to produce a vector Sy |m, ). If we
operate on the new vector with S;, we obtain

s, (s+ |m,a>) — (5.5, + hSy) [m,a) = (m + DA (s+ |m,a)). (12.9)

In other words, the vector S |m, ) acts like an eigenvector of S, with eigenvalue (m + 1)A.
We can thus say that Sy |m, ) = K \m + 1, o/) for some scalar factor K.

Exercise 12.4 Show that S_ |m, «) acts like an eigenvector of S, with eigenvalue (m — 1).

3 Be ready for several similar exercises in the pages ahead. We will show something for S4 and let you work out
the parallel fact about S_.
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Why do we say “acts like an eigenvector” instead of “is an eigenvector”? It is because the
resulting vectors might be null, and only non-null vectors can be eigenvectors. A careful
statement of our conclusions about S4+ would be:

e S, |m, ) is either an eigenvector of S; with eigenvalue (m + 1), or else null.
e S_|m,a) is either an eigenvector of S, with eigenvalue (m — 1)A, or else null.

The S+ and S_ operators are thus “raising” and “lowering” operators, incrementing the
value of m by +1 or —1 respectively. They link together the different S, eigenstates in H;.
We can use them to prove a variety of results about the spin component operators. The next
exercise gives an example.

1
Exercise 12.5 Show that S, = §(S+ + S_). Use this to prove that (m, «| Sy |m/,ﬂ) =0

unless m — m’ = +1.

The vectors Sy |m, ) and S_ |m, o) will not themselves be physical quantum states of
our spin-s system, since they are not normalized. Indeed, it is possible that one or both
of these vectors are the null vector. We now investigate the magnitudes of the raised and
lowered vectors.

To do this, we will need to know something about the operator product of S; and S_.
First, note that

S¢S_ =S4 5; +i (55 — 545)
=52 —S2 4 1S, (12.10)

This is an especially convenient relation for us, since the |m,«) states are eigenstates of
both $? and S..

Exercise 12.6 In a similar way, show that
§ Sy =52—S2—nS,. (12.11)

Now consider the vector S |m,«). The squared magnitude of this vector is of course
non-negative:

0 < (m,alS_S4 [m,a)
= (m,af (52 - hsz) Im, )
0<(ss+1)—mm+ 1) K. (12.12)

We have arrived at an important connection between the values of m and s, namely that
m < 5. The non-negative parameter s acts as a “ceiling” for the possible values of m. Also,
we note that when m = s, the vector Sy |m, ) = 0.

But this suggests a paradox! How do we reconcile the limit m < s with the action of S
to increase the value of m by 1? If we begin with an eigenvector |m, ) and successively
apply S+, we can increase m to m + 1, then m + 2, and so on, without changing the value
of's. We climb up the S, “ladder” higher and higher. Can we not apply S4+ enough times to
climb beyond the m < s ceiling, and arrive at a contradiction?
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0
A
S
; ‘S s
Si
[ ‘ V s+1
: 'S
g Si
= :
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> . .
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iS.
0

The “ladder” of possible m values for a spin-s system. The rungs are connected by the
S+ ¢ operators and have unit separation.

The only hope lies in the observation that, when m = s exactly, the result of applying
S.+ is the null vector. Here the upward ladder stops, and further applications of Sy lead
nowhere. We therefore conclude that successive applications of S, must eventually lead
us to an eigenvector with m = s. That means that every possible value for m must differ
from s by exactly an integer. Otherwise, successive applications of the raising operator,
each one increasing m by 1, would jump past the m = s ceiling.

In short, the only possible values of m are of the form s, s — 1, s — 2, and so on. The
m-values form a discrete ladder, separated by unit steps, up to the maximum value m = s.
Naturally, there is a similar argument for the lowering operator S_.

Exercise 12.7 By considering the squared magnitude of S_ |m, ), show that
0>s(s+1)—mim—1). (12.13)
From this, show how to draw the conclusion that m > —s.

Exercise 12.8 Successive applications of the lowering operator S_ on |m, «) lead to values
m— 1, m—2, etc. Show that this downward sequence can only terminate at m = —s, where
the vector S_ |m, @) = 0.

