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Preface

The last two decades have seen the development of the new field of quantum information
science, which analyzes how quantum systems may be used to store, transmit, and process
information. This field encompasses a growing body of new insights into the basic properties
of quantum systems and processes and sheds new light on the conceptual foundations of
quantum theory. It has also inspired a great deal of contemporary research in optical, atomic,
molecular, and solid state physics. Yet quantum information has so far had little impact on
the way that quantum mechanics is taught.

Quantum Processes, Systems, and Information is designed to be both an undergraduate
textbook on quantum mechanics and an exploration of the physical meaning and significance
of information. We do not regard these two aims as incompatible. In fact, we believe
that attention to both subjects can lead to a deeper understanding of each. Therefore, the
essential “story” of this book is very different from that found in most existing undergraduate
textbooks.

Roughly speaking, the book is organized into five parts:

• Part I (Chapters 1–5) presents the basic outline of quantum theory, including a devel-
opment of the essential ideas for simple “qubit” systems, a more general mathematical
treatment, basic theorems about information and uncertainty, and an introduction to
quantum dynamics.

• Part II (Chapters 6–9) extends the theory in several ways, discussing quantum entangle-
ment, ideas of quantum information, density operators for mixed states, and dynamics
and measurement on open systems.

• Part III (Chapters 10–14) uses the basic theory to discuss several specific quantum
systems, including particles moving in one or more dimensions, systems with orbital
or intrinsic angular momentum, harmonic oscillators and related systems, and systems
containing many particles.

• Part IV (Chapters 15–17) deals with the stationary states of particles moving in 1-D and
3-D potentials, including variational and perturbation methods.

• Part V (Chapters 18–20) further develops the ideas of quantum information, examining
quantum information processing, NMR systems, the meaning of classical and quantum
entropy, and the idea of error correction.

These chapters are followed by Appendices on probability (Appendix A), Fourier series
and Fourier transforms (Appendix B), Gaussian functions (Appendix C) and generalized
quantum evolution (Appendix D).



x Preface

Part I is the basis for all further work in the text. The remaining parts follow two
quasi-independent tracks:

Thus, this book could be used as a text for either an upper-track or a lower-track style of
course.1

We, however, strongly recommend including material from both tracks. This book
is written from the conviction that a modern student of physics needs a broader set of
concepts than conventional quantum mechanics textbooks now provide. Unitary time evo-
lution, quantum entanglement, density operator methods, open systems, thermodynamics,
concepts of communication, and information processing – all of these are at least as essen-
tial to the meaning of quantum theory as is solving the time-independent Schrödinger
equation.

As we wrote this book, we had the benefit of useful and inspiring conversations with
a great many colleagues and friends. Among these we wish particularly to express our
gratitude to Charles Bennett, Herb Bernstein, Carl Caves, Chris Fuchs, Lucien Hardy,
David Mermin, Michael Nielsen, and Bill Wootters. In a similar vein, we would also like to
thank the other members of the (fondly remembered) Central Ohio Quantum Conspiracy:
Michael Nathanson, Kat Christandl Gillen, and Lee Kennard. We have also received
valuable input on the book from Matthew Neal and Ron Winters of Denison University and
Ian Durham of St. Anselm College.

An early version of this book was used as an experimental textbook for a quantum
mechanics course at Kenyon College, and the students in that course deserve their own
thanks: Andrew Berger, Stephanie Hemmingson, John Hungerford, Lee Kennard, Joey
Konieczny, Jeff Lanz, Max Lavrentovich, David Lenkner, Nikhil Nagendra, Alex Rantz,
David Slochower, Jeremy Spater, Will Stanton, Adam Tassile, Chris Yorlano, and Matt
Zaremsky.

Our faculty colleagues at both Kenyon College and Denison University have been won-
derfully supportive throughout this project. One of us (MDW) is grateful to acknowledge
a Robert C. Good Faculty Fellowship from Denison University. We also thank our editor
at Cambridge University Press, Simon Capelin, for providing the initial impetus and for
considerable patience and encouragement throughout.

1 There are a few minor dependencies not indicated in this chart, but these can be easily accommodated in practice.
The general discussion of composite systems in Section 6.1 is a useful preparation for work on many-particle
systems in Chapter 14. The analysis of thermal states of a ladder system (Section 13.4) depends on the density
operator formalism, but may be omitted if Chapter 8 has not been covered.
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We are more grateful than we can readily express for the continuing love and support
of our wives, Carol Schumacher and Bonnie Westmoreland. And finally, a word to our
children, Barry, Patrick and Carolyn Westmoreland, and Sarah and Glynis Schumacher:
This is what we have been so busy doing for the last few years. We hope you like it, because
we are dedicating it to you.

Benjamin Schumacher
Department of Physics

Kenyon College

Michael D. Westmoreland
Department of Mathematics

and Computer Science
Denison University





1 Bits and quanta

1.1 Information and bits

On the evening of 18 April 1775, British troops garrisoned in Boston prepared to move
west to the towns of Lexington and Concord to seize the weapons and capture the leaders of
the rebellious American colonists. The colonists had anticipated such a move and prepared
for it. However, there were two possible routes by which the British might leave the city:
by land via Boston Neck, or directly across the water of Boston Harbor. The colonists had
established a system of spies and couriers to carry the word ahead of the advancing troops,
informing the colonial militias exactly when, and by what road, the British were coming.

The vital message was delivered first by signal lamps hung in the steeple of Christ Church
in Boston and observed by watchers over the harbor in Charlestown. As Henry Wadsworth
Longfellow later wrote,

One if by land, and two if by sea;
And I on the opposite shore will be,
Ready to ride and spread the alarm
Through every Middlesex village and farm . . .

Two lamps: the British were crossing the harbor. A silversmith named Paul Revere, who had
helped to organize the communication network, was dispatched on horseback to carry the
news to Lexington. He stopped at houses all along the way and called out the local militia.
By dawn on 19 April, the militiamen were facing the British on Lexington Common. The
first battle of the American Revolutionary War had begun.

In the United States, Paul Revere1 is remembered as a hero of the Revolutionary War,
not for his later military career but for his “midnight ride” in 1775. Revere is famous to this
day as a carrier of information.

Information is one of our central themes, and over the course of this book we will
formalize the concept, generalize it, and subject it to extensive analysis. The story of Paul
Revere illustrates several key ideas. What, after all, is information? We can give a heuristic
definition that, though we will later stretch and generalize it almost beyond recognition,
will serve to guide our discussion.

Information is the ability to distinguish reliably between possible alternatives.

1 William Dawes and Dr. Samuel Prescott, who accompanied Revere on the ride and helped spread the word, are
almost forgotten – perhaps because they were never immortalized in verse by Longfellow.
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Before Paul Revere’s ride, the militiamen of Lexington could not tell whether the British
were coming or not, or by what route. After Revere had reached them, they could distinguish
which possibility was correct. They had gained information.

We can also distinguish between an abstract message and the physical signal that rep-
resents the message. The association between message and signal is called a code. For
instance, here is the code used by the colonists for their church steeple signal.

Signal Message

0 lamp The British are not coming.
1 lamp The British are coming by land.
2 lamps The British are coming by sea.

Mathematically, the code is a function from a set of possible messages to a set of possible
states of the physical system that will carry the message – in this case, the lamp configuration
in the church tower.

There is no requirement that all possible signals are used in the code. (The Boston spies
could have hung three lamps, or six, though their distant compatriots would have been
rather perplexed.) On the other hand, the association between message and signal should
be one-to-one, so that distinct messages are represented by distinct signals. Otherwise, it is
not possible to deduce the message reliably from the signal.

Another very important point is that information can be transformed from one physical
representation to another, so that the same message can be encoded into quite different
physical signals. Paul Revere’s message was not only represented by lamps in a church, but
also by neural activity in his brain and then by patterns of sound waves as he cried, “The
British are coming!”

Exercise 1.1 Identify at least seven distinct physical representations that this sentence has
had from the time we wrote it to the time you read it.

The fact that the same message can be carried by very different signals is a fundamental
truth about information.

This transformability of information allows us to simplify matters considerably, for we
can always represent a message using signals of a standard type. The universal “currency”
for information theory is the bit. The term bit is a generic term for a physical system with
two possible distinguishable states. The states may be designated no and yes, off and on, or
by the binary digits 0 and 1. These two states may be distinct voltage levels in an electrical
device, two directions of magnetization in a small region of a computer disk, the presence
or absence of a light pulse, two possible patterns of ink on a piece of paper, etc. All of these
bits are isomorphic, in that information represented by one type of bit can be converted to
another type of bit by a physical process.

A single bit has a limited “capacity” to represent information. We cannot store an entire
book in one bit. The reason is that there are too many possible books (that is, possible
messages) to be represented in a one-to-one manner by the two states 0 and 1. Somewhere
in the code, we would inevitably have something like this:
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Signal Message
...
0 Alice in Wonderland by Lewis Carroll
0 The Guide for the Perplexed by Moses Maimonides
...

From a bit in the state 0, it would be impossible to choose the correct book in a reliable way.
To represent an entire book, we must use strings or sequences of many bits. If we have

a string of n bits, then the number of distinct states available to us is

# of states = 2× · · · × 2︸ ︷︷ ︸
n times

= 2n. (1.1)

Exercise 1.2 A byte is a string of eight bits. How many possible states are there for one
byte?

Suppose that there are M possible messages. If the number of possible signals is at least as
large as M , then we can find a code in which the message can be reliably inferred from the
signal. We can thus determine whether the message can be represented by n bits.

• If M > 2n, then n bits are not enough.
• If M ≤ 2n, then n bits are enough.

The number n of bits necessary to represent a given message is a way of measuring “how
much information” is in the message. This is a very practical sort of measure, since it tells
us what resources (bits) are necessary to perform a particular task (represent the message
faithfully).

We define the entropy H of our message to be

H = log M , (1.2)

where M is the number of possible messages. (From now on, unless we otherwise indicate,
“log” will denote the logarithms with base 2: log ≡ log2.) The entropy H is a measure of
the information content of the message. From our discussion above, we see that if n < H ,
n bits will not be enough to represent the message faithfully. On the other hand, if n ≥ H ,
then n bits will be enough. Thus, H measures the number of bits that the message requires.2

We can think of H as a measure of uncertainty – that is, of how much we do not know
before we get the message. It is also a measure of how our uncertainty is reduced when we
identify which message is the right one. In other words, before we receive and decode the
signal, there are M possibilities and H = log M . Afterward, we have uniquely identified
the right message, and the entropy is now H ′ = log 1 = 0.

We have called H the “entropy,” which is the name used for H by Claude Shannon in
his pioneering work on the mathematical theory of information. The name harkens back to

2 Anticipating later developments, we should note here that our definition of H implicitly assumes that the M
possible messages are all equally likely. To cope with more general situations, we will need a more general
expression for the entropy. However, Eq. 1.2 will do for our present purposes.
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thermodynamics, and for very good reason. Ludwig Boltzmann showed that if a macro-
scopic system has W possible microscopic states, then the thermodynamic entropy Sθ is

Sθ = kB ln W , (1.3)

where kB = 1.38 × 10−23 J/K, called Boltzmann’s constant. This famous relation (which
is inscribed on Boltzmann’s tomb in Vienna) can be viewed as a fundamental link between
information and thermodynamics. Up to an overall constant factor, the thermodynamic
entropy Sθ is just a measure of our uncertainty of the microstate of the system.

Exercise 1.3 A liter of air under ordinary conditions has a thermodynamic entropy of about
5 J/K. How many bits would be necessary to represent the microstate of a liter of air?

We will have more to say about the connection between information and thermodynamics
later on.

Suppose A and B are two messages, having MA and MB possible values respectively.
The two messages taken together form a joint message that we denote AB. If A and B are
independent of each other, every combination of A and B values is a possible joint message,
and so MAB = MAMB. In this case the entropy is additive:

H(AB) = H(A)+ H(B). (1.4)

On the other hand, if the messages are not independent, it may be that some combinations
of A and B are not allowed, so that the joint entropy H(AB) may be less than H(A)+H(B).

Exercise 1.4 Suppose A and B each have 16 possible values. What is the joint entropy
H(AB) (a) if the messages are independent, and (b) if B is known to be an exact copy of A?

How much information was contained in the message sent from the Christ Church steeple
in 1775? There were three possible messages, and so H = log 3 ≈ 1.58. This means that
one bit would not suffice to represent the message, but two bits would be more than enough.
That much is clear; but can we give a more exact meaning to H? Does it make sense to say
that a message contains 1.58 bits of information?

Suppose our message is a decimal digit, which can take on values 0 through 9. There are
ten possible values for this message, so the entropy is H = log 10 ≈ 3.32. We shall need at
least four bits to represent the digit. But imagine that our task is to encode, not just a single
digit, but a whole sequence of independent digits. We could simply set aside four bits per
digit, but we can do better by considering groups (or blocks) of three digits. Each group
has 103 = 1000 possible values, and so has an entropy of 3 log 10 = 9.97. Therefore we
can encode three digits in ten bits, using (on average) 10/3 ≈ 3.33 bits per digit. This is
more efficient, and is very close to using log 10 bits per digit.

Exercise 1.5 Devise a binary code for triples of digits (as described above) and use your
code to represent the first dozen digits of π .

This motivates the following argument. Consider a message having an entropy H . If
we have a long sequence of independent messages of this type, we can group them into
blocks and encode the blocks into bits. If the blocks have n messages, each block has an
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entropy nH . Let N be the minimum number of bits needed to represent a message block.
This will be the smallest integer that is at least as big as nH , and so

nH ≤ N < nH + 1. (1.5)

Calculating the number of bits required on a “per message” basis, we are using K = N/n
bits per message, and

H ≤ K < H + 1
n

. (1.6)

If we consider very large message blocks, n � 1 and so 1/n is very small. The two ends
of the inequality chain squeeze together, and for large blocks we will use almost exactly
H bits per message to represent the information. Therefore, if we encode our messages
“wholesale,” the entropy H precisely measures the number of bits per message that we need.

Exercise 1.6 Consider a type of message that has three possible values (like the message
of the colonial spies in Boston). Calculate the minimum number of bits required to encode
blocks of 2, 3, 5, 10, or 100 such messages. In each case, also calculate the number of bits
used per message.

Things become more complicated in the presence of noise. Noise is a general term for
any process that prevents a signal from being transferred and read unambiguously. For
example, imagine that there had been fog on Boston Harbor on that April night in 1775.
In a heavy fog, the church steeple might not have been visible at all from Charlestown,
and no information would have been conveyed. In a lighter mist, the observers might have
been able to see that there were lamps in the steeple, but not been able to count them. They
would then have known that the British troops were on the move, but not which way they
were going. A part of the information would have been transmitted successfully, but not all.

It is possible to formalize this notion of partial information. Before any communication
takes place, there are M possible messages and the entropy is H = log M . Afterward, we
have reduced the number of possible messages from M to M ′, but because of noise M ′ > 1.
The amount of information conveyed in this process is defined to be

H − H ′ = log
M
M ′ . (1.7)

Exercise 1.7 A friend is thinking of a number between 1 and 20 (inclusive). She tells you
that the number is prime. How much information has she given you?

The concept of information is fundamental in scientific fields ranging from molecular
biology to economics, not to mention computer science, statistics, and various branches of
engineering. It is also, as we will see, an important unifying idea in physics.

1.2 Wave–particle duality

Since the 17th Century, there have been two basic theories about the physical nature of light.
Isaac Newton believed that light is composed of huge numbers of particle-like “corpuscles.”
Christiaan Huygens favored the idea that light is a wave phenomenon, a moving periodic
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disturbance analogous to sound. Both theories explain the obvious facts about light, though
in different ways. For example, we observe that two beams of light can pass through one
another without affecting each other. In the Newtonian corpuscle theory, this simply means
that the light particles do not interact with each other. In the Huygensian wave theory, it
implies that light waves obey the principle of superposition: the total light wave is simply
the sum of the waves of the two individual beams.

To take another example, we observe that the shadows of solid objects have sharp edges.
This is easily explained by the Newtonian theory, since the light particles move in straight
lines through empty space. On the other hand, this observation seems at first to be a fatal
blow to the wave theory, because waves moving past an obstacle should spread out in the
space beyond. However, if the wavelength of light were very short, then this spreading
might be too small to notice. For over a hundred years, the known experimental facts
about light were not sufficient to settle whether light was a particle phenomenon or a wave
phenomenon, and both theories had many adherents.

Then, in 1801, Thomas Young performed a crucial experiment in which Huygens’s wave
theory was decisively vindicated. This was the famous two-slit experiment.

Suppose that a beam of monochromatic light shines on a barrier with a single narrow
opening, or “slit.” The light that passes through the slit falls on a screen some distance
away. We observe that the light makes a small smudge on the screen. (For thin slits, this
smudge of light actually gets wider when the slit is made narrower, and on either side of
the main smudge there are several much dimmer smudges. These facts are already difficult
to explain without the wave theory, but we will skip this point for now.)

Light passing through another slit elsewhere in the barrier will make a similar smudge
centered on a different point. But suppose two nearby slits are both open at once. If we
imagine that light is simply a stream of non-interacting Newtonian corpuscles, we would
expect to see a somewhat broader and brighter smudge of light, the result of the two
corpuscle-showers from the individual slits.

But what happens in fact (as Young observed) is that the region of overlap of the two
smudges shows a pattern of light and dark bands called interference fringes, see Fig. 1.1.

This is really strange. Consider a point on the screen in the middle of one of the dark
fringes. When either one of the slits is open, some light does fall on this point. But when
both slits are open, the spot is dark. In other words, we can decrease the intensity of light
at some points by increasing the amount of light that passes through the barrier.

Fig. 1.1 The light patterns from two single slits combine to form a pattern of interference fringes.
(For clarity on the printed page, the negative of the pattern is shown; more ink means higher
intensity.)
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The situation is no less peculiar for the bright fringes. Take a point in the middle of one
of these. When either slit is opened, the intensity of light at the point has some value I .
But with both slits open, instead of an intensity 2I (as we might have expected), we see an
intensity of 4I! The average of the intensity over the light and dark fringes is indeed 2I ,
but the pattern of light on the screen is less uniform than a particle theory of light would
suggest.

Young realized that this curious behavior could easily be explained by the wave theory
of light. Waves emerge from each of the two slits, and the combined wave at the screen is
just the sum of the two disturbances. Denote by φ(	r, t) the quantity that describes the wave
in space and time. In sound waves, for example, the “wave function” φ describes variations
in air pressure. The two slits individually produce waves φ1 and φ2, and by the principle of
superposition the two slits together produce a combined wave φ = φ1 + φ2.

Two further points complete the picture. First we note that φ can take on either positive
or negative values. By analogy to surface waves on water, the places where φ is greatest
are called the wave “crests,” while the places where φ is least (most negative) are called
the wave “troughs.” Second, the observed intensity of the wave at any place is related to
the square of the magnitude of the wave function there: I ∝ |φ|2.

At some points on the screen, the two partial waves φ1 and φ2 are “out of phase,” so that
a crest of φ1 is coincident with a trough of φ2 and vice versa. At these points, the waves
cancel each other out, and |φ|2 is small. This phenomenon is called destructive interference
and is responsible for the dark fringes.

At certain other points on the screen, the two partial waves φ1 and φ2 are “in phase,” by
which we mean that their crests and troughs arrive synchronously. When φ1 is positive, so
is φ2, and so on. The partial waves reinforce each other, and |φ|2 is large. This phenomenon,
constructive interference, is responsible for the bright fringes.

At intermediate points, φ1 and φ2 neither exactly reinforce one another nor exactly
cancel, so the resulting intensity has an intermediate value.

Exercise 1.8 In the two slit experiment, in a particular region of the screen the light from
a single slit has an intensity I , but when two slits are open, the intensity ranges over the
interference fringes from 0 to 4I . Explain this in terms of φ1 and φ2.

Young was able to use two-slit interference to determine the wavelength λ of light, which
does turn out to be quite small. (For green light, λ is only 500 nm.) Later in the 19th Century,
James Clerk Maxwell put the wave theory of light on a firm foundation by showing that
light is a travelling disturbance of electric and magnetic fields – an electromagnetic wave.

But the wave theory of light was not the last word. In the first years of the 20th Century,
Max Planck and Albert Einstein realized that the interactions of light with matter can only
be explained by assuming that the energy of light is carried by vast numbers of discrete
light quanta later called photons. These photons are like particles in that each has a specific
discrete energy E and momentum p, related to the wave properties of frequency f and
wavelength λ:

E= hf ,

p= h
λ

,
(1.8)
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where h = 6.626×10−34 J s, called Planck’s constant. When matter absorbs or emits light,
it does so by absorbing or creating a whole number of photons.

Einstein used this idea to explain the photoelectric effect. In this phenomenon, light
falling on a metal in a vacuum can cause electrons to be ejected from the surface. If the
light intensity is increased, the number of ejected electrons increases, but the kinetic energy
of each photoelectron remains the same. In a simple wave theory, this is hard to understand.
Why should a more intense light, with stronger electric and magnetic fields, not produce
more energetic photoelectrons? Einstein reasoned that each ejected electron gets its energy
from the absorption of one photon. A brighter light has more photons, but each photon still
has the same energy as before.

Exercise 1.9 The “work function” W of a metal is the amount of energy that must be added
to an electron to free it from the surface. Write down an expression for the kinetic energy K
of a photoelectron in terms of W and the incident light frequency f . Also find an expression
for the minimum frequency f0 required for the photoelectric effect to take place. (This will
depend on W , and so may be different for different metals.)

This “quantum theory” of light poses some perplexities. In view of Young’s two-slit
interference experiment, there can be no question of abandoning the wave theory entirely.
Photons cannot be Newtonian corpuscles. Nevertheless, the fact that light propagates
through space as a continuous wave (as seen in the two-slit experiment) does not prevent
light from interacting with matter as a collection of discrete particles (as in the photo-
electric effect). Furthermore, this bizarre situation is not limited to light. In 1924 Louis
De Broglie discovered that the particles of matter – electrons and so forth – also have
wave properties, with particle and wave quantities related by Eq. 1.8. It is possible to do a
two-slit experiment with electrons and observe interference effects. The general principle
that everything in nature has both wave and particle properties is sometimes called wave –
particle duality.

The effort to put quantum ideas into a solid, consistent mathematical theory led to the
development of quantum mechanics by Werner Heisenberg, Erwin Schrödinger, and Paul
Dirac. Quantum mechanics has proved to be a superbly successful theory of phenomena
ranging from elementary particles to solid state physics. It is also a very peculiar theory
that challenges our intuitions on many levels. Quantum mechanics involves far-reaching
alterations in our ideas about mechanics, probability theory, and even (as we shall see) the
concept of information.

To illustrate this in a small way, let us re-examine Young’s two-slit experiment with quan-
tum eyes. First, we must understand that the intensity of light is a statistical phenomenon.
When we say that light is more intense at one point than it is at another, we simply mean
that more photons can be found there. But what can this mean when the number is very
small? What can it mean if there is only one photon present?

In the single-photon case, the intensity of the wave at any point is proportional to the
probability of finding the photon at that point. In general, quantum mechanics predicts
only the probability of an event, not whether or not that event will definitely occur. So it
is with photons. The behavior of any particular photon cannot be predicted exactly, but the
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Fig. 1.2 Photons fall randomly on a screen according to a probability distribution given by two-slit
interference. Each image shows four times as many photons as the one before. After many
photons, a smooth intensity pattern emerges statistically.

statistical behavior of a great many photons gives rise to a smooth intensity pattern. See
Fig. 1.2 for an illustration of this.

In the single-photon case, therefore, the wave φ is actually a probability amplitude, a
curious mathematical creature that is not itself a probability, but from which a probability
may be calculated. Roughly speaking, the probability3P of finding a photon at a given point
is just P = |φ|2. Probability is the square of the magnitude of a probability amplitude.

The probability amplitude wave φ obeys the principle of superposition. In the two-
slit experiment, consider a particular point X on the screen. With only slit #1 open, the
probability amplitude that the photon lands at X is φ1, so that the probability of finding the
photon there is P1 = |φ1|2. Opening only slit #2 yields an amplitude φ2, which gives rise to
a probability P2 of finding the photon at X . But with both slits open, we have a combined
probability amplitude φ = φ1 + φ2, yielding a probability

P = |φ|2 = |φ1 + φ2|2 , (1.9)

for the photon to wind up at X . The two probability amplitudes may reinforce one
another or cancel each other out, enhancing or suppressing the probability that the photon
lands at X .

If the photon can pass through only one slit, the probability of reaching X is P1. If it
can pass only through the other, it is P2. In ordinary probability theory, if there are two
possible mutually exclusive ways that an event can happen, then the combined probability
is P = P1 + P2. For example, if we flip two coins, the probability that they land with the
same face upward is

P(same face) = P(both heads)+ P(both tails). (1.10)

3 In the two-slit experiment, where the photon can be found in a continuous range of positions, P is actually a
probability density rather than a probability. This technical detail, and a great many others, will be worked out
carefully in later chapters!
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But quantum probabilities are not ordinary probabilities! In the two slit experiment, the
combined likelihood may be either less than or greater than the sum P1+P2, depending on
the relative phase of the two amplitudes φ1 and φ2. In other words, quantum probabilities
can exhibit destructive and constructive interference effects.

Suppose at a point X on the screen the probabilities P1 and P2 both equal p. This means
that the probability amplitudes at this point satisfy

|φ1| = |φ2| = √
p. (1.11)

If the two amplitudes constructively interfere at X , then the two amplitudes are “in phase”
there: φ1 = φ2, and so

P = |φ|2 = |2φ1|2 = 4p. (1.12)

If the two amplitudes destructively interfere at X , then φ1 = −φ2 (the amplitudes are “out
of phase”). Then φ = 0 and so P = 0. We can see that the probability P for finding a
photon in this region of the screen will vary over the interference fringes between 0 and 4p.

Exercise 1.10 Consider a point X on the screen at which P1 = p and P2 = 2p. That is, with
only slit #1 open, the photon has a probability p of reaching X , but with only slit #2 open
this probability is twice as great. Now open both slits. What are the largest and smallest
possible values for P at X due to interference effects?

When analyzing the behavior of a photon in the two-slit experiment, we find that
P = |φ1 + φ2|2. Yet the conventional probability law P = P1 + P2 does apply to the
two-coin example. So we are faced with an apparent inconsistency. Sometimes we must
add probabilities, and sometimes we must add probability amplitudes. How do we know
which of these rules will apply in a given situation?

The difference cannot be mere size. Quantum interference effects have been observed in
surprisingly large systems, including molecules more than a million times more massive
than electrons (see Problem 1.4). Conversely, we can often apply ordinary probability
rules to microscopic systems. The essential difference between the two situations must lie
elsewhere.

Notice that, in the two-coin example, we can check to see which of the two contributing
alternatives actually occurred. That is, we can examine the coins and tell whether they are
both heads or both tails. But in the two-slit experiment, this is not possible. If the single
photon arrives in one of the bright interference fringes, it could have passed through either
of the slits. Even a very close examination of the apparatus afterward would not tell us
which possible alternative occurred.

Suppose we were to modify the two-slit experiment so that we could tell which slit
the photon passed through. We can for instance imagine a very sensitive photon detector
placed beside one of the slits, which is able to register the passage of a photon without
destroying it. This detector need not be a large device: a single atom would be enough in
principle, if the state of that atom were sufficiently affected by the passing light quantum.
With such a detector in place, we could perform the two-slit interference experiment and
then afterwards determine which path the photon took, simply by checking whether or not
a photon had been detected.
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But, as Niels Bohr pointed out, this new experiment is not the same as the original two-slit
experiment. If we analyze the proposed modification carefully, we will find that the presence
of the detector modifies the behavior of the light. The consistent phase relationship between
the partial waves from the two slits will be destroyed, and so no consistent interference
effects will be observable. The pattern of light intensity (photon probability) on the screen
will show no bright and dark interference fringes. In fact, the probability P of a photon
arriving at a point X will be exactly the sum P1 + P2 for this experiment.

Exercise 1.11 Suppose that a particle detector is placed beside slit #2 in the two-slit
experiment. As a simplified model, imagine that the effect of the detector on the quantum
amplitude is to randomly multiply the partial wave φ2 by+1 or−1. Show that, on average,
the ordinary probability law holds – that is, that the average of |φ1 + φ2|2 and |φ1 − φ2|2
is exactly P1 + P2. (This is true whether the amplitudes are real or complex quantities.)

Bohr said that the interference experiment and the “which slit” experiment are comple-
mentary measurement procedures. We can do either of them, but choosing to perform one
logically excludes performing the other on the same photon. We can either arrange the
apparatus so that interference effects are present, or we can arrange it so that we find out
which slit the photon passed, but not both.

The essential difference between the two-coin experiment (sum the probabilities) and the
two-slit experiment (sum the amplitudes) is information. In each situation, two alternatives
contribute to a final result. For the coins, there is no obstacle to obtaining information
about which of the two possible alternatives (heads or tails) is realized. In that case, the
total probability is given by P = P1 + P2. But for a photon in a two-slit interference
experiment, such information is not available. Indeed, it does not exist, because any actual
arrangement in which the photon’s path is registered will show no interference effects at all,
even if the information is never read by a human experimenter. The quantum rule for adding
probability amplitudes applies when the system is informationally isolated and produces
no physical record of any sort anywhere in the Universe about which possible intermediate
alternative is realized.

Exercise 1.12 Explain the following slogan, which might be suitable for printing on a
T-shirt: Quantum mechanics is what happens when nobody is looking.

The idea that a photon might pass through the slits and leave no trace at all of its
precise route is slightly disturbing and does not accord with “classical” intuitions based on
Newtonian mechanics. Imagine that a Newtonian particle can travel by one of two possible
paths. This particle is continually interacting with all of the other particles in the Universe.
The position of the planet Saturn, say, will be minutely affected by the gravitation of the
particle, which will in turn depend upon the particle’s position. Therefore, by an immensely
precise determination of Saturn’s motion, we should (in principle) be able to tell which
path the particle followed. In classical mechanics, no system can really be informationally
isolated.

In a slightly more realistic example, the path of the photon through the slits should
produce a slight lateral recoil in the barrier, and a careful determination of this recoil
should in principle allow us to figure out which slit was passed. Einstein proposed just
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such a thought-experiment to Bohr in the course of a years-long debate about the internal
consistency of quantum theory. Bohr responded that quantum mechanics must apply to
the barrier as well. The two possible final states of the barrier, which we wish to use
to distinguish which slit the photon went through, do have slightly different quantum
descriptions. Nevertheless, the two states are not reliably distinguishable by any possible
measurement, and so cannot be counted as distinct physical situations.4 So it remains true
that no physical record exists of the photon’s choice of slit, and the quantum probability
law applies.

The concepts of information and distinguishability are at the heart of the theory of quan-
tum mechanics. In the chapters that follow, we will develop that theory into a sophisticated
mathematical structure and then apply it to many physical situations. Ideas about probabil-
ity, measurement, and information will be our constant guides. Such guides will not make
quantum mechanics seem less strange to our naive intuition, but they will help us begin to
build a new quantum intuition, one that more nearly conforms to the strange and marvelous
ways of nature.

Problems

Problem 1.1 We said that our definition of H applies when the possible messages are
equally likely. Now consider a binary message in which 0 has probability 1/3 and 1 has
probability 2/3. What value of H should we assign when the probabilities are not equal?

We determine this by “dividing” the message 1 into two messages, 1a and 1b, which
are equally likely. Then the overall message has three equally likely possibilities (0,1a,1b).
This message is composed of the original (0,1) message, followed (if the first message is 1)
by the (1a,1b) message.

Next we postulate that⎡⎣ entropy
of (0,1a,1b)

message

⎤⎦ =
⎡⎣ entropy

of (0,1)
message

⎤⎦

+
(

probability
of message 1

)
×
⎡⎣ entropy

of (1a,1b)
message

⎤⎦ .

(Think about why this postulate might make sense.) This becomes

log 3 = H + 2
3

log 2 and thus H = log 3− 2
3

log 2 ≈ 0.918.

(a) Explain intuitively why H should be less than 1.0 in this situation.

4 Bohr also considered the case where a barrier of very low mass is given a sufficient “kick” that the photon’s
slit can be determined. But in this case, the quantum indeterminacy in the barrier’s own position is enough to
“wipe out” any interference effects! (We analyze a related example in Section 10.4.) The Bohr–Einstein debate,
with Einstein challenging and Bohr defending the principles of quantum theory and complementarity, played a
vital role in clarifying the conceptual content of the quantum theory.
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(b) Calculate H if message 0 has probability 1/6 and message 1 has probability 5/6.
(c) Generalize this idea to the following situation. Message 0 has a probability p = k/n

and message 1 has probability q = k′/n, where k, k′, and n are positive integers with
k + k′ = n. Find an expression for H in this case that only involves p and q.

Problem 1.2 Five cards are dealt face-down from a 52-card deck.

(a) How many possible sets of five cards are there? How much information do we lack
about the cards?

(b) The first three are turned over and revealed. Knowing these, how many possibilities
remain?

(c) How much information was conveyed when the three cards were revealed? Is this 3/5
of the total? Why or why not?

(d) Repeat parts (a)–(c) if the five cards are dealt from five independent decks.

Problem 1.3 In his short story “The Library of Babel,” Jorge Luis Borges imagines a
seemingly infinite library containing books of random text. The language of the library has
twenty-five characters, and

. . . each book is of four hundred and ten pages; each page, of forty lines, each line, of
some eighty letters which are black in color.

Calculate the entropy of one of the books in Borges’ library.

Problem 1.4 In 1999, a research group at the University of Vienna was able to observe
quantum interference in a beam of C60 molecules. C60 is called buckminsterfullerene,
and the soccerball-shaped C60 molecules are sometimes called buckyballs. A buckyball
molecule has a mass of about 1.2× 10−24 kg.

(a) The buckyball wavelength in the experiment was about 3 pm. How fast were the
molecules moving?

(b) What would be the wavelength of an electron moving at the same speed?

Problem 1.5 The kinetic energy K of a particle is related to its momentum p by K =
p2/2μ, where μ is the particle’s mass. In a gas at absolute temperature T , the molecules
have a typical kinetic energy of 3kBT/2. Derive an expression for the thermal de Broglie
wavelength, a typical value for the de Broglie wavelength λ of a molecule in a gas. For
helium atoms (μ = 6.7× 10−27 kg), calculate the thermal de Broglie wavelength at room
temperature (T = 300 K) and at the boiling point of helium (T = 4 K).

Quantum effects become most significant in matter when the thermal de Broglie wave-
length of the particles is greater than their separation. At atmospheric pressure, gas
molecules are about 1–2 nm apart; in a condensed phase (liquid, solid) they are about
ten times closer. How do these compare with the thermal de Broglie wavelengths you
calculated for helium?

Problem 1.6 A single photon passes through a barrier with four slits and strikes a screen
some distance away. Consider a point X on the screen. The probability amplitudes for
reaching X via the four slits are φ1, φ2, φ3, and φ4.
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(a) What is the net probability P that the photon is found at X if no measurement is made
of which slit the photon passed through?

(b) A detector is placed by slit #4, which can register whether or not the photon passes that
slit (but does not absorb the photon or deflect it). What is P in this case?

(c) The detector is now moved to a point between slits #3 and #4 and registers whether or
not the photon passes through one of these slits. However, the detector does not record
which of these two slits the photon passes. What is P in this case?
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2.1 The photon in the interferometer

This chapter introduces many of the ideas of quantum theory by exploring three specific
“case studies” of quantum systems. Each is an example of a qubit, a generic name for the
simplest type of quantum system. The concepts we develop will be incorporated into a
rigorous mathematical framework in the next chapter. Our business here is to provide some
intuition about why that mathematical framework is reasonable and appropriate for dealing
with the quantum facts of life.

Interferometers

In Section 1.2 we discussed the two-slit interference experiment with a single photon. In
that experiment, the partial waves of probability amplitude were spread throughout the
entire region of space beyond the two slits. It is much easier to analyze the situation in
an interferometer, an optical apparatus in which the light is restricted to a finite number
of discrete beams. The beams may be guided from one point to another, split apart or
recombined as needed, and when two beams are recombined into one, the result may show
interference effects. At the end of the interferometer, one or more sensors can measure the
intensity of various beams. (A beam is just a possible path for the light, so there is nothing
paradoxical in talking about a beam of zero intensity.) Figure 2.1 shows the layout of a
Mach–Zehnder interferometer, which is an example of this kind of apparatus.

What happens when we do an interferometer experiment with a single photon? We will
consider this question for interferometers that contain only linear optical devices, which do
not themselves create or absorb photons.1At the end of our interferometer, our light sensors
are photon detectors, which can register the presence or absence of a single photon. Thus,
in our calculations we will be interested in the probabilities that the various detectors will
“click,” recording the presence of the photon in the corresponding beam.

We learned in our discussion of the two-slit experiment in Section 1.2 that the probability
of finding the photon at a particular location is the square of the magnitude of a probability

1 These devices are also unchanged by the passage of a photon. For instance, we assume it is impossible to
determine whether or not a photon has reflected from a given mirror, simply by examining the mirror afterward.
The photon therefore remains informationally isolated during its passage through the interferometer. As we will
see in Section 10.4, this is an entirely reasonable assumption for actual interferometer experiments.
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Fig. 2.1 Layout of a Mach–Zehnder interferometer. Light in the input beam is divided into two beams,
which are later recombined. Light sensors measure the intensities of the two output beams.

amplitude. Each beam in our single-photon interferometer experiment will have an ampli-
tude α, and the probability P that a detector would find the photon there (if we were to
introduce such a detector) is just

P = |α|2 . (2.1)

Suppose at some stage of our interferometer we know for sure that the photon must be
in one of two beams, which have amplitudes α and β respectively. Then it follows that
|α|2 + |β|2 = 1.

Complex amplitudes

One important kind of device that we can introduce into a beam is called a phase shifter.
This could simply be a glass plate through which the beam travels. A phase shifter does
not alter the probability that the photon is found in the beam, so the magnitude |α| is not
changed. However, the phase of α can be altered. By introducing a particular thickness δ

of glass, we can change the amplitude from α to −α. (The exact value of δ depends on the
index of refraction of the glass and the wavelength of the light.) This change in phase is
highly significant, for it can turn constructive interference into destructive interference at a
later stage of the interferometer.

If we have two such plates, or a single plate with thickness 2δ, the amplitude will
become −(−α) = α, and the original amplitude is restored. But suppose we have a plate
of thickness δ/2? This plate would produce a change the amplitude α such that (1) the
magnitude |α| is still the same, and (2) if the change were performed twice, the phase
would be multiplied by −1.

Glass plates can be made in a continuous range of thicknesses, producing a continuous
range of phase shifts. For this to be possible, the beam phases α must be complex quantities,
with both real and imaginary parts. A plate with thickness δ/2 may multiply the amplitude
by a factor of i = √−1. This does not change the magnitude of the complex phase α, since
|α| = |iα|. Two such plates (or a single plate of thickness δ) multiply the phase by i2 = −1,
as required.
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Fig. 2.2 Two important interferometer components. The photon detector D will register the presence of a
photon in the beam with probability P = |α|2, where α is the probability amplitude. A phase shift
of φ changes the amplitude from α to eiφα.

In general, a glass plate of some thickness will multiply the amplitude of the beam by
eiφ , where φ (the phase shift) is proportional to the thickness of the glass. Changing α to
−α could be accomplished by phase shifters with φ = π , 3π , 5π , and so on. A phase shift
of φ does not change the probability that the photon is found in the beam, since for any α,
see Fig. 2.2,2 ∣∣eiφα

∣∣2 = |α|2 . (2.2)

The fact that quantum probability amplitudes are complex quantities is one of the oddest
facts about quantum mechanics. Mathematicians introduced complex numbers in the 16th
Century to help solve certain algebraic problems. Such numbers are often viewed as highly
abstract entities, little connected to the physical world. The number i is, after all, said to be
“imaginary.” Complex numbers are sometimes used as an algebraic shortcut in Newtonian
mechanics or electromagnetism. But in quantum mechanics, complex numbers are not just
a convenient trick; they are inescapable and full of significance.

Exercise 2.1 Remind yourself of the rules of complex arithmetic. If α∗ denotes the complex
conjugate of α, show

(a) |α|2 = α∗α.
(b) α + α∗ = 2
(α).
(c) For real φ,

(
eiφ)∗ = e−iφ .

Exercise 2.2

(a) Suppose δ is the smallest thickness of glass that produces a phase shift of π – in other
words, that multiplies the phase by −1. What is the phase shift if the glass plate has a
thickness of δ/5?

(b) Suppose δ is the next-to-smallest thickness of glass that produces the same change in
phase (i.e. multiplying the phase by −1). What is the smallest thickness that would do
so? What phase shift would be produced by a plate of thickness δ/5?

The beam amplitudes in an interferometer obey the principle of superposition. We will
illustrate this with a simple example. Suppose at some stage of the interferometer, there

2 Anything that changes the optical path length of the beam, including a distance of empty space, will act as
a phase shifter. In our simplified treatment here, we will ignore the effect of distance and think of all phase
shifters as discrete objects that can be either put into or left out of the interferometer beam.
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Fig. 2.3 A graphical representation of Eq. 2.4, showing a superposition of situation A and situation B.

are just two beams available for the photon, which we will call the “upper” beam and the
“lower” beam. Consider two possible physical situations, denoted A and B. In situation A,
the photon is certainly in the upper beam. The probability amplitude for this beam is 1 and
the amplitude for the lower beam is 0. (The upper beam amplitude could be anything of the
form eiφ , but we will consider the simplest case.) In situation B, the roles are reversed: the
upper amplitude is 0 and the lower is 1, and so the photon is certainly in the lower beam.

The principle of superposition means that the existence of these two situations implies the
existence of many other situations in which the beam amplitudes are linear combinations of
the assignments for A and B. Given complex coefficients α and β, then there is a possible
physical situation which we can formally write as

α (situation A)+ β (situation B) . (2.3)

In this combined situation, the amplitude for the upper beam is just α · 1+β · 0 = α, while
the lower beam amplitude is α · 0+ β · 1 = β. Of course, to maintain a proper assignment
of probabilities, we will have to require that |α|2 + |β|2 = 1.

This is much easier to express if we describe each situation by a column vector whose
entries are the beam amplitudes. Then the first situation could be written

( 1
0
)

and the second
one

( 0
1
)
. The principle of superposition tells us that(

α

β

)
= α

(
1
0

)
+ β

(
0
1

)
, (2.4)

is also a possible physical situation, provided |α|2+|β|2 = 1, see Fig. 2.3 for an illustration.
From this we note, first, that a physical situation for the photon in the interferometer can
be summarized by a vector whose components are probability amplitudes. Second, the
principle of superposition means that a complex linear combination of two such vectors
also represents a possible physical situation, provided the amplitudes satisfy a normalization
condition (meaning that all probabilities must add up to one).

Beamsplitters

Now we turn our attention to a key element of an interferometer, the beamsplitter. This is
a device that takes an input beam and splits it into two beams of lower intensity. A typical
beamsplitter is a half-silvered mirror. A beam incident on such a mirror will produce both
a reflected beam and a transmitted beam, each having half the intensity of the original.
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Fig. 2.4 At beamsplitter BS, input beams of unit amplitude produce output beams with amplitudes w, x, y,
and z.

Fig. 2.5 The general situation for the beamsplitter BS. Input amplitudes α and β are transformed into
output amplitudes α′ and β ′, each of which is a linear combination of the input amplitudes.

What is the effect of a beamsplitter on the probability amplitudes when the incident
beam has only a single photon? Figure 2.4 summarizes. There are two possible input beams
for the beamsplitter. For an upper input beam with amplitude 1, we denote the resulting
reflected and transmitted beam amplitudes by w and x respectively. A lower input beam
with amplitude 1 yields output beam amplitudes y and z, as shown. If the beamsplitter is
a half-silvered mirror, then the probability that the photon is reflected or transmitted at the
mirror is one-half. That is,

|w|2 = |x|2 = |y|2 = |z|2 = 1
2

. (2.5)

Now we can apply the principle of superposition to find how the beamsplitter works
for situations in which the photon could be in either input beam. Suppose α and β are
the amplitudes for the upper and lower input beam. The beamsplitter transforms these into
amplitudes α′ and β ′ for the corresponding output beams. By superposition, these are

α′ =wα + yβ,
β ′ = xα + zβ,

(2.6)

as shown in Fig. 2.5. The relation between input and output amplitudes is easy to express
in the amplitude-vector notation introduced above. It is(

α

β

)
−→

(
α′
β ′

)
=
(

w y
x z

)(
α

β

)
. (2.7)

This is pretty neat. We represent the photon amplitudes by column vectors
(

α
β

)
and

(
α′
β ′
)
.

The beamsplitter is described by the 2× 2 matrix
(w y

x z
)
. The action of the beamsplitter on

the input amplitudes then corresponds to simple matrix multiplication.
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Exercise 2.3 Verify that Eq. 2.7 is correct.

So far, so good. But what are the elements of the beamsplitter matrix for a particular
device? For a half-silvered mirror, we know from Eq. 2.5 that the matrix elements are
complex quantities with magnitude 1√

2
. The simplest possible choice would therefore be

w = x = y = z = 1√
2

.

What would be the properties of such a beamsplitter? Photons incident along one or the
other of the two input beams yield

(
1
0

)
−→ 1√

2

(
1 1
1 1

)(
1
0

)
=

⎛⎜⎜⎝
1√
2

1√
2

⎞⎟⎟⎠
(

0
1

)
−→ 1√

2

(
1 1
1 1

)(
0
1

)
=

⎛⎜⎜⎝
1√
2

1√
2

⎞⎟⎟⎠ .

These are perfectly reasonable amplitudes for the output beams. In either case, the photon

has a probability
∣∣∣ 1√

2

∣∣∣2 = 1
2 of being found in each of the output beams. But suppose we

consider an input that is a superposition of the two beams:⎛⎜⎜⎝
1√
2

1√
2

⎞⎟⎟⎠ −→ 1√
2

(
1 1
1 1

)⎛⎜⎜⎝
1√
2

1√
2

⎞⎟⎟⎠ =
(

1
1

)
.

Now the photon has probability |1|2 = 1 of being found in each output beam. This is
certainly wrong! The “simplest possible” matrix elements for a beam splitter thus cannot
correspond to any actual beamsplitter, because that matrix can lead to illegal probability
assignments. It does not “conserve probability.”

The output probabilities are too large because constructive interference of the amplitudes
takes place in both output beams. This is not possible. If constructive interference happens
in some places, destructive interference must happen elsewhere.

In other words, our “simplest possible” beamsplitter matrix fails because the phases of
the matrix elements cannot be as proposed. On the other hand, this matrix works fine:(

w y
x z

)
= 1√

2

(
1 1
1 −1

)
. (2.8)

Exercise 2.4 Show that, for any allowable input amplitudes
(

α
β

)
, a beamsplitter described

by Eq. 2.8 yields output amplitudes such that
∣∣α′∣∣2 + ∣∣β ′∣∣2 = 1.

Equation 2.8 describes a device called a balanced beamsplitter. The negative sign in
the lower-right (z) matrix element means that when the lower input beam is reflected,
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Fig. 2.6 A Mach–Zehnder interferometer. Compare Fig. 2.1.

it undergoes a phase shift of π , but other reflected and transmitted beams have zero net
phase shift.

This accords with classical wave optics. A real half-silvered mirror is a slab of glass with
a very thin metallic coating on one side. When light is reflected at an interface, the wave
picks up a π phase shift whenever the incident beam is coming from a medium of lower
refractive index to one of higher index – for instance, from air to glass. Thus, the beam that
is reflected on the metal coating from outside the glass gets a negative sign, but not the one
that reflects from the inside.3

When we include a balanced beamsplitter in our calculations, we will have to be careful
to indicate on which side the reflected beam acquires the negative sign. In diagrams, we will
do this by placing a dot (•) on one side of the beamsplitter. The reflected beam amplitude
on the dotted side is multiplied by −1.

Consider Fig. 2.6, a diagram of the Mach–Zehnder interferometer sketched in Fig. 2.1
above. Two balanced beamsplitters BS1 and BS2 are present, as are a pair of mirrors
(both labelled M) and a pair of photon detectors designated D0 and D1. A phase shifter is
present on one of the beams, which introduces a phase shift of φ. We send photons into the
interferometer along just one of the input beams, so that the amplitude of that beam can be
taken to be 1.

Exercise 2.5 Consider the Mach–Zehnder interferometer set-up in Fig. 2.6, and suppose
φ = 0.

(a) Ignoring any effects of the mirrors M, show that the probabilities P0 and P1 of the
photon being detected by D0 and D1, respectively, are just 1 and 0. In other words,
there is constructive interference for D0 and destructive interference for D1.

(b) Is your answer in part (a) changed if you take into account that reflection from a mirror
M introduces a phase shift of π into that beam?

See also Problem 2.1.

3 For simplicity we are neglecting other phase shifts due to the thickness of the glass. However, if these are
arranged to be integer multiples of 2π , or if the beamsplitter is built so that all beams undergo exactly the same
phase shifts, these may be ignored.
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Matrix methods

At any stage of a Mach–Zehnder interferometer, the photon may be in one of two possible
beams. We have drawn our diagrams so that one beam is the “upper” beam and one is
the “lower” beam. Devices such as phase shifters and beamsplitters alter the probability
amplitudes of those beams in a linear way. This linearity is what permits us to describe the
transformations by matrices.

The physical situation is described by a column vector of probability amplitudes:

v =
(

α

β

)
. (2.9)

The various elements of an interferometer apparatus are described by matrices acting on
the amplitude vector v. The balanced beamsplitter of Eq. 2.8 is described by:

Bl = 1√
2

(
1 1
1 −1

)
. (2.10)

The subscript l indicates that the negative phase appears when the lower beam is reflected.
This beamsplitter transforms the amplitude vector v to a new vector v′ according to

v′ = Bl v. (2.11)

A phase shifter can also be described by a matrix. Suppose the phase of the upper beam is
shifted by φ. This can be represented by the matrix

Pu(φ) =
(

eiφ 0
0 1

)
, (2.12)

and the amplitude vector transforms by v′ = Pu(φ)v. Once again, the subscript u indicates
that the phase of the upper beam is shifted.

Exercise 2.6 Write down the matrices Bu and Pl(φ) describing a beamsplitter with the
opposite orientation (negative phase for upper beam reflection) and a phase shifter on the
lower beam.

The full-silvered mirrors that guide the beam around the interferometer introduce phase
shifts by π into the beam, so they can be represented by matrices

Mu,l = Pu,l(π). (2.13)

We finish our inventory with two very simple cases. First, we can imagine an arrangement
in which the beams are simply allowed to cross one another, without any beamsplitter
intervening. This just exchanges the upper and lower amplitudes, and so can be represented
by the matrix

X =
(

0 1
1 0

)
. (2.14)

Simplest of all is a part of the interferometer in which the beams are not affected by any
sort of optical element, and the amplitudes are unchanged. This is a sort of “device” as
well! Its (trivial) action is represented by the identity matrix:

1 =
(

1 0
0 1

)
. (2.15)
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Fig. 2.7 Representations of various linear optical elements in an interferometer.

Fig. 2.8 The Mach–Zehnder interferometer. Compare Fig. 2.6.

Obviously, 1v = v for any amplitude vector v.
We can represent each of these graphically using a modification of our previous diagrams.

From now on we will draw the upper and lower beam paths as parallel lines, except where
they are brought together at a beamsplitter or a beam crossing. The photon is assumed to
go from left to right, see Fig. 2.7.4

What happens when the basic optical elements are assembled into a larger experiment?
In a diagram, we simply string the pieces together in sequence, as in Fig. 2.8. How can we
describe this sort of interferometer arrangement mathematically? Suppose a pair of beams
with amplitude vector v pass through three optical elements. The first is described by a
matrix R, the second by S, and the third by T. To find the final amplitude vector v′, we
must first multiply v by R, then by S, then by T:

v′ = TSRv. (2.16)

The effect of the entire complex apparatus is represented by a single 2 × 2 matrix, the
product TSR. This product is a sequence in time of successive transformations of the
amplitude vector for the beams, with the time order from right to left: R occurs first and T
occurs last. To put it another way, the order of the matrices in the product is the opposite of
the order of the corresponding elements in our left-to-right diagrams.

Exercise 2.7 Write down a matrix product that represents the Mach–Zehnder interferometer
shown in Fig. 2.8. (You may ignore the photon detectors at the end.)

4 Do not be worried by the fact that our beams no longer go in straight lines in our diagrams. The diagrams are
merely schematics of a real optical apparatus. But as a matter of fact, we can build interferometers in which the
beams are guided in curved paths by optical fibers.
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As you thought about Exercise 2.7, you may have noticed a difficulty. The two beams
strike two different mirrors, each of which yields a phase shift of π . These reflections
happen at about the same time, as suggested in Fig. 2.8. In which order should we write
the corresponding matrices? Fortunately, it turns out that the order of these phase shifter
matrices does not matter. We will cast the relevant fact as an exercise:

Exercise 2.8 Suppose P and P′ are the matrices for two phase shifters. Show that P and P′
commute:

PP′ = P′P

when (a) the two phase shifters are applied to the same beam, and (b) the two phase shifters
are applied to different beams.

Some of the matrices commute with each other, but not all of them. For example:

Exercise 2.9 Show that

XPu(π) �= Pu(π)X.

Explain in words why this makes sense.

The analysis of a two-beam interferometer system has now been boiled down to matrix
calculations. The translation between the physical apparatus and the mathematical expres-
sion is straightforward. The following exercise should give you some easy practice at these
calculations and translations. You will find more examples in the problems at the end of
the chapter.

Exercise 2.10 Verify the following matrix facts, and explain each one in words and pictures
as a fact about interferometer systems. (a) XX = 1. (b) BlBl = 1. (c) BlPl(π)Pu(π)Bl =
−1. (d) BlPl(π)Bl = X. (e) BlPl(π)Bu = Pu(π).

Because of the principle of superposition, any linear optical element will produce a linear
transformation on the input amplitude vector v, and can therefore be represented by a 2× 2
matrix R acting on v. But we saw in our analysis of beamsplitters that not all 2×2 matrices
could possibly correspond to an actual optical device. The reason was that some matrices
did not preserve the normalization of the probabilities. Which matrices R do preserve this
normalization, and so might correspond to actual devices?

First, we need to express the normalization requirement in terms of matrices. The
Hermitian conjugate operation is designated by the “dagger” symbol “ † ”. This indicates
the complex conjugate of the transpose of the matrix. Thus,

v† = (
α∗ β∗

)
. (2.17)

Our normalization requirement for the probability amplitudes can then be written as

v†v = 1. (2.18)

(Note that we are equating the number 1 with the 1× 1 matrix whose only entry is 1. This
is a harmless abuse of mathematical notation.)
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Exercise 2.11 Verify that this equation is the same as |α|2 + |β|2 = 1.

The vector v′ = Rv contains the output amplitudes when the input is v. We are thus
requiring that (v′)†v′ = 1 for any input vector that has v†v = 1. In other words,

(v′)†v′ = v†R†Rv = 1. (2.19)

(We have used the fact that, for any complex matrices, (UV)† = V†U†. This, or at least the
corresponding fact for the matrix transpose, should be familiar.)

We can view Eq. 2.19 as a property of the matrix R†R. Let

R†R =
(

q r
s t

)
. (2.20)

What can we say about these matrix elements? First, consider an input amplitude vector
v = ( 1

0
)
. Then

v†R†Rv = (
1 0

) ( q r
s t

)(
1
0

)
= q. (2.21)

So Eq. 2.19 tells us that q = 1.

Exercise 2.12 Verify Eq. 2.21, and then repeat the calculation with v = ( 0
1
)

to show
that t = 1.

The two diagonal elements of R†R must both equal 1. What about the other two elements?
If we let v = 1√

2

( 1
1
)
, we have

v†R†Rv = 1
2
(

1 1
) ( 1 r

s 1

)(
1
1

)
= 1+ 1

2
(r + s). (2.22)

Since this must equal 1, we know that s = −r. Finally, we recall that the amplitudes are
complex numbers, so that the input v = 1√

2

( 1
i
)

is possible. This yields

v†R†Rv = 1
2
(

1 −i
) ( 1 r

−r 1

)(
1
i

)
= 1+ ri. (2.23)

From this, we conclude that r = 0.

Exercise 2.13 Verify Eq. 2.22 and Eq. 2.23.

Putting it all together, we have shown that, if the matrix R is to preserve the normalization
of probabilities, it must have the property that

R†R = 1. (2.24)

Matrices with this property are called unitary matrices. We have arrived at an important
general fact: Any physically possible linear optical element in a two-beam interferometer
is represented by a 2× 2 unitary matrix.
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Exercise 2.14 Here is what we have proved: If R is to preserve the normalization of
probabilities for any input v, then it must be unitary.

Now you prove the (much easier) converse: If R is unitary, then it will preserve this
normalization for any input v. (Be sure that you understand the distinction between these
statements!)

We can further show that any unitary 2 × 2 matrix R may be physically realized as an
interferometer set-up made out of beam splitters and phase-shifters, see Problem 2.3.

Testing bombs

The components of an interferometer do not register the passage of a photon, so that
the photon remains informationally isolated. This is why the beams exhibit interference.
Consider, for example, the simplified Mach–Zehnder arrangement in Fig. 2.9. The photon
is introduced along the lower beam, so the input amplitude vector can be taken to be

( 0
1
)
.

If nothing else is introduced into the apparatus, the matrix describing the interferometer’s
effect is just

BlBu =
(

0 1
−1 0

)
. (2.25)

The output amplitude vector is thus

BlBuv =
(

0 1
−1 0

)(
0
1

)
=
(

1
0

)
. (2.26)

Exercise 2.15 Check this matrix arithmetic.

Therefore, the photon will always reach the upper detector D0. The probabilities are

outcome P
photon reaches D0 1
photon reaches D1 0.

There is constructive interference in the beam that leads to D0, and destructive interference
in the beam that leads to D1.

Now suppose that we change the interferometer slightly by sticking a hand into the lower
beam at the point A. For simplicity, imagine that the photon is absorbed if it hits the hand.

Fig. 2.9 Simplified Mach–Zehnder interferometer.
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This produces a physical change in the hand that could in principle be detected (“Ow!”).
Thus, the hand is a photon detector that measures whether or not the photon travels along
the lower beam at A.

This will, of course, destroy any interference effects. If we send a photon into the
apparatus, it has a 50% probability of striking the hand. If it travels along the upper beam
instead, when it reaches the second beamsplitter it will be equally likely to go toward D0
and D1. In short, we have

outcome P

photon reaches D0 1/4
photon reaches D1 1/4
photon hits hand 1/2.

Notice that, by blocking one beam with a hand, we have actually increased the probability
that the photon is detected by D1.

This paradoxical result is the basis for a remarkable thought-experiment proposed by
Avshalom Elitzur and Lev Vaidman in 1993. Imagine a factory that produces a type of
bomb triggered by light. So sensitive is the trigger that the passage of a single photon
through its mechanism will explode a bomb.

Because of manufacturing defects, however, many bombs come off the assembly line
without working triggers. Photons pass through these mechanisms without being registered
at all, and the bombs are duds. The factory managers want to be able tell for sure that at
least some bombs are in working order. How can they do this? Of course, if they send a
photon through a given bomb, and it blows up, then they can be sure that the bomb was in
working order – but they have also destroyed that bomb. What the managers want is a way
to identify bombs that are explosive, but are not yet exploded. Since the bomb triggers are
set off even by one photon, this appears impossible.

But in fact, the interferometer arrangement in Fig. 2.9 can do the job. A bomb is placed
at the point A and then one photon is sent through. If the bomb is a dud, it will not register
the passage of the photon, and there will be interference effects. If the bomb is working, it
will function as a photon detector on the lower path. The results are

Bomb is a dud

outcome P

photon reaches D0 1
photon reaches D1 0
bomb explodes 0

Bomb is working

outcome P

photon reaches D0 1/4
photon reaches D1 1/4
bomb explodes 1/2.

Suppose an unknown bomb is placed in the apparatus and one photon is sent through. If
the bomb explodes, then it was in working order, but this bomb is now lost. If the photon
is detected by D0, the test is inconclusive and may be repeated.5 But if the photon ever
arrives at D1, then the managers know that the unexploded bomb is in working order, even
though the bomb never detects the passage of the photon.

5 If the photon always arrives at D0 during many trials, the factory managers may confidently conclude that the
bomb is a dud.
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Exercise 2.16 If you do not find the previous paragraph strange and disturbing, re-read it.

Exercise 2.17 Suppose the interferometer test is performed on a large number of bombs
from the factory. When the test is inconclusive on a particular bomb, it is repeated until the
bomb’s status is reasonably certain. What fraction of the working bombs are certified as
working but not detonated?

The Elitzur–Vaidman thought-experiment is a good example of the sometimes perplexing
behavior of quantum systems. It also illustrates why information is such a key idea in
quantum theory. Whether or not a working bomb actually detects a photon in a given trial,
its final state (intact or exploded) provides a record of which beam the photon has traversed.
That means that the photon was not informationally isolated in the apparatus, and so there
can be no interference between the beams.

2.2 Spin 1/2

Having analyzed in detail the problem of a single photon in a two-beam interferometer, we
are in a position to identify a few key ideas:

• At any point, the photon can be in one of two distinct beams. Linear superpositions of
the beams are also possible.

• The physical situation of the photon is described by a vector v of two complex probability
amplitudes. If a given beam has an amplitude α, then |α|2 is the probability that a detector
would find the photon in that beam. Normalization of probabilities means that v†v = 1.

• The effect of a linear optical device like a phase shifter or a beamsplitter is described by
a matrix R. The amplitude vector v is changed to a new vector v′ = Rv. The matrix R
must be unitary to guarantee that the final probabilities are normalized.

• Even a quantum system as simple as this can yield surprising results, as in the bomb-
testing thought-experiment.

In this section, we will apply these same ideas to a quite different type of quantum system.

Particles with spin

A particle has angular momentum by virtue of its movement through space. It may also have
an intrinsic angular momentum called spin. This term suggests an analogy to Newtonian
physics, in which the angular momentum of an extended body like the Earth is due to
both its translational and rotational motion. The quantum situation is a bit more subtle.
Electrons, for instance, appear to be entirely point-like, without any spatial extent at all.
We therefore cannot attribute the intrinsic spin of an electron to mere rotational motion.

Electrons, protons, and neutrons are all examples of spin-1/2 particles. Suppose we
measure the z-component Sz of the spin angular momentum for one of these particles. The
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result of such a measurement is always either+�/2 or−�/2, where � is related to Planck’s
constant h by

� = h
2π

, (2.27)

and has a value of 1.055× 10−34 J s. In Newtonian mechanics the component Sz can take
on a continuous range of values, but as an experimental fact only these two results are
possible. There is, of course, nothing special about the z-axis. The same basic fact holds
true for measurements of Sx, Sy, or any other component of the spin.

How can a component of a particle’s intrinsic angular momentum be measured? This
was the problem faced by Otto Stern and Walther Gerlach in the early days of quantum
physics. They were testing Bohr’s quantum theory of atomic structure, in which angular
momentum has only discrete values. The angular momentum 	S is hard to probe directly,
but the magnetic moment 	μ of an atom is proportional to 	S:

	μ = γ 	S, (2.28)

where γ is the gyromagnetic ratio, a constant property of the particle. In an external
magnetic field 	B, the magnetic moment will contribute to the energy of an atom by

E = −	μ · 	B. (2.29)

Given a magnetic field in the z-direction, this becomes E = −μzBz. If E could be measured
for a given Bz, then μz could be found and from this the angular momentum component Sz
inferred.

Determining this energy directly was beyond the experimental capabilities available to
Stern and Gerlach in the early 1920s. However, they realized that the trajectory of an atom
in a non-uniform magnetic field depended on this energy. Consider an external magnetic
field Bz that is increasing in the positive z-direction, so that dBz

dz > 0. The energy of a
particle with a given μz will depend on the z-coordinate of its position:

• If μz > 0, then E decreases as z increases:
• If μz < 0, then E increases as z increases.

This contributes to the effective potential energy for the atom, and so in either case there is
a net force on it. The force is upward for μz > 0 and downward for μz < 0. (By “upward”
and “downward” we mean in the positive and negative directions on the z-axis.)

Stern and Gerlach sent a stream of silver atoms through a region of space with a strong
magnetic field gradient. The basic arrangement is shown in Fig. 2.10. If Newtonian physics
were true (so that the Sz value is continuous), then the stream of atoms would spread
out continuously in the z-direction. However, as Stern and Gerlach found, the atoms are
actually separated into discrete streams, reflecting the discreteness of the possible values
of Sz.

Although the original Stern–Gerlach experiment was performed on entire silver atoms,
variations of it can be done with elementary particles. The magnetic fields involved can be
oriented in any direction. In all cases, it is found that a measurement of any component of
the spin of a particle can only produce certain discrete results.
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Fig. 2.10 The Stern–Gerlach experiment. A stream of atoms moving from the right passes between the
asymmetric poles of a magnet. Particles with different values of μz are deflected in different
directions. The final position of the atom determines its μz.

Amplitude vectors

In the two-beam interferometer, the photon can be found in one of two distinct beams. A
spin-1/2 particle can be found to have one of two distinct values for Sz. The same quantum
rules that apply to the photon also apply to the spin-1/2 particle. That is, in addition to
the “spin up” and “spin down” situations, there are also situations which are complex
superpositions of these two:

α (spin up)+ β (spin down) . (2.30)

The coefficients α and β are probability amplitudes for finding the value of Sz to be +�/2
or −�/2, respectively. We can represent any of these superpositions by a column vector of
the probability amplitudes. The amplitude vectors

z+ =
(

1
0

)
and z− =

(
0
1

)
, (2.31)

represent situations where the spin component Sz definitely has either its positive or negative
possible value. The superposition vector(

α

β

)
= αz+ + βz−, (2.32)

is also possible, but what does it mean?
It turns out6 that the superposition vectors describe situations in which some spin com-

ponent other than Sz has a definite value. For example, suppose we were to consider Sx.
The amplitude vectors

x+ = 1√
2

(
1
1

)
and x− = 1√

2

(
1
−1

)
, (2.33)

6 What do we mean by “It turns out”? When we use this phrase, we may be appealing to theoretical developments
that we have not yet discussed, or to experimental results, or to both. Physics, unlike mathematics, cannot really
be developed in a linear way from a set of explicit axioms. The justification for any theory lies in experiments,
but experiments cannot be understood without a theory! The best we can hope for in empirical science is a
consistent, testable, mutually reinforcing system of ideas and observations. When we say “It turns out,” we are
simply opening a door into that system.
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describe situations in which Sx = +�/2 or Sx = −�/2 respectively. For the spin component
Sy, the corresponding vectors are

y+ = 1√
2

(
1
i

)
and y− = 1√

2

(
1
−i

)
. (2.34)

Exercise 2.18 (a) Suppose a particle is described by x− and we measure Sz. What is the
probability that we will obtain the result −�/2? (b) Answer the same question if the
amplitude vector is y+.

Indeed, suppose we choose a direction in the xz-plane that is inclined at an angle θ from
the z-axis. Then the amplitude vectors

θ+ =
(

cos θ
2

sin θ
2

)
and θ− =

( −sin θ
2

cos θ
2

)
, (2.35)

describe situations where the spin component Sθ has the definite values±�/2 respectively.

Exercise 2.19 If the amplitude matrix is θ+, what is the probability that a measurement of
Sz yields +�/2?

Notice the pattern here. For any spin component Su, we have two amplitude vectors
describing situations in which that component has a definite value in a measurement. The
amplitude vectors u+ and u− satisfy

(u+)† u+ = (u−)† u− = 1

(u+)† u− = 0. (2.36)

We recognize the first part of Eq. 2.36 as the normalization of probabilities for a
measurement of Sz. The second relation is also quite significant, as we will now see.

Suppose our particle is described by the amplitude matrix v = (
α
β

)
, but the measurement

we perform is Sx rather than Sz. The probabilities for the two possible outcomes will not
simply be |α|2 and |β|2. How can we find these probabilities? To do so, we must find
amplitudes α′ and β ′ so that

v = α′x+ + β ′x−. (2.37)

Then the probability of obtaining +�/2 is
∣∣α′∣∣2 and the probability of obtaining −�/2 is∣∣β ′∣∣2. We can find α′ and β ′ by solving a system of simultaneous equations. But there is an

easier and more direct way:

(x+)† v = (x+)† (α′x+ + β ′x−
)

= α′ (x+)† x+ + β ′ (x+)† x−
= α′. (2.38)

(Notice how we have used both parts of Eq. 2.36.) Similarly, (x−)† v = β ′. We can find
the probability amplitudes for any spin component by evaluating matrix products of the
form u†v.
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Exercise 2.20 (a) Find α′ and β ′ in terms of α and β. (b) Find these and the probabilities
for the outcomes of an Sx measurement in the case where v = θ+.

The amplitude vectors here play a dual role. First, they describe the physical situation of
the spin-1/2 particle as a superposition of z+ and z−. Second, the amplitude vectors u+ and
u− (describing situations where the spin component Su has a definite value) also provide
us with a way to compute probability amplitudes for the outcomes of a measurement of Su.

Basis independence

So far, it appears that the z-axis has been granted special privileges. The amplitude vectors
z+ =

( 1
0
)

and z− =
( 0

1
)

are especially simple; all other amplitude vectors are “superposi-
tions” of these. But there is nothing special about the z-axis! We should be able to describe
things equally well – and obtain the same predictions – with respect to any axis.

This is rather like the behavior of familiar three-dimensional spatial vectors. A vector 	a
is often described by listing its components (ax, ay, az) in a Cartesian coordinate system.
However, a vector is not the same thing as the list of its components. The vector has a
definite geometrical or physical meaning, like the momentum 	p of a particular particle.
The momentum 	p does not depend on how we choose to orient our coordinate axes to
describe it.

We emphasize this by using a notation for vectors that does not refer to any specific
coordinate system: 	a rather than (ax, ay, az). We do the same for vector operations such as
	a + 	B, |	a| or 	a · 	B. When we wish to compute these, we often resort to the components of
the vectors involved. But we know that the results of our computations cannot depend on
our choice of spatial coordinate system.

In quantum physics, we need a corresponding notation that is independent of our choice
of “coordinate system.” We use the term state to mean a physical situation for a given
quantum system. The state is written as a ket, which consists of a straight line | and an
angular parenthesis 〉, between which we put a symbol or a short description of the state.
For instance, a situation in which a spin-1/2 particle has Sz = +�/2 might be written

|z+〉 or |spin up〉 or |↑〉 . (2.39)

Similarly, a state in which Sx = −�/2 might be

|x−〉 or |←〉 or
∣∣∣∣Sx = −�

2

〉
. (2.40)

What sits inside the ket is merely a label for the state; the only requirement is clarity.
The state (written as a ket) is exactly what we have until now been representing as an

amplitude vector. Therefore, the principle of superposition implies that kets can be written
as complex linear combinations of other kets – that is, that the kets are elements of a
complex vector space. For example, we can write

|x+〉 = 1√
2
|z+〉 + 1√

2
|z−〉 . (2.41)
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Exercise 2.21 Write |y−〉 as a linear combination of |z+〉 and |z−〉.
In order to calculate probability amplitudes, we found it handy to compute u†v, where u and
v were amplitude matrices (see Eq. 2.38). In our new language, we denote the Hermitian
conjugate matrix u† by a bra symbol, which is a reversed ket: 〈u| . The product is written

u†v = 〈u |v 〉 , (2.42)

which is called a bracket (= bra · ket).7

Exercise 2.22 Show that 〈u |v 〉∗ = 〈v |u 〉.
We have seen that a measurement of any component Su of the spin of the particle is

associated with two states |u+〉 and |u−〉. These are states in which Su has definite values
of +�/2 and −�/2. These states have the properties

〈u+ |u+ 〉 = 〈u− |u− 〉 = 1,

〈u+ |u− 〉 = 0. (2.43)

The first line tells us that the probabilities are normalized; the second line is called the
orthogonality of the states |u+〉 and |u−〉. We say that Eq. 2.43 expresses the orthonormality
of the |u±〉 states.

The states |u±〉 form a basis for the set of all possible states. This means that any state
|v〉 can be written as a superposition of them:

|v〉 = α+ |u+〉 + α− |u−〉 . (2.44)

The numbers α± are the probability amplitudes for the outcomes of a measurement of Su
on a particle in the state |v〉. These amplitudes can be computed by

α± = 〈u± |v 〉 . (2.45)

In other words, we can represent the state |v〉with respect to the |u±〉 states as an amplitude
vector

v =
( 〈u+ |v 〉
〈u− |v 〉

)
, (2.46)

but this representation depends on the choice of the states |u±〉.
Exercise 2.23 Show that the only kets that with certainty yield a value of +�/2 in a
measurement of Su are of the form eiφ |u+〉.

Measurements and filters

Suppose we have a Stern–Gerlach apparatus oriented along the z-axis. A stream of spin-1/2
particles passing through the apparatus will be split into two streams, according to the
measured value of Sz. If we observe in which of the two streams an atom is found, we have
measured Sz for that atom, see Fig. 2.11.

7 This notation and this pun are both attributable to Paul Dirac.
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Fig. 2.11 A Stern–Gerlach apparatus.

A very simple sort of observation would be to block one of the two beams, say the one
corresponding to Sz = −�/2. The value of Sz is registered by whether or not the atom hits
the barrier. This arrangement is not simply a measurement of Sz, but also an Sz filter. Atoms
with Sz = +�/2 are permitted to pass, but other atoms are stopped.

If we prepare a particle in the state |z−〉 and send it through our apparatus, then it is
blocked. If we prepare it in |z+〉, then it will certainly pass through the apparatus. What will
be its state afterwards? This will in general depend on the detailed physics of the apparatus,
since magnetic fields and so forth might produce changes in the spin of the particle. For
now we will consider the simplest case, in which the spin is unchanged: the particle will
emerge with spin state |z+〉.

Now suppose we introduce a particle in the state |x+〉, given in Eq. 2.41. Such a particle
will have a probability 1/2 of being blocked and probability 1/2 of passing through the
apparatus. If the particle passes through, what will be its state afterwards?

We might be tempted to say that the spin will still be |x+〉, since we have said that the spin
is “unchanged” by the apparatus. But |x+〉 is a superposition of |z+〉 and |z−〉 – in essence,
an interference of these two states – and that interference cannot survive a measurement of
Sz. We conclude instead that the final state of the spin, given that it passes through our Sz
filter, is just |z+〉.

This means that a second measurement of Sz would produce exactly the same result as
the first measurement.8 To put it a different way, consider two Sz filters in succession. The
first one passes Sz = +�/2 and the second one passes Sz = −�/2, as shown in Fig. 2.12.
Any particle that passes the first filter is then in a state |z+〉, and so has probability zero for
passing the second filter.

Naively, we might think that a filter merely removes particles which do not meet some
specified criterion. If this were an adequate picture of how our filters work, then it would
follow that adding additional filters to a series could never increase the likelihood that a
particle would pass all the way through. This is indeed true if we add filters to the end of
the series. But what if we insert one in the middle?

Let us modify the arrangement in Fig. 2.12 by inserting an Sx filter between the two Sz
filters. This is shown in Fig. 2.13. A particle that passes through the first filter will then
be in a state |z+〉. In this state, it will pass the second filter with probability 1/2, and if it
does, it will afterwards have a spin state |x+〉. But a particle with this state will have some
chance (again, probability 1/2) of passing the final filter and ending up in the state |z−〉. By

8 This observation, that successive measurements of the same observable quantity will yield identical results, is
sometimes elevated to an axiom of quantum theory. However, as we will see in Section 4.3, this is only true in
the most ideal cases, and is not a general fact about actual measurement procedures.
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Fig. 2.12 Successive Stern–Gerlach filters for opposite values of Sz. The probability of passing through both
filters is zero.

Fig. 2.13 If we insert an Sx filter between two opposite Sz filters, we can increase the probability of passing
the whole series.

inserting an extra filter, we have increased the probability that the particle passes the whole
series.9

Therefore, the filters, and the measurements they are based on, do more than just “read
off” the value of some variable. They also have an effect on the state of the system that is
being observed. A particle prepared with spin state |z+〉 and subjected to a measurement of
Sx, will afterwards be found in one of the states |x±〉. The particle will retain no “memory”
of its previous commitment to a definite value of Sz.

This is because Sz and Sx are complementary quantities. We must orient our Stern–Gerlach
magnets one way or the other, choosing one spin measurement or the other. Measuring Sx
precludes measuring Sz, and furthermore, any definite value of Sz the particle might have
carried is destroyed by the measurement of Sx.

Exercise 2.24 Suppose the particle starts out with a spin state of |x−〉. What is the
probability that it will pass through all three filters in Fig. 2.13?

This has an interesting implication for the storage and retrieval of information using
quantum systems. Imagine representing one bit of information by the state of a spin-1/2
particle. A simple code would be

Signal Message
|z+〉 0
|z−〉 1.

When we wish to retrieve the information, all we need to do is measure Sz for the particle.
However, suppose we measure Sx instead? The result of this measurement would tell
us nothing at all about the bit encoded in the spin. Worse, once we have measured Sx,

9 This is quite similar to a simple lecture demonstration involving polarizing filters. Polarization is a property of
photons that is exactly analogous to particle spin. A polarizing filter blocks light of one polarization, but permits
light of the other (perpendicular) polarization to pass. No light can get through a pair of “crossed” polarizing
filters. But if a third tilted filter is introduced between the pair, some of the photons do pass through.
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the particle will have “forgotten” all about its previous state. The information will be
irretrievably lost.

Put it this way. The particle can carry a “secret message” encoded in its spin state. If we
read the particle in the right way (measuring Sz), the message is revealed. But if we choose
the wrong way (measuring Sx), then the message self-destructs! This suggests that the
quantum physics of a spin-1/2 particle might be used to preserve the privacy of information.
And so it can; we will return to this subject, called quantum cryptography, later on.

2.3 Two-level atoms

Energy levels and quantum states

Atoms of a given element can absorb or emit light only at certain discrete frequencies, the
pattern of which is characteristic of that element. (This is the basis of spectroscopy.) That
is, the atoms can absorb or emit photons only with certain discrete energies. As Niels Bohr
realized, this must mean that the atoms themselves can only have certain discrete internal
energy levels. As the atom “jumps” between levels, photons are absorbed or emitted. The
atomic energy levels determine the pattern of light frequencies in the spectrum of the
element.

Viewed abstractly, the atomic energy levels form a kind of irregular ladder, each rung of
which is a possible value for the internal energy of the atom. Suppose an atom is occupying
one rung or another on the ladder. When a photon is absorbed, the atom jumps to a higher
rung. When it jumps to a lower rung, a photon is emitted. The lowest rung of all, the
internal state with the smallest energy, is called the ground state, and all of the others are
excited states. This is illustrated in Fig. 2.14.

Later in this book we will discuss at length how the complicated structure of energy
levels emerges from the quantum physics of the interacting nucleus and electrons in an
atom. For now, we will simply take that structure as a given and begin to explore what
it entails. A particular type of atom generally has many different energy levels. In many
experiments, though, only two energy levels – usually the ground state and one excited
state – play any significant role. In this case, we can adopt a simplified model, the two-level
atom, in which these are the only rungs present in the energy level ladder.

The two-level atom, like the two-beam interferometer and the spin-1/2 particle, is a
simple quantum system. Let us apply some of the quantum ideas we have seen so far to
this new example. Let E0 and E1 denote the energy of the ground state and the excited state
of our two-level atom. Each of these, of course, corresponds to a state of the atom that is
represented by a ket: |E0〉 for the ground state, |E1〉 for the excited state.

We could imagine measuring the energy E of the atom. Such a measurement would have
only E0 and E1 as possible values, and the states |E0〉 and |E1〉 will have these values with
certainty. They are thus analogous to the |z+〉 and |z−〉 states for a spin-1/2 particle, which
are the states with definite values for Sz. We conclude that the energy level states must be
orthonormal, as in Eq. 2.43:
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Fig. 2.14 On the left is the energy level “ladder” for an imaginary atom with six energy levels included. The
jump (a) is accompanied by the emission of a photon with energy E4 − E1, while the transition
shown in (b) absorbs a photon having much lower energy E3 − E2. On the right, the much simpler
ladder of a two-level atom.

〈E0 |E0 〉 = 〈E1 |E1 〉 = 1,

〈E0 |E1 〉 = 0. (2.47)

The principle of superposition tells us that there are other states as well formed by complex
linear combinations of these two. In general, then, the atom will be in a state

|ψ〉 = α0 |E0〉 + α1 |E1〉 . (2.48)

The amplitudes αk = 〈Ek |ψ 〉. If the atom is in the state |ψ〉, then a measurement of its
energy E will yield E0 with probability |α0|2 and E1 with probability |α1|2.

Exercise 2.25 Show that any state of the form eiφ |Ek〉 is a state with definite energy Ek .

The early quantum physicists thought that an atom must always be “in” one or another
of its energy levels, and even today physicists, chemists, and others will often speak and
write in this way. (To see an example, go back a few paragraphs and re-read our description
of an atom “jumping” from one rung of the energy level ladder to another.) But it is not so!
Superpositions such as Eq. 2.48 are perfectly possible quantum states, which means that
we can have interference effects between different energy levels. We will have more to say
on this point a little later. For now, we need to explain why this important fact can so often
be ignored.

The superposition of energy levels in Eq. 2.48, with its potential for interference between
the levels, only makes sense provided that the two-level atom remains informationally
isolated. But if the atom emits a photon (with energy E1 − E0) then it has announced to
the world that its energy was E1 and has now become E0. Since the surroundings contain a
record (in the form of the photon) of the atom’s energy E, the superposition can no longer
apply. The same would be true if the atom absorbed a photon from its surroundings.
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In a simple spectroscopic experiment, we probe an atom by studying the photons that
it emits and absorbs. The atom is therefore not informationally isolated. No interference
effects between the levels can be observed, so we can always imagine the atom to be in
some particular energy level at any given time. Because spectroscopy is so important as
a tool for probing quantum-level physics, it is easy to forget the deeper truth that energy
levels are not the only possible quantum states.

When we discuss spectroscopic experiments, we too will happily adopt the simplified
“one level or another” language. We, however, will not forget.

Time evolution

A measurement of energy on the two-level atom is associated with the two energy level states
|E0〉 and |E1〉. Measurements of other variables will be associated with other orthonormal
pairs of states. Suppose |u〉 is the state associated with some measurement outcome u. Then
if the system is in the state |ψ〉, the probability Pu that this measurement results in u is

Pu = |〈u |ψ 〉|2 . (2.49)

Now (in principle) we can calculate the probabilities for measurement outcomes for meas-
urable quantities other than energy. What are these other quantities exactly? Without a more
detailed description of the atom, we cannot say. For the present, we will simply assume
that we can measure them when required, and leave the details for later.

A two-level atom that is informationally isolated can exist in an arbitrary superposition
state |ψ〉, as given in Eq. 2.48. But how does the state |ψ〉 change over time? In other
words, what is |ψ(t)〉? The answer will involve a new principle of quantum physics. We
will motivate this principle by recalling the Planck–De Broglie relations from Eq. 1.8. In
particular, the energy E of a photon is related to the frequency f of the light by E = hf . It
will be a little more convenient to write this in terms of the angular frequency ω = 2π f :

E = hf = h
2π

2π f = �ω. (2.50)

(Note: We use the quantity ω so much more often than f that from now on we will use the
unadorned term “frequency” to refer to ω. Whenever we need to talk about f , we will call
it the circular frequency.)

In Section 1.2 we said that Eq. 2.50 is a general relation between particle and wave
properties for quantum systems. How does this apply to the two-level atom? If the atom
is initially in an energy level state |Ek〉, its state should somehow oscillate in time with a
frequency ωk = Ek/�. But the energy of an isolated atom does not change. We conclude
that it is the complex phase of the state that changes. If at t = 0 the state is |ψ(0)〉 = |Ek〉,
then at a later time

|ψ(t)〉 = e−iωk t |Ek〉 . (2.51)

As Exercise 2.25 tells us, this is also a state with definite energy Ek , so the energy of the
atom does not change.
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In fact, for an atom in an energy level state, the time evolution in Eq. 2.51 makes no
observable change at all. If u is an outcome of some measurement, the probability Pu at
time t is

Pu(t) = |〈u |ψ(t) 〉|2
= ∣∣e−iωk t 〈u |Ek 〉

∣∣2
= |〈u |Ek 〉|2 = Pu(0). (2.52)

If the atom is in an energy level state, the probability of every measurement outcome is
constant over time. From the point of view of experiment, |ψ(t)〉 is indistinguishable from
|ψ(0)〉. In fact, the states of definite energy are sometimes called stationary states.

Given this, why do we even bother with Eq. 2.51? The answer appears when we have
more general states that are not states of definite energy. Suppose that our atom at t = 0
is in the superposition state |ψ〉 given in Eq. 2.48. We now make the assumption that the
time evolution acts in a linear way, so that each term evolves independently according to
Eq. 2.51. Then

|ψ(t)〉 = α0e−iω0t |E0〉 + α1e−iω1t |E1〉 . (2.53)

Not only does the overall phase of this state vary over time, but the relative phases of the
two terms will also change, provided ω0 �= ω1.

To see some of the implications of this, consider the state |u〉 of the two-level atom
given by

|u〉 = 1√
2
|E0〉 + 1√

2
|E1〉 . (2.54)

We will suppose that |u〉 is the state associated with the outcome u of some measurement,
and also that the initial state of the atom is |ψ(0)〉 = |u〉. At time t = 0 the probability that
our measurement would yield u is

Pu(0) = |〈u |ψ(0) 〉|2 = 1. (2.55)

Over time, however, the atom’s state will evolve into something different:

|ψ(t)〉 = 1√
2

e−iω0t |E0〉 + 1√
2

e−iω1t |E1〉 . (2.56)

How does the probability Pu(t) vary over time?
First, we compute the probability amplitude at time t:

〈u |ψ(t) 〉 = 1√
2

(〈E0 |ψ(t) 〉 + 〈E1 |ψ(t) 〉)

= 1
2
(
e−iω0t + e−iω1t) . (2.57)

Notice that we have used the orthonormality of |E0〉 and |E1〉 to compute this amplitude.
The probability is

Pu(t) = |〈u |ψ(t) 〉|2
= 〈u |ψ(t) 〉∗ 〈u |ψ(t) 〉
= 1

2
(1+ cos ((ω1 − ω0)t)) . (2.58)
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Exercise 2.26 Fill in the algebra to arrive at Eq. 2.58.

As time progresses, the probability Pu(t) of the measurement outcome u changes from 1
to 0 and then back to 1 again with an angular frequency ω2 − ω1. At least some of the
observable properties of the atom do vary over time.

Exercise 2.27 Show that, if E0 = E1, then every state of the two-level atom is a stationary
state.

Exercise 2.28 Suppose that a two-level atom goes from its excited state energy E1 to its
ground state energy E0 via the emission of a photon. What is the frequency ω of this light?
Compare this to the frequency in Eq. 2.58.

Exercise 2.29 Let Pk be the probability that a measurement of the atom’s energy will yield
Ek . Show that, for any initial state of the two-level atom, P0 and P1 do not change over
time. (This is what is meant by “conservation of energy” for an atom that might not have a
definite energy.)

Operators

We have postulated that the time evolution of an informationally isolated two-level atom
is linear. That is, if the initial states |φ(0)〉 and |ψ(0)〉 evolve into later states |φ(t)〉 and
|ψ(t)〉, then a superposition of the two will evolve by:

α |φ(0)〉 + β |ψ(0)〉 −→ α |φ(t)〉 + β |ψ(t)〉 . (2.59)

Another way of putting this is to say that the time evolution of the system is described by
an operator on the initial state.

An operator is a linear mapping on a set of vectors, in this case the kets describing
the states of the quantum system. Operators play exactly the same role as the 2 × 2
matrices from Section 2.1, which transformed the amplitude vectors for the photon in the
two-beam interferometer. Operators, however, are objects that do not presume a particu-
lar basis for the space of states. If the operator A acts on the state |ψ〉, we write the
result A |ψ〉.

The time evolution from 0 to t is described by the operator U(t), which satisfies:

• U(t) |Ek〉 = e−iωk t |Ek〉 for an energy level state |Ek〉;
• U(t) acts on states in a linear way.

Since U(t) gives the time evolution of the energy level states, and since any state of the
atom can be written as a superposition of these, it follows that

|ψ(t)〉 = U(t) |ψ(0)〉 , (2.60)

for any state of the informationally isolated atom.
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Exercise 2.30 The product AB of two operators A and B is the operator that acts this way:
AB |ψ〉 = A

(
B |ψ〉

)
for any |ψ〉. Show that, for the two-level atom,

U(t2) = U(t2 − t1) U(t1). (2.61)

If we know the time evolution operator U(t) for all t, then we know everything about how
the two-level atom’s state changes with time. To make an analogy with Newtonian physics,
this is like knowing the future trajectory of a particle for any initial position 	r0 and velocity
	v0. In the Newtonian case, these trajectories are governed by the Newtonian equation of
motion, usually written 	F = m	a. What is the equation of motion for the quantum state of
the two-level atom? That is, what equation describes how the state |ψ(t)〉 is changing at
any given moment?

We recall Eq. 2.53, which gives the time evolution of an arbitrary superposition of energy
levels:

|ψ(t)〉 = α0e−iω0t |E0〉 + α1e−iω1t |E1〉 . (Re 2.53)

The kets |E0〉 and |E1〉 are taken to be constant over time. The time derivative of |ψ(t)〉 is
therefore

d
dt
|ψ(t)〉 = −iω0α0e−iω0t |E0〉 − iω1α1e−iω1t |E1〉 . (2.62)

Multiplying both sides of this equation by i�, and recalling the relation between frequency
and energy, we have

i�
d
dt
|ψ(t)〉 = E0α0e−iω0t |E0〉 + E1α1e−iω1t |E1〉 . (2.63)

The right-hand side of this equation is almost |ψ(t)〉, except that each term is multiplied
by the energy. This suggests that we should define an energy operator (also known as the
Hamiltonian) with the following properties:

• H |Ek〉 = Ek |Ek〉 for an energy level state |Ek〉;
• H acts on states in a linear way.

Then we have shown that, for a two-level atom,

i�
d
dt
|ψ(t)〉 = H |ψ(t)〉 . (2.64)

Equation 2.64 is our first look at the Schrödinger equation, one of the most famous equations
in all of physics. It tells us that the energy of a system (represented by the operator H) governs
how that system evolves over time.

The time-evolving state |ψ(t)〉 = U(t) |ψ(0)〉 is a solution to the quantum equation of
motion, the Schrödinger equation. The time evolution operator U(t) must therefore have
some connection to the Hamiltonian energy operator H. Some such connection can be
gleaned by comparing the definitions of U(t) and H. A deeper look at this issue will have to
wait for later.

There is another issue that merits discussion right away. The energy of the two-level
atom is a measurable quantity, and a measurement of it can only yield the values E0 and E1.
We have here found it convenient to represent the energy by an operator H. This operator
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multiplies energy level states by their energies; its action on other states is then determined
by linearity.

We can do the same thing for any measurable quantity. For instance, recall the spin-1/2
particle of the previous section. A measurement of Sz, the z-component of the particle’s
spin, can only yield the values ±�/2. This motivates us to define an operator Sz on spin
states of the particle thus:

• Sz |z+〉 = +�

2
|z+〉 and Sz |z−〉 = −�

2
|z−〉;

• Sz acts on states in a linear way.

Exercise 2.31 Evaluate Sz |x+〉.
The association of observable quantities with operators acting on kets is an important piece
of the mathematical machinery of quantum mechanics.

Spins as two-level atoms

We said that the magnetic moment 	μ of a particle is related to its spin 	S by

	μ = γ 	S. (Re 2.28)

The gyromagnetic ratio γ is positive for protons and most nuclei; it is negative for electrons,
neutrons, and a few other nuclei. If the particle is in a uniform magnetic field, Eq. 2.29 tells
us that it has an energy

E = −	μ · 	B. (Re 2.29)

If the magnetic field points in the positive z-direction, then the particle’s energy is

E = −γ BSz. (2.65)

For a spin-1/2 particle, the only possible values of Sz are ±�/2. Therefore, a spin-1/2
particle in a magnetic field has two energy levels. The spin state |z+〉 has energy −γ B�/2
and |z−〉 has energy +γ B�/2.

Our analysis of the two-level atom now lets us write down how a general spin state evolves
in time. We define the Larmor frequency � = γ B. The two possible energies for the spin
are therefore ±��/2. If we write the initial spin state as |ψ(0)〉 = α+ |z+〉 + α− |z−〉, the
state at a time t will be

|ψ(t)〉 = α+ei�t/2 |z+〉 + α−e−i�t/2 |z−〉 , (2.66)

(see Eq. 2.53). Suppose our particle initially starts out in a spin state |ψ(0)〉 = |x+〉. At a
later time, the probability that a measurement of Sx would find the particle in |x+〉 oscillates
according to

Px+(t) = 1
2

(1+ cos �t) . (2.67)

Exercise 2.32 Adapt the derivation of Eq. 2.58 to derive Eq. 2.67.
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Since the two energy levels are separated by 
E = ��, the Larmor frequency � is
the frequency of electromagnetic radiation that can be absorbed or emitted by the spin-1/2
particle. Consider a proton, which has a gyromagnetic ratio γp = 2.675 × 108 s−1T−1.
If we put this proton in a (very strong) 10.00 T magnetic field, the Larmor frequency
will be

� = γpB = 2.675× 109 s−1, (2.68)

which corresponds to a circular frequency f = 425.7 MHz. Radio waves of this frequency
will strongly interact with protons in a 10.00 T magnetic field. This is the basic idea behind
nuclear magnetic resonance, which we will discuss in much more detail in Chapter 18.

Exercise 2.33 A 13C nucleus is also a spin-1/2 particle. Its gyromagnetic ratio is almost
exactly one-fourth that of the proton. What radio frequency will strongly interact with 13C
nuclei in a 10.00 T magnetic field? What if the magnetic field were only 5.00 T?

2.4 Qubits and isomorphism

In this chapter, we have discussed three very different types of quantum system, each
described by the same mathematical machinery. Each system has two states – that is,
states that can be distinguished from each other by some measurement – together with
an infinite number of superpositions of these. In Section 1.1, we defined a “bit” to be a
physical system with two possible distinguishable physical states. Each of our examples is
a quantum generalization of this, having two distinguishable states and many more possible
ones. Our generic term for this type of quantum system is a qubit.

Just as all bits are isomorphic, so too all qubits are isomorphic, in that they are described
by the same mathematical structures. We have exploited this idea several times already. For
any qubit system, we can choose two distinguishable states and denote them by |0〉 and |1〉.
This pair of states is called the standard basis. The choice of the standard basis is arbitrary,
and corresponds to the choice of a standard measurement on the qubit system. The states
in the standard basis are orthonormal; that is, 〈0 |0 〉 = 〈1 |1 〉 = 1 and 〈0 |1 〉 = 0.

Any other state of the qubit is a superposition of the states in the standard basis:

|ψ〉 = α0 |0〉 + α1 |1〉 . (2.69)

The coefficients αk = 〈k |ψ 〉, and so they are probability amplitudes for the two possible
outcomes of the standard measurement. Probability amplitudes for other measurements
are given by brackets of |ψ〉 with other basis states. If a qubit system is informa-
tionally isolated, the change of its state with time will be described by an evolution
operator U(t).

This same template applies to each of our three examples, though we have used the
examples to emphasize different aspects of it. For instance, in the example of the spin-
1/2 particle, it is clear that the choice of basis states was arbitrary. Fixing our standard
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Fig. 2.15 Measurement apparatus for the |±〉 basis states in the two-beam interferometer.

measurement to be a measurement of Sz, we have

|0〉= |z+〉 ,
|1〉= |z−〉 .

(2.70)

On the other hand, there are many other possible measurements on the system. For example,
the basis states

|+〉= 1√
2

(
|0〉 + |1〉

)
,

|−〉= 1√
2

(
|0〉 − |1〉

)
,

(2.71)

are states of definite Sx. (Note that |±〉 = |x±〉.) The choice of Sz as the standard
measurement, rather than Sx or some other spin component, is merely a matter of convention.

For the two-beam interferometer, our remarks about basis independence seem at first to
be a bit strained. We let |0〉 represent the state in which the photon is in the upper beam and
|1〉 the state in which the photon is in the lower beam. This choice of standard basis seems
to be especially natural, since we can easily perform the corresponding measurement with
a pair of photon detectors. In fact, we might be tempted to say that this is the only sort of
measurement that makes sense. If the “which beam” measurement corresponds to Sz, what
could possibly correspond to a measurement of Sx?

In fact, it is possible to measure the photon in any basis we choose. Consider the
apparatus shown in Fig. 2.15. The two beams pass through a balanced beamsplitter and the
resulting beams are directed into ordinary photon detectors D+ and D−. We should think
of this combination of beamsplitter and detectors as a single measurement device, which
can produce two possible results depending on which photon detector is triggered. What
measurement is performed?

It is not the standard measurement on the input beams. If either |0〉 or |1〉 is the
input state, the detectors D+ and D− will be triggered with equal probability. In fact,
the apparatus is useless for determining which input beam contains the photon. On the
other hand, suppose the superposition state |+〉 from Eq. 2.71 is introduced. It is not
hard to show that the photon is found at D+ with probability one. Similarly, if the input
state is |−〉, then D− must register the photon. The apparatus in Fig. 2.15 performs the
measurement associated with the |±〉 basis, which is the analog of Sx. More complicated
interferometer arrangements involving beamsplitters and phase shifters can perform other
measurements.

Exercise 2.34 Devise an apparatus to measure the analog of Sy in the two-beam
interferometer.
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Thus we see that all sorts of measurements do after all “make sense” for the two-beam inter-
ferometer example. Because qubit systems are isomorphic to one another, commonplace
observations about one can lead us to insights about the others.

Qubit systems can be used to perform tasks such as the storage of information. We can
encode a one-bit message into a qubit in the obvious way, using |0〉 to represent 0 and |1〉
to represent 1. But qubits are not merely bits. There are many states available other than
the standard basis, and many measurements possible other than the standard measurement.
How do these new possibilities affect the qubit’s capacity to perform information tasks?
What new limitations are imposed – and new possibilities afforded – by quantum physics?
These are important questions to which we will return many times as we develop the theory
of quantum mechanics.

Problems

Problem 2.1 Find expressions for the probabilities P0 and P1 for the Mach–Zehnder
interferometer of Fig. 2.6 for arbitrary values of φ. From your results, show that P0+P1 = 1
for any φ, as expected.

Problem 2.2 Find all of the distinct interferometer arrangements – that is, arrangements
represented by different matrices – that can be constructed out of only balanced beam-
splitters Bl and Bu. (Do not forget to include the arrangement that uses no beamsplitters
at all!)

Problem 2.3 Constructing U(2). The set of all 2 × 2 unitary matrices is called U(2).
We have shown that linear optical elements are always represented by members of
U(2). But do all of the members of U(2) represent physically possible linear optical
elements?

Show that this is so by proving that any matrix in U(2) can be written as a product
of the matrices for phase shifters and balanced beamsplitters. We can therefore use these
basic devices as component parts to construct any imaginable linear optical element. Hint:
Tackle a simpler problem first. Figure out how to construct any unitary matrix with only
real entries of the form

U =
(

cos α sin α

−sin α cos α

)
.

Problem 2.4 The magnetic moment μ of a small loop of electric current equals the current
in the loop times its area. Suppose that a particle of mass M and charge Q is really a
spinning charged ring with some tiny radius R. Find the gyromagnetic ratio γ for this ring
in terms of Q and M . How well does this model work for the proton?

Problem 2.5 Consider a spin-1/2 particle passing through a series of spin filters, as in
Fig. 2.13. Now, however, there are 13 filters (numbered 0 through 12). The nth filter selects
for the state |n+〉, the +�/2 basis state for a measurement of spin along an axis in the
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xz-plane an angle nπ/12 from z. From Eq. 2.35, we can write

|n+〉 = cos
nπ

24
|z+〉 + sin

nπ

24
|z−〉 .

What is the probability that a spin-1/2 particle, initially in the state |z+〉, will pass all
13 filters?

Problem 2.6 Devise a spin-1/2 analog of the bomb-testing experiment in Section 2.1.
Your bomb will have a trigger that is set off by the passage of a single particle with
state |z−〉.
Problem 2.7 If we represent the state |ψ〉 of a two-level atom as a complex column vector
with respect to the |E0〉 and |E1〉 basis states, then the time evolution operator U(t) will be
a 2× 2 complex matrix U(t). Find this matrix and show that it is unitary.

Problem 2.8 Two boxes each produce a stream of qubits. Box A produces the qubits all in
the state |+〉 = 1√

2
( |0〉+ |1〉). Box B randomly produces qubits in states |0〉 and |1〉, each

with probability 1/2. We have one of the boxes, but it is unmarked and so we do not know
which kind it is. Describe an experiment on the qubits that can tell the difference between
box A and box B. Can you reliably tell the difference between the boxes by examining only
one of the qubits?
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3.1 Hilbert space

The prototype qubit systems of the last chapter are very simple, but they can be generalized
to more complicated versions. We can send a photon through an interferometer with three,
four or more distinct beams. We can perform experiments on particles with higher intrinsic
angular momentum than the spin-1/2 particles we have discussed. And we can analyze
atomic systems in situations that involve more than two different energy levels. For these
cases and others, we will need a more general version of quantum theory.

That theory will include two pieces. First, we will have a general mathematical structure
that is applicable to many kinds of system. Here the qubit case will be our guide, since
many of the basic concepts for other quantum systems are already present in the qubit case.
Second, we will have to describe how to apply the quantum formalism to specific physical
situations. Though the quantum systems we discuss will appear quite various, they share
strong family resemblances that are expressed in the common mathematical framework.
Keeping the framework in mind will help us understand specific examples; keeping the
examples in mind will help us understand the framework.

The states of a quantum system are described by kets |ψ〉, which obey the principle of
superposition. This means that the kets are elements of an abstract vector space H called a
Hilbert space. The key property of a vector space is that any linear combination of vectors
is also a vector. If kets |φ〉 and |ψ〉 are both inH, and a and b are complex coefficients, then

a |φ〉 + b |ψ〉 ∈ H

We remind ourselves that whatever we write within the ket symbol |· · ·〉 is merely a label.
In particular, a ket |0〉 labelled by the symbol “0” is not the same thing as the zero vector
in H, which we will generally denote by 0 (with no ket). In other words,

|ψ〉 − |ψ〉 = 0 �= |0〉 . (3.1)

A Hilbert space, however, is more than just a vector space with complex scalars. It also
has an inner product, which is analogous to the familiar dot product for spatial vectors.
Given |φ〉 and |ψ〉 in H, the combination 〈φ |ψ 〉 is a complex number. The Hilbert space
inner product must have the following defining properties:1

1 The technical definition of a Hilbert space also includes the property of metric or Cauchy completeness, which
is related to the existence of limits for sequences. We will not have much to say about metric completeness. The
property automatically holds for finite-dimensional vector spaces, and we will implicitly assume it otherwise.
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Symmetry. For any vectors |φ〉 and |ψ〉, 〈φ |ψ 〉 = 〈ψ |φ 〉∗. (This means that 〈φ |φ 〉
is real for any |φ〉.)

Linearity. For any vectors |φ〉, |ψ1〉, and |φ2〉, and any scalars a1 and a2,

〈φ|
(

a1 |ψ1〉 + a2 |ψ2〉
)
= a1 〈φ |ψ1 〉 + a2 〈φ |ψ2 〉 . (3.2)

Positive-definiteness. For any non-zero vector |φ〉, 〈φ |φ 〉>0. (Inner products
involving the zero vector are always zero.) We call

√〈φ |φ 〉 the norm of the vector |φ〉.
The kets representing physical states of quantum systems are normalized to be “unit”
vectors: 〈ψ |ψ 〉 = 1. Two kets are said to be orthogonal if their inner product is zero:
〈φ |ψ 〉 = 0.

We usually describe a particular element |ψ〉 in H by means of a set of basis vectors. If
{ |φn〉} is a basis, then |ψ〉 can be written as

|ψ〉 =
∑

n
cn |φn〉 . (3.3)

Furthermore, given |ψ〉 and the basis, the coefficients cn are unique. These numbers are
called the components of |ψ〉 with respect to the basis set { |φn〉}.

If we agree upon a basis set, then any vector is exactly specified by its components. This
is neat, because the various vector operations – vector addition, scalar multiplication, and
the inner product – can be worked out using complex arithmetic on the vector components.