Therefore, the only possible values of m must be of the form —s, —s + 1, —s + 2, etc.
Otherwise, successive applications of S_ would miss the unique “floor” value of m = —s.

The general situation is illustrated in Fig. 12.1. We know that the top of the ladder must
be at m = s, that the bottom of the ladder is at m = —s, and that adjacent values of m are
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separated by 1. It follows that the distance between —s and s must be an integer. That is,
2s=0,1,2,...,0r

1 3
-1, ...
2 2

Only integer or half-integer values for s are allowed. We can have spin-0 systems, spin-1/2

s=0, (12.14)

systems, spin-1 systems, and so on; but no other values of s are possible. For a given s, the
S, quantum number m can take on 2s + 1 different values ranging from —s to s.

Exercise 12.9 Under what circumstances would the value m = 0 be possible?

Pause to reflect on our achievement so far. Beginning only with the fundamental com-
mutation relations in Eq. 12.1 (which are in fact all the same, up to a cyclic permutation of
x, v, and z), we have deduced the spectra of possible eigenvalues for S% and S.. This seems
a remarkable product from such meager ingredients. But we are not done yet!

Simple spin systems

Now that we know all about the possible values of's and m, we turn to the task of figuring out
the structure of the Hilbert space H,. Each rung of the ladder we have constructed represents
an S, eigenvalue of mh, which corresponds to a subspace containing all the states of the
form |m,«). Let d,, be the dimension of this subspace. What are the dimensions d,,,?

In fact, each of these subspaces must have the same dimension. Here is why.
Suppose |m,«) and |m, ) are two orthogonal states in the m eigenspace. The raising
operator S4 maps these to vectors that are still orthogonal:

(m, | S_S. |m, B) = (m, | (52 2 hSZ> Im, B)

= (s(s+ 1) — m(m+ 1) I (m,a |m, B)
=0. (12.15)

If m = s, then S4 maps everything to the null vector. For m < s, an orthonormal basis
for the m eigenspace (containing d,, elements) will be mapped to an orthogonal set in
the (m + 1) eigenspace. The dimension d,,+1 of this eigenspace must be large enough to
accommodate this set. Therefore, d, 1 > d),. As usual, a similar argument can be made
by going down the ladder using S_:

Exercise 12.10 By applying S_ to orthogonal states in the (m + 1) eigenspace, show that
dyp+1 < dy. Conclude that d, 1 = dp,.

It follows that all of the d,,;s are the same: d,, = d,,. Since there are 25+ 1 different possible
values of m, the dimension of the overall space H; is (2s + 1)d,,. This suggests that we
should regard our system as a composite of two subsystems, a “spin” subsystem (with
Hilbert space dimension 2s 4 1) and an “other” subsystem (with Hilbert space dimension
dyn,). The overall Hilbert space is just the tensor product of those for the subsystems.
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A simple spin-s system is one for which d,, = 1 for all m. This means that the spin degree
of freedom is the only degree of freedom in the system, and d = 2s+ 1. A familiar example
of this idea is the spin-1/2 particle we analyzed as a part of qubit quantum mechanics. For
that system we ignored the position and other degrees of freedom of the particle, considering
only its spin. The dimension of its Hilbert space was therefore 2 (%) +1=2.

For a simple spin-s system, we do not need the additional label « for the S, eigen-
states. Instead, we can construct a standard basis of these eigenstates using the following
procedure:

e First, choose a normalized state with m = —s to be the state |—s).
e Foreach m < s, define

1
Im+1) = PV e S |m). (12.16)

This provides an inductive definition of all of the states |m), where m ranges over the
2s + 1 values from —s to s.

e The |m) states are orthogonal to one another, since they are eigenstates of S, with
different eigenvalues. The prefactor in the inductive definition is carefully chosen so that
the |m) states are also normalized. Since the dimension of H, is 2s + 1, the |m) states
form an orthonormal basis for it.

Building upon this construction, we can express all of our spin operators in the standard
basis.