Any two bases for the same Hilbert space will have exactly the same number of elements.
This number is called the dimension of the space. Therefore, the sum over n in Eq. 3.3
ranges from 1 to d = dimH. (As we have done here, we usually omit the limits of a
summation when it is clear from context that the summed index ranges over all of its
possible values.) All of the qubit systems that we discussed in the previous chapter had
dimH = 2. In fact, we will sometimes use the special symbol Q to denote the qubit
Hilbert space with dimension 2. More complicated systems may be associated with spaces
of higher dimension. For the present we will suppose that the Hilbert space dimension is
finite; later on we will discuss how to deal with infinite-dimensional spaces.

It can happen that only part of the overall Hilbert space H applies to a particular problem.
We saw this in our discussion of “two-level atoms” in Section 2.3. Real atoms have many
energy levels, so the Hilbert space H for the atomic system has a high dimension. In the
case we considered, however, only two energy levels (and their superpositions) had any
physical relevance, so the atom effectively behaved as a qubit.

The Hilbert space Q for the simplified two-level atom is a subspace of a larger Hilbert
space H for the atom. A subspace is a subset of a vector space that is also a vector
space in itself – i.e. is closed under linear combinations. The subspaces of H include two
trivial extreme cases: the null space (which contains only the zero vector) and H itself.
In between the extremes, however, there are some interesting cases. For spatial vectors in
3-D, subspaces include all the straight lines and flat planes that pass through the origin.

The dimension of a subspace is no larger than that of the parent space: If T is a subspace
of H, then dim T ≤ dimH. This means that a basis for T has no more vectors than a basis
for H. In fact, it is always possible to extend a basis for T (by including more vectors) into
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a basis for H. Two different subspaces T1 and T2 are said to be orthogonal subspaces if
every vector in T1 is orthogonal to every vector in T2.

Exercise 3.1 Describe in words a pair of orthogonal subspaces for spatial vectors in 3-D.

Exercise 3.2 Show that, if T1 and T2 are two orthogonal subspaces, then the only vector
that lies in both subspaces is the zero vector. Is the converse true? That is, if two subspaces
contain only the zero vector in common, are they necessarily orthogonal?

The restriction of a state to a subspace of H may have some physical basis, such as a
limitation on the total energy of an atom; or it might be assumed simply as a mathematical
convenience. In either case, the subspace acts as an effective Hilbert space for the system.

Orthonormal bases

In a Hilbert space, the most convenient sort of basis set is one that is orthonormal. This
means that the basis vectors are orthogonal to each other and normalized. We can summarize
this condition by

〈φm |φn 〉 = δmn, (3.4)

where δmn is the Kronecker delta symbol, defined as

δmn =
{

1 m = n
0 m �= n.

(3.5)

From now on, the term “basis” for a Hilbert space is assumed to mean an orthonormal
basis, unless otherwise noted.

We can easily compute the inner product 〈α |β 〉 whenever we know the components of
the two kets with respect to an orthonormal basis. Suppose that |α〉 = ∑

n an |φn〉 and
|β〉 =∑

n bn |φn〉. Then
〈α |β 〉 =

∑
n

a∗nbn. (3.6)

The proof of Eq. 3.6 is worth going over in detail.
We begin with 〈α |β 〉, expanding |β〉 using the { |φn〉} basis and remembering that the

inner product is linear:

〈α |β 〉 =
∑

n
bn 〈α |φn 〉 . (3.7)

In each term of this sum, we want to expand |α〉 using our basis. To do this, we have to
bear in mind two things. First, we must choose a different index for the new sum, because
the index n is already in use. Second, we recall that the inner product is conjugate-linear in
|α〉. This yields

〈α |β 〉 =
∑

n
bn

(∑
m

a∗m 〈φm |φn 〉
)

. (3.8)
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Each bn is a constant with respect to the m-sum, so we can “bring it into” the m-sum
(distribute the bn factor over the terms of this sum). We then wind up with the double sum

〈α |β 〉 =
∑

n

∑
m

bna∗m 〈φm |φn 〉 . (3.9)

We can clean this up in several ways. First, we will often write multiple sums in a
compact way, as in

∑
nm. Second, because the bns and the a∗ms are complex numbers, their

multiplication is commutative and we can write them in any order. Finally, orthonormality
of the basis makes everything simpler:

〈α |β 〉 =
∑
nm

a∗mbnδmn. (3.10)

The δmn allows us to do the m-sum immediately. Each term in that sum will be zero except
for the term in which m = n. And so we arrive at our destination, namely

〈α |β 〉 =
∑

n
a∗nbn. (Re 3.6)

This derivation illustrates a number of the common “tricks of the trade” for dealing with
sums. Some of these may seem obscure at first, but as you think them over, they should
seem plausible, then rigorous, then obvious. (Try to get all the way to “obvious.”)

Exercise 3.3 Show that, if |α〉 =∑
n an |φn〉 for an orthonormal basis { |φn〉}, then

am = 〈φm |α 〉 . (3.11)

Orthonormal bases are associated with the simplest type of measurement procedure,
which we will call a basic measurement. Each result of a basic measurement is associated
with a basis vector. Qubit examples included measurements of the spin components Sx, Sz,
and so on for a spin-1/2 particle, as well as a measurement of the energy of a two-level
atom.

For now, we do not necessarily have to associate numerical values with the various
possible outcomes of an experiment. The outcomes might be “red,” “orange,” “yellow,”
etc. We only require that distinct outcomes are given distinct labels, and that each outcome
is associated with exactly one member of an orthonormal basis of the Hilbert space H for
the system.

Suppose the basis vector |φk〉 is associated with the kth possible outcome for the meas-
urement, and the quantum state of the system is given by |ψ〉. Then the probability of the
kth outcome is

p(k) = |〈φk |ψ 〉|2 . (3.12)

The inner product 〈φk |ψ 〉, which is the kth component of |ψ〉 with respect to the basis
{ |φk〉}, is also the probability amplitude for the kth possible outcome of the measurement
associated with that basis.

Exercise 3.4 Show that, if the state |ψ〉 = |φm〉 for some basis vector |φm〉, the
measurement will yield the mth result with certainty.
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Exercise 3.5 Show that, for any quantum state |ψ〉 and any basic measurement, the
probabilities satisfy the usual laws:

p(k) ≥ 0,∑
k

p(k) = 1. (3.13)

Note that the second of these facts relies on the normalization of the physical state vector:
〈ψ |ψ 〉 = 1.

Suppose two state vectors differ only by an overall phase factor: |ψ〉 and
∣∣ψ ′〉 = eiφ |ψ〉.

Equation 3.12 tells us that |ψ〉 and
∣∣ψ ′〉 lead to exactly the same probabilities for the

outcomes of any basic measurement. In fact, two vectors that differ only by an overall
phase factor are equivalent, representing the same physical situation. This does not mean
that phases are irrelevant. In general, a |α〉 + b |β〉 and a |α〉 + beiφ |β〉 are quite different
states that lead to different predictions. For example, consider the states of the spin-1/2
particle

|x+〉 = 1√
2

(
|z+〉 + |z−〉

)
and |x−〉 = 1√

2

(
|z+〉 − |z−〉

)
. (3.14)

These two states, which give opposite results in an Sx measurement, differ only in the sign
of the superposition terms – a phase factor of eiπ . We usually express this by saying that
the global phase of |ψ〉 does not have any physical significance, but the relative phases
among the terms in a superposition do.

Equation 3.12 is one of the fundamental postulates of quantum mechanics, because it tells
us how the quantum state |ψ〉 is connected to measurement outcomes. We will illustrate
how it works by considering an extended example.

Spin one

We previously studied the behavior of spin-1/2 particles. Examples included electrons,
protons, and neutrons. Now we will introduce spin-1 particles. These include several
types of atomic nuclei, as well as the elementary particles associated with the strong and
weak nuclear forces.2 If we measure a spin component of a spin-1 particle, perhaps by a
Stern–Gerlach experiment, we get three possible results: +�, 0, and −�.

Just as the spin of a spin-1/2 particle is described by a Hilbert space Q of dimension 2,
the spin of a spin-1 particle is described by a Hilbert space with dimension 3. One possible
basis for this space is associated with a measurement of the z-component of spin Sz. We
denote these three orthonormal vectors |z+〉, |z0〉, and |z−〉. Any state is a superposition
of these three:

|ψ〉 = a+ |z+〉 + a0 |z0〉 + a− |z−〉 . (3.15)
Given this state, the probability that a measurement of Sz will yield +�, for instance, is
exactly |a+|2.

2 The photon is spin-1, but it is also massless and so does not have a “rest frame.” This complicates matters, and
our analysis here does not apply to photons.
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The z-axis is not sacred. We can equally well consider the trio of basis vectors associated
with a measurement of some other component of spin, say Sx. These basis vectors are
related to the Sz basis by

|x+〉 = 1
2
|z+〉 + 1√

2
|z0〉 + 1

2
|z−〉 ,

|x0〉 = 1√
2
|z+〉 − 1√

2
|z−〉 ,

|x−〉 = 1
2
|z+〉 − 1√

2
|z0〉 + 1

2
|z−〉 . (3.16)

Here are two exercises about spin-1 particles.

Exercise 3.6 Verify that the Sx basis vectors are orthonormal. (How many inner products
do you have to evaluate to show this?)

Exercise 3.7 The state of a spin-1 particle is |ψ〉 = |z0〉. What is the probability that a
measurement of Sx yields zero? Explain this in terms of a stream of spin-1 particles passing
through various Stern–Gerlach devices.

See also Problem 3.1.
Of course, we have not yet said how we come to identify a particular orthonormal basis

with a particular measurement on a system. At this stage, Eq. 3.16 must be taken on trust!
But once we have made that identification, Eq. 3.12 allows us to predict the results of
experiments on the quantum system.

Matrices and dual vectors

A good way to organize these calculations is to use matrices. Suppose we fix an orthonormal
basis in a d-dimensional Hilbert space H, and the ket |α〉 has components an with respect
to this basis. Then we can represent |α〉 by the d × 1 matrix

a =
⎛⎜⎝ a1

...
ad

⎞⎟⎠ . (3.17)

As we emphasized in Section 2.2, the column matrix a is not the same thing as the ket |α〉.
The latter might have an intrinsic physical meaning (e.g. the state of a system at a given
moment), whereas the former depends on our choice of orthonormal basis. Nevertheless,
we can use the matrix representations of vectors to perform operations in the Hilbert space.

Exercise 3.8 Write matrix representations with respect to the Sz basis for the |x+〉, |x0〉,
and |x−〉 states of a spin-1 particle. See Eq. 3.16.
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For instance, let a and b be column matrices representing the kets |α〉 and |β〉 with
respect to some orthonormal basis. Then the inner product is given by

〈α |β 〉 = a†b, (3.18)

where † denotes the Hermitian conjugate of the matrix, as introduced in Section 2.1.
Examining Eq. 3.18, we are tempted to say that the row matrix a† represents a “bra” 〈α| ,
which appears in the inner product. This is just what we said in the context of qubit quantum
theory in Chapter 2. But what kind of mathematical object is the bra 〈α| ?

A linear functional is a function that maps vectors in H to complex scalars, acting in a
linear way. In other words, if f is a linear functional, then

f
(

a1 |ψ1〉 + a2 |ψ2〉
)
= a1f

(
|ψ1〉

)
+ a2f

(
|ψ2〉

)
. (3.19)

Many familiar aspects of vector algebra can be expressed using linear functionals.

Exercise 3.9 Suppose we fix a basis set { |φk〉} and define a function fn that maps each
vector to its nth component. Show that fn is a linear functional.

Linear functionals are sometimes called dual vectors, since they themselves form a vector
space.

By the bra 〈α| , we simply mean the dual vector (linear functional) that maps the vector
|β〉 to the scalar 〈α |β 〉. The inner product on H thus allows us to turn regular vectors into
dual vectors. As it turns out, every dual vector on H is the “bra” of some “ket,” as the
following exercise illustrates.

Exercise 3.10 Write the linear functional fn from the previous exercise as a bra (dual
vector).

Note that the relation between ket and bra is conjugate-linear. That is, if |φ〉 = a1 |φ1〉+
a2 |φ2〉, then

〈φ| = a∗1 〈φ1| + a∗2 〈φ2| . (3.20)

Exercise 3.11 Use the properties of the inner product to show Eq. 3.20.

From this it follows that, if |α〉 =∑
n an |φn〉, then

〈α| =
∑

n
a∗n 〈φn| . (3.21)

The coefficients a∗n are just the entries of the row matrix a†. Thus, we can take a† to be the
matrix representation of 〈α| , as expected.

Is this talk of dual vectors more than just a new language for talking about inner products?
Not really. We have introduced no additional properties for the Hilbert space H. On the
other hand, the dual vector language will make it easier to describe the properties of linear
operators on H – a topic to which we now must turn.
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3.2 Operators

In our development of qubit quantum theory in Chapter 2, we found that we needed to use
operators to describe both the time evolution of a quantum system and a system’s measurable
quantities. This will also be true for more general systems in quantum theory. Since we
are keenly interested in how quantum systems change over time and what quantitative
predictions can be made about them, we clearly need to learn a lot about operators and their
properties!

Elementary concepts

Formally, an operator G on the Hilbert space H is a function that maps vectors to vectors
in a linear way:

G
(

a1 |φ1〉 + a2 |φ2〉
)
= a1G |φ1〉 + a2G |φ2〉 . (3.22)

An operator is completely defined by how it acts upon “input” vectors to produce “output”
vectors. Indeed, because an operator is a linear map, it is enough to specify how it acts
on a basis of input vectors. Let { |n〉} be a basis for H, and consider an arbitrary input
vector |ψ〉:

G |ψ〉 = G

(∑
n

cn |n〉
)
=
∑

n
cn G |n〉 . (3.23)

If we know the output vectors G |n〉 for basis vector inputs, we can calculate the effect of G
on any input |ψ〉.

For any operator G there is a set of vectors that map to the zero vector – a set that always
contains the zero vector itself. This set is called the kernel of G, denoted ker G.

Exercise 3.12 For any operator G on H, show that the kernel ker G is actually a subspace
of H.

If ker G is the zero subspace of H – if it contains the zero vector and no other – then we
say that ker G is “trivial.” The kernel is a useful tool for analyzing the action of an operator.
Here is a good example.

Exercise 3.13 Suppose the operator G has the property that G |x〉 = G |y〉 only if |x〉 = |y〉.
Then G is said to be one-to-one. Prove that G is one-to-one if and only if ker G is trivial.

The simplest operator is the identity operator 1, which maps every vector to itself:

1 |ψ〉 = |ψ〉 . (3.24)

This is obviously one-to-one, so ker 1 is trivial. Scalar multiplication can also be regarded
as a kind of operator: the map that takes |ψ〉 to a |ψ〉 for some scalar a is just the
operator a1.
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We can multiply operators by scalars and add operators together to make new oper-
ators.3 We can also multiply operators together. Given A and B, the operator AB is
defined by

(AB) |ψ〉 = A
(
B |ψ〉

)
. (3.25)

The operator product AB is thus read from right to left: first the operator B acts on the input,
and then A acts on the result. Note that this is not necessarily the same process as acting
first with A and then B. In other words, operator multiplication is not commutative, and in
general AB �= BA. The commutator [A, B] is just the difference between AB and BA:

[A, B] = AB− BA. (3.26)

This is an operator in its own right. The commutator of any operator with itself is zero:
[A, A] = 0.

Another simple type of operator is the outer product of two vectors in H. The outer
product is written |α〉〈β| . This looks a bit mysterious at first, but its meaning is easy to
understand. When we apply this operator to an input vector |ψ〉, we get

|α〉〈β|
(
|ψ〉

)
= |α〉 〈β |ψ 〉 . (3.27)

That is, we compute the scalar 〈β |ψ 〉 and then multiply the vector |α〉 by it.4

Exercise 3.14 Consider the qubit Hilbert space Q with standard basis vectors |0〉 and
|1〉. Let A = |0〉〈1| and B = |1〉〈0| . Show that AB �= BA, illustrating the fact that
operator multiplication is not commutative. (Hint: Show that the two operator products act
differently on the input vector |0〉.)

If we have a normalized vector |α〉, then the outer product �α = |α〉〈α| is called the
projection on |α〉. Let us consider a specific qubit example, the projection �0 = |0〉〈0| on
Q. Clearly, �0 |0〉 = |0〉 and �0 |1〉 = 0. For a general superposition of |0〉 and |1〉,

�0 |ψ〉 = |0〉〈0|
(

c0 |0〉 + c1 |1〉
)
= c0 |0〉 . (3.28)

Intuitively, the projection �0 on |0〉 just picks out the part of |ψ〉 that is parallel to |0〉.
The projection �1 works in the same way for the part of |ψ〉 that is parallel to |1〉. Thus,
if we add these two projections together, we get

3 The set of operators on H is sometimes denoted B (H). Since the linear combination of two operators is also
an operator, B (H) is a vector space in its own right.

4 The only oddity here is a less-than-customary order for the scalar multiplication. The expression is of course
equal to 〈β |ψ 〉 |α〉.
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(�0 +�1) |ψ〉 = c0 |0〉 + c1 |1〉 = |ψ〉 . (3.29)

In other words, for qubits we have the operator relation

|0〉〈0| + |1〉〈1| = 1. (3.30)

This fact can be generalized from qubits to any type of quantum system. Suppose { |n〉}
is an orthonormal basis for H, which may have any dimension. Then∑

n
|n〉〈n| = 1. (3.31)

This is called the completeness relation for an orthonormal basis, and it will be an extremely
important tool in our analysis of operators.

Exercise 3.15 Prove the completeness relation.

For the qubit Hilbert space Q, the identity operator 1 = |0〉〈0| + |1〉〈1| . We now
introduce three other useful operators on Q, called the Pauli operators. These are:

X = |0〉〈1| + |1〉〈0| ,
Y = −i |0〉〈1| + i |1〉〈0| ,
Z = |0〉〈0| − |1〉〈1| . (3.32)

(Note that the Pauli operators depend on the standard basis. If we choose other standard
basis vectors

∣∣0′〉 and
∣∣1′〉, then we will obtain a different set of Pauli operators.) The Pauli

operators have many useful and interesting properties, a few of which are suggested by the
following exercises.

Exercise 3.16 Calculate X |0〉, X |1〉, Y |0〉, Y |1〉, Z |0〉, and Z |1〉.
Exercise 3.17 Show that X2 = Y2 = Z2 = 1.

Exercise 3.18 Show that XY = iZ. Also show that we can cyclically permute X, Y, and Z in
this relation.

Operators and matrices

Let G be an operator and { |n〉} be an orthonormal basis for the d-dimensional Hilbert space
H. As we saw in Eq. 3.23, if we specify the d vectors G |n〉, then we have completely
described the operator G. We can specify each of these vectors by giving d components.
Thus, we can describe G by giving d2 complex quantities.

Given two kets |α〉 and |β〉, we define the corresponding matrix element of G to be the
inner product 〈α|G |β〉. The operator G can be described by giving the d2 matrix elements
for basis vectors:

Gmn = 〈m|G |n〉 = the mth component of G |n〉. (3.33)
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These can be conveniently arranged as the entries in a d × d square matrix:

(Gmn) =

⎛⎜⎜⎜⎝
G11 G12 · · · G1d
G21 G22 G2d

...
. . .

...
Gd1 Gd2 · · · Gdd

⎞⎟⎟⎟⎠ . (3.34)

This is called the matrix representation of G with respect to the basis { |n〉}.
For instance, in Q the Pauli operators have matrix representations (with respect to the

standard basis):

(X ) =
(

0 1
1 0

)
, (Y) =

(
0 −i
i 0

)
, (Z) =

(
1 0
0 −1

)
. (3.35)

These are called the Pauli matrices.

Exercise 3.19 Start with Eq. 3.32 and confirm Eq. 3.35.

Exercise 3.20 Suppose |α〉 and |β〉 have components an and bn with respect to the { |n〉}
basis. Show that the matrix representation of the outer product |α〉〈β| has components(

|α〉〈β|
)

mn
= am b∗n. (3.36)

We can compute the action of the operator G on the vector |α〉 using the matrix represen-
tation of G. Suppose |β〉 = G |α〉, and that the input and output vectors |α〉 and |β〉 have
components an and bn, respectively. Then

bm = 〈m |β 〉
= 〈m|G |α〉

= 〈m|G
(∑

n
|n〉〈n|

)
|α〉

=
∑

n
〈m|G |n〉 〈n |α 〉

bm =
∑

n
Gmnan. (3.37)

(Notice how we introduced the identity operator 1 in the form given by the complete-
ness relation for the { |n〉} basis. A handy trick!) We recognize this as simple matrix
multiplication: ⎛⎜⎝ b1

...
bd

⎞⎟⎠ =
⎛⎜⎝ G11 · · · G1d

...
. . .

...
Gd1 · · · Gdd

⎞⎟⎠
⎛⎜⎝ a1

...
ad

⎞⎟⎠ . (3.38)

Exercise 3.21 Show that Eq. 3.38 is the same as Eq. 3.37.
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Similarly, consider the matrix representation for the product operator AB.

(AB)mn = 〈m|AB |n〉
=
∑

k
〈m|A |k〉 〈k|B |n〉

(AB)mn =
∑

k
AmkBkn, (3.39)

which is just the matrix product⎛⎜⎝ (AB)11 · · · (AB)1d
...

. . .
...

(AB)d1 · · · (AB)dd

⎞⎟⎠ =
⎛⎜⎝ A11 · · · A1d

...
. . .

...
Ad1 · · · Add

⎞⎟⎠
⎛⎜⎝ B11 · · · B1d

...
. . .

...
Bd1 · · · Bdd

⎞⎟⎠ . (3.40)

Exercise 3.22 Fill in the details of the derivation of Eq. 3.39 by writing AB = A1B for a
suitable form of the identity 1.

Exercise 3.23 Verify that the matrix product in Eq. 3.40 expresses the same fact as Eq. 3.39.

In short, we can do computations with operators and vectors by doing matrix computations
with the matrix representations of those operators and vectors.

The matrix elements Gmn for the operator G are actually the “components” of the operator
with respect to a “basis set” of operators formed by the outer products of the vector basis
{ |n〉}. That is,

G =
∑
mn

|m〉〈m|G |n〉〈n| =
∑
mn

Gmn |m〉〈n| . (3.41)

Although not every operator is an outer product of two vectors, we see here that every
operator can be written as a sum of outer products.

Matrices and indices. The connection between component expressions (such as Eq. 3.37
and 3.39) and the corresponding matrix expressions (Eq. 3.38 and 3.40) deserves some
comment. By convention, Gmn represents the matrix entry in the mth row and nth column,
as in Eq. 3.34. When we write a matrix multiplication in terms of the matrix entries, the
column index of the left matrix factor is equal to the row index of the right matrix factor,
and this index is summed over. This can be seen in Eq. 3.39:

(AB)mn =
∑

k
AmkBkn. (Re 3.39)

The index that is summed over, called a “bound” or “dummy” index, can be freely
renamed. Also, the quantities that appear in a component expression are simply complex
numbers and can be multiplied in any order. Thus,∑

k
AmkBkn =

∑
k

BknAmk =
∑

j
AmjBjn. (3.42)
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When introducing a sum or renaming a bound index, it is important to avoid using an index
that is already used in the expression. In general,∑

k
AmkBkn �=

∑
n

AmnBnn. (3.43)

Exercise 3.24 Construct an explicit example using 2 × 2 matrices that shows why these
two expressions do not mean the same thing.

Exercise 3.25 Suppose

Dij =
∑

kl
AikBljCkl.

Rewrite this as a matrix expression – that is, the matrix D is a product of A, B, and C.
The question is, in what order do these matrix factors appear?

The trace

Another operator idea having close connections to matrices is the trace of an operator,
denoted Tr A. The trace is a linear functional on operators. It can be defined by the following
property:

Tr |α〉〈β| = 〈β |α 〉 . (3.44)

The trace turns an outer product into an inner product, keeping the bra and ket parts the
same. Since any operator can be written as a sum of outer products, this property is enough
to completely define the trace. Using a matrix representation,

Tr A = Tr

(∑
mn

Amn |m〉〈n|
)

=
∑
mn

Amn
(

Tr |m〉〈n|
)

=
∑
mn

Amnδnm

Tr A =
∑

n
Ann. (3.45)

The trace of an operator is equal to the sum of the diagonal components of a matrix
representation – which, not coincidentally, is also called the “trace” of that matrix. From
this it is easy to see that the traces of the Pauli operators, which have matrix representations
given in Eq. 3.35, are all zero.

Another way to write Eq. 3.45 is

Tr A =
∑

n
〈n|A |n〉 . (3.46)

We should emphasize that, although we can calculate the trace via Eq. 3.45 or 3.46 in terms
of a particular basis { |n〉}, the trace itself is independent of the choice of basis. Suppose
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that { |αn〉} and { |βn〉} are two orthonormal bases. Then∑
n
〈αn|A |αn〉 =

∑
n
〈αn|A

(∑
m
|βm〉〈βm|

)
|αn〉

=
∑
nm
〈αn|A |βm〉 〈βm |αn 〉

=
∑
nm
〈βm |αn 〉 〈αn|A |βm〉

=
∑

m
〈βm|

(∑
n
|αn〉〈αn|

)
A |βm〉

=
∑

m
〈βm|A |βm〉 . (3.47)

Exercise 3.26 Write a sentence explaining each step in this derivation.

A handy fact about the trace is that, for operators A and B,

Tr AB = Tr BA. (3.48)

We can see this most easily by using matrix representations:∑
n

(AB)nn =
∑
nm

AnmBmn =
∑
nm

BmnAnm =
∑

m
(BA)mm. (3.49)

This is called the cyclic property of the trace – cyclic because we can easily extend it to a
product of three or more operators,

Tr A · · ·BC = Tr CA · · ·B. (3.50)

Be careful! We are not asserting that the order of the operators in a product is irrelevant to the
trace, but only that we can “cyclically permute” the factors. Other sorts of rearrangements
might indeed change the overall trace.

Exercise 3.27 In a qubit Hilbert space, let A = |0〉〈0| , B = |0〉〈1| , and C = |1〉〈0| . Show
that

Tr ABC �= Tr ACB. (3.51)

Exercise 3.28 Show that the trace of any commutator is zero.

3.3 Observables

An observable A is a basic measurement in which each outcome is associated with a
numerical value. Suppose An is the numerical value associated with the nth outcome,
which has a basis element |n〉. The operator A associated with the observable A is
defined by
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A |n〉 = An |n〉 , (3.52)

for all |n〉. (As we have already pointed out, knowing how the linear operator A acts on
basis vectors is sufficient for its definition.)

In the measurement basis, which is orthonormal, the matrix representation of the operator
A has components

Amn = 〈m|A |n〉 = Anδmn, (3.53)

which yield a diagonal matrix

(Amn) =
⎛⎜⎝ A1

. . .
Ad

⎞⎟⎠ . (3.54)

Equation 3.41 therefore gives us the following expression for the operator A:

A =
∑

n
An |n〉〈n| . (3.55)

We can illustrate these relations by returning to a familiar qubit example.

Spin components

For a spin-1/2 particle, the Sx, Sy, and Sz components of spin are all observables. Each
one is a basic measurement that associates a numerical value ±�/2 with the measurement
outcomes. What are the operators associated with these observables, and what are their
matrix representations?

As our standard basis for matrix representation, we will choose the { |z±〉} basis of states
with definite Sz. In this basis, the observable Sz is very simple. Equation 3.55 tells us that

Sz = �

2
|z+〉〈z+| − �

2
|z−〉〈z−| . (3.56)

This has a matrix representation

(Sz) = �

2

(
1 0
0 −1

)
. (3.57)

In other words, with respect to the Sz measurement basis, the operator

Sz = �

2
Z, (3.58)

where Z is the Pauli operator from Eq. 3.32.
How about Sx? Once again, we can write

Sx = �

2
|x+〉〈x+| − �

2
|x−〉〈x−| . (3.59)
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We would like to express everything in terms of our standard { |z±〉} basis. The Sx
measurement basis states are

|x±〉 = 1√
2

(
|z+〉 ± |z−〉

)
, (3.60)

(see Eq. 2.33 and 2.41). The projections on these states are

|x+〉〈x+| =
[

1√
2

(
|z+〉 + |z−〉

)] [ 1√
2

(
〈z+| + 〈z−|

)]
= 1

2

(
|z+〉〈z+| + |z+〉〈z−| + |z−〉〈z+| + |z−〉〈z−|

)
,

|x−〉〈x−| = 1
2

(
|z+〉〈z+| − |z+〉〈z−| − |z−〉〈z+| + |z−〉〈z−|

)
. (3.61)

Thus, the operator Sx is

Sx = �

2

(
|z+〉〈z−| + |z−〉〈z+|

)
. (3.62)

This has a matrix representation

(Sx) = �

2

(
0 1
1 0

)
, (3.63)

and therefore

Sx = �

2
X, (3.64)

for the Pauli operator X in the { |z±〉} basis.

Exercise 3.29 Check the algebra in Eq. 3.62. Also show that |x+〉〈x+| + |x−〉〈x−| =
|z+〉〈z+| + |z−〉〈z−| . (What should each of these be equal to?)

Exercise 3.30 Do all this for the observable Sy.

Exercise 3.31 Refer to the spin-1 example in Section 3.1. Adopt the Sz basis states as the
standard basis. Find the operators Sz and Sx and their matrix representations with respect to
this basis. (You will need Eq. 3.16.)

Expectation values

Suppose our quantum system is in a state |ψ〉 and we measure the observable A. The nth
outcome occurs with probability

p(n) = |〈n |ψ 〉|2 = 〈ψ |n 〉 〈n |ψ 〉 . (3.65)

The mean or expectation value 〈A〉 is the average of the numerical values An, weighted by
their probabilities. That is,

〈A〉 =
∑

n
An p(n). (3.66)
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As discussed in Appendix A, the term “expectation value” for 〈A〉, though entirely standard,
is a little misleading. The value 〈A〉 is not necessarily a value that we expect to obtain in any
particular experiment! Instead, we imagine an ensemble, a huge number of similar quantum
systems all prepared in the state |ψ〉. The observable A is measured on the members of
this ensemble. Statistically, we then do expect the average of our measurement results to
be about 〈A〉.

The expectation value 〈A〉 is easily expressed in terms of the operator A:

〈A〉 =
∑

n
An 〈ψ |n 〉 〈n |ψ 〉

= 〈ψ |
(∑

n
An |n〉〈n|

)
|ψ〉

〈A〉 = 〈ψ |A |ψ〉 . (3.67)

If the state |ψ〉 has a column matrix ψ of components and operator A has matrix
representation A, then

〈A〉 = ψ†Aψ . (3.68)

Equation 3.67 tells us that we can make a statistical prediction (the mean of the possible
measurement outcomes) by computing the single matrix element 〈ψ |A |ψ〉. We can use the
matrix expression in Eq. 3.68 to do this computation with respect to some basis.5

For example, suppose our spin-1/2 particle is in the quantum state |ψ〉 = 0.6 |z+〉 −
0.8 |z−〉. (You should verify that this is properly normalized.) Then the expectation value
〈Sx〉 for a measurement of the x-component of the spin is

〈Sx〉 =
(

0.6 −0.8
) �

2

(
0 1
1 0

)(
0.6
−0.8

)
= −0.48�. (3.69)

(Note that this is close to −�/2, which makes sense because |ψ〉 is close to |x−〉 in the
Hilbert space.)

Exercise 3.32 A two-level atom has possible energies E0 and E1. Write down the Hamil-
tonian (energy operator) H as a sum of outer products. Now suppose that the atom is in the
state |ψ〉 = 1

2 |E0〉 +
√

3
2 |E1〉. Use your operator H to find the expectation value of the

atom’s energy.

Given the observable A, what is the square A2 of the operator A?

A2 =
(∑

m
Am |m〉〈m|

)(∑
n

An |n〉〈n|
)

=
∑
mn

AmAn |m〉 δmn 〈n| =
∑

n
An

2 |n〉〈n| . (3.70)

5 Where convenient, we will sometimes write 〈A〉 – using the operator A – to represent the expression in Eq. 3.67.
Despite this apparently suggestive notation, we understand that 〈A〉 is a scalar, not an operator.
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This is the operator associated with an observable having the same measurement basis
as A, but whose numerical values are the squares of the A-values – in other words, the
observable A2.

The same idea works for the third and higher powers as well. In general, the observable
Ak is associated with the operator Ak . Given a quantum state |ψ〉, its expectation value is〈

Ak
〉
= 〈ψ |Ak |ψ〉 . (3.71)

Note that this is not generally the same as 〈A〉k!

Exercise 3.33 A spin-1/2 particle is in the state |x+〉. Show that 〈Sz〉2 = 0, but
〈
S2

z
〉 �= 0.

Finally, we note that expectation values can be conveniently written in terms of the
operator trace. Given a state |ψ〉, we define the density operator ρ to be the projection
|ψ〉〈ψ | . Then

〈A〉 = Tr ρA. (3.72)

For now, this is simply a mathematical curiosity. Later on in Chapter 8, we will use this
idea to extend quantum theory to situations in which we cannot assign a definite quantum
state vector to a system.

3.4 Adjoints

Given any operator A on H, there is another operator called the adjoint (or Hermitian
conjugate), denoted A†. The adjoint is defined so that, for any vectors |α〉 and |β〉 in H,

〈α|A† |β〉 =
(
〈β|A |α〉

)∗
. (3.73)

The adjoint of an operator is related to the Hermitian conjugate of a matrix. The matrix
representation of the operator A† has entries(

A†
)

mn
= 〈m|A† |n〉 =

(
〈n|A |m〉

)∗ = A∗nm. (3.74)

The matrix representation of A† is the complex conjugate of the transpose of the matrix
for A.

The adjoint has two very useful properties. First, and pretty obviously, the adjoint of
the adjoint is the original operator:

(
A†
)† = A. The second property gives the adjoint of a

product of operators:

(AB)† = B†A†. (3.75)

Exercise 3.34 Prove Eq. 3.75 by considering matrix representations of A, B, and AB.

In this and many other cases, the easiest way to prove a fact about abstract operators is to
work with their matrix representations. This is analogous to proving a relation among 3-D
spatial vectors by a calculation involving their x, y, and z components.
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We can extend the adjoint to any sort of expression involving scalars, vectors, and
operators. Here are the basic rules:

• The adjoint of a scalar is its complex conjugate. The adjoint of a ket is a bra and vice
versa.

• The adjoint distributes over addition:

(this+ that)† = (this)† + (that)† . (3.76)

• The adjoint reverses the order of a multiplication:

(this that)† = (that)† (this)† . (3.77)

The abstract definition in Eq. 3.73 is a straightforward application of these rules. To give
another illustration, suppose we have an operator A with a matrix representation Amn. Then

A† =
(∑

mn
Amn |m〉〈n|

)†

=
∑
mn

(
Amn |m〉〈n|

)†

=
∑
mn

(
|m〉〈n|

)†
A∗mn

=
∑
mn

A∗mn |n〉〈m| .

Since m and n are bound indices, we can rename m as n and n as m. Then we find that

A† =
∑
mn

A∗nm |m〉〈n| , (3.78)

from which we see that (A†)mn = A∗nm, as already shown in Eq. 3.74.

Exercise 3.35 If |β〉 = B |α〉, show that 〈β| = 〈α|B†. Comment on the meaning of this
expression.

Exercise 3.36 Suppose that A has the form

A =
∑

n
An |n〉〈n| , (Re 3.55)

for a basis { |n〉}. Show that

A† =
∑

n
A∗n |n〉〈n| . (3.79)

The operators used in quantum mechanics usually have some special properties with
respect to the adjoint operation †. Below we describe types of operator with one or another
of these properties.
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Hermitian operators

Exercise 3.36 tells us something important about the operators associated with observables.
If the observables are real-valued, so that A∗n = An for all n, then the associated operator
satisfies

A† = A. (3.80)

Operators with this property are called Hermitian. From now on, we will assume that our
observables are real-valued, so that the operators associated with them are always Hermitian
operators.

Of course, the expectation value 〈A〉 for a real observable will always be real, as the
following exercise demonstrates:

Exercise 3.37 If A is Hermitian, show that 〈ψ |A |ψ〉 is real for any |ψ〉.

Positive operators

Another important type of operator is a positive operator: P is said to be positive if it is
Hermitian (so that P† = P) and, for all |ψ〉,

〈ψ | P |ψ〉 ≥ 0. (3.81)

(This inequality only makes sense because 〈ψ | P |ψ〉 must be real.) The projection �α =
|α〉〈α| on any state |α〉 is positive, since

〈ψ |�α |ψ〉 = 〈ψ |α 〉 〈α |ψ 〉 = |〈α |ψ 〉|2 ≥ 0. (3.82)

This, together with Eq. 3.12, means that the probabilities for the outcomes of a basic
measurement can be written in terms of the projections on the orthonormal basis states |n〉.
For a state |ψ〉,

p(n) = 〈ψ |�n |ψ〉 . (3.83)

The probability p(n) is the expectation value for an observable that assigns 1 to the nth
outcome and zero to all the others, an observable given by �n. Since �n is a positive
operator, p(n) can never be negative.

Exercise 3.38 What property of the projections �n for a basic measurement guarantees
that the probabilities always sum to 1?

Exercise 3.39 Given any operator B, show that B†B is positive.

Anti-Hermitian operators

An operator B is called anti-Hermitian if B† = −B. It follows that an anti-Hermitian
operator B can always be rewritten iA, where A is Hermitian. Any operator at all can be
written as the sum of a Hermitian and an anti-Hermitian operator:
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Exercise 3.40 Let G be an operator on H. Show that (a) H = 1
2
(
G+ G†

)
is Hermitian, (b)

K = − 1
2
(
G− G†

)
is Hermitian, and (c) G = H+ iK.

The Hermitian and anti-Hermitian operators are analogous to the purely real and purely
imaginary numbers in the complex plane. The adjoint is then analogous to complex
conjugation of numbers.

Exercise 3.41 Recall the definition of the commutator of two operators: [A, B] = AB−BA.
Show that the commutator of two Hermitian operators is an anti-Hermitian operator.

Exercise 3.42 In the qubit Hilbert space Q, write the operator |0〉〈1| as the sum of a
Hermitian and an anti-Hermitian operator. Express these in terms of the Pauli operators
given in Eq. 3.32.

Unitary operators

An operator U is unitary if its adjoint equals its inverse:

U† U = UU† = 1. (3.84)

In a finite-dimensional Hilbert space, it turns out that the condition U† U = 1 is enough to
guarantee unitarity, since the rest of Eq. 3.84 follows, (see Problem 3.6).

Exercise 3.43 As we said in Section 2.1, a matrix R is said to be unitary when

R†R = 1. (Re 2.24)

Show that a matrix representation for a unitary operator must be unitary.

The action of a unitary operator preserves the inner product between vectors. Suppose
|α〉 and |β〉 are in H, and let

∣∣α′〉 = U |α〉 and
∣∣β ′〉 = U |β〉. If U is unitary,〈

α′
∣∣β ′ 〉 = 〈α|U†U |β〉 = 〈α| 1 |β〉 = 〈α |β 〉 . (3.85)

This means that a unitary operator U takes any orthonormal basis set to another orthonormal
basis – that is, given a basis { |αn〉}, the vectors |βn〉 = U |αn〉 are also orthonormal (and
thus form a basis). It follows that

U = U

(∑
n
|αn〉〈αn|

)
=
∑

n
|βn〉〈αn| . (3.86)

The next exercise establishes the converse fact.

Exercise 3.44 If { |αn〉} and { |βn〉} are orthonormal bases, show that

V =
∑

n
|βn〉〈αn|

is a unitary operator.



68 States and observables

As we will see in Section 5.1, unitary operators play a central role in describing the time
evolution of isolated quantum systems.

Normal operators

“Normal” may be the most overused word in mathematics. In the present context, an
operator N is said to be normal if it commutes with its adjoint:

N† N = NN† . (3.87)

The first thing to note is that not every operator is normal.

Exercise 3.45 In a qubit Hilbert space, show that |0〉〈1| is not normal.

On the other hand, the special types of operator that we have mentioned so far – Hermitian
(including positive) operators, anti-Hermitian operators, and unitary operators – are all
normal.

As we have pointed out, we can write N = H + iK, where H and K are Hermitian. The
adjoint N† = H− iK. Then

N† N = (H+ iK) (H− iK)

= H2 + K2 − i [H, K] , (3.88)

NN† = (H− iK) (H+ iK)

= H2 + K2 + i [H, K] . (3.89)

The operator N is normal if and only if these two expressions are equal – that is, provided
[H, K] = 0. Thus, N is normal if and only if its Hermitian and anti-Hermitian parts commute
with each other. See Problem 3.3 for more about normal operators.

3.5 Eigenvalues and eigenvectors

An observable A is associated with an orthonormal measurement basis { |n〉} and a set of
numerical values An. This has motivated us to introduce the operator A defined by

A |n〉 = An |n〉 . (Re 3.52)

Equation 3.52 has the form of an eigenvalue equation:

(operator) |vector〉 = scalar |vector〉 . (3.90)

In Eq. 3.52, the scalar An is called an eigenvalue of the operator A, and |n〉 is the corre-
sponding eigenvector of A. (Eigenvectors are required to be non-zero; otherwise, any scalar
at all would be an “eigenvalue” of any operator. An eigenvalue, however, may happen to
be zero.)
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The German word “eigen” suggests that the eigenvalue of an operator A is proper to or
characteristic of A. It is common practice to attach “eigen” as a prefix to various words
associated with an eigenvalue problem (or eigenproblem). A normalized eigenvector in H
may be called an eigenstate of the operator. A basis composed of eigenvectors of A is often
called an eigenbasis. And so on!

Exercise 3.46 Fix a scalar α and an operator A. Show that the set of vectors for which
A |ψ〉 = α |ψ〉 forms a subspace of H. This is called the eigenspace for α. It includes the
null vector 0 and all of the eigenvectors of A having eigenvalue α.

Equation 3.52 tells us that the operator A associated with the real observable A has a
complete basis of eigenvectors |n〉, each one associated with a real eigenvalue An. As
we have seen, this means that the operator A is Hermitian. Our goal in this section is to
strengthen this connection between observables and Hermitian operators. We will show
that every Hermitian operator has only real eigenvalues and a complete orthonormal basis
of eigenvectors associated with them.

Existence of eigenvalues

The first thing we must note is that every operator on a finite-dimensional H has at least
one eigenvalue and corresponding eigenvector. That is, for any operator A, we can find a
complex scalar α and a non-zero ket |ψ〉 such that A |ψ〉 = α |ψ〉. We can rewrite this as

(A− α1) |ψ〉 = 0. (3.91)

In the language of Exercise 3.13, this is equivalent to saying the operator (A− α1) |ψ〉 has
a non-trivial kernel.

If d = dimH, consider the set of vectors { |ψ〉 , A |ψ〉 , A2 |ψ〉 , . . . , Ad |ψ〉}. Since there
are d + 1 vectors, this must be a linearly dependent set. Thus, for any vector |φ〉, the
equation

α0 |φ〉 + α1A |φ〉 + . . .+ αnAn |φ〉
= (α0 + α1A+ . . .+ αnAn) |φ〉 = 0, (3.92)

has a solution with at least one nonzero αi. Let αn be the last (largest n) of these nonzero
coefficients. We can divide the equation by αn and obtain

(β0 + β1A+ . . .+ βn−1An−1 + An) |φ〉 = 0. (3.93)

We can use the same coefficients from Eq. 3.93 to write down the polynomial equation

β0 + β1z+ . . .+ zn = 0. (3.94)

The Fundamental Theorem of Algebra tells us that Eq. 3.94 can be completely factored:

β0 + β1z+ . . .+ zn = (z− λn) . . . (z− λ2)(z− λ1). (3.95)
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The algebraic relation between the βi coefficients in Eq. 3.94 and the λis in Eq. 3.95 will
still hold if we replace the variable z with the operator A. It follows that Eq. 3.92 also
factors:

(β0 + β1A+ . . .+ An) |φ〉 = (A− λn1)(A− λn−11) . . . (A− λ11) |φ〉 = 0. (3.96)

Now we define a sequence of vectors |e0〉 = |φ〉 �= 0, |e1〉 = (A− λ11) |e0〉, and in general
|ei+1〉 = (A− λi1) |ei〉. According to Eq. 3.96, |en〉 = 0, so there must be a smallest k
(with 0 < k ≤ n) for which |ek−1〉 �= 0 and |ek〉 = (A − λk1) |ek−1〉 = 0. Therefore the
operator A−λk1 has a non-trivial kernel. The value λk is an eigenvalue of A with associated
eigenvector |ek−1〉.
Exercise 3.47 This argument only works in a complex Hilbert space. Show that the
operation represented by the matrix

A =
(

cos(π/4) sin(π/4)

−sin(π/4) cos(π/4)

)
, (3.97)

has no real eigenvalue.

Our argument demonstrates the existence of an eigenvalue, but it does not provide a very
efficient method for calculating eigenvalues and their associated eigenvectors. One method,
especially useful when d = dimH is small, is based on the idea of a determinant.

Suppose the operator A has a d × d matrix representation A. An eigenvalue λ of the
operator A is also an eigenvalue of the matrix A, so there is a non-zero column vector
ψ with

(A− λ1)ψ = 0. (3.98)
Recall that the determinant of a d×d matrix M has the property that det M �= 0 if and only
if M has an inverse matrix M−1. The inverse exists if and only if the mapping described
by M is one-to-one. Exercise 3.13 tells us that this mapping is one-to-one if and only if
the kernel of M is trivial. Therefore, the kernel of A − λ1 is non-trivial (as in Eq. 3.98)
provided that its determinant is zero:

det (A− λ1)) = det

⎛⎜⎝ A11 − λ · · · A1d
...

. . .
...

Ad1 · · · Add − λ

⎞⎟⎠ = 0. (3.99)

This is called the characteristic equation for the matrix A. The determinant is a polynomial
in λ of degree d, and the eigenvalues of A are exactly the roots of this polynomial. Since
every polynomial has at least one root, we can conclude that every matrix has at least one
eigenvalue.

Determinants are especially simple in the 2× 2 case:

det
(

a b
c d

)
= ad − bc. (3.100)

The characteristic equation (Eq. 3.99) is thus a quadratic

(A11 − λ)(A22 − λ)− A12A21 = 0, (3.101)

whose solution is straightforward.
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Exercise 3.48 Find all the eigenvalues of the Pauli matrices of Eq. 3.35, and of the operator
|0〉〈1| .

Hermitian operators

It is easy to see that the eigenvalues of any Hermitian operator must be real. If A is Hermitian
and A |ψ〉 = λ |ψ〉 for a non-zero |ψ〉, then

λ = 〈ψ |A |ψ〉
〈ψ |ψ 〉 . (3.102)

Exercise 3.49 Verify Eq. 3.102.

Since both inner products on the right-hand side are real, λ must be real as well. The set of
eigenvalues for a given operator is called the spectrum of the operator. The spectrum of a
Hermitian operator contains only real quantities.

Now suppose that λ1 and λ2 are two eigenvalues for Hermitian A, with respective
eigenvectors |ψ1〉 and |ψ2〉. Then

〈ψ2|A |ψ1〉 = λ1 〈ψ2 |ψ1 〉 , (3.103)

〈ψ1|A |ψ2〉 = λ2 〈ψ1 |ψ2 〉 . (3.104)

Since A is Hermitian, these two inner products must be complex conjugates of one another.
Since the eigenvalues of A are real,

λ1 〈ψ2 |ψ1 〉 = λ2 〈ψ2 |ψ1 〉 . (3.105)

If λ1 = λ2, this is clearly true. But suppose the two eigenvalues are not equal. Then this
equation can only be satisfied if 〈ψ2 |ψ1 〉 = 0. Therefore, given a Hermitian operator A,
the eigenvectors of A corresponding to distinct eigenvalues must be orthogonal.

We will now turn to the main business of this section: to establish that, for any Hermitian
A on a finite-dimensional Hilbert space H, there exists a complete orthonormal basis of
eigenvectors of A.

We proceed by mathematical induction on the dimension d of the Hilbert space H. If
d = 1, then any normalized vector |1〉 forms an orthonormal basis for H. The vector |1〉
also must be an eigenvector for any operator A on H, because the vector A |1〉 has to be
some multiple of |1〉. Therefore, for any Hermitian operator A on the trivial Hilbert space
with dimH = 1, we can find an orthonormal basis of eigenvectors of A.

Now suppose we have established that a Hermitian operator on a space of dimension d
gives rise to an orthonormal basis of eigenvectors. Consider an operator A on a space H
of dimension d + 1. This operator must have at least one eigenvalue; call it Ad+1 and the
corresponding normalized eigenvector |d + 1〉.
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Let Td be the set of all vectors inH that are orthogonal to |d + 1〉. This is a d-dimensional
subspace of H. How does the operator A act on this subspace? That is, if |ψ〉 is in Td , what
can we say about A |ψ〉? This vector is also orthogonal to |d + 1〉, since

〈d + 1|A |ψ〉 =
(
〈ψ |A |d + 1〉

)∗ = Ad+1 〈d + 1 |ψ 〉 = 0. (3.106)

(Note how we have used the fact that A is Hermitian.) The operator A therefore maps
vectors in Td to vectors in Td . Within this subspace, A effectively acts as a Hermitian
operator on a d-dimensional space. Therefore, by assumption there exists an orthonormal
basis { |1〉 , . . . , |d〉} for Td composed of eigenvectors of A. Adding |d + 1〉 to this set gives
an orthonormal basis of A eigenvectors spanning all of H.

We have proven our claim for the special case d = 1, and we have shown that if the
claim holds for spaces of dimension d then it must also hold for spaces of dimension d+ 1.
It follows that there is an orthonormal eigenbasis for any Hermitian operator on any Hilbert
space of finite dimension.

Real observables are associated with Hermitian operators. But our results also establish
that every Hermitian operator can be associated with a possible observable. For Hermitian
operator A, we can find an orthonormal eigenbasis { |n〉} together with eigenvalues An
so that

A |n〉 = An |n〉 . (Re 3.52)

This is exactly what we would expect from an observable whose measurement basis is
{ |n〉} and whose possible values are the elements An of the spectrum of A.

It follows from our argument that we can write any Hermitian operator in the form

A =
∑

n
An |n〉〈n| . (Re 3.55)

This is called the spectral decomposition of A. With respect to the eigenbasis { |n〉}, A has
the diagonal matrix representation

(Amn) =
⎛⎜⎝ A1

. . .
Ad

⎞⎟⎠ . (Re 3.54)

Note that the diagonal entries in this matrix are the eigenvalues An.
In a diagonal representation, it is easy to see that the trace Tr A of a Hermitian operator

A is exactly the sum of its eigenvalues. This is sometimes useful. We can compute the
trace using any matrix representation, diagonal or not. The trace then gives us a significant
piece of information about the spectrum of eigenvalues of A – namely, the sum of that
spectrum – without the work of finding the eigenvalues.

To sum up: we previously showed that every real observable – every basic measurement
whose outcomes are real numerical quantities – is associated with a Hermitian operator.
Now we have shown that every Hermitian operator can be associated with an observable.
Given the operator A, we can determine both the measurement basis and the spectrum of
possible measurement results. So close is this correspondence between (real) observable
and (Hermitian) operator that we often say that the operator “is” the observable.
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Spin-1/2 revisited

Let us see how this works out for the case of a spin-1/2 particle, which we discussed in
Section 2.2. In that discussion, several facts about the states and observable properties
of spins were offered as mere assertions. We are now in a position to give them a better
justification.

We will still take as given the operator forms for the Sx, Sy, and Sz observables. In the
standard (Sz) basis:

Sx = �

2
X, Sy = �

2
Y, Sz = �

2
Z . (3.107)

These operators have eigenvalues and eigenvectors that we already know. But what about
the spin component Sθ , where θ̂ is a unit vector in the xz-plane, tilted at an angle of θ from
the z-axis?

We can write θ̂ = sin θ x̂+ cos θ ẑ. Given a spin vector 	S, the spin component

Sθ = θ̂ · 	S = sin θ
(
x̂ · 	S )+ cos θ

(
ẑ · 	S )

= sin θ Sx + cos θ Sz. (3.108)

It is reasonable to assume that this relation also holds for the operators of the spin component
observables:

Sθ = sin θ Sx + cos θ Sz = �

2
(sin θ X+ cos θ Z) . (3.109)

This has a matrix representation

Sθ = �

2

(
cos θ sin θ

sin θ −cos θ

)
. (3.110)

What are the possible measured values for the observable Sθ ? They can be worked out most
easily using the characteristic equation.

Exercise 3.50 Use Eq. 3.99 to show that the eigenvalues of Sθ are ±�/2.

The spectrum of eigenvalues of Sθ , and thus the set of possible measurement outcomes, is
exactly as we expect for a spin component. In fact, this is true for any component of spin,
not just those in the xz-plane.

Exercise 3.51 Suppose we have a general unit vector û that does not lie in the xz-plane:

û = sin θ cos φ x̂+ sin θ sin φ ŷ+ cos θ ẑ. (3.111)

Show again that the possible outcomes for a measurement of Su are just ±�/2.

Now let us return to the spin component Sθ in the xz-plane. We can find an orthonormal
basis of Sθ eigenvectors corresponding to the eigenvalues of that operator.

Exercise 3.52 Find a pair of states |θ+〉 and |θ−〉 that constitute an orthonormal basis
of eigenstates of the spin component operator Sθ . You can find these by solving the
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eigenvalue equations directly (not too hard); or you could consult Eq. 2.35 and verify that
the measurement basis states presented there are solutions to the eigenvalue equations.

Degeneracy

The eigenvalues An of a Hermitian operator A need not be distinct. Two or more orthogonal
eigenvectors may have equal eigenvalues. This is called degeneracy. If A has degeneracy,
then A will not uniquely determine an eigenbasis.

For example, consider a three-level atom with an energy observable (the Hamiltonian
operator) H. The energy spectrum consists of E1, E2, and E3. But it might happen that two
of these energy values are degenerate, e.g. E2 = E3.

If an atom has only two possible energies E1 and E2, in what sense can we still call it a
“three-level atom”? First, there may be other measurements (besides energy) which make
it clear that dimH = 3 for the atom. Another possibility is that the atom’s energy depends
on an adjustable external parameter, such as the magnetic field 	B experienced by the atom.
For most values of 	B, the atom would have three distinct possible energies, but for some
special value of the field (	B = 0, say) two of the levels might be degenerate.

An eigenbasis for H consists of three states |1〉, |2a〉, and |2b〉, having eigenvalues E1,
E2, and E2, respectively. But this is not the only possible eigenbasis that can be formed
from the operator H. We could replace the degenerate states |2a〉 and |2b〉 with, say,∣∣2a′

〉 = 1√
2

(
|2a〉 + |2b〉

)
,

∣∣2b′
〉 = 1√

2

(
|2a〉 − |2b〉

)
. (3.112)

The new set { |1〉 ,
∣∣2a′

〉
,
∣∣2b′

〉} is also an orthonormal basis of eigenvectors of H.
There is no real surprise here. Exercise 3.46 told us that the set of eigenvectors of H with

a given eigenvalue form a subspace. The E2 eigenspace in this example has dimension 2.
There are infinitely many possible basis sets for this eigenspace, including { |2a〉 , |2b〉} and
{ ∣∣2a′

〉
,
∣∣2b′

〉}.
We conclude that there are many different basic measurements which could be an “energy

measurement” of the atom. All of these different ways of measuring energy, however,
correspond to the same Hermitian operator H:

H = E1 |1〉〈1| + E2

(
|2a〉〈2a| + |2b〉〈2b|

)
= E1 |1〉〈1| + E2

( ∣∣2a′
〉〈

2a′
∣∣ + ∣∣2b′

〉〈
2b′

∣∣ ) . (3.113)

Since these two spectral decompositions represent the same operator, it must be true that

�2 = |2a〉〈2a| + |2b〉〈2b| = ∣∣2a′
〉〈

2a′
∣∣ + ∣∣2b′

〉〈
2b′

∣∣ . (3.114)

We have called this operator �2 by analogy to the projection �1 = |1〉〈1| that also appears
in the spectral decomposition. In fact, �2 is a projection operator under a more general
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definition than we have yet given. An operator � is called a projection if it is Hermitian
and if �2 = �.

Exercise 3.53 Prove that �1 and �2 are both projections under the general definition.

Exercise 3.54 Show that the only possible eigenvalues for a projection operator are
0 and 1.

Problem 3.2 provides a geometric understanding of the projection operator �. The
projection “collapses” the Hilbert space H to a subspace G, which is itself unchanged
by the operator �. Intuitively, the action of � gives the “shadow” of any vector on
the subspace G – which is exactly why operators like � are known as “projections.”6

For the projection �2, the corresponding subspace is the eigenspace associated with the
eigenvalue E2.

The spectral decomposition of the Hamiltonian in Equation 3.113 is thus

H = E1�1 + E2�2. (3.115)

Completeness tells us that �1 + �2 = 1. Both the spectral decomposition and the
completeness relation are independent of which basic measurement for energy we may
choose.

Suppose the atom is in the state |ψ〉 and we make a basic measurement of its energy.
The probability that we obtain the result E2 is

p (E2) = p(2a)+ p(2b)

= 〈ψ |2a 〉 〈2a |ψ 〉 + 〈ψ |2a 〉 〈2a |ψ 〉
= 〈ψ |

(
|2a〉〈2a| + |2b〉〈2b|

)
|ψ〉 = 〈ψ |�2 |ψ〉 . (3.116)

In other words, we can calculate the probability of finding E2 directly from the operator �2,
without specifying the particular basic measurement. (Indeed, as we will discuss later, we
can in principle carry out a non-basic measurement procedure in which only the projection
�2 matters.)

What we have found for an energy measurement on a three-level atom holds for any
sort of observable A. If the operator A has degeneracy, more than one basic measurement
could be used to measure A. By using projection operators, though, we can do calculations
without specifying which basic measurement (if any) we might be using.

Suppose {Aα} is the set of distinct eigenvalues of A (so that no value appears twice). Then
each eigenvalue Aα is associated with an eigenspace (which need not be one-dimensional)
and a projection �α . The spectral decomposition for A is

A =
∑
α

Aα�α . (3.117)

6 In mathematics books, you may find that an operator is called a projection if �2 = �, whether or not it is
Hermitian. Our definition actually gives an orthogonal projection. Since we will not need this more generalized
view, however, we have adopted the term “projection” to mean only the orthogonal (Hermitian) ones.
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In a measurement of A on a system in state |ψ〉, the probability of obtaining the
result Aα is

p (Aα) = 〈ψ |�α |ψ〉 . (3.118)

Finally, the completeness relation for the projection operators is∑
α

�α = 1. (3.119)

The measurement of a degenerate observable is called an incomplete measurement, because
the result does not always completely specify a particular basis element.

Such measurements can arise in two ways. It could be that the real physical process
is a basic measurement, but the numerical read-out is “coarse-grained.”7 In this case, the
mathematical ambiguity of the eigenbasis due to the degeneracy of the observable is only
apparent. There is a single “real” basis for the measurement. It could also happen that the
physical measurement process is not a basic measurement at all, but something weaker.
This possibility is described in the next chapter. Yet whatever the exact physical nature of
the measurement process, we can calculate probabilities and expectation values using the
operator description of the observable.

Compatible observables

Two observables A and B are said to be compatible if there is a basic measurement that can
determine the values of both A and B together. That is, they are compatible if they have a
common eigenbasis. In this basis,

A =
∑

n
An |n〉〈n| and B =

∑
n

Bn |n〉〈n| . (3.120)

Compatible observables are always commuting operators.

Exercise 3.55 Show that [A, B] = 0 for the operators above.

This means that, if two observables are not commuting, then they are not compatible.
Consider, for instance, the observables Sx and Sy for the spin components of a spin-1/2
particle. These operators do not commute.

Exercise 3.56 Show that
[
Sx, Sy

] = i�Sz.

Therefore, there can be no single basic measurement that provides us with full information
about both Sx and Sy for the particle. To use Bohr’s term, Sx and Sy are complemen-
tary observables. An experimental procedure that determines the value of Sx is logically
incompatible with a procedure that determines Sy.

7 Coarse-graining means that several distinct possibilities are grouped together. This happens, for instance, when
a continuous quantity is specified with finite precision. If we know the x-coordinate of a particle’s position to
the nearest meter, we have grouped “14.66 m” and “15.021 m” and “15.30421448 m” all under the general
heading of “15 m.”
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We have shown that compatible observables commute – or, equivalently, that non-
commuting observables are not compatible. We will now show the converse: any two
commuting observables are compatible.

Suppose [A, B] = 0. Every distinct eigenvalue Aα of A is associated with an eigenspace,
a subspace that contains the eigenvectors with that eigenvalue. Distinct eigenspaces are
orthogonal to each other. If |ψ〉 is in the Aα eigenspace for A, what about the vector B |ψ〉?
This is also in the same eigenspace, since

A
(
B |ψ〉

)
= BA |ψ〉 = Aα B |ψ〉 . (3.121)

Thus, the operator B acts as a Hermitian operator on each Aα eigenspace individually. For
each of these subspaces, therefore, we can find a basis of B eigenstates. If we collect these
B basis sets for each of the Aα eigenspaces, we obtain a basis for the entire space H, each
of whose elements is an eigenstate both of A and B. Therefore, A and B are compatible.

This is a remarkable connection between the algebraic properties of operators – specif-
ically, whether or not they commute – and the fundamental physical compatibility of
measurement processes. In the next chapter, we will deepen this connection by deriving a
general limit on our simultaneous knowledge of two quantum observables. There, as here,
the commutator [A, B] will play a central role.

Problems

Problem 3.1 Recall the spin-1 Sx basis vectors defined in Eq. 3.16.

(a) Find a quantum state |ψ〉 such that neither a measurement of Sz nor one of Sx could
possibly yield the result zero. (This state happens to be |y0〉. In fact, the three states
|x0〉, |y0〉, and |z0〉 form yet another orthonormal basis, as you can easily check.)

(b) Write the Sz basis vectors as superpositions of the Sx basis vectors.

Problem 3.2 Suppose � is a projection operator on H. Let G be the set of all vectors in
H that are images of the operator � – in other words, the set of all |ψ〉 = � |φ〉 for some
|φ〉 in H.

(a) Show that G is a subspace of H.
(b) Show that, if |ψ〉 is in G, then |ψ〉 = � |ψ〉.
(c) We denote by G⊥ the set of all vectors in H that are orthogonal to every element of G.

(This is called “G-perp.”) Show that G⊥ is a subspace.
(d) Show that, if |φ〉 is in G⊥, then � |φ〉 = 0.

Problem 3.3 In a finite-dimensional Hilbert space H, show that an operator N is normal if
and only if H has a complete orthonormal basis of eigenvectors of N. (Hint: “If” is easy.
For “only if,” use the fact that the Hermitian and anti-Hermitian parts of N must commute.)

Problem 3.4 Show that any Hermitian operator is the difference of two positive operators.
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Problem 3.5

(a) For any Hermitian operator G and unitary operator U, show that UGU† is Hermitian and
has the same eigenvalues as G.

(b) Show that if two Hermitian operators A and B have exactly the same eigenvalues with
the same degeneracies, then there must exist a unitary operator U such that B = UAU†.

(c) For any operator K, show that K†K and KK† are positive operators with the same
eigenvalues. (Provide an example to show that they are not necessarily the same
operator.)

Problem 3.6

(a) Suppose dimH = d, and also suppose that U satisfies U†U = 1. Pick an orthonormal
basis { |k〉}, and show that the set {U |k〉} is also an orthonormal basis. Use this fact to
prove that UU† = 1 also, so that U must be unitary.

(b) Now imagine an infinite dimensional Hilbert space, with an infinite orthonormal basis
set { |1〉 , |2〉 , |3〉 , . . .}. Define the operator U by

U =
∞∑

n=1

|n+ 1〉〈n| .

Show that U†U = 1, but UU† �= 1. Thus U is not unitary.

Problem 3.7

(a) Suppose G is Hermitian, and 〈φ|G |φ〉 = 0 for all |φ〉. Show that G = 0. (Hint:
Consider |φ〉 to be an eigenvector of G.)

(b) Prove part (a) for an arbitrary operator G by writing G as the sum of a Hermitian and
an anti-Hermitian operator.

(c) Prove that, given operators A and B, if 〈φ|A |φ〉 = 〈φ|B |φ〉 for all |φ〉, then A = B.
(Note: This is quite a useful mathematical fact!)

(d) Prove that, if 〈φ|G |φ〉 = 1 for all normalized |φ〉, then G = 1.
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4.1 Quantum communication

We now return our focus to the idea of information. A quantum system may be used as a
medium for the storage, transmission, and retrieval of information. The rules of quantum
physics have implications for this process. In a larger sense, too, the state vector |ψ〉 of
a quantum system provides information about the outcomes of possible future measure-
ments. In this chapter, we will use the quantum theory developed so far to explore these
issues.

We introduced the notion of information in Section 1.1 by discussing the process of
communication. A sender encodes various possible messages by preparing various states
(“signals”) of a physical system. We said that distinct messages should be represented by
distinct physical states. In this way, the receiver could reconstruct the original message
from the signal in a unique way.

This discussion presumed that distinct states of the communication medium were also
distinguishable by the receiver. But this is not the case if the communication medium is
a quantum system. Suppose Alice wishes to send a message to Bob via a single spin-1/2
particle. She uses the following code (see Fig. 4.1):

Signal Message

|z+〉 The British are coming by land.
|z−〉 The British are coming by sea.
|x+〉 The British are not coming.

This appears to be a good code, since each message is represented by a distinct physical
state of the qubit. Yet something seems to be amiss. How can Bob recover the message
that Alice has encoded? If, for example, he makes a measurement of Sz, he could draw the
following conclusions:

Result Inference

+�/2 Either the British are coming by land, or not at all.
−�/2 Either the British are coming by sea, or not at all.

Exercise 4.1 Explain how Bob could arrive at these inferences from the result of an Sz
measurement on the qubit. What could he infer from the result of an Sx measurement?
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Fig. 4.1 Alice’s three signal states in the Hilbert space. Note that any diagram of vectors in H must
necessarily be schematic, since H is a complex space, while the Euclidean space of the page
is not.

Bob gains some information – he may, for instance, be able to exclude the possibility
that the British are coming by sea – but he does not learn everything that Alice is trying to
tell him.

The problem is that no measurement exists that can distinguish between the states in
Alice’s code. It is not possible, even in principle, to read all of Alice’s message. This is
not because quantum systems are somehow noisy and unreliable as carriers of information.
If Alice had only wished to encode a single bit of information into the particle (instead
of log 3 ≈ 1.58 bits), then she could have used the |z+〉 and |z−〉 basis states in her
code. By measuring Sz, Bob would be able to read the message exactly. Alternatively,
Alice could have used a quantum system with a larger Hilbert space, like a spin-1 particle.
Then her three possible messages could have been encoded in three orthogonal states.
With a suitable choice of decoding measurement, Bob would be able to distinguish these
perfectly.

Information encoded in orthogonal quantum states can be perfectly retrieved by some
possible measurement. If non-orthogonal quantum signals are used, then the information
will not be perfectly retrieved. In this section and the next, we will give more mathematical
substance to these intuitive points by proving a pair of theorems. The theorems provide
limits to how reliably a set of quantum states may be identified by a measurement. They
will give us a quantitative look at the difference between distinguishability and distinctness
for quantum states.

We want to frame our theorem in as general a context as possible. Alice is sending a
message to Bob using a quantum system with Hilbert space H of dimension dimH = d.
She prepares the quantum state in one of N possible states |α〉, corresponding to the N
possible messages α that she might want to transmit. We assume that each message has an
equal likelihood 1/N .

Bob will decode the signal by making a basic measurement using a basis { |k〉}. Now, it
might be that the Hilbert space H containing Alice’s signals is only a subspace of a larger
Hilbert space. For instance, Alice might use a two-level atom, a qubit, as her communication
medium. Then d = 2. But the two-level atom is just a simplified picture of the real atom,
which has a much larger Hilbert space. We want to give Bob every possible advantage in
decoding the signal, so we will allow him to make any basic measurement on this larger
space. The number of elements in the basis { |k〉} could be much larger than d.
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SinceH may be a subspace of a larger Hilbert space, we introduce the projection operator
� that projects onto H. For every |α〉 in H, � |α〉 = |α〉. We can write � as

� =
∑

r
|φr〉〈φr| , (4.1)

where { |φr〉} is an orthonormal basis for the subspace H. This subspace basis has d
elements, so that Tr � = d.

Once Bob obtains a measurement result k, he uses it to infer what Alice’s message was.
That is, the set of possible measurement results is divided into subsets Cα , one for each
possible message α. Each measurement result k must be in exactly one of the subsets. If
the measurement result k is in Cα , then Bob will infer the message α from the result k.

A measurement confined to the Hilbert space H would have only d possible results, and
thus no more than d of the subsets Cα could be non-empty. An empty Cα would mean that
Bob could never correctly identify the message α, whatever his measurement result. This
would be a problem if N > d. But we are allowing Bob to make his measurements on
a larger space containing H, so it is possible for all of the Cαs to be non-empty even if
N > d. In principle, then, any of the messages α might be correctly identified by Bob. But
how likely is he to come to the correct conclusion?

To proceed, we will need a few facts about positive operators. Recall that an operator P
is positive if 〈ψ | P |ψ〉 ≥ 0 for all |ψ〉. Then:

• |β〉〈β| is positive for any |β〉;
• If P is positive and π is a projection operator, then πPπ is also positive;
• For a positive operator P and a normalized vector |ψ〉,

〈ψ | P |ψ〉 ≤ Tr P. (4.2)

Exercise 4.2 Prove the properties of positive operators just listed.

We are interested in the probability PS that Bob’s measurement result allows him to
successfully identify the message α. This will be

PS =
∑
α

p(message α)×
⎛⎝∑

k∈Cα

p(result k | message α)

⎞⎠ . (4.3)

(Recall that p(A|B) is the conditional probability that A occurs under the condition that B
occurs.) Noting that p(message α) = 1/N for all α,

PS =
∑
α

1
N

⎛⎝∑
k∈Cα

|〈k |α 〉|2
⎞⎠ . (4.4)

Then, noting that � |α〉 = |α〉,

PS = 1
N
∑
α

∑
k∈Cα

〈α |k 〉 〈k |α 〉

= 1
N
∑
α

∑
k∈Cα

〈α|� |k〉〈k|� |α〉 . (4.5)
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By Eq. 4.2, 〈α|� |k〉〈k|� |α〉 ≤ Tr � |k〉〈k|�, and so

PS ≤ 1
N
∑
α

∑
k∈Cα

Tr
(
� |k〉〈k|�

)

= 1
N

Tr �

⎛⎝∑
α

∑
k∈Cα

|k〉〈k|
⎞⎠�. (4.6)

The double sum is actually equivalent to the single sum
∑

k , since every k is in exactly one
of the Cαs. The expression in parentheses is therefore 1, and

PS ≤ 1
N

Tr �2 = 1
N

Tr � = d
N

. (4.7)

The probability of error PE = 1− PS . We have now proven the following theorem:

Basic decoding theorem. If Alice encodes N equally likely messages as states in a
quantum system with dimH = d, and if Bob decodes this by performing a basic
measurement (perhaps on a larger Hilbert space) and inferring the message from the
result, Bob’s probability of error is bounded by

PE ≥ 1− d
N

. (4.8)

If the number N of possible signals exceeds the dimension d of the Hilbert space
containing the signals, Bob will not be able to reliably (PS = 1) distinguish between the
signals by any basic measurement. Since H = log N tells us the amount of information
in the message, we conclude that a quantum system described by a Hilbert space of
dimension d has a communication or information capacity of log d. This is the maximum
number of bits that can be stored in the system so that the data can be reliably read by a
measurement.

Exercise 4.3 A quantum system has an information capacity of log d. Suppose that Alice
tries to send one additional bit of information above the capacity. Use the basic decoding
theorem to find a lower bound for Bob’s probability of error PE.

Clearly, if N ≤ d, we can choose signal states that are all orthogonal to one another, which
can be perfectly distinguished by a measurement. In this way we can achieve PE = 0.

The capacity of a quantum system for conveying information is not limited by the number
of different states available. Nor is it limited by the number of possible outcomes of some
measurement procedure. Instead, it is limited by the number of states that can be reliably
distinguished, which is given by the dimension d of the system’s Hilbert space.

The lesson of the basic decoding theorem is that quantum systems have a limited capacity
to carry information. Our mathematical machinery so far has allowed us to prove this for
the case of equally likely messages (for which we have a definition of H) and basic
measurements (the only kind that we have analyzed). We will generalize both conditions
later in the book. The lesson holds in these more general situations as well.
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4.2 Distinguishability

Let us put ourselves in Bob’s situation. In the previous section, we were faced with the
task of distinguishing reliably between an entire set of possible signals that Alice might
use. Now suppose that we are trying to distinguish between only two quantum states. Alice
has prepared the system in either |α0〉 (representing 0) or |α1〉 (representing 1), assumed
to be equally likely. We shall make a basic measurement to try to determine which state is
present. The probability that this measurement succeeds in distinguishing the states is PS .

The two states lie in a subspace T of dimension 2, so the basic decoding theorem only
tells us that PS ≤ 1. If the two states happen to be orthogonal, then we can achieve PS = 1
by choosing a measurement basis with |0〉 = |α0〉 and |1〉 = |α1〉. Now imagine that the
two states are not orthogonal, so that 〈α0 |α1 〉 �= 0. We will not be able to distinguish these
states perfectly. But if perfection is out of reach, just how well can we do?

As before, we make a basic measurement that may extend to a larger Hilbert space
containing the two-dimensional subspace T . The measurement results are partitioned into
two sets C0 and C1, based on the inference that we will draw. The probability PS that we
infer the right message is

PS = 1
2

∑
k∈C0

〈α0 |k 〉 〈k |α0 〉 + 1
2

∑
k∈C1

〈α1 |k 〉 〈k |α1 〉 , (4.9)

(see Eq. 4.4). Since the sets C0 and C1 include all of the outcomes k,∑
k∈C1

|k〉〈k| = 1−
∑
k∈C0

|k〉〈k| . (4.10)

This lets us rewrite our expression for PS as

PS = 1
2
+ 1

2

∑
k∈C0

〈k|
(
|α0〉〈α0| − |α1〉〈α1|

)
|k〉 . (4.11)

Look at the operator D = |α0〉〈α0| − |α1〉〈α1| that appears in this expression: D is
Hermitian, so it will have a complete basis of eigenstates. Furthermore, for any |ψ〉 that is
orthogonal to both |α0〉 and |α1〉, D |ψ〉 = 0. This tells us that D has at most two non-zero
eigenvalues, whose eigenvectors must lie in T .

The sum of the eigenvalues of D is Tr D = 0. We can therefore write the eigenvalues as
±δ, and

D = δ |+〉〈+| − δ |−〉〈−| , (4.12)
for an orthonormal pair of D eigenstates |±〉. Now we write

PS = 1
2
+ 1

2

∑
k∈C0

〈k|D |k〉

= 1
2
+ 1

2
δ
∑
k∈C0

〈k |+〉 〈+ |k 〉 − 1
2
δ
∑
k∈C0

〈k |−〉 〈− |k 〉

≤ 1
2
+ 1

2
δ
∑
k∈C0

〈k |+〉 〈+ |k 〉 . (4.13)
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Fig. 4.2 The states |α0〉 and |α1〉, together with the orthogonal basis used for the matrix
representation of D.

Since |+〉 is normalized,
∑

k∈C0
|〈k |+〉|2 ≤ 1. Thus

PS ≤ 1
2
(1+ δ). (4.14)

Exercise 4.4 Show that we can choose a measurement so that equality is achieved in
Eq. 4.14.

The problem boils down to finding the positive eigenvalue δ for the operator D. We do
this by solving the characteristic equation for a matrix representation of D. For that we need
a basis for the subspace T . Choose the first basis vector |φ0〉 = |α0〉 and let the |φ1〉 be a
vector orthogonal to this (see Fig. 4.2). Then

|α1〉 = c0 |φ0〉 + c1 |φ1〉 . (4.15)

Of course, c0 = 〈α0 |α1 〉. A convenient way of writing the two components is suggested
by the following exercise:

Exercise 4.5 Suppose |c0|2 + |c1|2 = 1 for complex numbers c0 and c1. Show that we can
find an angle θ with 0 ≤ θ ≤ π/2 together with real phases β0 and β1 so that

c0 = eiβ0 cos θ and c1 = eiβ1 sin θ . (4.16)

We can interpret the angle θ as the angle between |α0〉 and |α1〉. It satisfies

|〈α0 |α1 〉| = cos θ . (4.17)

With respect to this basis, the matrix representation for D is

D =
(

1− cos2 θ −ei(β0−β1) cos θ sin θ

−ei(β1−β0) cos θ sin θ − sin2 θ

)
. (4.18)

This gives us, after a little simplification, the characteristic equation

0 = det(D− δ1) = δ2 − sin2 θ . (4.19)

Exercise 4.6 Confirm the matrix representation of D in Eq. 4.18, and obtain from it the
characteristic equation in Eq. 4.19.

The positive eigenvalue is therefore sin θ . We have arrived at the following theorem:
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Basic distinguishability theorem. Given two equally likely states |α0〉 and |α1〉
such that |〈α0 |α1〉| = cos θ , the probability PS of correctly identifying the state by
a basic measurement is bounded by

PS ≤ 1
2

(1+ sin θ) . (4.20)

Equality is achievable by a particular choice of observable.

We could of course manage PS = 1/2 simply by guessing, without any measurement at
all. If two quantum states are close together in the Hilbert space, then sin θ is small and
we cannot do much better than guessing. Such nearby states are distinct, in that they are
different vectors in the Hilbert space and represent different physical preparations of the
system. But they are not very well distinguishable. Only orthogonal quantum states of a
system are completely distinguishable by measurement.

4.3 The projection rule and its limitations

In a measurement process, we extract information from a quantum system. But what sort
of information is it? Exactly what does a measurement tell us?

A naive answer is, “When we measure an observable A, we find out the value of A.” Yet
this is at best only a partial answer. If the quantum system did originally have a definite
value of A – that is, if it were prepared in an A-eigenstate – then the measurement would
reveal that A-value. On the other hand, the quantum system might not have a definite value
of A before the measurement. A spin-1/2 particle prepared in the state |x+〉 does not have
a definite value for Sz. In this case, it is more difficult to say what the measurement tells us.

Another answer often proposed is, “When we measure an observable A, we find out
about the results of future measurements.” The idea is that, immediately after an A-
measurement, the system is in an eigenstate of A corresponding to the result obtained. A
second A-measurement performed immediately after the first must yield the same value.

This assertion is sometimes called the projection rule. It does give a straightforward
answer to our question: A measurement provides a definite prediction of the result of a
subsequent measurement of the same type. The only problem with the projection rule is
that, in this simple form, it is usually false.

To see why, recall our example of the two-beam interferometer. When a single photon is
in the interferometer, the system behaves like a qubit, with basis states |u〉 (photon in upper
beam) and | l 〉 (photon in lower beam). Arbitrary superpositions of these are also possible
quantum states.

There are of course many other possible states of the light in the interferometer. Like the
two-level atom, the one-photon interferometer is a simplification of a more complicated
real system with more possible states. One of these other states, orthogonal to those already
mentioned, is |0〉, the “no photon” state. If our system is a two-beam interferometer with
exactly one photon, it is described by a two-dimensional Hilbert space spanned by |u〉
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Fig. 4.3 Absorbing (left) and non-destructive (right) photon detectors in the interferometer beams.

and | l 〉. This was our qubit example. Now, however, we will consider the system of a two-
beam interferometer that has at most one photon. Our Hilbert space is three-dimensional
and includes |0〉.

Exercise 4.7 The photon number observable N counts the total number of photons present
in our interferometer system. For our new situation, show that N has two eigenvalues, one
of which is degenerate. Describe the two eigenspaces for these eigenvalues.

We can make a measurement in the { |u〉 , | l 〉 , |0〉} basis by putting a pair of photon
detectors in the beams. The states |u〉 and | l 〉 correspond to photon detections by the upper
or lower detectors, respectively. The state |0〉 corresponds to an outcome in which neither
detector “clicks.” (Since we have at most one photon in the interferometer, these are the
only possible outcomes.)

But an ordinary photon detector absorbs the photon upon detection. Whatever the meas-
urement result, therefore, the interferometer system is always in the state |0〉 immediately
afterward. A second measurement using a second set of detectors would always yield the
“no photon” result, whatever the result of the first measurement. The projection rule in this
case would fail.

For the projection rule to hold, we must imagine photon detectors that register the passage
of a photon without destroying it or scattering it out of the beam. Such “non-destructive”
detectors are possible in principle, though they are hard to build (see Fig. 4.3). (We imagined
photon detectors of this type for the two-slit experiment in Section 1.2.) Then if the upper
or lower detectors register a photon, the system is afterward known to be in the |u〉 or | l 〉
state, as the projection rule requires. If no photon is detected, the system is in |0〉.1

We have now described two possible measurement processes for the same observable,
one of which violates the projection rule and one of which obeys it. The validity of the
projection rule depends, not on which measurement we make, but rather on how we make
it – the details of the physical measurement process. The projection rule is a special
assumption about that process. Roughly speaking, the projection rule works when this

1 We are assuming that even these “non-disturbing” photon detectors have 100% efficiency, so that they will
certainly detect a photon if it is present. Real photon detectors are not so perfect and require a more sophisticated
analysis. See Chapter 9, especially Problem 9.11.
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process disturbs the system as little as possible, e.g. by simply registering a passing photon
instead of absorbing it completely.

Why is this assumption called the “projection rule”? The outcomes of the measurement
are represented by the projections

�u = |u〉〈u| , � l = | l 〉〈 l | , �0 = |0〉〈0| . (4.21)

If the interferometer starts out in the state |ψ〉, the probabilities of the various outcomes
are given by P(U) = 〈ψ |�u |ψ〉 and so on. After the measurement, if the result is x then
the state has changed according to

|ψ〉 → K �x |ψ〉 , (4.22)

where K is a normalization factor.

Exercise 4.8 Since the overall phase of a state vector is physically irrelevant, we can choose
K to be real and positive. Show that the choice K = P(x)−1/2 works.

The projection rule says that the action of the measurement process on the state of the
system is described by the projection operator associated with the outcome.

We could make a measurement in the interferometer using a photon detector in only one
of the beams. Suppose for instance we place a non-destructive photon detector in the upper
beam. This detector would “click” if the system were prepared in state |u〉, but not if it
were in either | l 〉 or |0〉 (or a superposition of these). This detector arrangement measures
a “click number” observable C with eigenvalues 1 and 0. The eigenvalue 0 is degenerate,
and the corresponding eigenspace is spanned by | l 〉 and |0〉.

If the initial state is a multiple of |u〉 or any state of the form a | l 〉 + b |0〉, it will be
unaffected by this measurement procedure. A general input state will produce the following
results:

• With probability P(1) = 〈ψ |�1 |ψ〉, the result 1 is obtained, and the final state will be
of the form K �1 |ψ〉 (which is a multiple of |u〉);

• With probability P(0) = 〈ψ |�0 |ψ〉, the result 0 is obtained, and the final state will be
of the form K′ �0 |ψ〉 (which is a superposition of | l 〉 and |0〉).

This measurement process satisfies the projection rule, as it applies to an incomplete
measurement. This means that a second such measurement on the same system would
always obtain the same result.

Exercise 4.9 Consider the overall photon number operator N and the upper-beam click
number operator C. What is [N, C]?
Exercise 4.10 Suppose the interferometer is initially in the state

|ψ〉 = 1√
3

(
|u〉 − | l 〉 − |0〉

)
. (4.23)

We introduce an absorbing photodetector into the lower beam and count the number of
times it “clicks” (either zero or one). Find the probabilities of the two outcomes and the
state of the interferometer after each one. Does this measurement satisfy the projection
rule?
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4.4 Quantum cryptography

Suppose Alice wishes to send Bob a secret message, one that can be read by Bob but
not by an unauthorized third party, the eavesdropper Eve. If there is a private mode of
communication to which Eve has no access, then Alice can employ it. But what if there
is no such private channel? After all, Eve might bug Alice’s telephone calls, open the
letters she sends, or intercept her outgoing e-mail. What if the only available mode of
communication from Alice to Bob is effectively a public channel? In order to send secret
information over a public communication channel, Alice must encrypt the information that
she sends to Bob.

We will describe one particular procedure for encryption. Let us say that Alice’s message
consists of a string of n binary digits, called the plaintext. (As we discussed in Section 1.1,
any sort of message can be represented in this format.) We also suppose that Alice and Bob
already share a secret string of n bits, called the key. This key string contains no message
in itself, but at least it is completely unknown to Eve. Alice encrypts her information
by adding together the plaintext and the key, creating a new string of n bits called the
ciphertext:

plaintext 0011001100001101110110010011
+ key 1001101001001110110010000110

= ciphertext 1010100101000011000100010101

.

(The addition is modulo 2, so that 1 + 1 = 0.) Symbolically, we write

P+ K = C, (4.24)

where P represents the plaintext, K the key, and C the ciphertext. It is the ciphertext C that
Alice sends over the public channel to Bob, and to which Eve potentially has access.

To decrypt the message, Bob (who also possesses K) adds the ciphertext and the key
string:

ciphertext 1010100101000011000100010101
+ key 1001101001001110110010000110

= plaintext 0011001100001101110110010011

.

This works because, in modulo 2 arithmetic, X +X = 0 for any string X , where “0” means
a string of all zeroes. Therefore,

C + K = P+ K + K = P+ 0 = P. (4.25)

Bob can thus use the key to recover Alice’s message from the ciphertext string.
What about Eve? As far as she is concerned, the key string K might be any n-bit string.

Even if she possesses the ciphertext C, the plaintext P = C + K could still be anything
at all. In other words, at the outset Eve must consider that there are 2n possible plaintext
messages P. With the ciphertext in hand, there are still 2n possible Ps. From the ciphertext
alone, Eve has gained no information at all (see Eq. 1.7).
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Exercise 4.11 Eve, in desperation, simply guesses at the key K, and then decides that the
plaintext P must be 0000010110010110100111000011. What key did she guess?
What are the odds of successfully decrypting the message by this method?

This method allows Alice to send Bob a secret message over a public channel. But you
may have noticed a difficulty. In order for Alice to send the secret message P to Bob, they
must already share a secret key K of the same length. To send a secret, they must already
have shared a secret. How did they do that?

This is the problem of key distribution, and it is a formidable challenge in practical
cryptography. The usual approach is to use some especially secure form of communication
for the key K – a trusted courier with a locked briefcase, perhaps. The problem is that,
despite all precautions, Alice and Bob cannot be completely sure that the secrecy of K has
not been compromised.

If a particular key K were known to be insecure – if Eve’s fingerprints were discovered
inside the locked briefcase, for example – then Alice and Bob would simply agree not to
use the “blown” key. Since K contains no message and thus has no value in itself, Eve has
gained nothing for her pains. Eve only poses a danger if she can indetectably figure out the
key K.

In 1984, Charles Bennett and Gilles Brassard invented a protocol for secure key distri-
bution that relies on the special properties of quantum systems. Their scheme, sometimes
called “BB84,” is the simplest protocol for quantum key distribution, and was the starting
point for the subject of quantum cryptography. We will now describe the BB84 protocol2

and discuss some reasons why it works.
In the BB84 protocol, Alice begins by generating two random strings of bits, the “basis

string” and the “parent string.” While we can represent the parent string by 0s and 1s, it is
more convenient to represent the basis string by Zs and X s. From each corresponding pair
of bits from the two strings, Alice chooses a quantum state for a qubit system, which she
then passes on to Bob. The states are

basis parent qubit state

Z 0 |0〉
Z 1 |1〉
X 0 |+〉 = 1√

2

(
|0〉 + |1〉

)
X 1 |−〉 = 1√

2

(
|0〉 − |1〉

)
.

In other words, Alice generates a sequence of qubits that are in one of the four states |0〉,
|1〉, |+〉, or |−〉, with equal probability. Be sure to note that these states are eigenstates of
the Pauli observables Z or X for the qubit, and that the basis string tells us which. Figure 4.4
lays out an example; so far, we have discussed the first three lines.

2 We will not here give a full proof of the security of BB84 against every sort of “attack” that Eve might mount.
Such a general proof does exist, but it requires ideas and techniques of quantum information theory beyond our
present discussion.
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Alice’s basis string X Z Z X Z X X Z · · ·
Alice’s parent string 1 0 1 1 0 1 0 1 · · ·
Qubit states |−〉 |0〉 |1〉 |−〉 |0〉 |−〉 |+〉 |1〉 · · ·

Bob’s basis string X X Z Z X Z X Z · · ·
Bob’s results |−〉 |+〉 |1〉 |1〉 |−〉 |0〉 |+〉 |1〉 · · ·
Bob’s parent string 1 0 1 1 1 0 0 1 · · ·

Right basis? yes no yes no no no yes yes · · ·
Key string K 1 1 0 1 · · ·

.

Fig. 4.4 An example of the BB84 protocol in action.

The qubits are now delivered to Bob. If Bob somehow knew Alice’s basis string, then it
would be possible for him to determine the parent string as well. He would simply measure
Z or X on the qubit, as appropriate. But Bob does not know the basis string. So instead, he
just makes up his own random basis string of Zs and X s, then measures accordingly. He
then records his version of the parent string bits as determined by these measurements.

Note that when Bob guesses the right basis (which happens about half the time), he
correctly learns the corresponding parent string bit. But when he guesses wrong, he is
equally likely to get the parent right or wrong. Thus, Bob’s version of the parent string is
only about 75% right. (Examine the next group of rows in Fig. 4.4.)

Next, Bob contacts Alice over a public communication channel and tells her his own basis
string. That is, he announces which measurements he made, but not the results of those
measurements. Alice replies by telling Bob which of his measurements were “correct.”
Alice and Bob discard those qubits on which Bob measured the wrong basis – about half
of the whole sequence. On the remaining qubits, Alice prepared and Bob measured in the
same way. The parent sequences of Alice and Bob therefore agree on these, and so they
can use this subsequence as their key K. (See the last rows of Fig. 4.4.)

Exercise 4.12 Bob’s version of the parent string includes about 25% errors. Yet in the
protocol, Alice and Bob throw away 50% of the bits. Why do they dispose of so many bits
that are, in fact, correct?

What about the eavesdropper Eve? Alice and Bob’s public communication only reveals
their basis strings, not the parent strings from which the key K is extracted. To have any
hope of learning this key string, Eve will have to intercept and examine the qubits using
some measurement. But she cannot reliably determine which of the four BB84 states Alice
is sending for each qubit. The basic decoding theorem in Eq. 4.8 tells us that her probability
of error must be at least

PE ≥ 1− 2
4
= 1

2
. (4.26)

She will get it wrong half the time.
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Since Eve must sometimes misidentify the state, then the qubit that she sends on to
Bob will sometimes be prepared incorrectly. This will show up as additional errors in the
BB84 protocol. For example, suppose Alice has basis bit Z and parent bit 0. She sends the
state |0〉 to Bob. Eve, intercepting the qubit, misidentifies this as the state |+〉, and sends
that state on to Bob. Bob happens to measure in the Z-basis, but by chance obtains the
result |1〉 instead of |0〉. Even though Alice and Bob have measured in the same basis, the
key bits they extract do not agree in this case.

Alice and Bob can detect the presence of Eve by checking for errors. They choose some
of their key bits at random and compare them over the public channel. These bits are now
no longer useful as key bits, since they are no longer secret; but they are useful for finding
out whether extra errors are occurring in the protocol. If, after sacrificing a few hundred bits
in this way, they find no cases of unexplained errors, they can be very confident that Eve is
not intercepting and measuring the qubits. The remainder of the key is therefore secure.

Exercise 4.13 Suppose Eve simply measures X on every qubit, inferring that the state is
either |+〉 or |−〉. What is the probability that a given bit in the final key K will actually be
an error? If 500 bits of K are sacrificed to check for errors, about how many errors should
be found?

The disturbance of the qubit system due to Eve’s measurement process acts as Eve’s
“fingerprints,” alerting Alice and Bob to her activities and warning them that their proposed
key is not secure. Of course, in the real world, there will always be some noise in the system,
and some errors will always be present. To be on the safe side, Alice and Bob have to assume
that any noise might indicate the effect of an eavesdropper. But if the error rate is small
enough, it turns out that Alice and Bob are still able to arrive at a shared secret key that
they are confident is completely unknown to Eve.

Distinct quantum states are not necessarily perfectly distinguishable, and this fact has
led to limits on our ability to use quantum systems to perform information tasks. We saw in
Section 4.1, for instance, that a quantum system with Hilbert space dimension d can only
convey up to log d bits reliably as a communication medium. In quantum cryptography,
the lack of distinguishability among the BB84 states is not a limit, but an opportunity. We
can use it to perform a task (establishing a secret key) that may be difficult or impossible
otherwise.

A loophole?

Poor Eve. She does not know what observable to measure in order to determine the state of
the intercepted qubits. What makes this particularly maddening is that, when Alice and Bob
later communicate over the public channel, Eve will actually learn what measurements to
use! By then, of course, it is too late, since the qubits have already been delivered to Bob.

However, suppose Eve has a device that could copy or clone qubits exactly. That is,
when the device is presented with a single qubit in any quantum state |ψ〉, it produces two
qubits with the same state |ψ〉. Such a machine is not a measurement device, since Eve
does not extract any information from the system.
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If a quantum cloning machine is available, then Eve can beat the BB84 protocol. She
makes perfect copies of the qubits and sends the originals on to Bob. Then she waits until
Alice and Bob discuss their measurement bases before making her own measurements. In
those cases when Alice prepared and Bob measure in the same basis, Eve can do the same
and be sure that her results agree with Bob’s. Eve would end up with the same key that
Alice and Bob share, without introducing any disturbance on the qubits.

Therefore, the security of quantum key distribution depends on the unavailability of
quantum cloning machines. Such machines are in fact impossible, as we will prove in
Section 7.2.

4.5 The uncertainty relation

Knowing the quantum state of a system lets us assign probabilities to the possible results
of various future measurements. In some cases we may be certain of the outcome, but
for other variables the probabilities are spread out over several possibilities. If a spin-1/2
particle is prepared in the state |x+〉, then a measurement of Sx would surely yield +�/2,
but the result of an Sz measurement is not certain. On the other hand, if the state is |z−〉, we
know that a measurement of Sz would find−�/2, but do not know what an Sx measurement
would find. Certainty about one observable comes at the price of uncertainty about the
other. There is no quantum state of a spin-1/2 particle that predicts a certain outcome for
both Sx and Sz.

Our aim here is to give a mathematical formulation of this heuristic point about quantum
physics. This will lead us to a general theorem of quantum physics with far-reaching
implications. We begin by proving a handy inequality about vectors in a Hilbert space.

Suppose |a〉 and |b〉 are two vectors in a Hilbert space H. We can pick a vector∣∣b′〉 = eiα |b〉, where the phase α is chosen so that
〈
a
∣∣b′ 〉 is real and non-negative. That

means that
〈
a
∣∣b′ 〉 = |〈a |b 〉|. Now define

|λ〉 = |a〉 + λ
∣∣b′〉 , (4.27)

where λ is an adjustable real parameter. For any value of λ, it must be true that 〈λ |λ 〉 ≥ 0.
Let us define

f (λ) = 〈λ |λ 〉
= 〈a |a 〉 + λ2 〈b′ ∣∣b′ 〉+ λ

(〈
a
∣∣b′ 〉+ 〈

b′ |a 〉)
= 〈a |a 〉 + λ2 〈b |b 〉 + 2λ |〈a |b 〉| . (4.28)

The function f is quadratic in λ. We know that f (λ) ≥ 0 for any value of λ; in particular,
we know that this is true for the value λmin that minimizes f . We can find this minimal
value in the usual way by setting f ′(λmin) = 0:

0 = 2λmin 〈b |b 〉 + 2 |〈a |b 〉|

λmin = −|〈a |b 〉|〈b |b 〉 . (4.29)



93 The uncertainty relation

Substituting this into f , we find that

f (λmin) = 〈a |a 〉 +
( |〈a |b 〉|
〈b |b 〉

)2
〈b |b 〉 − 2

|〈a |b 〉|
〈b |b 〉 |〈a |b 〉| ≥ 0, (4.30)

and therefore

〈a |a 〉 〈b |b 〉 ≥ |〈a |b 〉|2 . (4.31)

Equation 4.31 is called the Schwartz inequality, and it is a remarkably useful result about
vectors in H.

Exercise 4.14 Here are a couple of quick questions about this derivation. (a) How do we
know that λmin in Eq. 4.29 gives us a minimum of f ? Does it matter? (b) We have tacitly
assumed that |b〉 �= 0. Where? Does the Schwartz inequality hold true in the case |b〉 = 0?

With the Schwartz inequality in hand, we next turn to analyzing the uncertainties of
quantum observables. First, though, we have to give a precise mathematical definition of
what we mean by “uncertainty.” The mean or expectation value of a random variable X is

〈X 〉 =
∑

x
x p(x). (Re A.12)

The expectation value 〈X 〉 is not necessarily the value (or even a value) that we expect to
really occur. Then how far from 〈X 〉 is an actual outcome x likely to be?

As Appendix A explains, the variance is defined as the mean of the square of the deviation
from the mean. That is, 〈


X 2
〉
=
〈
(X − 〈X 〉)2

〉
=
〈
X 2

〉
− 〈X 〉2 , (4.32)

(see Eq. A.14).

Exercise 4.15 A random variable Q takes on the values±1 with equal probability. Find the
mean and the variance of Q. How would these change if P(+1) = 3/4 and P(−1) = 1/4?

We define the uncertainty of X to be the standard deviation 
X =
√〈


X 2
〉
. This is a

good measure of how “spread out” the probability distribution is around the value 〈X 〉. The
actual value of the variable X in an experiment is unlikely to be many times further than

X away from the mean 〈X 〉. (Appendix A develops this idea in more technical detail.)

Exercise 4.16 Show that 
Q > 0 if and only if more than one distinct value q has p(q) > 0.
That is, 
Q > 0 whenever there is actually some uncertainty about the value of Q.

Exercise 4.17 Suppose all of the possible values of Q lie in an interval on the real line
whose length is L. Show that 
Q ≤ L.

Applying this idea of uncertainty to a quantum observable A is at once trivial and subtle.
It is trivial, because any state |ψ〉 leads to a probability distribution over the spectrum of A
eigenvalues, from which we can calculate the mean and variance. The subtleties arise when
we try to interpret the average in

〈

A2〉 as an expectation value given by some operator.
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Suppose we define the deviation operator 
A by


A = A− 〈A〉 1. (4.33)

This would be a strange definition for an operator, because the expectation value 〈A〉 already
presumes a particular quantum state |ψ〉 for which 〈A〉 = 〈ψ |A |ψ〉. If |ψ〉 does happen
to be the state of the system, then

〈ψ |
A2 |ψ〉 = 〈ψ |A2 |ψ〉 − 2 〈A〉 〈ψ |A |ψ〉 + 〈A〉2 〈ψ |ψ 〉
=
〈
A2
〉
− 〈A〉2 =

〈

A2

〉
, (4.34)

as we wish. But if the system is in another state |φ〉 with a different expectation value for
A, then the variance of A will not be 〈φ|
A2 |φ〉.

We have to be more careful. For a real value α, define


αA = A− α1. (4.35)

This is the deviation of the observable A from a fixed value α that is independent of any
choice of state. If it happens that α = 〈A〉 for a particular |ψ〉, then

〈ψ | (
αA)2 |ψ〉 =
〈

A2

〉
, (4.36)

for the distribution of A-values given by the state |ψ〉. But if α �= 〈A〉, then this equality
will not hold. (See Problem 4.2 for a more general relation.)

Now suppose we have two observables A and B for a quantum system. We pick out
values α and β and define 
αA and 
βB as above. If the system is in the quantum state
|ψ〉, we can consider the vectors

|a〉 = 
αA |ψ〉 and |b〉 = 
βB |ψ〉 . (4.37)

Applying the Schwartz inequality (Eq. 4.31) to |a〉 and |b〉, we find

〈ψ | (
αA)2 |ψ〉 〈ψ | (
βB)2 |ψ〉 ≥
∣∣∣〈ψ | (
αA)(
βB) |ψ〉

∣∣∣2 . (4.38)

The right-hand side is of the form 〈ψ | FG |ψ〉 for Hermitian operators F and G. What is
this matrix element? The product FG can be written

FG = 1
2
[F, G] + 1

2
{F, G}, (4.39)

where {F, G} = FG+ GF is the anticommutator of F and G.

Exercise 4.18 Given Hermitian F and G, show that (a) the commutator [F, G] is anti-
Hermitian, and (b) the anticommutator {F, G} is Hermitian. (Part (a) was also Exercise 3.41.)

It follows that

〈ψ | FG |ψ〉 = 1
2
〈ψ | [F, G] |ψ〉 + 1

2
〈ψ | {F, G} |ψ〉 . (4.40)
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The commutator term is purely imaginary and the anticommutator term is purely real.
Therefore, ∣∣∣〈ψ | FG |ψ〉

∣∣∣2 ≥ 1
4

∣∣∣〈ψ | [F, G] |ψ〉
∣∣∣2 . (4.41)

Exercise 4.19 Carefully explain the line of reasoning from Eq. 4.40 to Eq. 4.41.

To apply this general operator fact, we note that

[
αA, 
βB] = [A, B]. (4.42)

Therefore, Eq. 4.38 implies that

〈ψ | (
αA)2 |ψ〉 〈ψ | (
βB)2 |ψ〉 ≥ 1
4

∣∣∣〈ψ | [A, B] |ψ〉
∣∣∣2 . (4.43)

The right-hand side does not depend on α and β. If we choose α = 〈A〉 and β = 〈B〉, then
the left-hand side is the product of the variances

〈

A2〉 and

〈

B2〉. Therefore,〈


A2
〉 〈


B2
〉
≥ 1

4

∣∣∣〈ψ | [A, B] |ψ〉
∣∣∣2 . (4.44)

It is convenient to write everything in terms of uncertainties.

General uncertainty relation. Suppose A and B are two observables on a quantum
system and let K be the observable such that

[A, B] = iK. (4.45)

Then, for any quantum state |ψ〉,


A 
B ≥ 1
2
|〈K〉| . (4.46)

Equation 4.46 tells us that there is a trade-off between the uncertainties 
A and 
B, and
that this trade-off is governed by the commutator [A, B] of the two operators. If |〈K〉| > 0,
then it is not possible for both 
A and 
B to be close to zero.

If two operators commute (K = 0), then we know that there are simultaneous eigenstates
for A and B. Equation 4.46 therefore gives a lower bound of zero for 
A 
B.

We shall illustrate the meaning of the general uncertainty relation by considering our old
friend, the spin-1/2 particle. Recall from Exercise 3.56 that the spin component operators
Sx, Sy, and Sz satisfy

[Sx, Sy] = i�Sz. (4.47)

(If you have not worked out Exercise 3.56 for yourself, you should go back and do it.) This
means that, for any state of the particle,


Sx 
Sy ≥ �

2
|〈Sz〉| . (4.48)

We can extract a lot of meaning from this uncertainty relation. If we have an eigenstate of
Sx, then 
Sx = 0. This can only happen provided 〈Sz〉 = 0. The same must be true of Sy
eigenstates. If the expectation 〈Sz〉 �= 0, then neither Sx nor Sy can have a definite value.
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We have called Eq. 4.46 an “uncertainty” relation, but a better name might be an
“indeterminacy” relation. The word “uncertainty” seems to refer to our own state of mind,
to our lack of sureness about the value of A. This leaves open the possibility that A actually
has a definite value. We may be somewhat uncertain about the exact area of Brazil, but
we do not doubt that the territory of Brazil comprises some definite number of square
kilometers. We merely happen to be ignorant of that number.

The situation for quantum systems appears to be quite different. The measured value of
an observable A is uncertain, not because of some ignorance on our part, but because the
particular quantum state does not have a definite value of A. The quantities 
A and 
B in
Eq. 4.46 describe the indeterminacy of the observables A and B, not merely our uncertainty
about them. Nevertheless, the word “uncertainty” has become so standard in connection
with Eq. 4.46 that we will just have to live with it.