Exercise 12.11 Show that

S+=Zh\/s(s+l)—m(m+1) Im + 1)(m], (12.17)

m

where the sum ranges over all the values of m from —s to s. (The m = s term is zero, of
course.) Use this to write down the matrix representation for S for a spin-1 system.

Exercise 12.12 Show that, for all m,

S_|m)=hys(s+1)—mm—1) [m—1). (12.18)
(When m = —s, this simply means that S_ |—s) = 0.)

See also Problem 12.2, where explicit matrix representations for Sy and Sy, are derived.

We have learned that the whole quantum theory of systems of arbitrary spin is somehow
“encoded” in the component commutation relations postulated in Eq. 12.1. Admittedly, we
did have to go to considerable effort to “decode” the commutation relations and draw the
appropriate conclusions; but we succeeded in building up the entire mathematical structure.
The key step in our effort was the definition of the raising and lowering operators S+, whose
properties allowed us to construct the ladder of S, eigenstates. We will see this general
strategy again, when we analyze an infinite “ladder system” in Chapter 13. Meanwhile, the
commutator has once again proven to be a powerful tool for extracting physical meaning
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from the abstract operators of quantum mechanics. In the next two sections, we will get
some idea where the basic spin commutation relations come from.

12.2 Orbital angular momentum
_______________________________________________________________________________________|]

Suppose a particle moves in three dimensions. Classically, the angular momentum of
the particle is L=7x P, the cross product of the position and momentum vectors of the
particle. We can extract three component expressions from this definition to motivate the
definitions of the three orbital angular momentum components for the quantum particle:

Le = Yp: — zpy, L, = zpx — Xp-, L. = XPy — YPx. (12.19)

Given the canonical commutation relations between the position and momentum compo-
nents (Eq. 10.82), we can establish the commutation relations between the orbital angular
momentum components.

Exercise 12.13 Show that
[Le, Ly] = iAlL;. (12.20)
Write down the other two commutators by cyclically permuting the coordinates.

Thus, the components of the orbital angular momentum satisfy the basic commutation
relations for spin components (Eq. 12.1). Orbital angular momentum is a kind of “spin.”
The general analysis of Section 12.1 immediately tells us that we can find simultaneous
eigenstates of L% and L, with quantum numbers / and m. The eigenvalues are /(! + 1)/? and
mh, respectively.

To get a bit more detail, let us explore how angular momentum works in the position
representation. The particle is described by a wave function ¥ ¢*). Though we are inter-
ested in the Cartesian components Ly, L, and L, it is in fact easiest to regard v as a
function of spherical coordinates r, 6, and ¢. The relation between spherical and Cartesian
coordinates is

X =rsiné cos ¢, y =rsinf sing, z=r cosb, (12.21)

r= /x2+y2+z2,

6 = cos™! -z s
/xz +y2 _I_ZZ
¢ = tan~! (X) : (12.22)
X

or equivalently,

From the chain rule for partial derivatives (Eq. 11.78 and its generalizations) we can work
out how the Ly, L,, and L operators affect the wave function v (r, 6, ¢). The following two
exercises show how this is done:
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Exercise 12.14 Here are the partial derivatives of the spherical coordinates (r, 6, ¢) with

respect to the Cartesian ones (x, y, z).

ar 0 " a0
— =siné cos ¢, —
ox ox
ar . . 00
— =siné sing, —
ay ay
a0 a0
i cos 6, —
0z 0z

1

—cosf coso,
-

1 .
—cosf sing,
p

1.
——sinf,
P

Lo} 1 sin¢g

9x  rsing’

d¢p  lcos¢

3y rsing’

8_¢ =0. (12.23)
daz

Verify as many of these as you need to be convinced of the whole set. You should work
out at least one in each column and one in each row. (Not fair picking the one in the lower

right!)