Problems

Problem 4.1 In Section 4.2, suppose that the two states |α0〉 and |α1〉 have a real, positive
inner product 〈α0 |α1 〉 = cos θ . On a diagram like Fig. 4.2, locate the eigenstates |±〉 of
the operator D = |α0〉〈α0| − |α1〉〈α1| .
Problem 4.2 Consider a random variable Z with a given probability distribution. For a
parameter q, define the mean square deviation from q to be D(q) = 〈

(Z − q)2〉. Show that〈

Z2

〉
≤ D(q),

for any choice of q, with equality if q = 〈Z〉. (Hint: Write out the algebraic form of D(q)

and minimize the function.)

Problem 4.3 Suppose |ψ〉 is an eigenstate of both A and B. (This may be the only such
eigenstate of both operators; we are not assuming that A and B commute.) Show that |ψ〉
is also an eigenstate of [A, B] with eigenvalue 0. How does the 
A 
B uncertainty relation
work out for this particular state?

Problem 4.4 For a spin-1/2 particle, consider the generic state

|ψ〉 = eiφ cos θ |z+〉 + e−iφ sin θ |z−〉 . (4.49)

Find 
Sx, 
Sy, and 〈Sz〉, and show that the spin component uncertainty relation in Eq. 4.48
holds.

Problem 4.5 Derive an uncertainty relation that involves the anticommutator of the oper-
ators A and B instead of the commutator. Your derivation will be the same as ours until
about Eq. 4.40, after which it will take a slightly different turn.

Problem 4.6 Find and prove the necessary and sufficient condition for equality in the
Schwartz inequality (Eq. 4.31).
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Problem 4.7 In 1992, Bennett proposed an alternative scheme for quantum key distribution
that uses only two non-orthogonal states. In the “B92” protocol, Alice sends to Bob the
states |0〉 and |+〉 with equal likelihood, and Bob randomly measures them using the X or
Z bases. For some combinations (which ones?) of state and measurement, Bob can deduce
Alice’s state. Rather than announcing his measurements, Bob announces which qubits had
their states determined with certainty.

Complete the description of the protocol, including an analysis of the difficulties Eve
faces in eavesdropping. What percentage of the transmitted qubits are discarded? On which
of our basic information results does B92 depend?

Problem 4.8 Stephen Wiesner has proposed the following idea for quantum money, which
cannot be reliably counterfeited. Each quantum banknote contains a string of N qubits,
which maintain their quantum states unchanged indefinitely. It also has a printed random
N-bit serial number. The bank keeps on file a secret N-bit basis string for each banknote.
When the money is manufactured, the qubit states are set using the BB84 scheme, based
on the basis string and serial number.

The bank tests any banknote presented to it by using the secret basis string to carry out
a series of measurements on the qubits. A genuine note will produce results that exactly
match the serial number. A counterfeiter would like to create fake banknotes that can pass
this test, without knowing the correct basis string. (He must do this by making copies of an
existing note, since the bank has records of which of the notes are in circulation.)

(a) Is a genuine banknote still valid after the bank’s inspection? Explain what assumptions
you make to answer this question.

(b) Consider the kth qubit on the banknote. Given the kth serial number bit printed on the
note, what is the maximum probability that a counterfeiter can determine the bank’s
kth basis bit by a basic measurement on the qubit?

(c) The counterfeiter tries to identify the basis bit as in part (b), then uses this to set the kth
qubit state on a fake banknote with the same serial number. If the fake note is inspected
by the bank, with what probability will the kth qubit pass inspection?

(d) The whole banknote has N = 100 qubits. What is the likelihood that the counterfeiter’s
fake banknote will pass the bank’s test? (Remember, the bank will reject the banknote
if a single error is found.)
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5.1 Unitary evolution

Isolated systems

During a measurement, information is extracted from a quantum system, and in this
process the state changes, either via the projection rule or not. But the state of a quantum
system may also change over time even when the system is not being measured, when
it is informationally isolated. Understanding this time evolution means understanding the
dynamical laws governing quantum systems. To this indispensible task, we now turn.

We have already discussed time evolution in the context of qubit systems in Chapter 2.
Section 2.1 analyzed the effect of successive optical elements on the state of a one-photon
interferometer system. Section 2.3 examined in detail how the state of a two-level atom
evolves, as well as the behavior of a spin-1/2 system in an external magnetic field. Much
of what we will develop here has already been foreshadowed there. (If you have by now
forgotten all about Chapter 2, this would be an excellent time to turn back and browse
through it for a few minutes.)

Our basic principle is this: If a quantum system is informationally isolated, then its
evolution respects the principle of superposition. If the states |ψ〉 and |φ〉 would evolve
over a given interval of time according to

|ψ〉 −→ ∣∣ψ ′〉 ,
|φ〉 −→ ∣∣φ′〉 , (5.1)

then a superposition of the two states would evolve over the same interval by

a |ψ〉 + b |φ〉 −→ a
∣∣ψ ′〉+ b

∣∣φ′〉 . (5.2)

The time evolution of the state is a linear map from vectors in H to vectors in H – in other
words, an operator.

Let t1 and t2 be two times, and suppose the operator U(t2, t1) describes the time evolution
of an informationally isolated system over the interval from t1 to t2. If |ψ(t1)〉 and |ψ(t2)〉
are the quantum states of the system at the two times, then

|ψ(t2)〉 = U(t2, t1) |ψ(t1)〉 . (5.3)
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From the operator U(t2, t1) and the initial state |ψ(t1)〉, we can calculate the final state
|ψ(t2)〉 of the system.1

What are the properties of the time evolution operator U(t2, t1)? Simplifying our notation
slightly, let us suppose the old state |ψ〉 evolves to the new state U |ψ〉. The first thing that
we note is that the new state must be normalized, just like the old state. So if 〈ψ |ψ 〉 = 1,
then

〈ψ |U†U |ψ〉 = 1. (5.4)

The operator U†U must be Hermitian, so it has an orthonormal eigenbasis. If the old state
|ψ〉 is chosen to be any eigenstate of U†U, then its eigenvalue must be 1. It follows that

U†U = 1. (5.5)

In a Hilbert space of finite dimension, this means that the time evolution operator U must be
unitary, and so UU† = 1 also. We will postulate that U is unitary in the infinite-dimensional
case as well (see Problem 3.6).

Unitary time evolution preserves, not just the normalization of the quantum states, but
also the inner products between states. Suppose

∣∣ψ ′〉 = U |ψ〉 and
∣∣φ′〉 = U |φ〉. Then〈

ψ ′ ∣∣φ′ 〉 = 〈ψ |U†U |φ〉 = 〈ψ |φ 〉 . (5.6)

This has an important consequence. The basic distinguishability theorem of Section 4.2
(Eq. 4.20) tells us that the inner product 〈ψ |φ 〉 governs how well the two states may
be distinguished by a measurement. Their distinguishability is not changed by unitary
evolution. In particular, two states for which |〈ψ |φ 〉| > 0 – which are therefore not fully
distinguishable – cannot become more distinguishable as they evolve in time.

Exercise 5.1 Show that, if a set of signal states of a system lies within a d-dimensional
subspace initially, after a period of unitary time evolution the states will still lie within a sub-
space having the same dimension d. Comment on the following claim: The communication
capacity of an informationally isolated system is not increased by its time evolution.

Consider a system that evolves in a unitary way through two successive stages. The first
stage runs from t1 to t2, and the second from t2 to t3. The overall evolution of the system
from t1 to t3 is described by a single unitary operator:

|ψ(t3)〉 = U(t3, t1) |ψ(t1)〉 . (5.7)

But we can also treat this as evolution over the first stage followed by evolution over the
second stage:

|ψ(t3)〉 = U(t3, t2) |ψ(t2)〉 = U(t3, t2)U(t2, t1) |ψ(t1)〉 . (5.8)

Since these two expressions must give the same |ψ(t3)〉 for any initial state |ψ(t1)〉,
U(t3, t1) = U(t3, t2) U(t2, t1). (5.9)

1 The future state of an isolated quantum system is determined by its past state. In this sense, the quantum
dynamical laws are completely deterministic. Indeterminacy and probabilities only arise in the context of
measurement, when the system ceases to be isolated.
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This is the rule for composing the evolution operators for two successive intervals of time.
It has the form

U(whole period) = U(second stage) U(first stage). (5.10)

So the composition is right-to-left, with the rightmost operator representing the earliest
stage of the overall evolution. This obviously generalizes to time evolution consisting of
three, four or more successive stages.

This result might sound familiar from the discussion of the two-beam interferometer in
Section 2.1. With a single photon present, the system is a qubit whose Hilbert space has
basis states |u〉 and | l 〉, representing the photon’s presence in the upper or lower beam. We
imagine that the light moves through the interferometer and successively encounters the
various optical elements, the phase shifters and beamsplitters and so forth, each of which
acts to alter the quantum state in some way.

Each optical element is described by an operator. The matrix representations for these
operators were worked out in Section 2.1. For instance, a phase shifter by φ in the upper
beam is described by Pu(φ), which has the properties

Pu(φ) |u〉 = eiφ |u〉 ,

Pu(φ) | l 〉 = | l 〉 . (5.11)

Thus, the operator can be written Pu(φ) = eiφ |u〉〈u| + | l 〉〈 l | . (Compare the matrix
representation in Eq. 2.12.)

Exercise 5.2 Review the various optical elements described in Section 2.1. Write the
beamsplitter operator Bl and the beam exchange operator X in terms of outer products of
the |u〉 and | l 〉 states.

Exercise 5.3 Now consider an interferometer with at most one photon, as we did in
Section 4.3. How do you suppose a beamsplitter would affect the |0〉 (no photon) state?
Write down an expression for the Bl operator in this larger Hilbert space, and then show
that it is unitary.

An interferometer arrangement with several optical elements in succession can be
described by a single operator, which is the product of the operators for each element.
These elements appear in the product in time-order from right to left, as in Equation 5.10.
(Refer to Eq. 2.16 and the surrounding discussion.)

For a unitary operator, U†U = UU†. This means that all unitary operators are also normal.
In Problem 3.3, we showed that normal operators always have an orthonormal basis of
eigenstates, just like Hermitian operators. If |k〉 is an eigenstate of U with eigenvalue Uk ,
then

1 = 〈k |k 〉 = 〈k|U†U |k〉 = U∗
k Uk 〈k |k 〉 = |Uk|2 . (5.12)

Every eigenvalue of U is a complex number of magnitude 1, which can be conveniently
written Uk = eiαk . Thus we can write

U =
∑

k
eiαk |k〉〈k| . (5.13)
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Uniform dynamics

Physically, the unitary time evolution of a system is determined by the internal properties
of the system and various external parameters. For instance, an atom’s behavior depends
on the internal electrostatic interaction among the electrons and the nucleus, and also on
any externally applied electric and magnetic fields. If the external fields were time-varying,
then the dynamics of the atom would be different at different moments, depending on the
field values. Yet it often happens that the basic dynamical laws governing a quantum system
do not change over time. When this is true, we say that the system experiences uniform
dynamics.

In the case of uniform dynamics, the time evolution operator U(t2, t1) only depends on
the difference of the initial and final times:

U(t2, t1) = U(t2 − t1). (5.14)

The unitary operator describing the evolution of the system over a period of ten seconds is
the same regardless of when that ten-second interval begins. Even though the state of the
system changes over time, the rules describing that change are the same from one moment
to the next.

The time evolution of a system having uniform dynamics can be written U(t). This
represents a whole family of unitary operators, one for each possible duration t. (This is
often called a “one-parameter family” of operators.) Obviously, U(0) = 1. We will also
assume that the evolution of the system is smooth and continuous. This implies that, for a
very short time interval ε, the operator U(ε) is close to 1.

Any two operators U(t) and U(s) in the one-parameter family must commute with one
another, since

U(t)U(s) = U(s)U(t) = U(t + s). (5.15)

Exercise 5.4 If we take Equation 5.15 to hold for all t, both positive and negative, how is
U(−t) related to U(t)?

Now consider the very short time interval ε. Then

U(2ε) = U(ε)2, U(3ε) = U(ε)3, U(4ε) = U(ε)4, etc. (5.16)

These obviously all commute and share a common eigenbasis, the eigenbasis for U(ε). If ε

is chosen small enough, then any time t is very close to a multiple of ε.
We conclude that we can find a common eigenbasis for every member of the one-

parameter family of operators U(t). If |k〉 is one of these eigenstates, then for any time t,

U(t) |k〉 = eiαk(t) |k〉 . (5.17)

The eigenstates of U(t) change over time only by an overall phase factor, which has no
effect on any physical property of the system. Such states are called stationary states of
the system. Every informationally isolated quantum system with uniform dynamics has a
basis of stationary states.

There is some ambiguity in the phase functions αk(t), since we may add any multiple
of 2π and leave eiαk(t) unchanged. However, this ambiguity can be resolved by insisting
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that αk(0) = 0 and that the functions are all continuous.2 With these requirements, it must
be that

αk(t + s) = αk(t)+ αk(s). (5.18)

In other words, the phase functions are linear functions of time. We can write αk(t) = −ωkt
for some ωk . (The negative sign is purely conventional, since ωk itself may be either positive
or negative.) Therefore, for the stationary state |k〉,

U(t) |k〉 = e−iωk t |k〉 . (5.19)

Knowing how U(t) acts on a basis tells us everything about the operator. We see that

U(t) =
∑

k
e−iωk t |k〉〈k| . (5.20)

If the system follows uniform dynamics, then we only need to know two things: a basis
{ |k〉} of stationary states, and a corresponding set of (angular) frequencies ωk . With this,
we can find the evolution operator U(t) for any time interval, and from this calculate the
dynamical evolution for any quantum state.

Exercise 5.5 In Section 2.3 we studied the evolution of a spin-1/2 particle in an external
magnetic field directed along the z-axis. We defined the Larmor frequency to be � = γ B,
where B is the field strength and γ is the gyromagnetic ratio for the particle. The |z±〉
eigenstates were stationary states with frequencies±�/2. Write down the general evolution
operator U(t) for this system, and use it to derive the evolution of an arbitrary spin state
given in Eq. 2.66.

As this exercise reminds us, the superposition of two or more stationary states is not
generally a stationary state. The phase changes in Eq. 5.19 produce relative phase changes
in the superposition states, which do have physical consequences.

It seems paradoxical that we can understand the time evolution of a quantum system
through a knowledge of its stationary states, which apparently do not change at all. It is
also remarkable that these “fixed point” states are numerous enough to form a complete
orthonormal basis. Compare the situation of a classical harmonic oscillator, for which
only one situation – the system at rest at the equilibrium point – is time-independent. The
stationary states are the key to analyzing a quantum system with uniform dynamics.

5.2 The Schrödinger equation

The Hamiltonian operator

Suppose a quantum system evolves in a unitary way, so that at any time t the state of the
system is |ψ(t)〉 = U(t, t0) |ψ(t0)〉.

2 We have already assumed that the operator function U(t) is continuous; here we are just making sure that the
phase functions have no sudden jumps by multiples of 2π .
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How is |ψ(t)〉 changing at a given moment of time? The derivative d
dt |ψ(t)〉 is itself

a vector; and furthermore, it is a vector that depends linearly on |ψ(t)〉 itself. There is
therefore an operator G, possibly time-dependent, such that

d
dt
|ψ(t)〉 = G |ψ(t)〉 . (5.21)

What sort of operator is G? The overall normalization of the state does not change, so

0 = d
dt
〈ψ(t) |ψ(t) 〉 =

( d
dt
〈ψ(t)|

)
|ψ(t)〉 + 〈ψ(t)|

( d
dt
|ψ(t)〉

)
=
(
〈ψ(t)|G†

)
|ψ(t)〉 + 〈ψ(t)|

(
G |ψ(t)〉

)
= 〈ψ(t)|

(
G† + G

)
|ψ(t)〉 . (5.22)

This is zero for any choice of |ψ(t)〉, so we conclude that G† + G = 0. The operator G
must be anti-Hermitian. It is more common to consider the Hamiltonian operator H = i�G,
which is Hermitian. Then

H |ψ(t)〉 = i�
d
dt
|ψ(t)〉 . (5.23)

Equation 5.23 (which we have seen before as Eq. 2.64 in the context of qubit quantum
theory) is called the Schrödinger equation for an informationally isolated quantum system.
The Schrödinger equation is one of the most significant equations in all of physics. On the
other hand, as we have introduced it here, it appears to be nothing but a definition of the
operator H. We need to add something more, and that something is an understanding of the
physical meaning of the Hamiltonian operator.

Exercise 5.6 First, dimensional analysis. What are the units of the constant �? What are
the units of the operator G? What are the units of the operator H?

Suppose now that the system has uniform dynamics. This means that the Hamiltonian
operator H cannot vary with time. If we apply the Schrödinger equation to a stationary state
|k〉, we find that

H
(

e−iωk t |k〉
)
= i�

d
dt

(
e−iωk t |k〉

)
= (i�)(−iωk)e−iωk t |k〉 ,

and so

H |k〉 = �ωk |k〉 . (5.24)

The stationary state |k〉 is an eigenstate of H with eigenvalue �ωk . We interpret this by
recalling the Planck relation between angular frequency and energy: E = �ω (Eq. 2.50).
For a system with uniform dynamics, we come to three highly significant conclusions:

• The Hamiltonian operator in the Schrödinger equation (Eq. 5.23) is the energy operator
of the system;

• The stationary states of the system are its energy eigenstates;
• The frequency ωk of the stationary state is related to the energy eigenvalue Ek by

Ek = �ωk .
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The energy eigenvalue equation is sometimes known as the time-independent Schrödinger
equation:

H |ψ〉 = E |ψ〉 . (5.25)

The energy eigenvalue problem has a unique importance, because the stationary states
and their frequencies completely determine the dynamical evolution of the system. As
we shall see, a great deal of mathematical effort and ingenuity has been invested in
discovering exact or approximate solutions to Eq. 5.25 for a wide variety of physical
systems.

Even when the dynamics of the system is not uniform, we can still interpret the Hamilto-
nian H as the energy operator for the system. The system’s energy may depend on external
fields and so forth that vary over time, so that H is time-dependent. External forces, in other
words, may do work on the system, but the dynamics of the system may still be unitary. In
such a time-dependent situation, the momentary energy eigenstates of H are not “stationary
states” of the unitary evolution. In non-uniform dynamics there may not even be any states
that remain physically unchanged for all times.

Exercise 5.7 Write down the adjoint of the Schrödinger equation. Use the Schrödinger
equation and its adjoint to verify that the inner product 〈ψ |φ 〉 remains constant as both
|ψ〉 and |φ〉 evolve over time.

A remark is in order about terminology and notation. Why do we call the energy operator
the “Hamiltonian” and denote it by H? This seems unnecessarily confusing (particularly in
light of our use of the letter “H” for other important things, like a Hilbert space H and the
entropy H). The reason is historical. The Hamiltonian of classical mechanics is, roughly
speaking, the energy of a system written in terms of position and momentum variables.
For systems with continuous degrees of freedom (such as those described in Chapter 10),
the classical Hamiltonian function tells us the Hamiltonian operator for the corresponding
quantum system. This is no small matter, and such an important connection is enshrined in
our nomenclature.

Observables in time

The Schrödinger equation tells us how a quantum state changes over time. This in turn will
lead to changes in the observable properties of the system.

Suppose A is an observable, and let us assume for now that the operator A does not itself
depend on time. The expectation value 〈A〉 = 〈ψ |A |ψ〉 will change as the quantum state
|ψ〉 evolves.

d
dt
〈A〉 = d

dt
〈ψ |A |ψ〉

=
( d

dt
〈ψ |

)
A |ψ〉 + 〈ψ |A

( d
dt
|ψ〉

)
= 1
−i�

〈ψ |HA |ψ〉 + 1
i�
〈ψ |AH |ψ〉 . (5.26)
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That is, d
dt
〈A〉 = 1

i�
〈ψ | [A, H] |ψ〉 , (5.27)

for an observable A that is not an explicit function of time.
What if A itself does depend on time? We could, for example, imagine a Stern–Gerlach

apparatus that slowly rotates about the axis along which the particle beam travels. At
different times, such a device would measure different components of the spin of a particle
that passed through it. The resulting observable would require a modification of Eq. 5.27.

Exercise 5.8 Suppose the observable A is itself time-dependent. Show that Eq. 5.27
becomes

d
dt
〈A〉 = 1

i�
〈ψ | [A, H] |ψ〉 + 〈ψ |

(
dA

dt

)
|ψ〉 . (5.28)

We will assume, unless otherwise stated, that the observables we are considering are not
time-dependent. The simpler form in Eq. 5.27 will be the result we use.

According to Eq. 5.27, the rate of change of an observable A (or rather, of its expectation
value) is governed by the commutator [A, H]. One immediate consequence of this concerns
operators that commute with the Hamiltonian: [A, H] = 0. If this is true, then the expectation
〈A〉 has zero time derivative; and if the Hamiltonian is time-independent, the expectation
〈A〉 will always remain constant over time. In a system with uniform dynamics, observable
quantities that commute with the Hamiltonian are conserved.

The most obvious example is the Hamiltonian itself, in the case of uniform dynamics.
Since [H, H] = 0, the energy of the system is conserved.

Exercise 5.9 Since the Hamiltonian operator commutes with itself whether or not the
dynamics is uniform, why do we add this “uniform dynamics” proviso to our statement
about energy conservation?

If [A, H] = 0, we know that A and H are compatible observables. This means that there is
a basis of eigenvectors of both A and H. The states of definite A-value (A-eigenstates) can
also be taken to be stationary states (energy eigenstates). This is another way of looking at
the conservation of A.

The commutator [A, B] is turning out to be of considerable significance. It is a key quantity
in describing the complementarity of two observables – whether or not they are compatible,
and how their indeterminacies are related. The commutator with the Hamiltonian operator
H governs how an observable property of a system varies over time. In the next section, we
will join these two ideas together and arrive at an important physical principle.

5.3 Quantum clock-making

It is a curious thing that time is not itself an observable quantity in quantum theory.
Nevertheless, we do make measurements of time. We do this by building clocks, which
are systems whose dynamics causes their state to change in a predictable way. Making a
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measurement on such a system is “reading the dial” on the clock, and from the result we
can infer an approximate present value of the parameter t.

Let us consider the situation in general. Denote by C the clock variable from which we
must determine the time t. This might, for example, be the position of a moving hand on the
face of an analog clock. Now imagine that the clock variable C is subject to an uncertainty

C in its actual value.3 Such uncertainty would lead to an uncertainty 
t in the inferred
time.

Exercise 5.10 Suppose our clock variable is the angular position θ of a hand on an analog
clock, and suppose this is uncertain by 
θ = 6◦ (1/60 of a full circle). What would be the
uncertainty 
t in the measured time if the hand is the second hand of the clock? If it is the
minute hand? How about the hour hand?

From this exercise, we can see that the relation of 
C and 
t depends on the rate of change
of C over time. In fact,


C =
∣∣∣∣dC

dt

∣∣∣∣
t. (5.29)

Although this resembles a relation between changes in C and t, we should remind ourselves
that it is actually a relation between their uncertainties. This accounts for the absolute value
function, since it does not matter whether C is increasing or decreasing. Strictly speaking,
Eq. 5.29 holds only if the uncertainty 
C is sufficiently small, but that will be good enough
for our purposes.

Now consider the quantum mechanics of the situation. The clock is a quantum system
whose evolution is given by a Hamiltonian H, which we assume is time-independent. The
clock variable C is an observable on the quantum system represented by an operator C.
We are interested in how the quantum uncertainty 
C in the clock observable affects the
precision of our time measurement. The quantum version of Eq. 5.29 is


C =
∣∣∣∣d 〈C〉dt

∣∣∣∣
t, (5.30)

where 〈C〉 is the expectation value of the clock observable.
Both sides of Eq. 5.30 are mathematically related to the commutator of C with the

Hamiltonian H. From the general uncertainty relation in Eq. 4.46, remembering that H is
the energy observable, we find


C 
E ≥ 1
2

∣∣∣〈ψ | [C, H] |ψ〉
∣∣∣ . (5.31)

Similarly, the rate of change of 〈C〉 is given by Eq. 5.27∣∣∣∣d 〈C〉dt

∣∣∣∣ = 1
�

∣∣∣〈ψ | [C, H] |ψ〉
∣∣∣ . (5.32)

Combining these equations with Eq. 5.30, we discover that


E 
t ≥ �

2
. (5.33)

3 For the moment, we do not inquire about the reason for this uncertainty – poor eyesight, perhaps!
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This is called the time–energy uncertainty relation. Notice that the clock observable C
is nowhere to be seen. Equation 5.33 is independent of the observable used for time
measurement.

A clock in an energy eigenstate would be useless, since its observable properties would
not change over time. A clock in a stationary state is a stopped clock. Thus, a working clock
must have a “spread” in its energy values. Equation 5.33 gives us a quantitative trade-off
between the system’s energy indeterminacy and its possible resolution as a time indicator.

We have derived Eq. 5.33 for a “clock,” but any physical system with a non-stationary
state can function as a clock in our sense. The uncertainty 
t measures how long it takes
for the system to evolve to a new state that is sufficiently distinguishable to indicate a new
“clock time.” (Problem 5.4 works out a simple example; Problem 5.5, a more complicated
one.) The time–energy uncertainty relation is therefore a general, fundamental fact about
quantum systems.

To get some idea of the scope of Eq. 5.33, consider an unstable particle such as a
radioactive nucleus. The particle, which we can take to be at rest, decays into two or more
other particles. Though the exact moment of decay cannot be predicted, the particle has a
mean lifetime of τ . The decay process may be used as a sort of primitive clock, but because
of the randomness of the decay, this clock has a time resolution of about 
t ≈ τ . This
means that the energy of the system must satisfy 
E � �/2τ . But the initial energy of the
system is just E = mc2, where m is the particle’s rest mass and c is the speed of light. This
means that the mass of an unstable particle is not a perfectly determinate quantity, but has
an inescapable quantum uncertainty 
m related to its lifetime τ .

Exercise 5.11 The 
+ is a very short-lived elementary particle with a mean lifetime of
6× 10−24 seconds. Find the uncertainty of the 
+ mass in MeV/c2, and compare it to the

+ mass of 1230 MeV/c2. (“MeV” is a unit of energy equal to 1.60× 10−13 J. The 
+ is
closely related to the proton, whose mass is about 938 MeV/c2.)

5.4 Operators and symmetries

Operators in the exponent

We now have two different ways of looking at the dynamical evolution of an informationally
isolated system. Over an interval of time from t1 to t2 we can describe the evolution by a
unitary operator:

|ψ(t2)〉 = U(t2, t1) |ψ(t1)〉 . (Re 5.3)

At any given moment t, we can describe the instantaneous change in the state by the
Schrödinger equation:

H |ψ(t)〉 = i�
d
dt
|ψ(t)〉 . (Re 5.23)
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Let us take a closer look at the connection between these two descriptions. For convenience,
we will assume uniform dynamics. The evolution operators can be written U(t) and the
Hamiltonian H is time-independent.

The first thing to note is that the Schrödinger equation actually applies to the operator
function U(t). The Schrödinger equation as we have seen it can be written

H U(t) |ψ(0)〉 = i�
d
dt

U(t) |ψ(0)〉 . (5.34)

Since the vector |ψ(0)〉 can be anything (but includes no time-dependence), we find an
operator version of the Schrödinger equation:

H U(t) = i�
d
dt

U(t). (5.35)

This is of the general form
d
dt

(something) = constant× (something). (5.36)

If the quantities involved were scalars, then we would know that the solution would be an
exponential:

something(t) = something(0) exp(constant × t). (5.37)

Recalling that U(0) = 1, we are therefore tempted to write down the solution to Eq. 5.35
as follows:

U(t) = exp
(
− i

�
Ht
)

. (5.38)

But this looks rather weird. How can we exponentiate an operator?

There are some functions of operators that are easy to define. We can multiply operators
by scalars and add them together. We can find any integer power An of an operator A. Using
only this set of “natural” operations, we define the exponential function eA by the power
series

exp(A) = eA = 1+ A+ A2

2! +
A3

3! + · · · (5.39)

In fact, for any function f (x) given by a power series with coefficients an, we can define
the operator function by a similar power series:

f (A) = a01+ a1A+ a2A2 + · · · (5.40)

There are issues of convergence for these series, just as there are for power series in the
context of numerical variables. It is easiest to address these by computing the power series
using a matrix representation of the operator. Assuming that the operator is normal, it must
have an eigenbasis. In this basis, the representation of A is diagonal:

(A) =
⎛⎜⎝ A1

. . .
Ad

⎞⎟⎠ . (5.41)
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When we work out the power series for f (A) in this representation, we find that

(f (A)) =
⎛⎜⎝ f (A1)

. . .
f (Ad)

⎞⎟⎠ . (5.42)

Exercise 5.12 Verify Eq. 5.42.

Exercise 5.13 If f is given by a power series, show that [A, f (A)] = 0. Must you assume
that A is normal?

We can see that the power series definition of f (A) will converge provided that the entire
spectrum of A-eigenvalues is within the region of convergence of the power series for f
acting on a numerical variable. (The power series for the exponential function converges
everywhere.)

So it does after all make sense to write

uasexponentialhamiltonianU(t) = exp
(
− i

�
Ht
)

. (Re 5.38)

Not only does this make sense, it is even the right answer! Let { |k〉} be a basis of energy
eigenstates. Then

H =
∑

k
Ek |k〉〈k| , (5.43)

which as a matrix is diagonal with diagonal entries Ek . The exponential solution in Eq. 5.38
tells us that

U(t) =
∑

k
e−iEkt/� |k〉〈k| . (5.44)

This is a correct expression for U(t), as a comparison with Eq. 5.20 quickly shows. We
can therefore go from the Hamiltonian operator H to an expression for the time evolution
operator U(t) for the system.

The relation between unitary and Hermitian operators is quite general.

Exercise 5.14 If the operator B is Hermitian, show that U = eiB is unitary.

Exercise 5.15 If U is unitary, show that there is a Hermitian operator B so that U = eiB.

(Equation 5.20 is helpful for both of these exercises.)
Before we go any further, we had better issue a warning. The operator exponential

eA does not have all of the familiar properties of the complex exponential function. For
example, if two operators A and B do not commute with each other, then eAeB �= eA+B. On
the other hand:

Exercise 5.16 If [A, B] = 0, show that eAeB = eA+B.

We should be careful not to apply too quickly facts from commutative arithmetic to the
analysis of non-commuting operators.
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Let us make one final point about Eq. 5.38. If we consider a small time interval ε, the
power series for U(t) is

U(ε) = 1− i
�

Hε +O
(
ε2
)

. (5.45)

When ε is small enough, we may be able to ignore the higher-order terms represented
by O

(
ε2). This is yet another way of looking at the connection between U(t) and the

Hamiltonian H.

Rotating a spin

The time evolution of our system is described by a smooth and continuous family of unitary
operators U(t), all of which are “generated” by the Hamiltonian H. But time evolution is
only one kind of continuous transformation of the system. We will now apply the ideas we
have developed to another example.

The example we have in mind is the rotation of a system, specifically a spin-1/2 particle.
For every state |ψ〉 of the spin system, there is another state

∣∣ψ ′〉 describing a situation
in which the system has been rotated about the z-axis. The principle of superposition is
respected by this rotation, as is the normalization of the states. Therefore, the rotation is
described by an operator, and this operator must be unitary.

Exercise 5.17 Review the reasoning leading up to Eq. 5.5, and fill in the argument that the
rotation operator is unitary.

Let Rz(θ) be the operator describing the rotation of the spin-1/2 system through an angle
θ about the z-axis. (We consider the positive direction of θ to be a counter-clockwise
rotation, when viewed from a point along the positive z-axis.) The rotation operators Rz(θ)

form a smooth and continuous one-parameter family of unitary operators. Indeed, because
we can apply smaller rotations in succession to obtain rotations through larger angles, the
family should satisfy a “uniformity” requirement:

Rz(α)Rz(β) = Rz(α + β). (5.46)

A close mathematical parallel is emerging between rotation and time evolution. But what
plays the role of the Hamiltonian operator for these transformations? What is the “generator”
of rotations?

If we rotate the system about the z-axis, then the z-component of the spin should
not be affected. An eigenstate of Sz should not undergo any physical change. The basis
states |z+〉 and |z−〉 are therefore the “stationary” states of the Rz(θ) family. They change
only by overall phase factors, which by Eq. 5.46 must be linear functions of θ . (Compare
the derivation of Eq. 5.19 for details.) We write

Rz(θ) |z+〉 = ei�+θ |z+〉 ,

Rz(θ) |z−〉 = ei�−θ |z−〉 . (5.47)
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We do not yet know the constant scalars �±. We can begin to determine them, however,
by noting that a rotation by π/2 will transform the |x+〉 state to a multiple of |y+〉:

Rz(θ) |x+〉 = 1√
2

(
ei�+π/2 |z+〉 + ei�−π/2 |z−〉

)
. (5.48)

For this to be a multiple of |y+〉 = 1√
2
( |z+〉 + i |z−〉), the constants �± must satisfy

ei�−π/2 = ei(�++1)π/2. (5.49)

We have some freedom of choice here, corresponding to an overall choice of phase for the
operator Rz(θ). The simplest choice is the “symmetric” one, in which �+ = −�−. Then
�± = ∓1/2, and so

Rz(θ) = e−iθ/2 |z+〉〈z+| + eiθ/2 |z−〉〈z−| . (5.50)

Exercise 5.18 Show that Rz(π) = −iZ.

Exercise 5.19 Show that, when a spin is rotated by one full turn around the z-axis (θ = 2π ),
then

Rz(2π) = e−i2πSz/� = −1. (5.51)

In other words, a spin state |ψ〉, rotated by 2π , will yield the spin state − |ψ〉.

This may seem like an artifact of our choice of phase for the rotation operators Rz(θ), but
Problem 5.7 tells us that it is more or less inescapable. The overall phase of a state vector
has no observational meaning in itself, so the negative sign in Eq. 5.51 seems to be of
only mathematical interest. Nevertheless, it turns out to have some remarkable physical
implications, which are discussed in Section 6.3.

What we have done so far corresponds to our “transformation over an interval of time”
picture of time evolution. Now let us see if we can develop something analogous to the
Schrödinger equation, the “instantaneous rate of change” picture. Let |ψ(θ)〉 be the family
of rotated versions of the state |ψ(0)〉:

|ψ(θ)〉 = Rz(θ) |ψ(0)〉 . (5.52)

We find that
d

dθ
|ψ(θ)〉 = d

dθ
Rz(θ) |ψ(0)〉

=
(
− i

2
e−iθ/2 |z+〉〈z+| + i

2
eiθ/2 |z−〉〈z−|

)
|ψ(0)〉 . (5.53)

If we multiply both sides by i� to make it look more like the Schrödinger equation, we
obtain

i�
d

dθ
|ψ(θ)〉 =

(
�

2
|z+〉〈z+| − �

2
|z−〉〈z−|

)
×
(

e−iθ/2 |z+〉〈z+| + eiθ/2 |z−〉〈z−|
)
|ψ(0)〉 . (5.54)
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We recognize both of the operators in parentheses. Our “Schrödinger equation for rotation”
becomes

i�
d

dθ
|ψ(θ)〉 = Sz |ψ(θ)〉 . (5.55)

The spin component operator Sz generates rotations about the z-axis exactly as the
Hamiltonian H generates time evolution. We can also write

Rz(θ) = e−iSzθ/�. (5.56)

Note that, if we rotate the system through a tiny angle ε, the rotation operator is

Rz(ε) = 1− i
�

Szε +O
(
ε2
)

. (5.57)

For very small angles, we can ignore the O
(
ε2) terms.

There is nothing special about the z-axis. This link between the spin component and
rotation operators holds for any spatial axis. Furthermore, the link holds for systems
of spin-1 and higher spins as well. The Schrödinger equation tells us that energy (the
Hamiltonian operator) is the generator of time evolution. Now we also learn that angular
momentum is the generator of rotations. (We will return to this idea in Section 12.3.)

Symmetries

So far, operators have played a double role. Hermitian operators describe observable
quantities assigned to a system; unitary operators describe transformations of the state of
the system, including the transformation due to time evolution. As we saw in Exercises 5.14
and 5.15, these two types of operator are related by the exponential function:

unitary = ei Hermitian. (5.58)

We have already seen this in the case of time evolution and rotation, where the unitary state
transformations were given by the Hamiltonian H and the spin component operator Sz.

A symmetry (or dynamical symmetry) is a unitary transformation on a system that does
not affect the system’s dynamics. That is, a unitary V is a symmetry provided it commutes
with the time evolution of the system. For all t,

[V, U(t)] = 0. (5.59)

Let us explore what this means. We consider two possible initial states, |ψ(0)〉 and its
transformed cousin V |ψ(0)〉. The symmetry condition tells us that

U(t)
(
V |ψ(0)〉

)
= V

(
U(t) |ψ(0)〉

)
. (5.60)

In words, “the future evolution of the transformed state is the same as the transformed
future state.” In other words, the dynamical evolution of the system is “transparent” to the
symmetry operator V, evolving |ψ(0)〉 and V |ψ(0)〉 in exactly the same way.

A dynamical symmetry V must also commute with the Hamiltonian:

[V, H] = 0. (5.61)

In fact, Eq. 5.59 and 5.61 are equivalent.
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Exercise 5.20 (a) Obtain Eq. 5.61 from Eq. 5.59 by taking a time derivative. (b) Obtain
Eq. 5.59 from Eq. 5.61 by examining the power series for the operator exponential.

If V is a dynamical symmetry, then we can always find a basis of stationary states (energy
eigenstates) that are also eigenstates of V. These are “symmetric” states, states that remain
physically unchanged by the transformation V.

Symmetry operators V are sometimes also observables, but the conditions under which
this can happen are very special.

Exercise 5.21 If V is both unitary and Hermitian, show that the only possible eigenvalues
for V are ±1 and that V2 = 1. (For extra fun, show that any unitary V for which V2 = 1
must be Hermitian.)

Most of the time, the connection between symmetries and observables is more indirect.
Suppose that A is a Hermitian operator for which [A, H] = 0. Then both of the following

are true:

• A is a conserved quantity;
• V(s) = eisA is a symmetry for any real value of s.

Therefore, a conserved quantity generates a family of dynamical symmetries of the system.
For an example of this, we need look no further than the rotation of a spin system. The

z-component of spin angular momentum will be conserved provided [Sz, H] = 0. In this
case, the rotation operator

Rz(θ) = e−iSzθ/�, (Re 5.56)

is a symmetry of the system. The system is rotationally invariant about the z-axis.
The converse is also true. Suppose we have a smooth and continuous one-parameter

family V(s) of unitary operators for which

V(r) V(s) = V(r + s). (5.62)

Then we can always write V(s) = eisA for some Hermitian A. For a very small value ε of
the parameter, we have that

V(ε) = 1+ iεA+O
(
ε2
)

. (5.63)

Now suppose that all of the transformations V(s) in the family are symmetries, so that
[V(s), H] = 0. For the very small parameter ε, ignoring terms of order O

(
ε2),

0 = [V(ε), H] = [1+ iεA, H] = iε [A, H]. (5.64)

It follows that [A, H] = 0. Therefore, the observable represented by A is conserved in the
system.

The connection between symmetries and conserved quantities is now apparent. Every
conserved quantity generates a family of symmetry transformations on the system. Every
smooth and continuous family of symmetries satisfying Eq. 5.62 is generated by a conserved
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quantity. Whenever an observable satisfies [A, H] = 0, there is a basis of energy eigenstates
that are also A-eigenstates. These states are also symmetric under V(s) = eisA, in that the
transformation yields no observable change in the state. All of these ideas will be immensely
useful in the chapters ahead.

Exercise 5.22 It is certainly not the case that if a unitary operator V satisfies [V, H] = 0,
and if we can write V = eiB for some Hermitian B, then B also commutes with H. To see
why, show that

ei 2πX = 1, (5.65)

for the Pauli operator X on Q. Although 1 is a unitary operator that certainly commutes
with H, 2πX does not necessarily do so.

Problems

Problem 5.1 In Equation 5.22 we make an implicit assumption that the “product rule” for
derivatives applies to the inner product of two Hilbert space vectors. Prove it. Let |ψ(t)〉
and |φ(t)〉 be a pair of vectors that depend smoothly on the parameter t. (Do not assume
that this is unitary time evolution!) By writing each vector in terms of a basis { |k〉} that
does not depend on t, show that the product rule applies to

d
dt
〈ψ |φ 〉.

Problem 5.2 The commutation relations for the spin components of a spin-1/2 particle are

[Sx, Sy] = i�Sz, [Sy, Sz] = i�Sx, [Sz, Sx] = i�Sy.

The Hamiltonian for the spin in an external magnetic field B in the z-direction is H = −γ BSz.
Find a set of three coupled differential equations that relate 〈Sx〉,

〈
Sy
〉
, and 〈Sz〉 as functions

of t.

Problem 5.3 We have described time evolution in the Schrödinger picture, in which a
state |ψ(t)〉 evolves according to the unitary operator U(t) but observables A are typically
time-independent. An equally meaningful view is the Heisenberg picture, which redefines
states and operators by∣∣∣ψ̂〉

= U(t)† |ψ(t)〉 and Â(t) = U(t)†A U(t). (5.66)

(Assume uniform dynamics. What is Ĥ?)

(a) Show that
∣∣∣ψ̂〉

is independent of time.
(b) The change from one picture to the other preserves the mathematical relations among

operators. Sums and scalar multiples are clearly unaffected. You prove that AB = C if
and only if ÂB̂ = Ĉ.

(c) Show that observable properties – i.e. the expectations of all observables at all times –
are the same in the two pictures.
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(d) Since all of the dynamics now resides in the observables, derive a “Schrödinger
equation” governing Â(t).

(e) What does it mean for Â(t1) and Â(t2) not to commute with each other? Explain this in
physical (rather than mathematical) terms.

(f) Show that

[Â(t + δ), Â(t)] = δ

i�
[Â(t)2, Ĥ] +O

(
δ2
)

. (5.67)

Problem 5.4 Consider a qubit used as a clock. The Hamiltonian for the system is H =
�� |1〉〈1| , where � is some constant frequency.

(a) What are the energy eigenstates and their energies?
(b) Write down the time evolution operator U(t) for this system.
(c) We prepare the clock in an initial state |ψ(0)〉 = 1√

2
( |0〉 + |1〉). What is the state

|ψ(t)〉 at a later time?
(d) What is 
E for this system?
(e) Let 
t denote the time it takes for the system to evolve from |ψ(0)〉 to some other

distinguishable state. Calculate 
E 
t and compare your result to the time–energy
uncertainty relation in Eq. 5.33.

Problem 5.5 An atom has basis states |0〉 , |1〉 , . . . , |d − 1〉 and a Hamiltonian operator
such that

H |n〉 = nε |n〉 ,

where ε is a constant with units of energy. Let the initial state of the atom be

|ψ(0)〉 = 1√
d

∑
n
|n〉 .

(a) Calculate 〈E〉 and 
E for this state.
(b) Find an explicit expression for |ψ(t)〉.
(c) Let 
t be the smallest length of time for which 〈ψ(
t) |ψ(0) 〉 = 0. That is, 
t is

the time it takes for the initial state to evolve into something distinguishable from the
initial state. Find 
t.

(d) Under this definition of 
t, calculate 
E 
t and compare it to the time–energy
uncertainty relation in Eq. 5.33.

Problem 5.6 The operator describing a rotation about the x-axis will be Rx(θ)=
exp(−iSxθ/�). Starting with

Sx = �

2
( |z+〉〈z−| + |z−〉〈z+| ),

calculate S2
x , S3

x , and so on, until you figure out the general pattern for Sn
x . Then use this to

evaluate the power series and find Rx(θ). Note: You may need to recall that

cos θ = 1− θ2

2! +
θ4

4! − · · · sin θ = θ − θ3

3! +
θ5

5! − · · ·
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Problem 5.7 In Exercise 5.19, an unexpected negative sign arose in a rotation by 2π about
the z-axis. But perhaps this was merely due to some unwise choice on our part. The purpose
of this problem is to suggest that, on the contrary, negative signs inevitably arise in rotation
of spin-1/2 systems.

(a) Suppose the operator R describes a rotation by π/2 about the y-axis. We might hope
that such an operator would change the spin states like so:

R |z+〉= |x+〉 , R |x+〉= |z−〉 ,
R |z−〉= |x−〉 , R |x−〉= |z+〉 , (5.68)

with no negative signs. Given the relationship between |x±〉 and |z±〉 (Eq. 3.14), show
that no linear operator R could act in this way.

(b) Suppose instead that the operator R acts by

R |z+〉= |x+〉 , R |x+〉=α |z−〉 ,
R |z−〉=β |x−〉 , R |x−〉= γ |z+〉 , (5.68)

with various phase factors α, β, and γ . (We have chosen the overall phase of R to
eliminate any phase factor in the first rotation.) Find all of the phase factors and show
that R4 |z+〉 = − |z+〉.

Problem 5.8 For operators A and B, we saw that eAeB �= eA+B unless C = [A, B] = 0. Now
suppose merely that the commutator C commutes with both A and B, though it may not be
zero. Prove that

eAeB = eA+B eC/2. (5.68)

You will need to examine the power series expansions for each side. Equation 5.68 is some-
times called the Baker–Campbell–Hausdorff identity (although this name is also applied to
a more general expression of which this is a special case).
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6.1 Composite systems

In this chapter we will discuss the quantum theory of composite systems, systems composed
of two or more distinct subsystems. When our theory is extended to these, we encounter
the remarkable phenomenon of quantum entanglement. As we shall see, the statistical
correlations between entangled quantum systems may be very different from the correlations
that are possible between separated classical systems.

Suppose the composite quantum system AB is composed of two distinct subsystems A
and B. There are certainly situations in which the subsystems A and B can individually be
assigned definite quantum state vectors |ψ (A)〉 and |φ (B)〉. This would occur, for instance,
if A and B were prepared separately and independently. In this situation, we describe the
joint state of the composite system simply by enumerating the states of the subsystems, like
so: |ψ (A), φ (B)〉.

There are many different measurement procedures that we can perform on the composite
system AB. Among these are separate basic measurements on the individual subsystems.
We know how to calculate probabilities for the outcomes of such measurements. If |a(A)〉
and |b(B)〉 are basis vectors associated with the outcomes a and b of measurements on
A and B respectively, then the probabilities are

P(A)(a) = ∣∣〈a(A)
∣∣ψ (A)

〉∣∣2 ,

P(B)(b) = ∣∣〈b(B)
∣∣φ (B)

〉∣∣2 , (6.1)

(see Eq. 3.12). If the systems have been prepared completely independently, we expect
that there would be no correlation between measurement results on them. Therefore, the
probability that both outcome a and outcome b will occur is

P(AB)(a, b) = P(A)(a) P(B)(b). (6.2)

How can we express this as a quantum mechanical rule? The state vectors |a(A)〉 and |b(B)〉
for the subsystems yield the joint state |a(A), b(B)〉. Our quantum probability rule (Eq. 3.12)
says that

P(AB)(a, b) = ∣∣〈a(A), b(B)
∣∣ψ (A), φ (B)

〉∣∣2 . (6.3)

We can reconcile Eq. 6.2 and 6.3 by requiring that the inner product of the joint states is
simply 〈

a(A), b(B)
∣∣ψ (A), φ (B)

〉 = 〈
a(A)

∣∣ψ (A)
〉 〈

b(B)
∣∣φ (B)

〉
. (6.4)
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Exercise 6.1 Show that Eq. 6.2 follows from Eq. 6.3 and 6.4.

The principle of superposition tells us that a linear combination of state vectors is also
an allowable state vector. Thus, there must be composite system states of the form∣∣� (AB)

〉 = α1
∣∣ψ (A)

1 , φ (B)
1
〉+ α2

∣∣ψ (A)
2 , φ (B)

2
〉
, (6.5)

and so on. As we will see, such state vectors may not be of the form |ψ (A), φ (B)〉 for any
subsystem states |ψ (A)〉 and |φ(B)〉. They do nevertheless represent possible quantum states –
actual physical situations – for the composite system AB.

With this discussion as background, we can now give a more formal account of the states
of composite quantum systems. The subsystems A and B are described by Hilbert spaces
H(A) and H(B). The Hilbert space for the composite system is H(AB), which is constructed
from H(A) and H(B). We write

H(AB) = H(A) ⊗H(B). (6.6)

This is the tensor product of the subsystem Hilbert spaces, defined by the following
properties:

• For any |a〉 in H(A) and |b〉 in H(B), the space H(AB) contains the product vector |a, b〉 =
|a〉 ⊗ |b〉.1

• Linear combinations distribute over the product operation ⊗. For example,

|a〉 ⊗
(

c1 |b1〉 + c2 |b2〉
)
= c1

(
|a〉 ⊗ |b1〉

)
+ c2

(
|a〉 ⊗ |b2〉

)
. (6.7)

(A similar property holds for linear combinations in the first vector.)
• The inner product between two product vectors is the product of the inner products of

the constituent vectors. This sounds complicated in words, but is simple in symbols:

〈a1, b1 |a2, b2 〉 = 〈a1 |a2 〉 〈b1 |b2 〉 . (6.8)

The inner products on the right-hand side, of course, are those in H(A) and H(B). We will
often write 〈a, b| = 〈a| ⊗ 〈b| to denote the adjoint of a product vector.

• SinceH(AB) must be a vector space, it contains arbitrary superpositions of product vectors.
Our final defining property for the tensor product space is that H(AB) contains only these
vectors, i.e. that any |� (AB)〉 in H(AB) is either a product vector or a linear combination of
product vectors.

To get some facility with the idea of a tensor product space, you should work out the
following exercises:

Exercise 6.2 Is ( η |a〉 )⊗ |b〉 the same vector as |a〉 ⊗ ( η |b〉 ), for a scalar η? Explain.

1 Note that we use the same symbol ⊗ for the combination of two vectors that we use for the tensor product
of two Hilbert spaces. We will use it again for the tensor product of two operators. Luckily, this never leads
to confusion, just as we are never bothered by using the same symbol + to represent the addition of scalars,
vectors, operators, etc. Context always tells us what sort of operation we mean.

Notice also that we sometimes omit the part of the label that indicates to which system a state, operator, or
probability distribution refers. We will simplify our notation in this way when our meaning is unmistakable.
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Exercise 6.3 If |a1〉 is orthogonal to |a2〉 inH(A), show that |a1, b1〉 is orthogonal to |a2, b2〉
in H(AB). Does this still hold if |b1〉 = |b2〉?
Exercise 6.4 Suppose { |n〉} is a basis for H(A) and { |k〉} is a basis for H(B). Consider the set
{ |n, k〉} that includes all products |n, k〉 = |n〉 ⊗ |k〉 of basis vectors. Show that this set of
vectors is a basis for H(AB). To do this, you must show (1) that the set is orthonormal, and
(2) that any vector in H(AB) can be written as a linear combination of members of the set.
The basis set formed in this way is called a product basis for H(AB).

Exercise 6.5 Suppose dimH(A) = d(A) and dimH(B) = d(B). Show that dimH(AB) = d(A) d(B).

Exercise 6.6 You might be tempted to think that the Hilbert space H(A) for the subsystem A
is a subspace of the composite system Hilbert space H(AB). Explain, as clearly as possible,
why you must resist this temptation!

What are the operators onH(AB)? Given operators F onH(A) and G onH(B), we can naturally
define the product operator F⊗ G on H(AB) by

(F⊗ G) |ψ , φ〉 =
(
F |ψ〉

)
⊗
(
G |φ〉

)
, (6.9)

for any product state2 |ψ , φ〉 = |ψ (A)〉⊗ |φ (B)〉. Linear combinations of operators distribute
over the ⊗-product for operators.

Exercise 6.7 Given |a〉 , |c〉 in H(A) and |b〉 , |d〉 in H(B), show that

|a, b〉〈c, d| = |a〉〈c| ⊗ |b〉〈d| . (6.10)

Exercise 6.8 Show that any operator D onH(AB) can be written as a sum of product operators.
To do this, first choose a product basis { |n, k〉} for H(AB) and write D as a sum of outer
products, as in Eq. 3.41.

When particular clarity is needed, we may denote the operator F on H(A) by F(A). There is
a natural extension of F to an operator on H(AB) that acts according to

|ψ , φ〉 −→
(
F |ψ〉

)
⊗ |φ〉 . (6.11)

This is just the operator F ⊗ 1. For brevity, and when our meaning is unmistakeable, we
will sometimes denote this AB operator by the same name F(A).

Exercise 6.9 Show that [F(A), G(B)] = 0 for any operators for distinct subsystems A and B.
(To make sense of this equation, of course, you will have to read F(A) and G(B) as operators
on the tensor product space H(AB).)

The states of the composite system AB are normalized vectors in H(AB). Some of these
are⊗-products of normalized state vectors for A and B individually. We call these product
states. However, some quantum states of AB are not product states, as we now show.

2 Since every vector in H(AB) is a superposition of product vectors, it is sufficient to define how F ⊗ G acts on
product vectors – everything else follows by linearity.
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We can write any joint state |� (AB)〉 using a product basis, like so:

∣∣� (AB)
〉 =∑

n,k
αnk |n〉 ⊗ |k〉 =

∑
n
|n〉 ⊗

(∑
k

αnk |k〉
)

. (6.12)

Thus, |� (AB)〉 can always be written∣∣� (AB)
〉 =∑

n
|n〉 ⊗ |φn〉 , (6.13)

where the |φn〉 are vectors in H(B) that need not be normalized. For a product state, these
vectors have a special form. Let |� (AB)〉 = |ψ〉 ⊗ |φ〉, and expand the A-state using the
{ |n〉} basis: ∣∣� (AB)

〉 =∑
n
|n〉 ⊗

(
αn |φ〉

)
. (6.14)

This has the same form as Eq. 6.13 with |φn〉 = αn |φ〉. Each of the B-vectors in this
expansion is a multiple of the same B-state |φ〉.
Exercise 6.10 Show the converse to this. That is, show that, if |φn〉 = αn |φ〉 for all n in
Eq. 6.13, then |�(AB)〉 must be a product state.

This gives us a simple criterion for identifying which joint states are product states and
which are not. We simply choose a basis for H(A) and write the state according to Eq. 6.13.
We have a product state if and only if the various |φn〉 vectors are all multiples of a single
vector.

Exercise 6.11 For what value α is K
(

2 |0, 0〉 + 3 |0, 1〉 − |1, 0〉 + α |1, 1〉
)

a product state
of two qubits? (K is a normalization constant.)

Not all states of the composite system AB are product states. For instance, consider the
state of two qubits ∣∣�(AB)

+
〉 = 1√

2

(
|0, 0〉 + |1, 1〉

)
. (6.15)

This is already of the form in Eq. 6.13, but the B-vectors |0〉 and |1〉 are linearly independent.
Therefore,

∣∣�(AB)
+
〉

cannot be a product state.
The physical states for the composite system AB include some states that are not product

states. These non-product states are called entangled states of AB. The existence of entan-
gled states is a remarkable consequence of quantum theory. Remember, whenever state
vectors can be assigned to the subsystems A and B, the composite system is in a product
state. If AB is in an entangled state, it is not possible to assign state vectors to the individual
subsystems.

This is very different from classical physics. When we specify the joint state of a pair
of classical particles, we must always specify the classical state (position and momen-
tum) of each individual particle. The quantum state vector, however, belongs only to an
entire system, and it is not always true that the subsystems have definite state vectors of
their own.

Quantum entanglement is one of the strangest and most far-reaching aspects of quantum
theory. Later in this chapter, we will explore some of its implications.
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6.2 Interaction and entanglement

The principle of superposition, applied to the states of a composite system, implies the possi-
bility of entanglement between systems. But how do entangled states arise in real physical
situations? The short answer is that entanglement is generally the result of dynamical
interaction.

What do we mean by interaction? It is easier to define the opposite. A pair of quantum
systems A and B is said to be non-interacting if the Hamiltonian of the composite system
AB is just the sum of subsystem Hamiltonians:

H(AB) = H(A) + H(B). (6.16)

We can draw several conclusions about non-interacting systems, including these facts:

• We can find an energy eigenbasis for the system AB that is composed of product states
|α, β〉, where |α〉 is an eigenstate of H(A) in H(A) and |β〉 is an eigenstate of H(B) in H(B).

• The energy of a product eigenstate is additive:

Eαβ = Eα + Eβ , (6.17)

where Eα is the energy of |α〉 for A and Eβ is the energy of |β〉 for B.

Exercise 6.12 Verify these results.

We sometimes say that non-interacting systems are dynamically isolated or uncoupled
from each other. Two systems are interacting if they are not non-interacting.

If A and B are non-interacting, then they cannot become entangled simply by their own
autonomous time evolution. We can show this through a sequence of simple exercises:

Exercise 6.13 Show that eA⊗1 =
(

eA
)
⊗ 1.

Exercise 6.14 If A and B are non-interacting, show that

exp
(−iH(AB)t/�

) = exp
(−iH(A)t/�

) ⊗ exp
(−iH(B)t/�

)
. (6.18)

(Hint: Use the result from Exercise 5.16.)

Exercise 6.15 Suppose the time evolution of a composite system AB is described by

U(AB) = U(A) ⊗ U(B). (6.19)

(Exercise 6.14 tells us that this must be the case whenever A and B are dynamically isolated
from each other.) If AB is initially in a product state, show that it remains in a product state
after the time evolution.

In other words, if the Hamiltonian for AB is additive, and if the two systems are prepared
independently, then they will remain in a product state. For entanglement to arise from a
product state, the systems must interact.

We illustrate this by a definite example. Suppose two spin-1/2 systems interact with each
other so that their Hamiltonian has the form

H(AB) = ε Z⊗ Z, (6.20)
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where ε is a constant that determines the strength of the interaction, and Z is the Pauli spin
operator. Even though these spins are interacting, the energy eigenstates turn out to be
product states.

Exercise 6.16 Show that |z+, z+〉 and |z−, z−〉 are both eigenstates of H(AB) with
eigenvalue ε. What is the eigenvalue associated with the eigenstates |z+, z−〉 and |z−, z+〉?
These are all stationary states, so they cannot evolve into entangled states over time.
However, suppose we begin with the product state∣∣� (AB)(0)

〉 = |x+, x+〉

= 1
2

(
|z+〉 + |z−〉

)
⊗
(
|z+〉 + |z−〉

)
= 1

2

(
|z+, z+〉 + |z+, z−〉

+ |z−, z+〉 + |z−, z−〉
)

. (6.21)

If we allow the Hamiltonian H(AB) to act for a time t = π�/4ε, then the evolution operator is

U(AB)(t) = exp
(
−i

π

4
Z⊗ Z

)
. (6.22)

The later state will be∣∣� (AB)(t)
〉 = U(AB)(t)

∣∣� (AB)(0)
〉

= 1
2

(
e−iπ/4 |z+, z+〉 + eiπ/4 |z+, z−〉

+ eiπ/4 |z−, z+〉 + e−iπ/4 |z−, z−〉
)

. (6.23)

With a little algebra, this becomes∣∣� (AB)(t)
〉 = e−iπ/4

2

(
|z+〉 ⊗

(
|z+〉 + i |z−〉

)
+ i |z−〉 ⊗

(
|z+〉 − i |z−〉

))
. (6.24)

Exercise 6.17 Verify this algebra. Simplify further to show that∣∣� (AB)(t)
〉 = 1− i

2

(
|z+, y+〉 + i |z−, y−〉

)
. (6.25)

The final state |� (AB)(t)〉 is clearly an entangled state of AB.

Exercise 6.18 Suppose we allowed the time evolution to run for a total time 2t = π�/2ε,
just twice as long as before. Is the state |� (AB)(2t)〉 entangled?

One nice feature of this example is that the Hamiltonian ε Z ⊗ Z actually arises as the
interaction between nearby nuclear spins for a molecule in an NMR experiment. As we will
see in Chapter 18, this allows us to create entangled states of the spins and also to perform
many types of quantum information processing.

Two systems need not interact directly to become entangled; it is enough if they both
interact with a third system. To give an example of this, and to show how ubiquitous
entanglement is, we will return to our archetypical example, the two-beam interferometer.
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In our highly simplified model, the interferometer has basis states |0〉, |u〉, and |l〉,
corresponding to physical situations with no photon or with one photon in the upper or
lower beams. We will now introduce a pair of two-level atoms, one in each beam. Each
atom has a ground state |g〉 and an excited state |e〉. We suppose that the overall unitary
dynamics of the system produce the following state changes:

|0〉 ⊗ |g, g〉 → |0〉 ⊗ |g, g〉 ,

|u〉 ⊗ |g, g〉 → |0〉 ⊗ |e, g〉 ,

|l〉 ⊗ |g, g〉 → |0〉 ⊗ |g, e〉 . (6.26)

In words, if there are no photons, no atoms become excited. A photon in the upper beam is
absorbed by the first atom, which becomes excited. A photon in the lower beam does the
same thing to the second atom. The atoms do not interact with each other, but both of them
are coupled to the light in the interferometer.

Now suppose that we prepare the interferometer in the superposition state α |u〉 + β |l〉,
while the atoms are in their ground states. Then(

α |u〉 + β |l〉
)
⊗ |g, g〉 −→ |0〉 ⊗

(
α |e, g〉 + β |g, e〉

)
. (6.27)

The two atoms are now in the entangled state α |e, g〉 + β |g, e〉, even though they have not
directly interacted.

We have assumed here that the time evolution is unitary. But is this reasonable? Do not
the atoms “measure” the location of the photon in the interferometer? Not necessarily. As
long as the composite system (interferometer + atoms) remains informationally isolated,
the dynamics will remain linear. If the atoms later re-emit the light and no physical trace
remains to record which atom was excited, the light may still exhibit interference at some
later stage of the experiment. On the other hand, the atoms could be part of a measurement
device, and the absorption of light could be the first part of a measurement process from
which a physical record results. In this case, no interference of the beams would occur.

6.3 A 4π world

In the examples we have discussed so far, composite systems comprised distinct physical
“things” – a pair of spins, or a couple of separated two-level atoms, etc. However, the
quantum mechanical idea is more general than this. Consider, for instance, a particle like
an electron that both moves through space and has an intrinsic spin. The Hilbert space for
the electron is of the general form

H = Hspace ⊗Qspin. (6.28)

We cannot have an electron without both of these characteristics. However, it is possible
in principle to measure or interact with either one without affecting the other, so in an
abstract sense the electron’s spatial location and internal spin are separate “subsystems” of
the particle. Our next example is of this kind.
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In Exercise 5.19 it was shown that the rotation of a spin-1/2 system by 2π about
the z-axis introduced an unexpected negative sign in the spin state vector. The rotation
operator was

Rz(2π) = e−i2πSz/� = −1. (Re 5.51)

To obtain the original spin state, the system must be rotated through an angle of 4π , i.e.
through two complete turns about the axis. (Problem 5.7 showed that such negative signs
were more or less inevitable.)

On the one hand this looks paradoxical, since it seems that a rotation by 2π around an
axis should have the same effect as no rotation at all. This is certainly true for rotations
of an ordinary geometrical shape. How could a spin-1/2 system see a “4π world?” On the
other hand, the apparent paradox does not appear to be very serious. The overall phase of
the state vector has no observational meaning, so that the kets |ψ〉 and− |ψ〉 are physically
equivalent.

Nevertheless, the negative sign in Eq. 5.51 does lead to physical effects, and these have
been observed in real experiments with neutrons.

Neutrons are spin-1/2 particles, and like protons they have a magnetic moment that can
couple to an external magnetic field. A magnetic field in the z-direction can therefore be
used to rotate the spin of the neutron about that axis. By controlling the strength of the field
and the time over which it is applied, we can apply Rz(θ) for any angle θ we wish.

Exercise 6.19 The neutron magnetic moment is μ = −1.91μN . Here μN is the nuclear
magneton:

μN = e�

2mp
, (6.29)

where mp is the proton mass, 1.67×10−27 kg. The negative sign indicates that the magnetic
moment vector is opposite to the spin vector of the neutron. Suppose a neutron experiences
a magnetic field with magnitude 0.01 T. How much time is required for the neutron spin to
rotate by an angle 2π?

Neutrons also move through space. Like other particles, they have a de Broglie wave-
length and exhibit constructive and destructive interference. It is possible to exhibit these
phenomena in a neutron interferometer apparatus. Neutron interferometers are constructed
from large, carefully machined single crystals of silicon. For present purposes, we can
adopt a simplified picture of a two-beam neutron interferometer analogous to the optical
interferometers of Chapter 2.

The neutron in the interferometer is essentially a pair of qubits, one describing the spin
state of the neutron and one describing its location among the beams of the interferometer.
This Hilbert space will be spanned by the product basis states

|u, z+〉 |u, z−〉 |l, z+〉 |l, z−〉 . (6.30)

The elements of the interferometer only affect the spatial part of the state vector and are
thus described by unitary operators of the form Uspace⊗1spin. For instance, a balanced neutron
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beamsplitter would act according to

Bl ⊗ 1 |u, s〉 = 1√
2

(
|u〉 + |l〉

)
⊗ |s〉 ,

Bl ⊗ 1 |l, s〉 = 1√
2

(
|u〉 − |l〉

)
⊗ |s〉 , (6.31)

for any spin state |s〉. Similarly, if the interferometer is placed in a uniform magnetic field,
the spin will be rotated. The spatial part of the state, however, will be unaffected by the
field, since neutrons have no net electric charge.

Things get more interesting if we arrange for one of the interferometer beams to pass
through a magnetic field. This can be accomplished by sending the lower beam between the
poles of an electromagnet. The spin state of the neutron would be rotated only if it passed
along this beam. If the field is aligned along the z-axis and its strength is adjusted to give a
spin rotation by θ , then the operator describing this device is

U = |u〉〈u| ⊗ 1+ |l〉〈l| ⊗ Rz(θ). (6.32)

With this conditional rotation, the spatial and spin “subsystems” of the neutron are no
longer dynamically isolated.

Exercise 6.20 Suppose the magnetic field produces θ = π . How does the resulting condi-
tional rotation operator affect the four product basis states in Eq. 6.30? Describe a situation
in which the neutron evolves from an initial product state to an entangled state of the space
and spin subsystems. (Recall Exercise 5.18.)

Consider now the Mach–Zehnder neutron interferometer shown in Fig. 6.1. The neu-
tron is introduced through the lower beam, so that its initial state is |l, s〉 for some spin
state |s〉. With no magnetic field, θ = 0 and spins in both beams are unrotated. It is easy to
see that the constructive and destructive interference at the second beamsplitter will lead to
detection probabilities p(u) = 1 and p(l) = 0 – in other words, the neutron is certain to be
detected in the upper beam.

Exercise 6.21 Fill in the glib phrase “It is easy to see that” with a real derivation. If you
need to, go back and review the discussion of two-beam interferometers in Section 2.1.

Fig. 6.1 A neutron Mach–Zehnder interferometer.
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Now we set the magnetic field so that a neutron in the lower beam is rotated through an
angle of 2π . The neutron state between the two beamsplitters evolves in the field by

1√
2

(
|u, s〉 + |l, s〉

)
−→ 1√

2

(
|u, s〉 − |l, s〉

)
. (6.33)

The negative sign from the 2π rotation of the neutron spin induces a relative phase in the
spatial superposition. In other words, there has been no observable net effect on the neutron
spin, but there has been an observable effect on the location of the neutron. At the end of
the interferometer, the detection probabilities are now p(u) = 0 and p(l) = 1, exactly the
opposite of the probabilities with no 2π rotation.

A rotation of the neutron spin by an angle of 2π is therefore not physically equivalent to
a rotation by zero. We must rotate the spin by 4π to restore the original interference pattern.
Actual neutron interferometry confirms this prediction.3 We must conclude that spin-1/2
particles like neutrons do in some sense “see a 4π world.”

Exercise 6.22 Calculate the probability p(u) as a function of the spin rotation angle θ in
the neutron Mach–Zehnder experiment.

The negative sign produced by a 2π rotation would be completely invisible if only the
spin itself were involved in the experiment. It is the composite nature of the neutron – both
space and spin – that leads to an observable effect. Or, to put it another way, it is the relative
2π rotation of one beam with respect to the other that differs from zero rotation.4

6.4 Conditional states

Composite systems follow the usual quantum rules for calculating the expectations of
observables and the probabilities of measurement outcomes. The trick is to identify
how the mathematical objects (operators, orthonormal bases, etc.) correspond to physical
measurement procedures. Here are a few guidelines.

An observable on the system A is of course also an observable on the composite system
AB. If Q is the observable’s Hermitian operator on H(A), then the corresponding operator
on H(AB) is Q(A) = Q⊗ 1, where 1 here is the identity operator on H(B). Eigenstates of Q(A) are
of the form |qi〉⊗ |ψ〉, where |qi〉 is an eigenstate of Q in H(A) and |ψ〉 can be any B-state.

Exercise 6.23 Show that there can be an entangled eigenstate of Q ⊗ 1 if and only if the
operator Q has one or more degenerate eigenvalues.

3 This experiment was first suggested by H. J. Bernstein in 1967, and was actually done by S. A. Werner et al.,
in 1975 – a particularly elegant demonstration of a subtle and surprising quantum effect.

4 For a beautiful geometrical discussion of why this is true, and of its further implications for the physics of
spin-1/2 particles, see Richard Feynman’s lecture in Elementary Particles and the Laws of Physics: The 1986
Dirac Memorial Lectures by Richard Feynman and Steven Weinberg.
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It is also useful to consider algebraic combinations of subsystem observables. Fix an
A-observable Q and a B-observable R. The eigenvalues of Q are {q}, corresponding to
eigenstates |q〉, while the eigenvalues of R are {r} with eigenstates |r〉. Then:

• The sum

Q(A) + R(B) = Q⊗ 1+ 1⊗ R, (6.34)

has eigenvalues {q + r} (including all combinations) corresponding to product eigens-
tates |q, r〉 = |q〉 ⊗ |r〉.

• The product

Q(A)R(B) = Q⊗ R, (6.35)

has eigenvalues {qr} and the same product eigenstates.

We saw these combinations in Section 6.2, when discussing how systems may interact. Two
systems are non-interacting if the composite Hamiltonian is simply the sum of Hamiltonians
for the individual systems. A product term in the Hamiltonian, on the other hand, describes
an interaction between the systems.

Each of these combined observables could be measured by performing two separate
experimental procedures, one for each subsystem, after which the numerical results are
added or multiplied. The two subsystem measurements may be performed in either order,
or simultaneously.5

Suppose now that AB is initially in the joint state |� (AB)〉 and that basic measurements
are performed on the individual subsystems. We measure A using basis { |a〉} and B using
basis { |b〉}. The joint probability p(a, b) is

p(a, b) = ∣∣〈a, b
∣∣� (AB)

〉∣∣2 . (6.36)

From the joint distribution over a and b values, we can calculate the distributions over a
and b individually:

p(a) =
∑

b
p(a, b), p(b) =

∑
a

p(a, b). (6.37)

Exercise 6.24 Consider the joint state
∣∣�(AB)

+
〉

for qubits A and B, defined in Eq. 6.15,
and suppose the two qubits are each measured in the standard { |0〉 , |1〉} basis. Find
the probability distribution for the joint measurement results and also for the individual
subsystem results.

According to Eq. 6.13, we can write the joint state as∣∣� (AB)
〉 =∑

b
|φb〉 ⊗ |b〉 , (6.38)

where the |φb〉 are non-normalized vectors in H(A). These vectors are related to the joint
probabilities as follows:

5 Indeed, if the systems A and B are widely separated in space, special relativity tells us that the time order of the
two measurement events may not be the same in different reference frames.
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Exercise 6.25 Show that

p(a, b) = |〈a |φb 〉|2 . (6.39)

The total probability p(b) for the outcome b is therefore

p(b) =
∑

a
〈φb |a 〉 〈a |φb 〉 = 〈φb |φb 〉 . (6.40)

Notice that this expression for p(b) depends only on the decomposition of |� (AB)〉 in
Eq. 6.38, and not on the particular A-basis { |a〉}. The probability p(b) is independent of the
choice of basic measurement performed on A. Furthermore, suppose that |� (AB)〉 is initially
changed by applying a unitary operator for the A system. We have∣∣� (AB)′〉 = (U⊗ 1)

∣∣� (AB)
〉 =∑

b
U |φb〉 ⊗ |b〉 . (6.41)

For this state, the probability p′(b) is

p′(b) = 〈φb|U†U |φb〉 = 〈φb |φb 〉 = p(b). (6.42)

The probability p(b) is unaffected by a unitary operator affecting only system A.
Think about this as a communication problem. Suppose Alice wishes to send some

information to Bob. To do this, she must choose one of a set of possible physical operations
(encoding her possible messages), and then Bob must make some physical observation.
For information to be transferred, Alice’s choice must have at least a statistical effect on
Bob’s measurement results. Unless Alice’s operations can affect Bob’s probabilities, no
information is conveyed. We have shown the following:

No-communication theorem. Suppose Alice and Bob have access to systems A and
B respectively, and that the joint state of AB is |� (AB)〉, which may be entangled. Then
Alice cannot convey information to Bob by either
• choosing from a set of possible basic measurements on A, or
• choosing from a set of possible unitary evolution operators for A.

Exercise 6.26 Explain why this theorem remains true even if Alice involves a third system
C in her operations.

This theorem expresses an important general principle. If it were not true, then Alice could
send information to Bob by some purely local choice of measurement or unitary operation.6

Since Alice and Bob could be very far apart, this would mean that information could be
transmitted faster than the speed of light – instantaneously in fact. Quantum mechanics
does not permit this.

Alice’s choice of measurement cannot affect the probability p(b) of Bob’s measurement
result. On the other hand, the value a that Alice obtains can affect Bob’s probabilities.
(This cannot be used for communication, since Alice does not control the outcome of her

6 We will use the term local to mean that a given operation or statement only pertains to one part of a composite
system – in this case, system A.
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measurement and so cannot use it to encode a message.) The conditional probability of
b given a is

p(b|a) = p(a, b)

p(a)
. (6.43)

Conditional probabilities are discussed in Appendix A. (You may also recall the idea from
Eq. 4.3.) For a fixed value of a, p(b|a) is a probability distribution over the various possible
values of b.

Exercise 6.27 Show that, for any a, the conditional probabilities p(b|a) are normalized.

Exercise 6.28 Show that p(b|a) = p(b) for all a and b if and only if a and b are independent
random variables (see Eq. 6.2).

The joint state |� (AB)〉 can be written∣∣� (AB)
〉 =∑

a
|a〉 ⊗ |ψa〉 , (6.44)

where the non-normalized B-vectors |ψa〉 give the joint distribution via p(a, b) =
|〈b |ψa 〉|2. The conditional probabilities are

p(b|a) = 1
p(a)

|〈b |ψa 〉|2 , (6.45)

where p(a) = 〈ψa |ψa 〉. Notice that these are exactly the probabilities predicted by the
B-state ∣∣∣ψ̂a

〉
= 1√

p(a)
|ψa〉 . (6.46)

Therefore, this is the quantum state that we would assign to B when Alice’s measurement
results in a. We call

∣∣∣ψ̂a
〉

the conditional state of B given the A-measurement outcome a.
Like the projection rule discussed in Section 4.3, the conditional state rule is a way of

assigning a new quantum state to a system based on the result of a measurement. But the
projection rule applies only in the special case when the measurement process is “minimally
disturbing.” Real measurement processes are seldom of this type. The conditional state
rule, on the other hand, is more generally applicable. It assumes only that the measurement
process involves system A alone, i.e. that the apparatus does not interact with subsystem
B. If, for instance, A and B are far apart in space, this condition may be easy to achieve.

We can express the idea of conditional states in a particularly elegant way by introducing
the partial inner product. Suppose |α(A)〉 is a vector in H(A) and |�(AB)〉 is a vector in
H(AB) = H(A) ⊗H(B). Then

∣∣φ(B)
α

〉 = 〈
α(A)

∣∣�(AB)
〉
is defined to be a vector in H(B) such that, for

any other |β (B)〉 in H(B), 〈
β (B)

∣∣φ (B)
α

〉 = 〈
α(A), β (B)

∣∣�(AB)
〉
. (6.47)

This is the partial inner product.

Exercise 6.29 Given non-null vectors |α(A)〉 and |�(AB)〉, show that there is a vector
∣∣φ(B)

α

〉
in H(B) that satisfies Eq. 6.47. Then show that there is only one such vector

∣∣φ (B)
α

〉
in H(B).

Therefore, Eq. 6.47 defines a unique vector.
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Another exercise makes the relevance of the partial inner product a bit more clear:

Exercise 6.30 Given |� (AB)〉 and an orthonormal A-basis { |a(A)〉}, show that∣∣� (AB)
〉 =∑

a

∣∣a(A)
〉⊗ 〈

a(A)
∣∣� (AB)

〉
. (6.48)

(Does this remind you of the completeness relation?)

If we measure A using the basis { |a(A)〉}, we let
∣∣ψ (B)

a
〉 = 〈

a(A)
∣∣� (AB)

〉
. The probability of the

result a is p(a) = 〈
ψ (B)

a
∣∣ψ (B)

a
〉
, and the conditional state of B given the result a is∣∣∣ψ̂a

〉
= 1√

p(a)

〈
a(A)

∣∣� (AB)
〉
. (6.49)

The conditional state of B yields all of the correct quantum conditional probabilities for
future B-measurement results, given that the A-result is a.

Let us consider an interesting example. A pair of qubits A and B is in the following
entangled quantum state: ∣∣� (AB)

−
〉 = 1√

2

(
|0, 1〉 − |1, 0〉

)
. (6.50)

This is sometimes called the “singlet” state of the two qubits, for reasons that will be
explained in Chapter 12. If Alice makes a measurement of Z on qubit A, then the conditional
states of Bob’s system B will be〈

0(A)
∣∣� (AB)

−
〉= 1√

2
|1〉 and

〈
1(A)

∣∣� (AB)
−

〉=− 1√
2
|0〉 . (6.51)

Therefore, the two measurement outcomes have equal probability (1/2), and after the
measurement the qubit B will be in a Z eigenstate opposite to the A outcome.

Something similar happens if Alice instead measures X on qubit A. Here the eigenstates

of X are |±〉 = 1√
2

(
|0〉 ± |1〉

)
and

〈+(A)
∣∣� (AB)

−
〉=− 1√

2
|−〉 and

〈−(A)
∣∣� (AB)

−
〉= 1√

2
|+〉 . (6.52)

Again, the outcomes are equally likely, and after the measurement the state of B will be
an X eigenstate opposite to the A outcome. In either case, a measurement performed on A
allows one to predict with certainty the outcome of an identical measurement performed
on B.

Suppose Alice could choose to measure either Z or X on A. After Alice’s measurement
(but before he learns of its result), Bob is presented with one of two situations:

Situation Z. If Alice measures Z, then the state of B is either |0〉 or |1〉, each of which
occurs with probability 1/2.

Situation X. If Alice measures X , then the state of B is either |+〉 or |−〉, each of which
occurs with probability 1/2.
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The no-communication theorem tells us that Alice’s choice of A-measurement cannot have
any effect on the probabilities for any B-measurement Bob may perform. Thus, Situation Z
and Situation X must be experimentally indistinguishable to Bob. Otherwise, Alice and
Bob could use the singlet state

∣∣� (AB)
−

〉
for instantaneous communication.

The situations outlined for B – after one of the possible A-measurements but before any
particular result is disclosed – are cases in which there is incomplete knowledge of the
quantum state of B. We know only that the state vector is one of a set of possibilities. As we
will see in Chapter 8, this kind of thing is most naturally described by a density operator.
It will turn out that Situations X and Z, though they are two quite different collections of
B-states, nevertheless have exactly the same density operator description.

Exercise 6.31 Consider the entangled state
∣∣�(AB)

+
〉
in Eq. 6.15. For Z and X measurements

on A, find the probabilities and the conditional B-states for the two possible results. How
do the details differ from the singlet state?

6.5 EPR

In a famous paper in 1935, Albert Einstein, Boris Podolsky, and Nathan Rosen (collectively
denoted EPR) called attention to the strange properties of entangled states of quantum
systems. They made the startling claim that the statistical correlations between entangled
systems prove that quantum theory is an incomplete description of nature. Their argument
is worth exploring in detail.

Consider a single qubit system. No quantum state of a qubit can be an eigenstate of
both Z and X observables. If the qubit has a definite value of Z, its value of X must be
indeterminate, and vice versa. If we take quantum theory to be a complete description of
nature, then we must say that it is impossible for both Z and X to have definite values for
the same qubit at the same time.

But we might have a different view. We might consider quantum theory to be an incom-
plete description, in which case we could imagine that Z and X both do have simultaneous
definite values, although we only have knowledge of one of them at a time. This is some-
times called the hypothesis of “hidden variables.” In this view, the indeterminacy found in
quantum theory is merely due to our ignorance of underlying variables that are present in
nature but not accounted for in the theory.

In order to decide whether quantum theory is a complete description of physical reality,
EPR proposed a definite criterion of what constitutes “physical reality”:

If, without in any way disturbing a system, we can predict with certainty (i.e. with
probability equal to unity) the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.

In other words, if we can exactly predict the result of a measurement without “touching”
the system in any way, that measurement result must in some sense already exist in physical
reality before the measurement.
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Recall the singlet state of a pair of qubits:

∣∣� (AB)
−

〉 = 1√
2

(
|0, 1〉 − |1, 0〉

)
. (Re 6.50)

Our previous analysis of this state tells us that, if qubit A is subjected to a Z-measurement,
then the conditional state of B is always the opposite Z-eigenstate. The same thing is true
of an X -measurement: after an X -measurement on A, qubit B will have a conditional state
that is the X -eigenstate opposite to the measurement result.

Now apply EPR’s criterion of reality. If the pair AB is in the singlet state
∣∣� (AB)

−
〉
, we can

come to predict either Z or X on qubit B by performing one measurement or the other on
qubit A. If we assume that our choice of A-measurement does not constitute a disturbance
of B – a reasonable intuition, given that A and B could be as far apart as we like – then
we are forced to conclude that the values of Z and X for B must simultaneously exist
as elements of reality before any measurement of B. Since the quantum description of B
cannot include simultaneous definite values for Z and X , the quantum description of the
situation must be incomplete. This is the EPR argument.

We may summarize this argument in a schematic way as follows:

⎛⎜⎜⎝
Quantum
mechanics
Correlations

in
∣∣� (AB)

−
〉

⎞⎟⎟⎠+

⎛⎜⎜⎝
Locality

A-measurement
choice does not

disturb B

⎞⎟⎟⎠⇒

⎛⎜⎜⎝
Hidden variables

Both Z and X
can have

definite values

⎞⎟⎟⎠ .

According to EPR, the properties of the entangled quantum state
∣∣� (AB)

−
〉
, together with our

assumption that the choice of A-measurement creates no disturbance at B, imply that there
are hidden variables in nature that the theory does not account for.

Niels Bohr responded to the EPR paper with characteristic subtlety. He said that the
concept of “disturbance” in the EPR criterion of reality is ambiguous when applied
to quantum systems. True, there is no possibility that the measurement applied to
qubit A exerts any sort of force on or causes any mechanical interaction with qubit
B. Nevertheless, the two proposed procedures – measuring either Z or X on A – are
still complementary, because they cannot both be done in the same experiment on
the same qubit pair. They are logically exclusive, like the “which slit” or “interfer-
ence” options in the two-slit experiment (see Section 1.2). It is therefore not legitimate
to conclude that both the Z and X values of B exist simultaneously in the same
experiment.

Although Bohr’s critique showed that the EPR argument was not logically compelling,
the EPR point of view retained considerable intuitive force. It stood for three decades as
the most significant theoretical challenge to the completeness of quantum theory. Then,
in 1964, John Bell turned the EPR argument upside-down. He showed that the statistical
correlations between entangled quantum systems are far stranger and more mysterious than
EPR – or anyone – had previously supposed.
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6.6 Bell’s theorem

We will give an elegant version of Bell’s argument that was introduced in 1969 by
John Clauser, Michael Horne, Abner Shimony, and Richard Holt (CHSH). Imagine
a source that produces pairs of physical systems, which are then routed to separated
observers Alice and Bob. Alice can measure one of two possible observables on her sys-
tem, which we will denote A1 and A2. Similarly, Bob can measure either B1 or B2 on
his system. There are thus four possible joint measurements on the composite system:
(A1, B1), (A1, B2), (A2, B1) and (A2, B2). In any given run of the experiment, we can only
measure one of these, but by repeating the experiment many times we can sample the
statistics of all of the possible joint measurements. To make things as simple as possi-
ble, we will assume that all of the observables have only two possible measured values,
+1 and −1.

We now make two hypotheses about the behavior of the composite system:

Hidden variables. We assume that the results of any measurement on any individual
system are predetermined. Any probabilities we may use to describe the system
merely reflect our ignorance of these hidden definite values, which may vary from one
experimental run to another.

Locality. We assume that Alice’s choice of measurement does not affect the outcomes
of Bob’s measurements, and vice versa.

As we have seen, these two hypotheses more or less capture the point of view advocated
by EPR.

The role of the locality hypothesis deserves some comment. A statement like “The value
of B1 is +1,” means, “If Bob were to measure B1, then the result +1 would be obtained.” We
want to assume that, prior to the measurements, such a statement is definitely true or false.
Without the locality hypothesis, though, the statement as it stands is ambiguous, since the
value of B1 could depend on whether A1 or A2 will be measured by Alice. The locality
hypothesis allows us to speak of the predetermined definite values of A1, A2, B1, and B2
without further qualification.

Given that all four observables have definite values, we can form the combination

Q = A1 (B1 − B2)+ A2 (B1 + B2) . (6.53)

Since each value can only be +1 or −1, the quantity Q = ±2. Therefore, any statistical
average of Q must satisfy −2 ≤ 〈Q〉 ≤ +2. Therefore,

− 2 ≤ 〈A1B1〉 − 〈A1B2〉 + 〈A2B1〉 + 〈A2B2〉 ≤ +2. (6.54)

Equation 6.54 is called the CHSH inequality. It is a special case of a Bell inequality, a
generic name for a statistical inequality implied by the local hidden variable hypotheses.

Alice and Bob cannot perform a measurement to determine the value of Q in any
particular experiment, but they can measure any of the products A1B1, etc. By repeating
the experiment many times, each of the statistical averages in the CHSH inequality can
be estimated. Thus, Eq. 6.54 is an experimentally testable statement that must hold if the
statistical behavior of the systems can be explained by any theory of local hidden variables.
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What about quantum systems? Let us consider a quantum experiment that matches the
general arrangement we are considering. Our source produces two qubit systems in the
entangled singlet state

∣∣� (AB)
−

〉
, after which the A qubit is delivered to Alice and the B qubit

to Bob. It is easy to confirm the following:

Exercise 6.32 Let
∣∣� (AB)

−
〉

and
∣∣�(AB)

+
〉

be defined according to Eq. 6.50 and 6.15,
respectively. Show that

Z(A)Z(B)
∣∣� (AB)

−
〉 = − ∣∣� (AB)

−
〉
,

X(A)X(B)
∣∣� (AB)

−
〉 = − ∣∣� (AB)

−
〉
,

X(A)Z(B)
∣∣� (AB)

−
〉 = − ∣∣�(AB)

+
〉
,

Z(A)X(B)
∣∣� (AB)

−
〉 = + ∣∣�(AB)

+
〉
. (6.55)

Alice and Bob will measure observables of the form Wθ , where

Wθ = sin θ X+ cos θ Z. (6.56)

If the qubits are spin-1/2 systems, we recognize Wθ as the component of the spin along
an axis in the xz-plane at the angle θ from the z-axis, measured in units of �/2 (compare
Eq. 3.109).

Exercise 6.33 Verify that the eigenvalues of Wθ are+1 and−1, so that the possible results
of a Wθ measurement are like those assumed in the derivation of the CHSH inequality.

Suppose Alice measures Wθ and Bob measures Wθ ′ . Then for the quantum state
∣∣� (AB)

−
〉
,

the expectation 〈Wθ Wθ ′ 〉 will be

〈Wθ Wθ ′ 〉 = sin θ sin θ ′
〈
X (A)X (B)

〉+ sin θ cos θ ′
〈
X (A)Z (B)

〉
+ cos θ sin θ ′

〈
Z (A)X (B)

〉+ cos θ cos θ ′
〈
Z (A)Z (B)

〉
= − sin θ sin θ ′ − cos θ cos θ ′. (6.57)

Therefore,
〈Wθ Wθ ′ 〉 = − cos

(
θ − θ ′

)
. (6.58)

If θ = θ ′, we see that 〈WθWθ ′ 〉 = −1. This occurs because the two parallel measurements
always produce exactly opposite results, as we have already noted for Z and X .

Alice and Bob choose the following observables for their experiment:

A1=W0, B1=Wπ/4,

A2=Wπ/2, B2=W3π/4,
(6.59)

(see Fig. 6.2). With these choices,

〈A1B1〉=− 1√
2

, 〈A1B2〉= 1√
2

,

〈A2B1〉=− 1√
2

, 〈A2B2〉=− 1√
2

,
(6.60)

and so
〈A1B1〉 − 〈A1B2〉 + 〈A2B1〉 + 〈A2B2〉 = −2

√
2. (6.61)
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Fig. 6.2 Spin components measured by Alice and Bob.

This obviously violates the CHSH inequality (Eq. 6.54)! Therefore, the expectations
predicted by quantum theory are inconsistent with the assumptions that led to that inequality.

Exercise 6.34 Find other observables A1, B1, etc., so that

〈A1B1〉 − 〈A1B2〉 + 〈A2B1〉 + 〈A2B2〉 > 2. (6.62)

The general lesson here can be summarized as follows:

Bell’s theorem. The statistical properties of entangled quantum states cannot be
accounted for by any theory of local hidden variables.

This is an amazing result, and a stunning reversal of the reasoning of EPR. We can
summarize Bell’s theorem this way:⎛⎝ Hidden variables

Observables have
definite values

⎞⎠+

⎛⎜⎜⎝
Locality

A-measurement
choice does not

disturb B

⎞⎟⎟⎠⇒

⎛⎜⎜⎝
Not quantum

mechanics
CHSH inequality

always holds

⎞⎟⎟⎠ .

EPR saw entanglement as evidence of the incompleteness of quantum theory. We can now
come to almost the opposite conclusion: the phenomena of quantum systems cannot be
explained by hidden variables that function locally.

What about actual laboratory experiments? Entangled quantum systems can be produced
in a variety of ways, and several careful tests of Bell’s theorem have been done. The
observed data agree with the quantum mechanical predictions to a very high degree of
statistical confidence. For example, a 1998 experiment by G. Weihs et al. found that the
CHSH inequality was violated by 30 standard deviations, with “Alice” and “Bob” located
on opposite sides of a university campus, 400 meters apart.

From a philosophical point of view, Bell’s theorem and the experimental confirmation
of quantum theory constitute one of the most remarkable results in all of physics. The dual
hypotheses of hidden variables and locality have a pretty good claim to be the “common
sense” view of the world. Nevertheless, at least one of them must be wrong. We must
either give up the idea that hidden determinate variables underlie the indeterminacy of
quantum systems, or we must give up the idea that widely separated parts of the universe
act independently.
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6.7 GHZ

In Bell’s theorem, we find that the statistical properties of entangled systems are inconsistent
with any local hidden variable theory. A very striking argument due to Daniel Greenberger,
Michael Horne, and Anton Zeilinger (GHZ) goes further, and shows that the individual
deterministic outcomes of experiments on entangled systems – outcomes that occur with
probability 0 or 1 – are likewise inconsistent with local hidden variables.

We imagine three systems distributed among Alice, Bob, and Charles. Alice can measure
either X (A) or Y (A) on her system, Bob can measure either X (B) or Y (B), and Charles can measure
either X (C) or Y (C). Each of these measurements can produce only the result +1 or −1.

It happens that the systems are correlated in such a way that, whenever one X -
measurement and two Y -measurements are made, the product of the results is always
+1. That is, either all three results are +1 or exactly two of them are −1. Call this fact
“Condition XYY.” The question is exactly how the correlation described by Condition
XYY comes about. If we assume that the measurement results are due to local hidden
variables, then there are simultaneous definite values for X (A), Y (A), X (B), etc. It follows that(

X (A)Y (B)Y (C)
) (

Y (A)X (B)Y (C)
) (

Y (A)Y (B)X (C)
) = X (A)X (B)X (C), (6.63)

since (Y (A))2 = (Y (B))2 = (Y (C))2 = +1, no matter what the values are. Since all three factors
on the left equal +1, it follows that X (A)X (B)X (C) = +1. If we make an X -measurement on
all three systems, the product must always be +1. We can call this “Condition XXX.” We
have shown that(

Local hidden
variables

)
+
(

Condition
XYY

)
⇒

(
Condition

XXX

)
.

Now consider a quantum-mechanical situation in which Alice, Bob, and Charles each
possess a qubit. The joint state is

|GHZ〉 = 1√
2

(
|0, 0, 0〉 − |1, 1, 1〉

)
. (6.64)

The observables X and Y can be measured on each qubit. Next, we note the following fact:

Exercise 6.35 Show that

X⊗ Y⊗ Y |GHZ〉 = |GHZ〉 . (6.65)
Thus, the state |GHZ〉 is an eigenstate of X ⊗ Y ⊗ Y with eigenvalue +1. Show also that
|GHZ〉 is an eigenstate of Y⊗ X⊗ Y and Y⊗ Y⊗ X with the same eigenvalue.

It follows that the three-qubit system in the state |GHZ〉 satisfies Condition XYY above.
But what if we measure X⊗ X⊗ X? We find that

X⊗ X⊗ X |GHZ〉 = − |GHZ〉 , (6.66)

so a measurement of X⊗ X⊗ X must always yield the result−1. In short, the qubit triple in
the |GHZ〉 state exactly contradicts Condition XXX every time. Therefore the correlations
exhibited by this system cannot be ascribed to the effect of hidden variables that act locally.
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Exercise 6.36 Show that the qubit operators satisfy

(X⊗ Y⊗ Y) (Y⊗ X⊗ Y) (Y⊗ Y⊗ X) = −X⊗ X⊗ X. (6.67)

Compare this with Eq. 6.63, which refers to classical variables with values ±1.

Problems

Problem 6.1 Suppose the state |� (AB)〉 has the form given by Eq. 6.14 for some particular
A-basis { |n〉}. Show that it must also have the same general form for any other choice of
A-basis. Thus, we can recognize a product state by expanding it in any basis we choose.

Problem 6.2 This problem provides an alternate proof for the existence of entangled
(non-product) states. Consider the two-qubit state

∣∣�(AB)
+
〉

defined in Eq. 6.15. If this were
a product state, then there would be normalized states |ψ〉 of A and |φ〉 of B such that∣∣〈�(AB)

+ |ψ , φ
〉∣∣ = 1.

Expand |ψ〉 and |φ〉 in terms of the standard basis and use the Schwartz inequality to show
that this equality cannot hold.

Problem 6.3

(a) Suppose X and Y are two observables, and that 〈X 〉 = 〈Y〉 for every state |ψ〉. Show
that the operators satisfy X = Y.

(b) Let H(AB) be the Hamiltonian for a composite system AB, and suppose there are
subsystem observables G(A) and G(B) such that〈

H (AB)
〉 = 〈

G(A)
〉+ 〈

G(B)
〉
,

for all joint AB states. Show that A and B are dynamically independent.

Problem 6.4 Consider random variables A, B, C, etc., all of which have two possible
values ±1. Define the “distance” between any two of these to be the likelihood that they
disagree:

d(A, B) = Pr(A �= B). (6.68)

(a) First, show that d(·, ·) has the usual properties of a distance function: d(A, A) = 0,
d(A, B) = d(B, A), and d(A, B) + d(B, C) ≥ d(A, C). (The last property is called the
“triangle inequality.”)

(b) Find a relation between d(A, B) and 〈AB〉.
(c) Show that one-half of the CHSH inequality (Eq. 6.54) can be written

d(A1, B1)+ d(B1, A2)+ d(A2, B2) ≥ d(A2, B2). (6.69)

Show that this “quadrilateral inequality” is a consequence of the basic properties of
d(·, ·). Draw a simple picture to illustrate this relation of distances.

(d) Find a set of spin component measurements on the state |�−〉 that violate this inequality.
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Ponder where the concept of “local hidden variables” enters into this version of the Bell
argument.

Problem 6.5 Artur Ekert suggested that entangled pairs of qubits could be used for quantum
key distribution. (Review Section 4.4 if necessary.) Suppose Alice and Bob possess many
pairs of qubits in the state |�−〉. Since these qubits are in a pure state, they have no
correlations with any other systems, including those available to the eavesdropper Eve. By
making appropriate measurements, they can arrive at a shared secret string of key bits.

Explain in detail how this should be done. Also explain how Alice and Bob can make
sure that their qubits are really in the |�−〉 state, and not, for example, in a GHZ state with
a qubit of Eve. What percentage of the qubits do they have to discard (not counting the
ones sacrificed to check for Eve’s activity)?

Problem 6.6 Consider the GHZ state of Eq. 6.64:

(a) Suppose that Alice makes a Z measurement on her qubit. Show that the qubits of Bob
and Charlie are in a product state, regardless of the measurement result.

(b) Suppose Alice makes an X measurement on her qubit. Show that Bob and Charlie’s
qubits end up in an entangled state, regardless of the measurement result.

Problem 6.7 Synchronized quantum clocks. A qubit subject to a Hamiltonian �ωY
evolves according to

|ψ(t)〉 = cos ωt |0〉 + sin ωt |1〉 . (6.70)
(a) Verify that this state is a solution to the Schrödinger equation.
(b) We use this qubit as a simple clock. Suppose the value of the time t is equally likely

to be anything between t = 0 and t = T , so that Pr(t < T/2) = Pr(t > T/2) = 1/2.
At this unknown time, we measure the qubit clock using the { |±〉} basis. Show that
p(+) = p(−) = 1/2, and calculate the conditional probabilities Pr(t < T/2 | +),
etc. Show that the result of this measurement does provide information about the
value of t.

(c) Consider two identical, independent clocks that are both in the same time-dependent
state: ∣∣� (12)(t)

〉 = ∣∣ψ (1)(t)
〉⊗ ∣∣ψ (2)(t)

〉
. (6.71)

If we make simultaneous |±〉 measurements on both clocks, show that the clocks can
sometimes disagree. The clocks are not quite “synchronized.”

(d) Now imagine that the clocks are prepared in a “superposition of times,” which we can
write ∣∣�(12)

〉 = A
∫ T

0

∣∣� (12)(t)
〉

dt. (6.72)

Evaluate this integral and find the normalization constant A. Show that the result is an
entangled state of the two clocks, and show that |±〉 measurements on the clocks will
always exactly agree.

(e) Show on the other hand that |�(12)〉 is a stationary state of the two-qubit Hamiltonian
�ωY(1) + �ωY(2). Although the clocks are now perfectly synchronized with each other,
they are no longer of much use for time-telling!
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Problem 6.8 Suppose Alice and Bob each possess a subsystem of a larger, entangled
system. Alice makes a basic measurement on her subsystem, a process which obeys the
projection rule of Section 4.3. Afterwards, both Alice and Bob make further measurements
on their subsystems. Show that, conditioned on the result of Alice’s initial measurement, fur-
ther measurement results from the two subsystems are independent. (Thus, no correlations
“survive” Alice’s basic measurement.)

Problem 6.9 In Section 6.6 we showed that, if two qubits are in the singlet state |�−〉,
then measurements of parallel spin components (in the XZ plane) always yield opposite
results.

(a) Show that this is also true for Y measurements on |�−〉.
(b) Does there exist an “anti-singlet” state of two qubits, for which measurements of

parallel spin components always yield identical results? If so, write down the state
vector. If not, give a proof that no state, product or entangled, can do this.

Problem 6.10

(a) Starting with the definition of the tensor product of operators (Eq. 6.9), show that
(A⊗ B)† = A† ⊗ B†.

(b) If A and B are both Hermitian, prove that A⊗ B is also Hermitian.
(c) Do part (b) again, replacing the word “Hermitian” with “positive,” “unitary,” and

“normal.”
(d) If A⊗ B is Hermitian, does it follow that both A and B must be Hermitian also?
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7.1 Decoding and distinguishability

Communication

The quantum description of composite systems raises (and resolves!) a few issues about
distinguishability and information transfer. We shall deal with these in this section.

The basic decoding theorem from Section 4.1 tells us that, if we try to encode more
than d different messages in a quantum system with dimH = d, then we will not be able
to decode the message reliably by any basic measurement. This allows us to say that a
quantum system with Hilbert space dimension d has an information capacity of log d bits.

But log d may not be an integer. For a spin-1 particle with d = 3, the capacity would be
log d = 1.58 bits. As we saw in Section 1.1, this only makes sense when we consider coding
our messages “wholesale,” using many quantum systems to represent many messages. That
is, we need to consider coding messages by the states of a composite quantum system.

Suppose we have a quantum system composed of n identical subsystems, each one
described by a Hilbert space H of dimension d. The Hilbert space describing the whole
thing is

H⊗n = H⊗ · · · ⊗H︸ ︷︷ ︸
n times

. (7.1)

The dimension of this space is dn. Thus, its information capacity is n log d, exactly n times
as large as the capacity for an individual subsystem.

This fact is exactly what we need. Suppose we wish to represent H bits of information
per subsystem. This means that we will represent nH bits in a composite system of n
subsystems. This information corresponds to 2nH distinct messages. The basic decoding
theorem tells us that the probability of error is at least

PE ≥ 1− dn

2nH = 1−
(

2(log d−H)
)n

. (7.2)

For reliable communication (PE = 0), it follows that H ≤ log d. In fact, though, we have
an even stronger result. When H > log d, then PE → 1 as n →∞. If we try to represent
“too much” information in each quantum system, the probability of error is non-zero, and in
fact approaches unity as n becomes large. In the long run, an error is essentially guaranteed.

Exercise 7.1 Suppose we attempt to encode 1.01 bits of information per qubit system. How
many qubits can be used before PE is guaranteed to be at least 50%? At least 99%?
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Multiple copies

Now consider just two states, |α0〉 and |α1〉, which we imagine to be equally likely.
The distinguishability theorem of Section 4.2 tells us that, if |〈α0 |α1 〉| = cos θ , then the
probability of correctly distinguishing the two states by a measurement is no larger than

PS ≤ 1
2

(1+ sin θ) . (Re 4.20)

By the best choice of distinguishing measurement, we can achieve equality.
But suppose we have not just a single quantum system, but n copies of the quantum

system in the same state. Then our problem is to distinguish two different states of the
composite system, namely |α0〉⊗n = |α0〉 ⊗ · · · ⊗ |α0〉 and |α1〉⊗n = |α1〉 ⊗ · · · ⊗ |α1〉.
The inner product of these joint states is(

〈α0| ⊗ · · · ⊗ 〈α0|
) (

|α1〉 ⊗ · · · ⊗ |α1〉
)
= 〈α0 |α1 〉n . (7.3)

Let |〈α0 |α1 〉|n = cosn θ = cos θn. Then we can distinguish the two situations (n copies
of |α0〉 versus n copies of |α1〉) with probability PS = (1+ sin θn)/2. There are now two
possibilities:

• If |〈α0 |α1 〉| = 1, then the two states are physically equivalent, and θn = 0 for all n.
Then PS = 1/2 is the best we can do – no better than guessing.

• If |〈α0 |α1 〉| < 1, then θn → π/2 as n →∞, and we can arrange PS → 1.

Therefore, if |α0〉 and |α1〉 represent physically distinct states, we can pretty well
distinguish n copies of |α0〉 from n copies of |α1〉, provided that n is large enough.

What does this mean? First, the mathematical meaning. Even if the angle θ between |α0〉
and |α1〉 in H is small, the angle θn between |α0〉⊗n and |α1〉⊗n in H⊗n will be nearly π/2
for sufficiently large n. The exception, of course, is when the angle is actually 0. In every
other case, sufficiently many copies of the two states can be distinguished pretty well by
some measurement.

Now a physical explanation. Imagine a machine that emits spin-1/2 particles, one after
the other. The machine has two settings: one prepares particles in the state |z+〉 and the
other prepares them in |x+〉. The control that determines this setting is hidden from view.
It might with equal likelihood be set either way, but the setting does not change during the
experiment. Our job is to determine the unknown setting by examining the output of the
machine.

If we examine only one particle from the machine, we will not with certainty be
able to determine the machine’s setting, since the states |z+〉 and |x+〉 are not perfectly
distinguishable.

Exercise 7.2 In this situation, show that PS ≤ 0.854 for any measurement.