Exercise 12.15 From the results in Eq

. 12.23, show that

d d
yg —25 = —sinq&@ — cotf cosq&%, (12.24)
a a a ., 0
z— —X— = cos¢p— — cotf singp—, (12.25)
0x 0z 20 a¢p
d d a
X— —y— = —.
ay ox  J¢
It follows that
d d
Ly : ¥ — ih (sind) % + cotf cos ¢ %) ,
0 a
Ly: ¢y — ih (— cos @ £ + cotf sin¢ %) ,
d
Ly — —ik (%) (12.26)
and thus the orbital ladder operators L+ = L, £ il, are
j oy . oY
Ly : et | +— to— 12.27
+ Y — he ( 89+lco 8(15) ( )
Exercise 12.16 From Eq. 12.26, show that
13 (. 3y 1 8%y
12 —1? | — — (sing — — . 12.28
v (sine 26 (Sm 39>+ sin2 0 3¢2> (12.28)

Notice that derivatives with respect to » do not appear in any of these expressions.
Let us suppose that the wave function v, represents an eigenstate of both L? and L. with
quantum numbers / and m. The L. eigenvalue equation yields

—ih
¢

0 w/m

= thlm-

(12.29)
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The solution to this differential equation is

Yim = fim(r,0)e™?, (12.30)

for some function f},,. Since the wave function is single-valued, the value of m must be an
integer. This tells us that orbital angular momentum quantum numbers must be integers:

1=0,1,2,... and m=—1,...,0,...,+L (12.31)

What about the function fj,,(r,0)? If m = —I, then the state represented by 1, is on the
bottom rung of the “ladder” of angular momentum states for a given /, so thatL_ |_;) = 0.
This leads to

i
- % + 1 coth fiy = 0, (12.32)

with solution
fi—1 = R(r) sin’ 6. (12.33)

Exercise 12.17 Derive Eq. 12.32 and its solution Eq. 12.33. (For the solution, the
substitution # = sin @ is handy.)

Thus, ¥y = R(r) sin’ @ e~ i¢,
The function R(r) is arbitrary and does not affect the angular momentum of the state.
Furthermore, all of the angular momentum eigenstates can be generated from these by

application of the L} ladder operator, as in Eq. 12.16, which we here rewrite:
1
= L m) - 12.34
1V m+1) N (ES ) ErTrEnY + [Vim) ( )

None of these operations will affect R(») in the wave function at all.
Therefore, we conclude that every eigenstate of both L? and L, can be written

Vim(r,0,¢) = R(r) Yim (0, ), (12.35)

where the functions Yy, are called spherical harmonics.* These have the form

Yim (0, ¢) = Pin(0) &™?, (12.36)
where P_;(0) = K; sin 6 and
1 dPp,
P ) = - t0 Py, | . 12.37
N (D ETICES) ( a " ”") (12.37)

The constant K; is determined by normalization. We choose to normalize the spherical
harmonics so that | ¥}, |2 integrates to unity over the (6, ¢) sphere. With a standard (but
arbitrary) choice of sign, we obtain

=D i+t

4 So called because the functions ¥}, arise in a great many wave problems with spherical symmetry — for instance,
in the “ringing modes” of a spherical bell.
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Rotation

The spherical harmonics are among the most useful functions in mathematical physics. For
I/ =0and/ =1 these are

[3
Yi0=,/-— cosé. (12.39)
4

. . [ 5
Exercise 12.18 Given that Y, g = Tom 3 cos? 6 — 1), find > +1 and Y3 +5.
T
Exercise 12.19 Rewrite each of the spherical harmonics with / < 2 in the following form:

Yim =r"' f(x,0,2). (12.40)

12.3 Rotation

In Section 5.4 we discussed how the state of a spin-1/2 system changes under rotations. We
found that, if we rotate the spin by an angle « about the z-axis, then its state is changed by
the unitary operator

R.(a) = e 5=/ T (12.41)

(compare Eq. 5.56). We said that the spin operator S, is the “generator” of rotations about
the z-axis.

We can now see that a similar relation holds for orbital angular momentum. A rotation
by « about the z-axis changes the spherical harmonic function by

R(@) : Yim(0,8) = Yim(0,¢ — ) = e ™Y} (0, ), (12.42)
which allows us to write
R-(a) |y) = e /P |y, (12.43)

for a particle moving in 3-D. Again, the z-component of angular momentum is the generator
of rotations about the z-axis. And in fact, this is a general relationship. To see why, we will
take a c