On the other hand, if we have n > 1 particles from the machine, we can do much better. For
instance, imagine that we measure Sz for each particle. If every one yields the result+�/2,
then we conclude that the state is |z+〉, but otherwise we know that it is |x+〉. The only
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possible error is if the setting is for |x+〉, but by chance every Sz measurement happens to
yield +�/2. This happens with probability

PE = 1
2

(
1
2

)n
= 1

2n+1 . (7.4)

As n →∞, PS = 1− PE → 1. (This is not the optimal measurement for distinguishing n
copies of |z+〉 from n copies of |x+〉, but it works pretty well.)

Exercise 7.3 How many particles do we need to distinguish the two machine settings with
a probability better than 99.9%, using the Sz measurement? What if we use an optimal
measurement?

7.2 The no-cloning theorem

Cloning machines

At the end of our discussion of quantum key distribution in Section 4.4, we pointed out a
potential problem based on a quantum cloning machine, a hypothetical device that exactly
duplicates the state of a quantum system. Such a machine would allow an eavesdropper
to break the security of the BB84 key distribution protocol. But we can now see that a
quantum cloning machine would have an even more fundamental consequence.

Essentially, a cloning machine would allow us to produce the state |α0〉⊗n from |α0〉
and |α1〉⊗n from |α1〉. Since the multiple-copy states can be distinguished more reliably
than the single-copy states, the machine would be able to evade the limitation of the basic
distinguishability theorem. Any two distinct quantum states would be distinguishable with
any desired reliability. Quantum cloning machines, if they existed, would manufacture
distinguishability.

This would have quite disturbing consequences. Suppose Alice and Bob share a qubit
pair in the singlet state

∣∣� (AB)
−

〉
described above in Section 6.4. Alice’s choice of Z or X

measurement on her qubit leads to two different situations for Bob’s qubit. Either Bob
has |0〉 and |1〉 with equal probability (Situation Z), or Bob has |+〉 and |−〉 with equal
probability (Situation X). These two situations cannot be distinguished by Bob.

But if Bob possesses a cloning machine, the situations can be distinguished. If Alice
measures Z and Bob uses a cloning machine on his qubit to create n copies, they will either
be in the state |0〉⊗n or |1〉⊗n. A repeated Z-measurement on these will yield n identical
results. If Alice measures X and Bob uses the cloning machine, he has either the state |+〉⊗n

or |−〉⊗n. A repeated Z-measurement on these will not necessarily produce n identical
results – indeed, if n � 1, this would be very unlikely. Thus, with a cloning machine Bob
can pretty reliably distinguish Situation Z and Situation X – and therefore, as we noted,
Alice and Bob can use the entangled state

∣∣� (AB)
−

〉
to send information instantaneously. A

quantum cloning machine would permit faster-than-light communication!
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However, it turns out that quantum cloning machines cannot exist. This is the well-known
“no-cloning theorem” of quantum theory, first proved by William Wootters and Wojciech
Zurek, and independently by Dennis Dieks, in 1982. The theorem is remarkable both for its
simplicity and its fundamental importance. Even more amazing is the fact that the theorem
was not formulated and proven until quantum mechanics was over a half-century old.

To state and prove the theorem, we need a more precise notion of what we mean by a
“cloning” process. Think first of an ordinary photocopying machine. Its function involves
three distinct physical components: a piece of paper to be copied; a second piece of paper,
initially blank, on which the copy is to be printed; and the machine itself, which starts out
in a “ready” condition.

By analogy, we posit that the cloning process involves three subsystems: an input A, an
output B, and the cloning machine M. Note that A and B are systems described by identical
Hilbert spaces, while M may be very much more complicated than either one. The initial
state of the input system A is variable, but the output system B begins in a fixed “blank
paper” state |0〉, and the cloning machine M starts out in a standard “ready” state |M0〉. We
assume that the overall system is informationally isolated. After all, we could in principle
isolate the entire cloning system, including all necessary equipment, power supplies, etc.,
from the rest of the world, and this should not affect its operation.1 Then the action of the
cloning machine will be represented by a unitary time evolution operator Uc acting on the
joint state of the composite system ABM.

The important thing to notice is that the initial quantum state |0〉⊗ |M0〉 of BM and the
overall time evolution Uc are both independent of the initial state of the input A. Consider
two initial states of the composite system

|�〉 = |ψ〉 ⊗ |0〉 ⊗ |M0〉 ,

|�〉 = |φ〉 ⊗ |0〉 ⊗ |M0〉 , (7.5)

where |ψ〉 and |φ〉 are two possible initial A-states. After the cloning process, the state of
the input is unchanged, but the output system B must now be in an exact copy of that state.
Thus, the two final states must be∣∣� ′〉 = Uc |�〉 = |ψ〉 ⊗ |ψ〉 ⊗ ∣∣Mψ

〉
,∣∣�′〉 = Uc |�〉 = |φ〉 ⊗ |φ〉 ⊗ ∣∣Mφ

〉
. (7.6)

We allow for the possibility that the final states of the cloning machine depend on the exact
input state that is cloned. A system that functions as described is called a “unitary cloning
machine.” Our main result can be stated thus:

No-cloning theorem. No unitary cloning machine exists that works on arbitrary initial
states of the input A.

Our next task is to prove this theorem. In fact, we will prove it in two different ways.

1 We are arguing here that informational isolation is a relatively harmless assumption. Nevertheless, this question
involves some important issues about open quantum systems, which we will discuss at greater length in Chapter 9
and Appendix D.
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First proof

Our first proof was devised by Wootters and Zurek. Suppose that our unitary cloning
machine works as advertised for two orthogonal input states |ψ〉 and |φ〉, and consider its
action on the superposition input state

|σ 〉 = 1√
2

(
|ψ〉 + |φ〉

)
. (7.7)

The initial state of the composite system is

|�〉 = |σ 〉 ⊗ |0〉 ⊗ |M0〉 = 1√
2

(
|�〉 + |�〉

)
. (7.8)

Because the time evolution of an informationally isolated system is linear, a superposition
of initial states evolves to a superposition of output states. That is, |�〉 evolves to the final
joint state ∣∣�′〉 = 1√

2

( ∣∣� ′〉+ ∣∣�′〉)
= 1√

2

(
|ψ〉 ⊗ |ψ〉 ⊗ ∣∣Mψ

〉+ |φ〉 ⊗ |φ〉 ⊗ ∣∣Mφ

〉)
. (7.9)

But this is certainly not the correct cloned state |σ 〉 ⊗ |σ 〉 ⊗ |Mσ 〉. How can we be so
sure? For one thing,

∣∣�′〉 is not even a product state between A and BM. It has the general
form of Eq. 6.13, since |ψ〉 and |φ〉 are orthogonal, but it clearly fails the product state
criterion, since |ψ〉 ⊗ ∣∣Mψ

〉
and |φ〉 ⊗ ∣∣Mφ

〉
are not multiples of each other (and in fact

are orthogonal).
At the end of the process, we see that our input and output systems are entangled – with

each other, and possibly with the cloning machine as well. They do not even have definite
quantum states of their own, much less exact copies of the initial input state |σ 〉. Therefore,
our unitary quantum cloning machine fails for at least some input states of A.

Exercise 7.4 Show that the unitary quantum cloning machine fails for any superposition
of |ψ〉 and |φ〉 with non-zero coefficients.

Second proof

The second proof was discovered independently of the first, and is due to Dieks. For this
proof, we suppose that |ψ〉 and |φ〉 are distinct but non-orthogonal states of A, so that

0 < |〈ψ |φ 〉| < 1. (7.10)

Since the initial state of BM does not depend on the initial A-state, the overall initial states
have the same inner product: 〈� |� 〉 = 〈ψ |φ 〉.



145 The no-cloning theorem

Because the time evolution operator Uc is unitary, it preserves the inner products of
states. In terms of magnitudes,∣∣〈� ′ ∣∣�′ 〉∣∣ = |〈� |� 〉| = |〈ψ |φ 〉| . (7.11)

On the other hand, consider the inner product of the cloned final states
∣∣� ′〉 and

∣∣�′〉 of
Eq. 7.6: ∣∣〈� ′ ∣∣�′ 〉∣∣ = |〈ψ |φ 〉|2 ∣∣〈Mψ

∣∣Mφ

〉∣∣ < |〈ψ |φ 〉| . (7.12)

Therefore
∣∣〈� ′ ∣∣�′ 〉∣∣ �= |〈ψ |φ 〉|, which is a contradiction. It follows that no unitary cloning

machine can work on two distinct, non-orthogonal input states.

Implications

Each proof emphasizes a different aspect of quantum theory. In the first proof, it is the prin-
ciple of superposition itself that defeats the cloning machine. Any machine that functioned
properly for two orthogonal input states would inevitably produce entangled outputs from
a superposition input state. Since the principle of superposition is arguably the most basic
idea in quantum theory, the no-cloning theorem is quite a basic result of that theory.

The second proof emphasizes the idea of distinguishability. The quantity |〈ψ |φ 〉| governs
how well we can distinguish |ψ〉 and |φ〉 by a measurement. The closer this magnitude
is to zero, the better we can tell the two states apart. A working cloning machine would
improve the distinguishability of non-orthogonal input states by creating outputs that are
more nearly orthogonal. But unitary time evolution preserves inner products, and thus
cannot increase the distinguishability of the states. No unitary cloning machine can exist.2

Notice that the proofs of the no-cloning theorem leave open the possibility of a cloning
machine that works for some input states. From the second proof, we see that the machine
could clone distinct states successfully only if they also happen to be orthogonal. And
indeed, it is easy to imagine a way to clone any one of a basis { |n〉} of A-states. A basic
measurement on A can determine which of the inputs is present, and these data may be
used to set up a machine that produces as many copies of the state as we like. (Strictly
speaking, this would not be a unitary cloning machine, since it depends on a measurement
process. But it is not hard to adapt the essential idea into a unitary scheme.)

It is also possible to imagine an approximate cloning machine, which would create
imperfect copies, or a conditional cloning machine, which would work perfectly with some
probability but would otherwise fail (producing an “error” message). More sophisticated
analyses are required for these new situations (see Problems 7.1 and 7.2). In general, for
non-distinguishable inputs |φ〉 and |ψ〉, an approximate cloning machine cannot produce
very accurate copies, and a conditional machine cannot succeed with very high probability.

2 We should add that the unitarity of the time evolution is almost as basic as the principle of superposition itself.
In Section 5.1 we derived this unitarity from the principle of superposition, plus the simple requirement that
state vectors must remain normalized – in effect, that total probability is conserved.
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From an information point of view, the no-cloning theorem reveals one of the most
significant truths about the quantum world. Quantum information cannot be copied exactly.
In classical information theory, there is no obstacle to making exact copies of any signal.
But if a quantum communication system uses non-orthogonal signal states, no process
can perfectly duplicate them. This is the very reason why quantum cryptography is more
powerful than classical cryptography.3 It is also, rather unexpectedly, the principle that
guarantees the no-communication theorem and prevents entangled quantum states from
providing faster-than-light information transfer.

Exercise 7.5 We previously imagined a machine that, depending on its control setting,
could produce arbitrarily many copies of the spin state |z+〉 or |x+〉. Explain why such a
machine is not a violation of the no-cloning theorem.

7.3 Ebits

The Bell states are a set of entangled two-qubit states introduced by John Bell. They are∣∣�(12)
±
〉 = 1√

2

(
|0, 0〉 ± |1, 1〉

)
,

∣∣� (12)
±
〉 = 1√

2

(
|0, 1〉 ± |1, 0〉

)
. (7.13)

(Some of these are familiar; see Eq. 6.15 and 6.50.) The four Bell states are orthonormal
and thus form a basis for the two-qubit Hilbert space. A basic two-qubit measurement using
this basis is called a Bell measurement.

The Bell states have the property that any one of them can be transformed into any other
by a unitary operation on just one of the qubits. For example, the Pauli operator Z(1) is
unitary, and

Z(1)
∣∣�(12)

+
〉 = ∣∣�(12)

−
〉
. (7.14)

Exercise 7.6 Arrange the four Bell states in a square:∣∣�(12)
+
〉 ∣∣�(12)

−
〉

∣∣� (12)
+
〉 ∣∣� (12)

−
〉
. (7.15)

Show that the operator Z(1) exchanges columns in this array, while X(2) exchanges rows.
Show that Z(2) and X(1) do almost the same, except for some overall changes of phase.

3 No classical communication system can accomplish the task of secret key distribution between Alice and Bob,
since the eavesdropper Eve can make her own copies of all of the exchanged messages. But the BB84 quantum
key distribution protocol uses non-orthogonal quantum signal states, and these cannot be cloned by Eve.
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To get a physical picture of these mathematical results, suppose Alice and Bob share a pair
of qubits in one of the Bell states. Then they can come to share any one of the Bell states
simply by performing a local operation on one of the qubits.

Exercise 7.7 Consider the two-qubit state∣∣�(12)
〉 = 1√

2

(
|0, a〉 ± |1, b〉

)
, (7.16)

where |a〉 and |b〉 are an orthonormal pair of one-qubit states. Show that |�(12)〉 can be
converted into a Bell state by means of an operation on either qubit.

As we saw in Section 6.2, independent systems cannot become entangled by local
operations. However, local operations can transform one entangled state to another. This
reminds us of the discussion in Section 1.1 of the transformability of information. A
one-bit message can have many different equivalent physical representations, and one
representation can be changed to another by a physical operation. This motivates the
following definition: When Alice and Bob jointly possess a qubit pair whose state is
locally equivalent to a Bell state, then we say that they share an ebit, or a “bit of
entanglement.”

The idea is to think of “ebits” as one kind of resource with which Alice and Bob may
perform various tasks. To formalize this notion, we suppose that Alice and Bob each have
separate laboratories in which they can perform any local unitary operations and local
measurements on the quantum systems in their possession. In addition, they have three
types of resource that might be used for information tasks:

• Bits. Alice can send an ordinary one-bit message to Bob, or vice versa.
• Qubits. Alice can transfer a qubit quantum system to Bob, or vice versa.
• Ebits. Alice and Bob can share an entangled qubit pair in a Bell state (or some equivalent

state).

Note that the first two types are directed resources; it matters whether Alice sends to Bob
or Bob sends to Alice. Ebits, however, are not a directed resource.

To compare resources, we will use the symbol “�” (pronounced “is at least as strong
as”), so that

this � that, (7.17)
means that the resources enumerated in “this” can be used to do any task that can be
performed using “that.” Since Alice could always use a 10-bit message to send 5 bits of
information, we write 10 bits � 5 bits. To take a more interesting example, it is always
possible for Alice to encode a one-bit message in the basis states of a qubit, then transfer
this qubit to Bob. Bob can recover the message by measuring the qubit in Alice’s basis. We
represent this as

1 qubit � 1 bit. (7.18)

Exercise 7.8 Explain why

1 qubit � 1 ebit. (7.19)
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Resources are not always comparable, of course. As we have seen, shared entanglement
does not in itself allow Alice to send messages to Bob using only local operations. It is
also true that exchanging classical messages cannot produce entanglement in otherwise
independent systems. This means that, for any N ,

N ebits � 1 bit,

N bits � 1 ebit. (7.20)

Classical communication and entanglement are not comparable resources.

Exercise 7.9 Explain why 1 qubit � 2 bits. Is it true that 2 bits � 1 qubit?

So far, we have not said what sort of task is made possible by shared entanglement. This
will be the business of the next section. For now, we will simply note the fact (worked out in
Problem 6.5) that shared ebits would enable Alice and Bob to create a secure cryptographic
key that could be used to communicate secret messages.

7.4 Using entanglement

Superdense coding

The basic decoding theorem (Eq. 4.8) tells us that Alice cannot reliably send two bits of
information to Bob via a single qubit, because the number of possible messages (N = 4) is
larger than the dimension of the Hilbert space (d = 2). Suppose, however, that Alice and
Bob initially share an ebit. By a local unitary transformation on her own member of the
qubit pair, Alice can change the state of the whole system into any of the four Bell states.
She can use this to represent two bits of information:

Message Bell state
00 |�+〉
01 |�−〉
10 |�+〉
11 |�−〉

Now Alice transfers her qubit to Bob. Bob, possessing both qubits, performs a Bell
measurement to distinguish the four possible states. From the result he can exactly determine
Alice’s message. Therefore,

1 ebit+ 1 qubit � 2 bits. (7.21)

Entanglement by itself is no help for communication, but it apparently allows us to send
two bits via a single qubit! For this reason, the technique just described is sometimes called
superdense coding.

To appreciate how peculiar this is, consider how Alice and Bob obtained their ebit in the
first place. One possibility is that Bob created an entangled qubit pair in his own lab and
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then transferred one qubit to Alice. The overall process then involves two qubit transfers,
one in each direction. We can indicate direction with arrows, and write

1
−−→
qubit+ 1

←−−
qubit � 2

−→
bits. (7.22)

By sending one qubit in each direction, we can send a two-bit message in one direction. This
would be impossible to understand if we regard a qubit merely as an ordinary message-
carrier with a one-bit capacity. The relation between bits and qubits is far more subtle
than that.

Teleportation

When Alice sends a qubit to Bob, the system is transferred with its state intact, whatever
that state may be. This process is similar to the process of sending a message, but there
are some essential differences. For instance, when Alice transmits an ordinary message she
may retain a copy for herself; but the no-cloning theorem tells us that this cannot occur
in a qubit transfer. Nevertheless, it is natural to refer to the transfer of an intact quantum
state as the quantum communication of quantum information, by analogy with the classical
communication of classical information in an ordinary message.

We know that we can accomplish classical communication by means of quantum
communication. Can we do the opposite? Can Alice send a qubit to Bob using only
bits?

The answer is no, because Alice cannot completely determine the state of the qubit by
any measurement process, and therefore cannot provide enough classical information to
Bob to construct the correct qubit state. But suppose Alice and Bob also share one or more
ebits?

Let us analyze this in a more definite way. At the outset, Alice possesses a qubit (qubit
#1, or the “input” qubit) that is in an arbitrary quantum state |ψ〉 = α |0〉+β |1〉. Alice and
Bob also share a qubit pair (qubits #2 and #3) that are in the Bell state

∣∣�(23)
+
〉
. The overall

three-qubit state is∣∣�(123)
〉 = ∣∣ψ (1)

〉⊗ ∣∣�(23)
+
〉

= α√
2

(
|0, 0, 0〉 + |0, 1, 1〉

)
+ β√

2

(
|1, 0, 0〉 + |1, 1, 1〉

)
. (7.23)

Now Alice makes a Bell measurement on the qubit pair in her possession (qubits #1 and
#2). Each possible outcome of this measurement will have a certain probability and will
result in a conditional state for Bob’s qubit (qubit #3). These can be computed using the
partial inner product. For example,〈

�
(12)
+
∣∣�(123)

〉 = 1
2

(
α
∣∣0(3)

〉+ β
∣∣1(3)

〉)
. (7.24)

This means that the |�+〉 outcome occurs with probability ( 1
2 )2 = 1

4 , and that whenever
this outcome occurs the conditional state of qubit #3 is α |0〉 + β |1〉.



150 Information and ebits

In other words, after Alice performs her measurement and obtains the outcome |�+〉,
the state of Bob’s qubit is exactly the state |ψ〉, the original state of the input qubit. This is
remarkable, especially considering the fact that Alice and Bob may be widely separated in
space. It is as if the quantum state has instantaneously vanished from one location (due to
Alice’s measurement) and reappeared someplace else.

Of course, Alice cannot count on obtaining the result |�+〉 for the measurement, and Bob
cannot know the outcome of Alice’s measurement without some further communication.
Suppose instead that Alice obtains the result |�−〉. Then we find that

〈
�

(12)
−
∣∣�(123)

〉 = 1
2

(
α
∣∣0(3)

〉− β
∣∣1(3)

〉)
, (7.25)

indicating that this outcome also occurs with probability 1
4 and leads to the conditional

state α |0〉 − β |1〉 for qubit #3. This is almost the same as before, and in fact Bob can
turn this conditional state into the input state |ψ〉 by applying the unitary operator Z on his
qubit.

Exercise 7.10 For the Bell measurement outcomes |�+〉 and |�−〉 on Alice’s qubit pair,
show that the probability of each outcome is again 1

4 , and that the conditional state of Bob’s
qubit can be transformed into the input state |ψ〉 by the application of a simple unitary
operator that depends on the measurement outcome but not |ψ〉.

Here is the upshot: Alice has the input qubit and one part of an ebit. She performs
a Bell measurement on these qubits and obtains one of four possible results. She then
communicates her result to Bob (requiring two bits of ordinary communication), and Bob
uses this information to make one of four possible unitary transformations on his own qubit.
At the end, Bob’s qubit is in exactly the same state as the input qubit was – in effect, one
qubit has been transferred from Alice to Bob. This process is called teleportation, and it
provides another relation between communication resources:

1 ebit+ 2 bits � 1 qubit. (7.26)

Once again, teleportation challenges our intuitions about classical and quantum information.
The original ebit shared by Alice and Bob could have arisen from quantum communication
from Bob to Alice. This implies

1
←−−
qubit+ 2

−→
bits � 1

−−→
qubit. (7.27)

If quantum communication is possible from Bob to Alice, and classical communication
is possible from Alice to Bob, then teleportation allows quantum communication from
Alice to Bob. The “quantum” part of quantum communication can be provided by shared
entanglement (ebits), without regard to the process by which this entanglement is initially
established.

Exercise 7.11 Comment on the following aphorism: “If entanglement is free, then one
qubit is worth exactly two bits.”
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Teleportation and superdense coding tell us that quantum entanglement is a useful
resource for the communication of quantum and classical information. The idea of compar-
ing the resources required to do various quantum and classical tasks has become a common
theme in quantum information science. One of its first and most enthusiastic proponents has
been Charles Bennett, one of the discoverers of both superdense coding and teleportation.
We have exhibited some of the basic relationships between bits, qubits, and ebits, which
we summarize for convenience:

1 qubit� 1 bit, (Re 7.18)

1 qubit� 1 ebit, (Re 7.19)

1 ebit+ 1 qubit� 2 bits, (Re 7.21)

1 ebit+ 2 bits� 1 qubit. (Re 7.26)

These expressions were first written in this form by Bennett. Collectively, we may call
them Bennett’s Laws.

7.5 What is quantum information?

We have discussed the transmission of bits and qubits as if they involved the actual
transport of particular physical systems from one point to another. But of course, our
experience with classical communication tells us that the matter may be more complicated
(see Exercise 1.1!). We say that a classical bit is communicated from Alice to Bob if the
final bit possessed by Bob (call it b′) is in a 0/1 state identical to that of the initial bit b
possessed by Alice, whether or not this bit is represented in the same physical system.
Similarly, we say that a qubit is communicated from Alice to Bob if Bob’s final qubit Q′ has
the same state as Alice’s initial qubit Q, whether or not they are the same physical system.
(Indeed, in teleportation the two systems are never the same.)

The qubit is the one type of resource that appears in each of Bennett’s Laws. But careful
reflection reveals that this resource is used in two apparently different ways:

• Alice’s Q may be initially in a definite pure state |ψ (Q)〉, which during the communication
process becomes the final state

∣∣ψ (Q′ )〉 of Bob’s qubit. This is how things work when we
use a qubit for transmitting classical messages (Eq. 7.18), or in teleportation (Eq. 7.26).

• Alice’s Q may be entangled with another system R, so that their joint state is |� (RQ)〉.
During the communication process, this entanglement is transferred to Bob’s qubit Q′, so
that the final state of RQ′ is

∣∣� (RQ′ )〉. This is the process used in both sharing entanglement
(Eq. 7.18) and superdense coding (Eq. 7.21).

We will call these “Type I” and “Type II” quantum communication, respectively. They
embody two distinct answers to the question, “What is quantum information?” For Type I,
quantum information lies in the (possibly unknown) state vector of the system Q. This is
more analogous to classical communication, in which a definite classical state is faithfully
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reproduced at the destination. For Type II, quantum information lies in the entangled state
of system Q and a “bystander” system R, which does not participate in the communication
process but merely serves as an “anchor” for the entanglement carried by Q. This seems to
be a very different picture.4

The two types, however, are very closely related. We will now argue that the ability to
do Type II quantum communication for a single entangled input state guarantees the ability
to do Type I quantum communication for any input state.

Suppose R and Q each have Hilbert space dimension d and start out in a maximally
entangled state, a uniform, “diagonal” superposition of product basis states:∣∣�(RQ)

〉 = 1√
d

∑
k

∣∣k(R), k(Q)
〉
. (7.28)

(The Bell states are maximally entangled states of two qubits.) If any basic measurement
is performed on R, each outcome has probability 1/d. The outcome associated with the
R-basis element |a(R)〉 leads to the conditional Q-state∣∣ψ (Q)

a
〉 = √

d
〈
a(R)

∣∣�(RQ)
〉
, (7.29)

(compare Eq. 6.49).

Exercise 7.12 Show that, for any Q-state |ψ (Q)〉, there is an R-state |a(R)〉 so that |ψ (Q)〉 =∣∣φ (Q)
a
〉
. That is, given |�(RQ)〉, any Q-state could arise as a conditional state for some

R-measurement outcome.

Suppose the entanglement of Q with R is transferred to Q′ by a Type II quantum
communication process. As in the no-cloning theorem, we assume that the entire system
(including all parts of the communication mechanism, which we will collectively call C)
can be regarded as informationally isolated during the process. It is also isolated from the
bystander system R. The overall time evolution will be described by a unitary operator of
the form 1(R) ⊗ U(QQ′C).

Now consider the following exercise:

Exercise 7.13 The composite quantum system AB is initially in the state |� (AB)〉, and B
evolves by the unitary operator V(B). Show that, for any A-state |a(A)〉,〈

a(A)
∣∣ (1(A) ⊗ V(B)

) ∣∣� (AB)
〉 = V(B)

〈
a(A)

∣∣� (AB)
〉
. (7.30)

We can interpret this exercise by comparing two processes:

4 From another point of view, however, Type II quantum communication is not so different from classical
communication. If Alice sends a bit b to Bob, what does it mean operationally to say that Bob’s received bit b′
is correct? This presumes the potential existence of a “reference bit,” a fiducial copy of b to which b′ may be
compared. Alice, for example, could retain her own copy of the transmitted message, and later on this can be
compared with Bob’s version. The communication is accurate provided the two bits are properly correlated. In
quantum communication we cannot make and keep copies, but the bystander system R plays a similar role. The
quantum communication from Alice to Bob is successful provided R and Q′ are properly correlated (i.e., in the
correct entangled state).
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• First we evolve the joint state |� (AB)〉 according to 1(A) ⊗ V(B), then we use the result to
find the conditional state for |a(A)〉.

• First we use |� (AB)〉 to find the conditional state for |a(A)〉, then we evolve this state
according to V(B).

Both processes lead to exactly the same final state of B. The dynamical evolution of B
commutes with the measurement process on A.5

Let us apply this fact to our communication problem. By assumption, our procedure
produces a final RQ′ state

∣∣�(RQ′)〉 that is the same as the initial state. A subsequent R-
measurement with outcome basis state |a(R)〉 will result in a conditional Q′-state

∣∣φ (Q′)
a
〉
.

But the R-measurement must commute with the communication process. If we do the
R-measurement first, the pure state

∣∣φ(Q)
a
〉

is the input to the communication process, and
this process must lead to the same output state

∣∣φ(Q′ )
a
〉
. Exercise 7.12 tells us that any Q-state

could arise in this way. Therefore, a Type II communication procedure for Q that accurately
transfers the entangled state |�(RQ)〉 will also work as a Type I communication procedure
for any input Q-state.

It is also true that any perfect Type I quantum communication process will also convey
entanglement equally well. (We will defer a general argument for this until Problem 9.3
of Chapter 9, but see Problem 7.5 at the end of this chapter.) The two apparently dis-
tinct ways of thinking about the quantum information in Q – as the definite unknown
state of Q or as the entanglement between Q and an outside system R – are really
equivalent.

So far, we have discussed perfect quantum communication. But suppose the process
is not perfect? In classical information, we often characterize this by the probability of
error PE, which is the probability that the output of the communication process disagrees
with the input. This is, for example, the “figure of merit” we used in the basic decoding
theorem of Section 4.1 and the basic distinguishability theorem of Section 4.2. If PE
is small, then the probability of success PS = 1 − PE is nearly 1. This would mean
that our process is nearly perfect, and in many practical situations this will be good
enough.

For quantum information, the corresponding “figure of merit” of a communication
process is fidelity. If the desired state is |ψ〉 but the actual state is

∣∣ψ ′〉, then the fidelity F
of the process is

F = ∣∣〈ψ ∣∣ψ ′ 〉∣∣2 . (7.31)

The fidelity satisfies 0 ≤ F ≤ 1. It is zero when the two states are distinguishable, and is
close to 1 when they are nearly indistinguishable. If F = 1, the two states must be identical
up to overall phase.6 (We are implicitly supposing that the input and output states are states

5 A variant of this argument is the key step in the proof of the representation theorem for generalized quantum
evolution maps, given in Section D.2 of Appendix D.

6 Some authorities define the fidelity to be
∣∣〈ψ ∣∣ψ ′ 〉∣∣, which we would call

√
F. This alternative definition has

some mathematical advantages. We prefer Eq. 7.31, however, because it has a simple interpretation: F is the
probability that

∣∣ψ ′〉 would pass a basic measurement test designed to determine whether the state is |ψ〉. The
fidelity F will be generalized to mixed states in Problem 8.4.
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of the same system Q, rather than isomorphic systems Q and Q′. This useful simplification
will be used for the rest of the discussion.)

The general idea of fidelity is applied in somewhat different ways to Type I and Type II
quantum communication schemes. In the Type I situation, we imagine that the input state
|ψk〉 is sent with probability pk , and that it winds up as the output state

∣∣ψ ′
k
〉
. Then it makes

sense to compute the average fidelity F̄:

F̄ =
∑

k
pk
∣∣〈ψk

∣∣ψ ′
k
〉∣∣2 . (7.32)

In a Type II situation, an entangled state |� (RQ)〉 is sent, yielding the output state
∣∣� ′ (RQ)

〉
.

Then we compute the entanglement fidelity Fe:

Fe =
∣∣〈� (RQ)

∣∣� ′ (RQ) 〉∣∣2 . (7.33)

In either case, a fidelity of 1 means that the quantum communication is perfect.
The two fidelities are connected. Suppose that, for some basis states |k(R)〉 for R, we can

write the entangled (Type II) input state as

∣∣� (RQ)
〉 =∑

k

√
pk

∣∣k(R), ψ (Q)
k
〉
. (7.34)

If we make an R-measurement in this basis, we will produce the conditional Q-state
∣∣ψ (Q)

k
〉

with probability pk , exactly as in the Type I problem. Since the R-measurement must
commute with the quantum communication process, the final Type II state must be

∣∣� ′ (RQ)〉 =∑
k

√
pk

∣∣k(R), ψ ′
k

(Q)〉 , (7.35)

for the Type I output states
∣∣ψ ′

k
(Q)〉.

Exercise 7.14 Explain in detail why this is so.

The entanglement fidelity is

Fe =
∣∣〈� (RQ)

∣∣� ′ (RQ) 〉∣∣2 = ∣∣∣∣∣∑
kl

√
pkpl

〈
k(R)

∣∣l(R)
〉 〈

ψk
∣∣ψ ′

l
〉∣∣∣∣∣

2

=
∣∣∣∣∣∑

k
pk
〈
ψk

∣∣ψ ′
k
〉∣∣∣∣∣

2

. (7.36)

What can we do with this last expression? Let the complex number
〈
ψk

∣∣ψ ′
k
〉 = xk + iyk

for real xk and yk . These real numbers are the values of two real random variables X and Y
with common probabilities pk . Then
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Fe = |〈X + iY〉|2 = |〈X 〉 + i 〈Y〉|2
= 〈X 〉2 + 〈Y〉2

≤
〈
X 2

〉
+
〈
Y2

〉
=
〈
|X + iY |2

〉
= F̄. (7.37)

Exercise 7.15 Explain each step in this derivation.

Therefore Fe ≤ F̄. The Type I problem is “no harder” than the related Type II problem,
since its fidelity is always at least as large. If the entanglement fidelity approaches 1,
then the average fidelity must do so as well. The reverse is not necessarily true; it may
be that F̄ = 1 for some particular collection of input states, but that Fe is nevertheless
small.

Exercise 7.16 A unitary Z rotation of one qubit can transform the Bell state |�+〉 into
|�−〉. Use this fact to construct an example in which F̄ = 1 for some set of inputs, but the
corresponding entanglement fidelity Fe = 0.

How shall we answer the question posed in this section: “What is quantum information?”
We have proposed Type I and Type II ideas and argued that they are, in some sense,
equivalent. However, two facts suggest that the Type II viewpoint is primary. The exact
transfer of a single entangled input by a quantum communication process is enough to
guarantee that every pure state input is transferred correctly. Furthermore, we know that
Fe ≤ F̄ for related Type I and Type II problems; and we can find examples where Fe = 0
and F̄ = 1. This suggests that Fe is a stricter, more comprehensive way to characterize the
overall “quantum fidelity” of the process.

For these reasons, we conclude that the deepest answer to the question is that quantum
information lies in the entanglement between systems. Quantum communication, in this
view, is fundamentally about the transfer of that entanglement from one system to another.
The essential role of Bennett’s qubit resource is to move ebits around.

Problems

Problem 7.1 Quantum cloning machine I. In this problem and the next, you will try your
hand at designing a possible quantum machine that does something akin to cloning two
non-orthogonal qubit states |0〉 and |+〉. The first is an approximate cloning machine, and
is required to have the following characteristics:

• The inner workings of the machine are completely unitary.
• The states update according to

|0, 0〉 → |c00〉 |+, 0〉 → |c++〉 , (7.38)

where |c00〉 and |c++〉 are the “cloned” |0〉 and |+〉 states.
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• The cloning fidelity Fc = |〈00 |c00 〉|2 = |〈+ + |c++ 〉|2, equal for the two possible
states, is as close to 1 as possible. (Fc = 1 would mean perfect cloning.)

Design your machine. How large can you make Fc?

Problem 7.2 Quantum cloning machine II. Here is another approach at almost-cloning
for non-orthogonal input states |0〉 and |+〉. This second device is a conditional cloning
machine, and is must have the following characteristics:

• The inner workings of the machine may employ random choices (“coin flips”) and
measurements.

• The machine does not always succeed in its task. When it fails, it announces “FAIL” and
destroys the input qubit state.

• When the machine does succeed, it can produce as many exact duplicates (Fc = 1) of
the input state as may be required.

• The machine is equally likely to work on either of the two inputs.

Design your machine. What is the probability that it works?

Problem 7.3 Preparation machines. A device P interacts with a quantum system Q as
follows: initially, Q is in the standard state |0〉, while P is initially either in |s1〉 or |s2〉.
The unitary time evolution of PQ maps

|s1〉 ⊗ |0〉 → |s1〉 ⊗ |ψ1〉 ,
|s2〉 ⊗ |0〉 → |s2〉 ⊗ |ψ2〉 .

In other words, the state of P is unchanged, but Q is changed to one state or another.
You should interpret |s1〉 and |s2〉 as two different “settings” of the device P, and these
settings determine which of the two Q-states |ψ1〉 or |ψ2〉 are prepared. Show that, if
|〈ψ1 |ψ2 〉| < 1, then |s1〉 and |s2〉 are orthogonal.7

Problem 7.4 Bennett also introduced a fourth information resource, the sbit. Alice and
Bob possess an sbit if they share a random classical bit of data that is secret from everyone
else, including any potential eavesdropper. Sbits can be used as the key in a cryptographic
scheme, so the problem of key distribution is exactly the problem of distributing sbits.
Devise some extensions of Bennett’s Laws to show how sbits are related to bits, qubits,
and ebits.

Problem 7.5 Suppose in the teleportation protocol, Alice’s input qubit is entangled with
another qubit, which we will designate #0. The initial state of the four qubits involved
is thus ∣∣�(0123)

〉 = ∣∣� (01)
〉⊗ ∣∣�(23)

+
〉
. (7.39)

7 Let us explain this result in more concrete terms. In a laboratory, the equipment configuration that creates |ψ1〉
must be entirely distinguishable from that which creates |ψ2〉, even if |ψ1〉 and |ψ2〉 are not very distinguishable
as Q-states. Thus, if we need to make a preparation machine P that can create 106 different Q-states, then we
need dimH(P) ≥ 106, even if Q itself is just a qubit.



157 Problems

The teleportation process on qubit #1 proceeds just as before. Show that, at the end of
the procedure, qubit #0 is entangled with qubit #3 in the state |� (03)〉. This shows that the
teleportation protocol may be used for either Type I or Type II quantum communication.

Problem 7.6 If we have more than two communicators, then the laws governing quantum
information resources become less well understood. Suppose Alice, Bob, and Charles
(our “players”) can share entanglement and send quantum messages to each other. Further
suppose that classical communication is so easy that we do not even keep track of it as a
resource. Any number of bits may be transmitted for free. (This makes ebits equivalent to
qubits.)

Let us keep track of two kinds of resource: ebits (between various pairs of players) and
ghzbits, in which the three players share a triple of qubits in a GHZ state (see Eq. 6.64).
Prove the following two relations:

1 ghzbit � 1 ebit(AB),

1 ebit(AB) + 1 ebit(BC) � 1 ghzbit. (7.40)



8 Density operators

8.1 Beyond state vectors

We cannot always assign a definite state vector |ψ〉 to a quantum system Q. It may be that
Q is part of a composite system RQ that is in an entangled state |� (RQ)〉. Or it may be that
our knowledge of the preparation of Q is insufficient to determine a particular state |ψ〉.
Consider, for instance, a qubit sent from Alice to Bob during the BB84 key distribution
protocol from Section 4.4. The state of this qubit could be |0〉, |1〉, |+〉 or |−〉, each with
equal likelihood. In either case – whether Q is a subsystem of an entangled system, or the
state of Q is determined by a probabilistic process – we cannot specify a quantum state
vector |ψ〉 for Q.

Nevertheless, in either case we are in a position to make statistical predictions about the
outcomes of measurements on Q. In this chapter we describe the mathematical machinery
for doing this.

Mixtures of states

Suppose the state of Q arises by a random process, so that the state |ψα〉 is prepared with
probability pα . The possible states |ψα〉 need not be orthogonal (as you can see in the
BB84 example above). We call this situation a mixture of the states |ψα〉, or a mixed state
for short.

One way to interpret a mixed state is to return to the idea of an ensemble of systems,
which we introduced in Section 3.3. The individual systems in our ensemble are prepared
in one of the various possible states, with a fraction pα of them prepared in |ψα〉. Now
suppose we measure an observable A on this system. For the subset of the ensemble with
the state |ψα〉, the average measured value will be 〈A〉α = 〈ψα|A |ψα〉. Over the entire
ensemble the average will be

〈A〉 =
∑
α

pα 〈A〉α

=
∑
α

pα Tr |ψα〉〈ψα|A. (8.1)

(To remind yourself of the definition and properties of the trace, refer to the discussion that
begins with Eq. 3.44.) We now define the density operatorρ to be
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ρ =
∑
α

pα |ψα〉〈ψα| . (8.2)

This operator depends on the possible states and their probabilities, but not on the observable
A. Since the trace operation is linear, the expectation is

〈A〉 = Tr ρ A. (8.3)

The density operator ρ therefore lets us compute the (ensemble average) expectation for
any observable A.

Exercise 8.1 We have introduced the density operator before, at the end of Section 3.3.
The state vector |ψ〉 was associated with the density operator ρ = |ψ〉〈ψ | . Eq. 8.3 here
is identical to Eq. 3.72 there. Explain how the previous concept of the density operator is a
special case of the present one.

This sort of probabilistic combination of states is called a mixture of states, and the
resulting situation (described by ρ) is a mixed state. A mixture of states is a very different
thing from a superposition. A superposition yields a definite state vector, whereas a mixture
does not and so must be described by a density operator. The following exercise makes this
distinction clearer:

Exercise 8.2 Think of a qubit with basis states |0〉 and |1〉. Consider (a) a superposition
of |0〉 and |1〉 with equal amplitudes, and (b) a mixture of these two states with equal
probabilities. Show that these two situations lead to the same value for 〈Z〉 but different
values for 〈X 〉.

Those situations for which a definite state vector exists are also known as pure states.
Different mixtures of states can lead to the same density operator. Consider an

equiprobable mixture of qubit states |0〉 and |1〉. Then

ρ = 1
2
|0〉〈0| + 1

2
|1〉〈1| = 1

2
1. (8.4)

Alternatively, suppose |+〉 and |−〉 appear with equal likelihood:

ρ = 1
2
|+〉〈+| + 1

2
|−〉〈−| = 1

2
1. (8.5)

Imagine two ensembles, one composed of equal numbers of |0〉 and |1〉 states and the
other composed of equal numbers of |+〉 and |−〉 states. Since the two mixtures have the
same density operator ρ, Eq. 8.3 tells us that the two ensembles have exactly the same
expectations 〈A〉 for any observable. In other words, the two ensembles are statistically
indistinguishable.

Exercise 8.3 Devise a mixture of three equally-likely qubit states that also yields the density
operator ρ = 1

2 1.
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Subsystems of entangled systems

Now suppose that a composite system RQ is in an entangled state |� (RQ)〉. As we saw in
Section 6.4, a basic measurement on R will lead to a mixture of conditional states on Q.
For the R-basis element |k(R)〉, we use the partial inner product to write:

√
pk

∣∣ψ (Q)
k
〉 = 〈

k(R)
∣∣� (RQ)

〉
, (8.6)

where pk is the probability of the kth measurement result and
∣∣ψ (Q)

k
〉

is the corresponding
conditional Q-state. The density operator for the mixture of Q-states is

ρ (Q) =
∑

k
pk
∣∣ψ (Q)

k
〉〈
ψ

(Q)
k
∣∣

=
∑

k

〈
k(R)

∣∣� (RQ)
〉 〈

� (RQ)
∣∣k(R)

〉
. (8.7)

We can formally write this as

ρ (Q) =
∑

k

〈
k(R)

∣∣ ρ (RQ)
∣∣k(R)

〉
, (8.8)

where ρ (RQ) = |� (RQ)〉〈� (RQ)| .
The expression on the right-hand side of Eq. 8.8 needs a bit of explanation. It resembles

the trace operation on ρ (RQ) (compare Eq. 3.46), except that it involves only the basis
for H(R).

We make sense of this by introducing the partial trace of an operator on H(RQ). Suppose
we have an operator that is an outer product of product vectors: G(RQ) = |α(R), φ (Q)〉〈β (R), ψ (Q)| .
Then we define

Tr(R)G(RQ) = Tr(R)

( ∣∣α(R), φ (Q)
〉〈
β (R), ψ (Q)

∣∣ )
= Tr(R)

( ∣∣α(R)
〉〈
β (R)

∣∣ ⊗ ∣∣φ(Q)
〉〈
ψ (Q)

∣∣ )
= 〈

β (R)
∣∣α(R)

〉 ∣∣φ (Q)
〉〈
ψ (Q)

∣∣ . (8.9)

The partial trace turns the outer product on H(R) into the corresponding inner product. We
can extend this definition to arbitrary operators by requiring that Tr(R) is linear. In any case,
the partial trace Tr(R) of an operator on H(RQ) is an operator on H(Q).

The partial trace can be computed using a basis for H(R). For the operator G(RQ) above

Tr(R)G(RQ) =
(∑

k

〈
β (R)

∣∣k(R)
〉 〈

k(R)
∣∣α(R)

〉) ∣∣φ (Q)
〉〈
ψ (Q)

∣∣
=
∑

k

〈
k(R)

∣∣α(R), φ (Q)
〉 〈

β (R), ψ (Q)
∣∣k(R)

〉
=
∑

k

〈
k(R)

∣∣G(RQ)
∣∣k(R)

〉
. (8.10)
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This result can be extended via linearity to an arbitrary operator on H(AB). Because our
original definition of Tr(R) did not depend on a choice of basis for H(R), this expression for
the partial trace is basis-independent.

The density operator ρ (Q) from Eq. 8.8 (describing the mixture of conditional states after
a measurement on R) is thus

ρ (Q) = Tr(R)ρ
(RQ). (8.11)

Because the partial trace is basis-independent, the same density operator would arise for
the conditional Q-states for any R-measurement. Therefore, the choice of R-measurement
cannot have any effect on the ensemble averages of any Q-observable.

Even if we have not made any R-measurement at all, it makes sense to use the density
operator ρ (Q) from Eq. 8.11 to describe the state of subsystem Q. For a composite system
RQ in the joint state |� (RQ)〉, the expectation value of an observable A(Q) on Q is〈

A(Q)
〉 = 〈

� (RQ)
∣∣ (1(R) ⊗ A(Q)

) ∣∣� (RQ)
〉

=
∑

k

〈
� (RQ)

∣∣ ( ∣∣k(R)
〉〈

k(R)
∣∣ ⊗ A(Q)

) ∣∣� (RQ)
〉

=
∑

k

〈
� (RQ)

∣∣k(R)
〉
A(Q)

〈
k(R)

∣∣� (RQ)
〉

= Tr(Q)

(∑
k

〈
k(R)

∣∣� (RQ)
〉 〈

� (RQ)
∣∣k(R)

〉)
A(Q). (8.12)

Therefore, 〈
A(Q)

〉 = Tr(Q)ρ
(Q)A(Q). (8.13)

The density operator ρ (Q) = Tr(R) |� (RQ)〉〈� (RQ)| gives us the expectation value of any observ-
able on Q. If RQ is in an entangled state, we cannot assign a pure state to Q. But when we
consider only the observable properties of Q by itself, we can reasonably assign to Q the
mixed state ρ (Q) given by the partial trace.

Exercise 8.4 Consider the entangled states |�+〉 and |�−〉 for a pair of qubits, defined in
Eq. 6.15 and 6.50. In each case, find density operators to describe the subsystem states of
each qubit. Do the subsystem density operators completely determine the joint state of the
composite system?

General considerations

We have used the density operator ρ (Q) to describe two distinct situations:

• The exact preparation of Q is not known, but various possible states |ψα〉 have prob-
abilities pα . In this case, ρ (Q) describes the statistical properties of the mixture of
states.
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• Q is part of a composite system RQ that has a definite state vector |� (RQ)〉; however, only
experiments on Q alone are to be performed. In this case, ρ (Q) describes the statistical
properties of the subsystem Q.

These two situations are related. Suppose the composite system RQ is in a known joint
entangled state |� (RQ)〉, but R and Q are located in two separated laboratories. Experimenters
working with system Q will ascribe a density operator ρ (Q) to this system, since they are in the
second situation above. Now word comes that the other laboratory has made a measurement
on R (though the measurement result is not announced). The Q-experimenters retain the
same density operator ρ (Q), though their interpretation of it is now different. Depending on
the result of the R-measurement, the system Q is in one pure state or another, but it is not
possible to say which one. In other words, the experimenters now say that ρ (Q) describes a
mixture of states, the first situation above.

Exercise 8.5 Imagine that the composite system RQ is itself described by a mixture of joint
states. Show that Eq. 8.11 still makes sense to define the state of the subsystem Q.

Here is a trio of important facts, which we will present as exercises:

Exercise 8.6 Show that any density operator ρ must be a positive operator.

Exercise 8.7 Consider the density operator ρ on H(Q). Show that

Tr ρ = 1, (8.14)

whether ρ arises from (a) a mixture of Q-states, or (b) a pure (possibly entangled) state of
a composite system RQ.

Exercise 8.8 Suppose ρ is a positive operator on H(Q) whose trace is 1. Show that ρ is a
possible density operator arising from either (a) a mixture of Q-states, or (b) a pure state of
a composite system RQ.

Together, these establish that the set of possible density operators for Q is exactly the set of
positive operators on H(Q) that have unit trace. A final exercise shows that a probabilistic
mixture of mixed states is a possible mixed state:

Exercise 8.9 Suppose ρ1 and ρ2 are density operators, and let p1 and p2 be non-negative
real numbers with p1 + p2 = 1. Show that

ρ = p1ρ1 + p2ρ2, (8.15)

is a possible density operator – i.e. is positive and has unit trace.
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8.2 Matrix elements and eigenvalues

Populations and coherences

Let us write the density operator ρ in terms of the basis { |n〉}:
ρ =

∑
m,n

ρmn |m〉〈n| . (8.16)

The matrix representation of a density operator is called, reasonably enough, a density
matrix. The diagonal matrix element ρnn = 〈n| ρ |n〉 is the probability that a basic measure-
ment in this basis will yield the result n. If we imagine performing such a measurement on
the members of an ensemble of systems described by ρ, then ρnn is the fraction of those
systems that produce the result n. For this reason, the diagonal elements ρnn of a density
matrix are sometimes called populations.

The off-diagonal density matrix elements tell us something different. Suppose we know
only that the diagonal matrix elements ρ00 = ρ11 = 1

2 for the density operator of a qubit
in the standard basis. There are many possible states consistent with this information. For
example, an equal mixture of |0〉 and |1〉 will have a density matrix

(ρmn) = 1
2

(
1 0
0 1

)
, (8.17)

whose off-diagonal elements are zero. On the other hand, the superposition |+〉 has the
density matrix

(ρmn) = 1
2

(
1 1
1 1

)
. (8.18)

The distinction between a mixture and a superposition of |0〉 and |1〉 can be found in the
off-diagonal elements of the density matrix.

These matrix elements encode the relative phases (if any) between the basis elements in
the state, as illustrated in the following exercise.

Exercise 8.10 Show that the state |ψ〉 = 1√
2

(
|0〉 + eiφ |1〉

)
has a density matrix in the

standard basis

(ρmn) = 1
2

(
1 e−iφ

eiφ 1

)
. (8.19)

In a superposition of basis states, there is a definite phase relation between the terms of the
superposition. We say that a superposition is coherent, and the off-diagonal elements of
the density matrix are called coherences. But suppose that the relative phase φ in the state
|ψ〉 above is not known. Instead of a single state |ψ〉 with a single φ, we have an equal
mixture of all possible values of φ between 0 and 2π . The density matrix will then be an
average of matrices like Eq. 8.19 over the possible values of φ. The populations (diagonal
elements) are unaffected by the average, but the ensemble average

〈
eiφ 〉 = 0. The resulting

density matrix will look like Eq. 8.17, an “incoherent” mixture of |0〉 and |1〉. A mixture
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of superposition states with random relative phases is thus equivalent to a mixture of the
basis states.

The difference between a superposition and a mixture is the possibility of interference
effects. Neither |0〉 nor |1〉 has a definite value of the observable X, but the coherent
superposition |+〉 does, because the probability amplitudes for the measurement outcomes
interfere (constructively for X = +1, destructively for X = −1). A mixture of |0〉 and |1〉
will show no such interference effects; the probabilities of the measurement results±1 will
be simple mixtures of the probabilities given by the basis states.

Exercise 8.11 Explain the preceding paragraph in terms of the two-beam interferometer
from Chapter 2, using the |u〉 and |l〉 states as the standard basis. What measurement
corresponds to the observable X?

Between the two extremes – between a perfectly coherent superposition and a completely
incoherent mixture – there are intermediate cases in which the coherences of the density
matrix are smaller in magnitude but not zero. Interference effects are observable for these
states, but are weaker.

Exercise 8.12 Consider the qubit state with density matrix

(ρmn) = 1
2

(
1 K
K 1

)
, (8.20)

where 0 ≤ K ≤ 1. A measurement of X is made on this qubit. Calculate |P(+1)− P(−1)|
as a function of K. (In the two-beam interferometer realization, this is sometimes called the
visibility of the interference effects.)

Any physical process which has the effect of suppressing the coherences of the density
matrix (in some particular basis) is called a decoherence process. We will discuss such
processes in Chapter 9. For now, we simply note that a decoherence process destroys
interference effects between probability amplitudes. Problem 8.5 analyzes an explicit
example.

Schmidt decomposition

Next, suppose that our basis { |k〉} is composed of eigenstates of the density operator ρ.
The density matrix in this basis is diagonal. The eigenvalue spectrum {λk} is a collection
of non-negative real numbers that add up to 1 – in other words, a probability distribution.
We can write ρ in its spectral decomposition:

ρ =
∑

k
λk |k〉〈k| . (8.21)

This looks like a mixture in which the eigenbasis state |k〉 appears with probability λk , and
indeed this is one possible mixture that leads to ρ. (As we have seen, it is by no means the
only such mixture.)



165 Matrix elements and eigenvalues

Imagine that the density operator ρ (R) of system R arises from the pure entangled state
|� (RQ)〉 of the composite system RQ. We can use the eigenbasis of ρ (R) to expand the
entangled state: ∣∣� (RQ)

〉 =∑
k

∣∣k(R)
〉⊗ ∣∣ψ (Q)

k
〉
. (8.22)

The density operator is thus

ρ (R) = Tr(Q)

∣∣� (RQ)
〉〈
� (RQ)

∣∣ =∑
k,k′

〈
ψ

(Q)

k′
∣∣ψ (Q)

k
〉 ∣∣k(R)

〉〈
k′(R)∣∣ . (8.23)

Comparing this to the spectral decomposition of ρ (R), we conclude that〈
ψ

(Q)

k′
∣∣ψ (Q)

k
〉 = λk δkk′ . (8.24)

The vectors
∣∣ψ (Q)

k
〉 = 〈

k(R)
∣∣� (RQ)

〉
are orthogonal. We can find an orthonormal set of vectors

|k(Q)〉 such that ∣∣ψ (Q)
k
〉 = √

λk
∣∣k(Q)

〉
. (8.25)

We can, if need be, extend this set into a basis for H(Q). Our entangled state is∣∣� (RQ)
〉 =∑

k

√
λk

∣∣k(R), k(Q)
〉
. (8.26)

This is called the Schmidt decomposition of the entangled state |� (RQ)〉.
Here is what we have proven: Given a joint state vector |� (RQ)〉 for RQ, there exist

bases { |k(R)〉} for H(R) and { |k(Q)〉} for H(Q) such that Eq. 8.26 holds. This is remarkable!
If dimH(R) = dimH(Q) = d, then a joint state vector |� (RQ)〉 would typically require d2

complex coefficients when written in terms of a product basis. Equation 8.26 has only
d real coefficients

√
λk . There must be something very special about the Schmidt bases

{ |k(R)〉} and { |k(Q)〉}. And indeed there is: these are eigenbases for ρ (R) and ρ (Q), respectively.
Choosing these bases gives us a much more compact expression for |� (RQ)〉.
Exercise 8.13 For a pair of qubits, find the Schmidt decomposition for the state

|ϒ〉 = 1√
2

(
|0, 0〉 + |1,+〉

)
. (8.27)

The Schmidt decomposition is a powerful tool for analyzing the states of a composite
system. Here are some useful results that are easy to prove using the Schmidt decomposition:

Exercise 8.14 Show that if RQ is in a pure state, ρ (R) and ρ (Q) have exactly the same non-zero
eigenvalues.

Exercise 8.15 The Schmidt number of a joint state |� (RQ)〉 is the number of non-zero terms in
its Schmidt decomposition. What is the Schmidt number of a product state? If dimH(R) = 3
and dimH(Q) = 5, what is the maximum possible Schmidt number?

Exercise 8.16 Consider a mixed state ρ (R) of R. A state |� (RQ)〉 is said to be a purification
of ρ (R) in Q if Tr(Q) |� (RQ)〉〈� (RQ)| = ρ (R). Show that any two purifications of ρ (R) in Q are
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related by a unitary operator acting only on system Q. That is,∣∣� (RQ)
2

〉 = (
1(R) ⊗ U(Q)

) ∣∣� (RQ)
1

〉
, (8.28)

for purifications
∣∣� (RQ)

2
〉

and
∣∣� (RQ)

1
〉
.

8.3 Distinguishing mixed states

In Sections 4.1 and 4.2 we proved two fundamental results about how well we can distin-
guish between quantum states. These theorems were proven for pure states described by
state vectors; now we need to adapt them to mixed states described by density operators.

First, consider a situation in which Alice wishes to send Bob a message by preparing a
quantum system in one of a collection of “signal” states. It might be that these are mixed
states of the system described by density operators. Then we need the

Basic decoding theorem for mixed states. If Alice encodes N equally likely messages
as mixed states in a quantum system with dimH = d, and if Bob decodes this by
performing a basic measurement (perhaps on a larger Hilbert space) and inferring the
message from the result, Bob’s probability of error is bounded by

PE ≥ 1− d
N

. (Re 4.8)

Let us prove this. Each message α is encoded in a state described by the density operator
ρα , which operates on the Hilbert space H. This space may be a subspace of a larger space.
If � is the projection onto H, then ρα = �ρα� and Tr � = d.

Now, as in Section 4.1, we suppose that Bob makes a basic measurement using the basis
{ |k〉}, then groups the various outcomes into disjoint subsets Cα . If the measurement result
lies in Cα , then Bob will infer that Alice’s message is α. In other words, we can assign to
each message α the projection operator

πα =
∑
k∈Cα

|k〉〈k| , (8.29)

such that
∑

α πα = 1. Then the probability that Bob infers the correct message is

PS =
∑
α

1
N

Tr ραπα

= 1
N
∑
α

Tr �ρα�πα

= 1
N
∑
α

Tr ρα (�πα�) . (8.30)
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For any positive operator P and density operator ρ, Tr ρP ≤ Tr P. Thus,

PS ≤ 1
N
∑
α

Tr �πα�

= 1
N

Tr �

(∑
α

πα

)
�

= 1
N

Tr � = d
N

. (8.31)

The probability of error PE in this procedure must therefore satisfy Eq. 4.8. In other words,
our basic decoding theorem generalizes without change to embrace the possibility of mixed
signals.

Exercise 8.17 Compare this proof to the one given in Section 4.1, and fill in any details
that have been skimmed over. Is the present argument fundamentally more complicated
than the previous one?

The basic decoding theorem led us to say that the information capacity of a system with
dimH = d is just log d bits. This point still holds if mixed signals are allowed.

We can actually arrive at a stronger result if we know something about the signal states
ρα . Suppose that each ρα is a uniform density operator on a subspace of dimension s.
That is,

ρα =
1
s

Dα , (8.32)

where Dα is a projection operator. Then we find that

PS = 1
Ns

∑
α

Tr Dα (�πα�)

≤ 1
Ns

Tr � = d
Ns

. (8.33)

Exercise 8.18 Fill in the gaps in this derivation.

It follows that the error probability is

PE ≥ 1− d
Ns

. (8.34)

Exercise 8.19 Explain why the information capacity of a system with dimH = d using
such uniform signal states is log d − log s. Show that this can be achieved by some code.
(The situation in which d is not a multiple of s requires some thinking.)

The basic distinguishability theorem of Section 4.2 can be generalized to mixed states
as well, although we need to formulate the new version carefully. We imagine that we have
two equally likely mixed states ρ0 and ρ1, and we define the operator 
 = ρ0 − ρ1. The
difference operator 
 is Hermitian and has zero trace. If 
 = 0, then ρ1 and ρ2 are the
same and make identical predictions for all measurement. This means that no procedure for
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determining which state is present will succeed with a probability better than mere chance,
i.e. PS = 1

2 . If 
 is non-zero, then we can do better.
Let δ be the sum of the positive eigenvalues of 
. This is non-zero if and only if the two

states are different. Our generalized theorem is this:

Basic distinguishability theorem for mixed states. Suppose a system is prepared in
one of two equally likely mixed states ρ0 and ρ1, with 
 and δ as defined above. Then
the probability of correctly identifying the state by a basic measurement is bounded by

PS ≤ 1+ δ

2
, (8.35)

where equality is achievable by a suitable choice of observable.
The proof is a straightforward adaptation of the one given in Section 4.2. We will

therefore leave it as an exercise:

Exercise 8.20 Prove the basic distinguishability theorem for mixed states.

Exercise 8.21 Explain why our new result is really a generalization of the original basic
distinguishability theorem.

One final point. If ρ1 = ρ2, then the two states are entirely indistinguishable. However,
if ρ1 �= ρ2, then δ > 0 and the best possible PS > 1/2. This is better than guessing. Even
if we cannot distinguish the two states perfectly, we can always obtain some information
about how the system was prepared. Whenever two situations are described by different
density operators, they are at least slightly distinguishable.

8.4 The Bloch sphere

There is an elegant way to visualize the set of density operators for a qubit system, which
we will now describe.

Given a Hilbert space H of finite dimension, the set B (H), the set of all operators on H,
is itself a vector space, since the linear combination of two operators is also an operator.
Note that B (H) is in fact a Hilbert space with inner product

〈A, B〉 = Tr A†B. (8.36)

Exercise 8.22 Show that 〈A, B〉 has the required properties of symmetry, linearity, and
positive-definiteness.

Exercise 8.23 If dimH = d, show that dimB (H) = d2. Given an orthonormal basis { |n〉}
for H, show that the operators |m〉〈n| form an orthonormal basis for B (()H).

The density operator ρ, of course, is an element of B (H).
For a qubit system, dimQ = 2. A convenient basis set for B (Q) is {1, X, Y, Z}. This is a

set of 22 = 4 operators, but how do we know that it forms a basis? The following exercise
does show this:



169 The Bloch sphere

Exercise 8.24 Show that the operators 1, X, Y, and Z are orthogonal to one another in B (Q).

We call this basis set the Pauli basis for B (Q). Any operator at all can be written as a linear
combination of the operators in the Pauli basis.1 Since the basis operators are Hermitian,
any Hermitian operator is a real linear combination. We note that Tr 1 = 2 and all of the
other basis operators are traceless. It follows that any unit-trace ρ can be written

ρ = 1
2

(1+ aX X+ aY Y+ aZZ) . (8.37)

A density operator for a qubit system may be specified by three real numbers aX , aY , and
aZ – the components of a vector 	a in real 3-D space. Formally, we can introduce a “vector”
	σ whose components are X, Y, and Z operators, and write

ρ = 1
2

(1+ 	a · 	σ ) . (8.38)

The vector 	a is called the Bloch vector for the density operator ρ.
But we are not quite done. Any real Bloch vector 	a defines a trace-1 Hermitian operator

ρ, but in order for ρ to be a density operator it must also be positive. Which Bloch vectors
yield legitimate density operators? We will first answer this question for pure states of a
qubit system, for which the following characterization is useful:

Exercise 8.25 Suppose ρ is a Hermitian operator on a qubit Hilbert space Q. Show that
ρ is the density operator for a pure state if and only if Tr ρ = 1 and Tr ρ2 = 1. (Hint:
Consider the eigenvalues of ρ.)

(See Problem 8.2.) In terms of the Bloch vector 	a, we have:

Tr ρ2 = 1
2

(
1+ (aX )2 + (aY )2 + (aZ)2

)
. (8.39)

Exercise 8.26 Prove this. You will use the fact that X2 = Y2 = Z2 = 1, and that the traces
of other products of Pauli operators (XY, YZ, etc.) are all zero.

Therefore, the pure states can be identified with the 	a vectors for which

	a · 	a = 1 (pure state). (8.40)

The Bloch vectors for pure states form a sphere in our real 3-D space. This is called the
Bloch sphere, and is shown in Fig. 8.1.

The “north and south poles” of the Bloch sphere are the states with Bloch vectors (0, 0, 1)

and (0, 0,−1). With respect to the standard basis { |0〉 , |1〉} for H these are

1 Our basis elements are not normalized in B (H), since Tr X2 = Tr Y2 = Tr Z2 = Tr 1 = 2. We could normalize
them by dividing by

√
2, but we will find it a little more convenient here to relax our usual convention and use

a non-normalized basis set.
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Fig. 8.1 The Bloch sphere describing qubit density operators. The outer surface is made up of pure states,
for which

∣∣�a∣∣ = 1. Some familiar states are shown. Points inside the sphere represent mixed qubit
states; the very center is identified with the density operator 1

2 1, for which �a = 0.

1
2

(1+ Z) = 1
2

(
|0〉〈0| + |1〉〈1| + |0〉〈0| − |1〉〈1|

)
= |0〉〈0| , (8.41)

1
2

(1− Z) = 1
2

(
|0〉〈0| + |1〉〈1| − |0〉〈0| + |1〉〈1|

)
= |1〉〈1| . (8.42)

The orthogonal state vectors |0〉 and |1〉 yield antipodal points on the Bloch sphere. Angles
between Bloch vectors are not angles in Hilbert space.

Exercise 8.27 What is the Bloch vector associated with the pure state |+〉? What is the
state vector associated with the Bloch vector (0, 0.6, 0.8)?

Exercise 8.28 Suppose our qubit is a spin-1/2 system with |0〉 = |z+〉, etc. We make a
measurement of Sz on a spin with Bloch vector 	a. Show that 〈Sz〉 = aZ�/2. What are 〈Sx〉
and

〈
Sy
〉
?

Exercise 8.29 Given a unit vector n̂ with components (nx, ny, nz), we can form the spin
component observable Sn in that direction. Show that the eigenstate |n+〉 of Sn with
eigenvalue +�/2 has the Bloch vector 	a = n̂.

These exercises show that the Bloch sphere is an easy way to visualize the pure states
of a qubit. The representation is particularly straightforward if the qubit happens to be a
spin-1/2 system.
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What happens when we consider mixtures of states? For example, consider

ρ = pρ1 + (1− p)ρ2. (8.43)

Let 	a1 and 	a2 be the Bloch vectors for ρ1 and ρ2 respectively. Then

ρ = p
2

(1+ 	a1 · 	σ )+ 1− p
2

(1+ 	a2 · 	σ )

= 1
2

(1+ (p	a1 + (1− p)	a2) · 	σ ) . (8.44)

The Bloch vector for ρ is p	a1 + (1− p)	a2, which lies on the line segment between 	a1 and
	a2. This means that the mixed states of a qubit system have Bloch vectors that lie in the
interior of the Bloch sphere. Mixing simply “fills in” the sphere, producing the Bloch ball.2

A mixed state has a Bloch vector satisfying

	a · 	a < 1 (mixed state). (8.45)

Exercise 8.30 What mixed state has 	a = 0?

One might hope that there is an equally nice picture of the density operators for other
quantum systems. Unfortunately, things are not so simple when dimH > 2.3

We will conclude our introduction to the Bloch sphere with a final exercise, which proves
a very useful fact.

Exercise 8.31 Suppose ρ1 and ρ2 are qubit density operators with Bloch vectors 	a1 and
	a2. Show that

Tr ρ1ρ2 =
1
2

(1+ 	a1 · 	a2) . (8.46)

8.5 Time evolution

The state vector |ψ(t)〉 of an informationally isolated system evolves in time according to
the Schrödinger equation

H |ψ(t)〉 = i�
d
dt
|ψ(t)〉 . (Re 5.23)

We describe the evolution over the interval from time 0 to t by the unitary operator U(t):

|ψ(t)〉 = U(t) |ψ(0)〉 . (8.47)

2 The “filled-in” Bloch sphere is also sometimes called the “Bloch sphere,” though mathematically speaking the
sphere is only the outer surface.

3 For dimH = 3, for instance, the density operators are represented as vectors in a 15-dimensional space, and
the outer “boundary” of the set of possible density operators has a more complicated shape.
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The density operator corresponding to this pure state is ρ(t) = |ψ(t)〉〈ψ(t)| . The unitary
time evolution of this operator is thus given by

ρ(t) = U(t) ρ(0) (U(t))†, (8.48)

the general rule being, if |ψ〉 → U |ψ〉 then ρ → UρU†.
What about the Schrödinger equation? For a tiny interval of time dt, the evolution

operator is
U(dt) = 1− i

�
H dt, (8.49)

where we have omitted terms of order O
(
dt2

)
and higher. Then the time evolution from t

to t + dt yields

ρ(t + dt) =
(

1− i
�

H dt
)

ρ(t)
(

1+ i
�

H dt
)

= ρ(t)− i
�

(Hρ(t)− ρ(t)H) dt. (8.50)

Therefore, at the time t,
dρ

dt
= 1

i�
[H, ρ]. (8.51)

This is the Schrödinger equation for the pure-state density operator ρ = |ψ〉〈ψ | .
Exercise 8.32 Derive Equation 8.51 in a different way, by taking the time derivative of
|ψ〉〈ψ | and using the product rule for the derivative of the outer product.

Equations 8.48 and 8.51 also apply to mixed states. To see this, consider an initial mixture
of pure states:

ρ(0) =
∑
α

pα |ψα(0)〉〈ψα(0)| . (8.52)

If the initial state is actually the pure state |ψα(0)〉, then it evolves over time to |ψα(t)〉 =
U(t) |ψα(0)〉. The final mixed state is just the corresponding mixture of the possible final
pure states

ρ(t) =
∑
α

pα |ψα(t)〉〈ψα(t)|

=
∑
α

pα U(t) |ψα(0)〉〈ψα(0)| (U(t))†

= U(t) ρ(0) (U(t))†, (8.53)

as before. A similar argument generalizes Eq. 8.51. The essential mathematical point is that
both Eq. 8.48 and 8.51 are linear in the density operator, and that probabilistic mixtures
yield density operators that are linear combinations of the states in the mixture. It is also
true that the Schrödinger equation, Eq. 8.51, holds for each subsystem of a non-interacting
composite system (see Problem 8.8).

Exercise 8.33 Derive the generalization of Eq. 5.27 describing the time evolution of the
expectation 〈A〉 of an observable A.
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For qubit density operators, we can visualize the time evolution of the state as a trans-
formation of the Bloch vector of the state. How do Bloch vectors change under unitary
evolution? Suppose two different qubit states ρ1 and ρ2 evolve via the same unitary U.
Then

Tr ρ1ρ2 → Tr Uρ1U† Uρ2U† = Tr ρ1ρ2. (8.54)

From Exercise 8.31, we can conclude that the dot product 	a1 · 	a2 of the states’ Bloch vectors
remains unchanged in time. This means that the angle between two pure-state Bloch vectors
(each with unit magnitude) is constant under the action of U. Unitary time evolution must
therefore correspond to a rigid rotation of the Bloch sphere.

8.6 Uniform density operators

Suppose we know that the state of a quantum system lies in a subspace T of its Hilbert
space H, but we do not have any additional reason to consider one state vector more likely
than another. Then the most reasonable density operator to assign is a uniform density
operator on the subspace T :

ρ = 1
d

�, (8.55)

where � is the projection operator onto T and d = dim T = Tr �.
The uniform density operator is analogous to a uniform probability distribution over a

set. And indeed, the two ideas are connected. If we choose a basis { |k〉} for T and assign
each basis vector the same probability 1/d, then the resulting mixture has our uniform
density operator. But the same density operator could be produced by other mixtures, some
of which do not have equal probabilities.

Exercise 8.34 Suppose a qubit system has a uniform density operator on its entire Hilbert
space. Devise a mixture of pure states with unequal probabilities that yields this density
operator.4

As we saw in Section 1.1, if we have a uniform probability distribution over M
possibilities we assign an entropy H according to

H = log M , (Re 1.2)

where the logarithm has base 2. By analogy, if we have a uniform density operator on a
d-dimensional subspace T , we will assign a quantum entropy S according to

S = log d. (8.56)

4 We thought of three different easy ways to do this. One was based on the BB84 states from Section 4.4. Another
used the geometry of the Bloch ball. A third applied the result of Problem 8.3. The same problem can be attacked
from many directions!
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A uniform density operator on the Hilbert space of a qubit system has the numerical value
S = log 2 = 1; therefore, we say that S is measured in “qubits” (just as H was measured
in “bits”). The quantum entropy S is a measure of how “spread out” a uniform density
operator is. (Later, we will generalize both H and S to non-uniform situations.)

Exercise 8.35 A system of five qubits is in a mixed state described by a uniform density
operator over its Hilbert space. What is the quantum entropy S of this density operator?

A mixture of states has values both of H (for the probability distribution of possible states)
and S (for the resulting density operator), but these do not need to agree.

Exercise 8.36 Consider the following mixtures of states for a qubit system.

(a) Suppose we have a mixture of |0〉 and |1〉, each with equal likelihood. Show that both
H and S have numerical value 1.

(b) Consider the BB84 mixture, an equal mixture of |0〉, |1〉, |+〉, and |−〉. What is H?
What is S?

Consider a situation in which we know various “external parameters” of a quantum
system – the number of particles present, the volume of the container enclosing the system,
the value of an externally applied magnetic field, etc. These parameters determine the
Hilbert space for the system and its Hamiltonian H. We also know one additional piece of
information: the energy E of the system. This tells us that the quantum state of the system
must lie in the eigenspace of H with eigenvalue E. The projection onto this subspace is
denoted �(E). In the absence of further information, we will assign the system a density
operator that is uniform on this subspace:

ρ(E) = 1
�(E)

�(E), (8.57)

where �(E) = Tr �(E) is the dimension of the eigenspace. In statistical mechanics, this
situation is sometimes called the microcanonical ensemble, and can be summed up by
saying that every state with the known energy E is equally likely.

Alternatively, we might know only the energy to finite precision – that is, we know
that the energy is between E and E + δE. (This is a more realistic assumption for very
large systems.) Then �(E) will be the projection onto the subspace spanned by energy
eigenstates in the specified range. The microcanonical density operator is then defined
exactly as before.

A macroscopic system will have a huge number of energy levels with a lot of degeneracy
and near-degeneracy. For such systems, we will assume that the degeneracy function �(E)

has the following properties for some range of energies:

• �(E) � 1;
• �(E) is an increasing function of E;
• �(E) is continuous and differentiable.

The third property cannot be literally true, of course, since �(E) takes only integer values.
However, because of the first property, changes in �(E) can be small compared to �(E).
This fact permits us to treat �(E) as an effectively smooth function.
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The quantum entropy of the microcanonical state ρ(E) is

S = log �(E). (8.58)

This is related to the thermodynamic entropy Sθ of the macroscopic system:

Sθ = kB ln �(E) = kB ln 2 S, (8.59)

where kB = 1.38 × 10−23 J/K is Boltzmann’s constant. (Equation 8.59 is the quantum
version of Eq. 1.3.) From thermodynamics, we recall that if heat is added to a system, the
changes in the energy E and thermodynamic entropy Sθ are related by

dE = T dSθ , (8.60)

where T is the absolute temperature. Therefore,

1
T
= dSθ

dE

= kB

d
dE

ln �(E). (8.61)

Because �(E) is increasing, T > 0.

Exercise 8.37 The heat capacity C of a system tells how changes in temperature are related
to changes in energy: dE = C dT . For most systems, an increase in temperature corresponds
to an increase in energy, so C > 0. For such systems, show that

d2

dE2 ln �(E) < 0. (8.62)

8.7 The canonical ensemble

Consider a system composed of three independent qubits. For each qubit, the energy levels
are the standard basis states, with E0 = 0 and E1 = ε. The total energy for the three-qubit
system ranges from 0 to 3ε. Suppose we know that the total energy is ε. The uniform
density operator on this eigenspace is

ρ (123) = 1
3

(
|0, 0, 1〉〈0, 0, 1| + |0, 1, 0〉〈0, 1, 0| + |1, 0, 0〉〈1, 0, 0|

)
. (8.63)

(The degeneracy function �(123)(ε) = 3.) Now consider the state of just one of these qubits:

ρ (1) = Tr(23)ρ
(123)

= 2
3
|0〉〈0| + 1

3
|1〉〈1| . (8.64)

A uniform density operator for the global system can yield a non-uniform density operator
for a subsystem, and the energy of the subsystem need not have a definite value even though
the overall system energy does.
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Exercise 8.38 What is the expectation of the energy of qubit #1? Explain why this makes
sense.

Exercise 8.39 Suppose we have five independent qubits like the ones above, with a total
energy of 2ε. What is �(12345)(2ε)? Given a uniform density operator for the entire system,
what is ρ (1)? How about ρ (3)?

The microcanonical state of the previous section is an appropriate assumption when a
system is isolated. The system cannot exchange energy with its surroundings, and so its
energy must remain at one fixed value. But if it can exchange energy with its surroundings,
then it may have any one of many different energies, and we do not expect the density
operator to be uniform. How can we describe a situation like this?

Imagine a quantum system Q is in contact with another quantum system R. We assume that
the systems are nearly non-interacting, so that their energies are additive (see Section 6.2).
On the other hand, we do allow the possibility of a small interaction between Q and R
so that they can exchange energy over time. We further assume that R is a macroscopic
system (as described above), and that it is so much larger than Q that its properties do not
change significantly as it gains or loses energy from Q. (We call such a system R a thermal
reservoir.)

The total energy of QR is E, and we ascribe a microcanonical state to the joint system.
What is the resulting density operator? To find this, we need to find the projection �(QR)(E)

onto the eigenspace with energy E. Since the systems are non-interacting, we can find a
joint eigenbasis of product states of QR. Let { |n〉〈n| } be an energy eigenbasis for Q with
corresponding energy eigenvalues En. The QR basis elements are of the form |n〉⊗ ∣∣φn,α

〉
,

where
∣∣φn,α

〉
is an energy eigenstate for the reservoir R with energy E − En. Thus

�(QR)(E) =
∑
n,α

|n〉〈n| ⊗ ∣∣φn,α
〉〈
φn,α

∣∣
=
∑

n
|n〉〈n| ⊗�(R)(E − En). (8.65)

The trace of this operator is �(QR)(E), and so

ρ (QR) = 1
�(QR)

∑
n
|n〉〈n| ⊗�(R)(E − En). (8.66)

The state of the subsystem Q is ρ (Q) = Tr(R)ρ
(QR), which is

ρ (Q) = 1
�(QR)

∑
n

�(R)(E − En) |n〉〈n| . (8.67)

This is not a uniform density operator, since �(R) depends on the energy of R.
Now we will estimate �(R)(E− En). The energy En is a small fraction of the total energy

E, and so we can use the approximation

ln �(R)(E − En) = ln �(R)(E)− En
d

dE
ln �(R)(E)

= ln �(R)(E)− En
kBT

, (8.68)
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where T is the absolute temperature of the reservoir R. Exponentiating this to obtain �(R),
we arrive at

ρ (Q) = �(R)(E)

�(QR)(E)

∑
k

e−En/kBT |k〉〈k| . (8.69)

We can conveniently express this in terms of the Hamiltonian operator H(Q) for system Q:

ρ (Q) = 1
Z exp

(−H(Q)/kBT
)

, (8.70)

where Z = Tr exp(−H(Q)/kBT), a normalization factor also called the partition function.
Equation 8.70 gives the density operator we would assign to a system that can exchange

energy with a thermal reservoir, in the absence of additional information. It depends only
on the temperature T and not on any other details of the reservoir. In statistical mechanics,
this situation is called the canonical ensemble; the canonical state is the equilibrium state
of a system that can exchange energy with its surroundings. Both the microcanonical and
canonical ensemble are idealizations. The microcanonical ensemble supposes the system
to be completely isolated, while the canonical ensemble supposes it to be just a tiny part of
a much larger isolated system.

As an example, consider our qubit with energies 0 and ε, in equilibrium with a large
thermal reservoir at temperature T . The canonical state is

ρ = 1
Z

(
|0〉〈0| + e−ε/kBT |1〉〈1|

)
. (8.71)

Exercise 8.40 Find the partition function Z for this state.

This looks like a mixture of |0〉 (with probability 1/Z) and |1〉 (with probability e−ε/kBT/Z).
If we take this view of ρ, then we see that the lower energy state |0〉 is always more probable
than |1〉, with the probabilities being nearly equal for kBT � ε. However, we need not
assume that this is the actual probabilistic mixture of states for the qubit. The density
operator ρ by itself yields all statistical predictions for the system.

Exercise 8.41 For the qubit state ρ, calculate 〈E〉, 〈Z〉, and 〈X 〉.

Here is a related example. Suppose we have a spin-1/2 particle like a proton in an external
magnetic field, which we take to lie in the z-direction. Then the Hamiltonian of the spin
is H = −γ BSz, where γ is the gyromagnetic ratio for the spin. The energy eigenstates for
this are |↓〉 and |↑〉, with energies + γ B�

2 and − γ B�

2 , respectively. The canonical density
operator for the spin at temperature T is

ρ = 1
Z

(
eγ B�/2kBT |↑〉〈↑| + e−γ B�/2kBT |↓〉〈↓|

)
, (8.72)

where Z = eγ B�/2kBT + e−γ B�/2kBT .
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Exercise 8.42 A spin is in a canonical state inside a magnetic field in the z-direction.

(a) Show that

〈Z〉 = tanh
(

γ B�

2kBT

)
, (8.73)

where tanh is the hyperbolic tangent function.5

(b) Show that, for a given B, 〈Z〉 → 0 as T →∞, and 〈Z〉 → 1 as T → 0.
(c) If the temperature T � γ B�/2k, derive the approximate expression

〈Z〉 ≈ γ B�

2kBT
. (8.74)

Exercise 8.43 A proton has gyromagnetic ratio γp = 2.675 × 108 s−1T−1. Suppose this
proton is in a 10.00 T magnetic field and is in equilibrium with its surroundings at room
temperature, about T = 300 K. Calculate 〈Z〉 and show that 〈Z〉 � 1. How low would we
have to make T so that 〈Z〉 = 0.5? How about 〈Z〉 = 0.99?

An external magnetic field causes nuclear spins to tend to “line up” with the field, since this
state has a lower energy. However, for typical magnetic fields and ordinary temperatures,
this tendency is weak. Nuclear magnetic resonance experiments exploit this slight effect,
which works because a macroscopic sample of hydrogen contains a large ensemble of
protons. See Chapter 18 for more details.

Exercise 8.44 Both the microcanonical and canonical states of a system are time-
independent under the system’s internal dynamics. Explain.

Problems

Problem 8.1 Angles between Bloch vectors are not angles in Hilbert space, but the two
are related. Suppose pure states |ψ〉 and |φ〉 satisfy |〈ψ |φ 〉| = cos θ . Show that the Bloch
vectors for these states form an angle 2θ .

Problem 8.2 The characterization of pure state density operators in Exercise 8.25 does not
extend to higher-dimensional Hilbert spaces.

(a) Construct an explicit counter-example if dimH = 3. That is, find a Hermitian operator
ρ such that Tr ρ = 1 and Tr ρ2 = 1, but ρ �= |ψ〉〈ψ | for any state |ψ〉.

(b) For arbitrary finite dimH, suppose we know that Tr ρ = 1, Tr ρ2 = 1, and Tr ρ3 = 1.
Prove that ρ is the density operator for a pure state.

Problem 8.3 Suppose {(pα , |ψα〉)} and {(qβ ,
∣∣φβ

〉
)} are two mixtures that yield the same

density operator ρ. (The notation {(pα , |ψα〉)} means that the state |ψα〉 occurs with

5 The hyperbolic sine and cosine functions are sinh x = (ex−e−x)/2 and cosh x = (ex+e−x)/2, respectively. The
hyperbolic tangent is the ratio sinh x/ cosh x. If you are unfamiliar with the hyperbolic trigonometric functions,
consider it an additional exercise to work out a few of their basic properties, analogous to familiar ones for sin,
cos, and tan.
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probability pα .) By including states with probability zero, we may assume that α and β run
over the same range. Show that there exists a unitary matrix Uαβ such that

√
pα |ψα〉 =

∑
β

Uαβ
√

qα

∣∣φβ

〉
. (8.75)

(Hint: Append an additional system and find purifications that give rise to the mixtures as
mixtures of conditional states. Recall that every two purifications are related by a unitary
operator on the purifying system.)

Problem 8.4 The fidelity F between two pure states was introduced in Eq. 7.31. This can
be generalized to mixed states. Suppose ρ

(A)
1 and ρ

(A)
2 are two density operators for system

A. Then we define

F
(
ρ

(A)
1 , ρ (A)

2
) = max

∣∣〈� (AB)
1

∣∣� (AB)
2

〉∣∣2 , (8.76)

where |� (AB)
i 〉 is a purification of ρ (AB)

i in the larger system AB, and the maximum is taken
over all choices of such purifications.6

(a) Show that, if the two A-states are pure, this definition reduces to Eq. 7.31.
(b) Show that F = 1 if and only if the two states are exactly the same.
(c) If ρ1 = |φ1〉〈φ1| is pure but ρ2 is not, show that

F = 〈φ1| ρ2 |φ2〉 . (8.77)

Hint: You will need the fact that∣∣∣∣∣∑
k

αkβ
∗
k

∣∣∣∣∣
2

≤
(∑

k
|αk|2

)(∑
k
|βk|2

)
, (8.78)

with equality if and only if βk = Cαk for all k. (This is just a form of the Schwartz
inequality of Eq. 4.31.)

(d) Consider mixed states ρ
(AC)
1 and ρ

(AC)
2 of a composite system AC. Show that

F
(
ρ

(AC)
1 , ρ (AC)

2
) ≤ F

(
ρ

(A)
1 , ρ (A)

2
)

. (8.79)

The fidelity between the states can only increase if we discard the subsystem C. This
property is called the monotonicity of the fidelity. Devise a qubit example in which the
fidelity of the AC states is 0 but that of the A states is 1.

Problem 8.5 For a quantum system with basis { |k〉}, consider all unitary operators of
the form

U =
∑

k
αk |k〉〈k| , (8.80)

where αk = ±1. These operators flip some of the phases of the basis states |k〉 and leave
the rest unchanged.

6 It is possible, but much more difficult, to derive an explicit formula for the fidelity F in terms of the two density
operators. The interested student is advised to consult a more specialized text in quantum information theory.



180 Density operators

There are 2d such phase-flipping operators, where d = dimH. We consider a physical
process D that consists of choosing one of these unitary operators at random (with equal
probability 2−d) and applying it to an initial state of the system. This process can be viewed
as a map on density operators:

ρ → D(ρ), (8.81)

where D(ρ) is the final density operator, averaged over the random choice of U.
Write the density operator as a density matrix with respect to the basis { |k〉}. Show that

the effect of D is to wipe out the coherences of this matrix while leaving the populations
unchanged. In other words, random phase-flipping produces complete decoherence.

Comment on the connection between this problem and Exercise 1.11 in Chapter 1.

Problem 8.6 A qubit system undergoes a decoherence process in the standard { |0〉 , |1〉}
basis, perhaps by way of the random phase flip in Problem 8.5. Show how this process
changes vectors in the Bloch ball.

Problem 8.7 Show that the no-communication theorem of Section 6.4 also holds for mixed
states of the composite system AB. (You will need to devise the mixed-state generalization
of the idea of conditional states.)

Problem 8.8 Let AB be a composite system with joint state |� (AB)〉.
(a) For a B-state |β (B)〉 and the operators G(A) and K(B), show that〈

β (B)
∣∣G(A) ⊗ K(B)

∣∣� (AB)
〉 = G(A)

(〈
β (B)

∣∣ K(B)
) ∣∣� (AB)

〉
. (8.82)

(b) If the joint state |� (AB)〉 evolves according to the joint Hamiltonian H(AB), and the
subsystems A and B are non-interacting, then show

dρ (A)

dt
= 1

i�
[H(A), ρ (A)]. (8.83)

In other words, the Schrödinger equation (Eq. 8.51) holds for the subsystem A.

Problem 8.9 A pseudo-pure state is a mixture between a uniform density operator on a
Hilbert space and the density operator for a particular pure state |ψ〉. It thus has the form

π =
(

1− η

d

)
1 + η |ψ〉〈ψ | , (8.84)

where d = dimH. The parameter η is the “purity” of the state, and ranges between
0 and 1.

(a) Under unitary time evolution, show that the pseudo-pure state for |ψ〉 with purity η

evolves into the pseudo-pure state for U |ψ〉 with the same purity.
(b) Suppose A is an observable with zero trace. Show that for a pseudo-pure state

〈A〉 = η 〈ψ |A |ψ〉 . (8.85)

(c) Show that the qubit canonical state in Eq. 8.71 is pseudo-pure. What is its purity?
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For very noisy systems, like nuclear spins at room temperature, pure states may be
impractical to make. Pseudo-pure states are a convenient substitute for many purposes.

Problem 8.10 Suppose �a and �b are projection operators onto subspaces Ta and Tb,
respectively. Show that �a and �b are orthogonal (in the sense of the operator inner
product of Eq. 8.36) if and only if the subspaces Ta and Tb are orthogonal in H.

Problem 8.11 A Werner state of two qubits has a density operator

ρλ = λ |�−〉〈�−| + 1− λ

3

(
|�+〉〈�+| + |�+〉〈�+| + |�−〉〈�−|

)
, (8.86)

for a parameter 1/4 ≤ λ ≤ 1 and Bell states |�±〉 and |�±〉 defined in Eq. 7.13. The
family of Werner states ranges from a pure entangled state (λ = 1) to a uniform density
operator (λ = 1/4) on Q⊗Q.

(a) Rewrite ρλ in terms of |�−〉〈�−| and the identity operator 1 on Q⊗Q.
(b) Suppose each qubit is subjected to the same unitary transformation U. Show that

(U⊗ U) ρλ (U⊗ U)† = ρλ. (8.87)

Since U may represent a rotation of a spin-1/2 state in three dimensions, we may say
that the Werner states are “rotationally invariant.”

(c) In Section 6.6 we used the Bell state |�−〉 (Werner state ρ1) to prove Bell’s theorem.
Repeat this analysis for the general Werner state ρλ and find an expression analogous
to Eq. 6.58. Over what range of λ will the Werner state violate the CHSH inequality
(Eq. 6.54) for the spin measurements shown in Fig. 6.2?
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9.1 Open system dynamics

Any quantum system Q in our laboratory is a subsystem of something bigger. Nevertheless,
we can often ignore the rest of the world and consider only states, dynamics, and measure-
ments pertaining to Q itself. When can we do this? That is the question that concerns us in
this chapter.

Consider two quantum systems, a system of interest Q and another, external system E.
We will suppose that Q can have any initial state, but E starts out in a fixed pure state
that we will call |0〉.1 Thus, Q and E initially have no correlations with each other. The
two systems now interact, evolving via the unitary operator U on H(QE). In the situation
described, we call Q an open system, and the external system E is its environment. The time
evolution of Q cannot in general be described by an “internal” unitary operator – that is, an
operator on H(Q). What sort of description is possible?

If the initial state of Q is |φ〉, then the final state of Q will be described by the density
operator Tr(E)U

(
|φ〉〈φ| ⊗ |0〉〈0|

)
U†. This is easily generalized to mixed initial states

of Q. If Q starts out in the state ρ, then its final state will be

ρ′ = Tr(E)U
(
ρ ⊗ |0〉〈0|

)
U†. (9.1)

With both |0〉 and U fixed, the final Q-state ρ′ is a function of the initial Q-state. We can
write ρ′ = E(ρ), where E is a map on operators defined by

E(G) = Tr(E)U
(
G⊗ |0〉〈0|

)
U†. (9.2)

Although we have expressed the function E using the environment E, it is important to
remember that E itself only refers to Q – that is, to the relation between initial and final
states of the open system. The function E provides a way of describing the evolution of the
state of Q.

Exercise 9.1 Show that the map E is linear and trace-preserving. That is, given operators
A and B and a scalar c, show that the following are true:

1 The fixed initial state of E means that we are considering fixed “external conditions” for the evolution of Q. The
requirement that E is in a pure state is not very restrictive. If E were initially in a mixed state, we could always
regard E as a subsystem of some larger E′ in an entangled pure state.
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(a) E(cA) = cE(A).
(b) E(A+ B) = E(A)+ E(B).
(c) Tr E(A) = Tr A.

Exercise 9.2 A map on operators is said to be positive if positive operators are always
mapped to positive operators. Show that E is a positive map. Why is this important?

The map E is a linear operator that acts on operators, an object that is sometimes called a
superoperator.

Let us consider an example. Suppose that Q and E are both qubits and that their interaction
is described by the evolution operator

Uc = 1⊗ |0〉〈0| + X⊗ |1〉〈1| . (9.3)

(This is the CNOT operator of Chapter 18, where Q is the “target” qubit and E is the
“control” qubit.) The effect of this interaction on the Q-state will depend on the initial state
of the environment E:

• If the initial state of E is |0〉, then Q evolves unitarily according to the identity
operator 1.

• If the initial state of E is |1〉, then Q evolves unitarily according to the operator X.
• For initial E-states that are superpositions of |0〉 and |1〉, the evolution of Q is not unitary.

Consider the third case with an initial E-state |+〉 = 1√
2
(|0〉 + |1〉). Then the interaction

leads to a map F on Q-operators:

F(G) = Tr(E)Uc
(
G⊗ |+〉〈+|

)
U†

c . (9.4)

What is F? Any operator for qubit Q can be written as a combination of the outer products
|0〉〈0| , |1〉〈1| , |0〉〈1| , and |1〉〈0| . Thus, we need only to determine how F acts on these
four operators. We can do this in a couple of simple exercises:

Exercise 9.3 Show that

Uc |0,+〉 = 1√
2

(
|0, 0〉 + |1, 1〉

)
= |�+〉 ,

Uc |1,+〉 = 1√
2

(
|1, 0〉 + |0, 1〉

)
= |�+〉 , (9.5)

where |�+〉 and |�+〉 are two of the Bell states from Eq. 7.13.

Exercise 9.4 Use Exercise 9.3 to show that

F( |0〉〈0| ) = 1
2

1, F( |1〉〈1| ) = 1
2

1,

F( |0〉〈1| ) = 1
2

X, F( |1〉〈0| ) = 1
2

X, (9.6)

where X is the Pauli operator.
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This completely defines F . To understand the implications of this, let us take our analysis
a further step. Section 8.4 shows how to represent qubit density operators geometrically as
vectors in the Bloch sphere. If ρ is represented by the Bloch vector 	a, then

ρ = 1
2

(1+ aX X+ aY Y+ aZZ) . (Re 8.37)

To understand F , we just need to know how it affects the Pauli operators.

Exercise 9.5 Show that F(1) = 1, F(X) = X, F(Y) = 0, and F(Z) = 0 .

Thus, F has a very neat description: the Bloch vector (aX , aY , aZ) maps to (aX , 0, 0),
projecting 	a onto the X-axis.

Exercise 9.6 Repeat this entire analysis if the interaction is

Ud = 1⊗ |0〉〈0| + Z⊗ |1〉〈1| , (9.7)

and E is initially in the state |+〉. How is the Bloch vector of the initial Q state affected by
the resulting map on Q-states?

The map E defined in Eq. 9.2 takes initial Q-states to final Q-states. Is there a way of
representing that map without an explicit reference to the environment E?

There is. Choose a particular basis { |ek〉} for the Hilbert space of E. For each k define
the operator Ak by

Ak |φ〉 = 〈ek|U |φ, 0〉 , (9.8)

for any |φ〉 in H(Q). Although we have used the environment E and the interaction U in this
definition, the Ak operators themselves act on H(Q) alone. We can use the { |ek〉} basis to do
the partial trace in Eq. 9.2. If we act on a pure state |φ〉, then

E( |φ〉〈φ| ) =
∑

k
〈ek|U

(
|φ〉〈φ| ⊗ |0〉〈0|

)
U† |ek〉

=
∑

k
Ak |φ〉〈φ|A†

k . (9.9)

Since any density operator for Q is a linear combination of pure state density operators, we
have in general that

E(ρ) =
∑

k
AkρA†

k . (9.10)

This is called an operator–sum representation or Kraus representation of the map E , and
the operators Ak are called Kraus operators.

Exercise 9.7 Pick a basis for the environment E and find an operator–sum representation
for the map F of Eq. 9.4.



185 Informationally isolated systems

The Kraus operators satisfy a normalization condition. If ρ′ = E( |φ〉〈φ| ) for a
normalized pure state |φ〉, then

Tr ρ′ =
∑

k
〈φ|A†

kAk |φ〉

= 〈φ|
(∑

k
A†

kAk

)
|φ〉 . (9.11)

We must have Tr ρ′ = 1 for every normalized |φ〉, and thus∑
k

A†
kAk = 1. (9.12)

We can describe the map E entirely in terms of Kraus operators Ak satisfying Eq. 9.12. It is
often more convenient to describe E in this way, without dragging in the whole environment
E and its dynamics. This can be a very good thing, since E might be very large and complex.
An operator–sum representation is a compact description of how E affects the evolution of
the state of Q.

Exercise 9.8 Explain why the unitary evolution of a density operator (Eq. 8.48) is a special
case of Eq. 9.10. In the unitary case, what is the significance of the normalization condition
in Eq. 9.12?

We have seen how to go from unitary evolution on the system QE to a map on density
operators of Q, represented by a set of Kraus operators. Problem 9.1 shows how to do the
reverse, starting with a set of Kraus operators on Q and arriving at a unitary evolution on a
larger system. In Appendix D, we outline the proof of an even more powerful result, which
we can state informally as follows. Suppose E is a linear map on Q-operators. Then these
three conditions are equivalent:

• E represents a “physically reasonable” evolution for density operators on Q. (For a clear
definition of “physically reasonable,” see Appendix D.)

• E is given by unitary evolution on an extended system, as in Eq. 9.2.
• E has a Kraus representation (Eq. 9.10), where the Kraus operators are normalized

according to Eq. 9.12.

In short, the type of quantum dynamics we have described here is the most general type
that can be represented by a superoperator E .

9.2 Informationally isolated systems

We can now give a precise mathematical description of a heuristic principle that we
introduced as long ago as Section 1.2. There we said that a quantum system evolves
in a way that respects the principle of superposition – and thus could exhibit interference
phenomena – provided that the system is “informationally isolated.” By this phrase we
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meant that no record is produced anywhere in the Universe of the system’s exact state. But
what does it mean for a system to be “informationally isolated”?

Once again, we imagine that our system of interest Q is part of a composite system QE,
that E is initially in a fixed state |0〉, and that the overall evolution of QE is described by
the unitary operator U. For the input state vector |φ〉 for Q, the final joint state for QE is
|�〉 = U |φ, 0〉.

We can define an evolution map E for Q according to Eq. 9.2, as before; but now we are
interested also in what happens to the external system E. We say that Q is informationally
isolated if there is no information transfer from Q to E in this process – that is, if the final
state of E is independent of the initial state of Q. That final E-state is

σ = Tr(Q) |�〉〈�| = Tr(Q)U
(
|φ〉〈φ| ⊗ |0〉〈0|

)
U†. (9.13)

The system Q is informationally isolated if σ is the same for every possible input state
of Q.

Assume that Q is informationally isolated. The final density operator σ for E has eigen-
values λk and yields a basis of eigenstates |ek〉. Since σ is independent of |φ〉, so are its
eigenvalues and eigenstates. For the initial |φ〉, we can construct a Schmidt decomposition
(see Eq. 8.26) for the final joint state |�〉:

|�〉 =
∑

k

√
λk |qk , ek〉 , (9.14)

where the Q-states |qk〉 are orthonormal and are the only parts of the right-hand side that
may depend on |φ〉.

How do the |qk〉 kets depend on |φ〉? For every k with λk > 0, define the operator Vk on
Q-states by

Vk |φ〉 = 1√
λk
〈ek|U |φ, 0〉 = 1√

λk
〈ek |� 〉 = |qk〉 . (9.15)

Exercise 9.9 Compare the definitions of the Kraus operators Ak in Eq. 9.8 and the Vk
operators of Eq. 9.15. How do they differ, and why?

The assumption of informational isolation of Q means that λk and |ek〉 are independent of
|φ〉, which shows that Vk acts as a linear operator. Because the |qk〉s are normalized, then
for any Vk ,

〈φ| V†
kVk |φ〉 = 〈qk |qk 〉 = 1, (9.16)

for all Q-states |φ〉. Thus, we know that V†
kVk = 1, and so Vk must be unitary (see

Problem 3.7).
Now imagine that we have Vk and Vl with k �= l. The operator V†

kVl must be unitary.
However, for any state |φ〉,

〈φ| V†
kVl |φ〉 = 〈qk |ql 〉 = 0, (9.17)

and so V†
kVl = 0, which is certainly not unitary. This contradiction tells us that there can

be only one Vk operator. The final E density operator σ has only one non-zero eigenvalue
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λ = 1 and so the Schmidt decomposition for |�〉 has only a single non-zero term |q, e〉:
U |φ, 0〉 = |�〉 = |q, e〉 =

(
V |ψ〉

)
⊗ |e〉 . (9.18)

The state of the system Q has evolved from the pure state |φ〉 to the pure state V |φ〉, where
V is unitary.

We have shown that informational isolation of Q implies that the system Q evolves via
a unitary operator V. The converse is also true. Suppose we know that the net effect of
the joint evolution U on the initial state |φ, 0〉 is to take the Q-state from |φ〉 to V |φ〉 for
some unitary V. The final state of QE must be a purification of V |φ〉, which is of the form
V |φ〉 ⊗ ∣∣eφ

〉
. In this notation, we have left open the possibility that

∣∣eφ

〉
depends on the

initial Q-state |φ〉 – that is, that Q is not informationally isolated. However, consider the
final states for two different inputs |φ〉 and

∣∣φ′〉:
U |φ, 0〉= V |φ〉 ⊗ ∣∣eφ

〉
,

U
∣∣φ′, 0

〉= V
∣∣φ′〉⊗ ∣∣eφ′

〉
.

(9.19)

The inner product between these two states is

〈φ, 0|U†U
∣∣φ′, 0

〉 = 〈φ| V†V |φ〉 〈eφ

∣∣eφ′
〉
,〈

φ
∣∣φ′ 〉 = 〈

φ
∣∣φ′ 〉 〈eφ

∣∣eφ′
〉
. (9.20)

If
〈
φ
∣∣φ′ 〉 �= 0, it follows that

∣∣eφ

〉 = ∣∣eφ′
〉
.

Exercise 9.10 Show that this is also true in the case where
〈
φ
∣∣φ′ 〉 = 0. (You will need a

third Q-state
∣∣φ′′〉 that is not orthogonal to either |φ〉 or

∣∣φ′〉.)
In other words, the final state of E does not depend at all on the initial state of Q, so no
information is transferred from Q to E. Thus Q is informationally isolated. We have now
established an important result:

Isolation theorem. Suppose the composite system QE evolves according to the unitary
operator U, and that E is initially in some fixed pure state |0〉. Then the evolution of Q
itself is unitary if and only if Q is informationally isolated.

This is a deeper fact than may first appear, and it encompasses several of our previous
theorems. Here is an example:

Exercise 9.11 Use the isolation theorem to give yet another proof of the no-cloning theorem
of Section 7.2.

Exercise 9.12 Consider the interaction Uc between qubits Q and E defined in Eq. 9.3. We
have seen that the Q-state evolution is not unitary when the initial state of the E qubit is

1√
2
( |0〉 + |1〉). In this situation, find an explicit example to show that the final state of E

can depend on the initial state of Q – that is, that Q is not informationally isolated.

When Q is informationally isolated, we can describe its time evolution by a simple
unitary operator on H(Q). But even when this is true, the unitary operator may depend on
the particular state of the external system E. This is a significant conceptual point. A spin
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with a magnetic moment is not really dynamically isolated from its surroundings, since
it interacts with the external magnetic field. However, for a given external field, the spin
may be informationally isolated, with a time evolution described by a unitary operator that
depends on the field.

9.3 The Lindblad equation

For the open system Q, the map E represents the system’s evolution over a finite interval of
time. As Exercise 9.8 suggests, this is analogous to the unitary evolution of an information-
ally isolated system. As we have seen, there is also an “instantaneous” way of expressing
unitary evolution, via the Schrödinger equation for density operators:

dρ

dt
= 1

i�
[H, ρ]. (Re 8.51)

Is there a generalization of this for open systems?
This is a delicate question. Suppose we consider the evolution of Q over a time interval

that includes the times 0 < t1 < t2. In the unitary case, the operator U(t1, 0) describes
the evolution from 0 to t1, while U(t2, t1) describes the evolution from t1 to t2. The whole
interval from 0 to t2 is described by

U(t2, 0) = U(t2, t1)U(t1, 0), (9.21)

(see Eq. 5.10). In other words, the time evolution over a larger interval of time is just a
composition of separate unitary time evolutions over the subintervals composing the larger
interval. We arrive at the differential equation in Eq. 8.51 by considering how the state of
Q evolves over very short intervals at various times.

What about open systems? The existence of the evolution map E depends on our assump-
tion that the system E begins in a fixed initial state, independent of the state of Q. But as
Q and E interact, they do become entangled. If our assumption about the E-state holds at
the time t = 0, then we can find a map E1 that tells how the state of Q evolves from 0 to
t1, and another map E2 that describes the evolution from 0 to t2. Since Q and E are most
likely in an entangled state at t = t1, however, no such map exists to describe how the
Q-state changes from t1 to t2. The evolution of an open system is not in general a sequence
of separate stages. Therefore, we should not expect to be able to arrive at a differential
equation describing that evolution in the manner of Eq. 8.51.

Having explained carefully why a generalization of the Schrödinger equation for open
systems is not feasible, we will now proceed to derive such a generalization, called the
Lindblad equation. How can we possibly justify such a contradictory approach?

To begin with, our derivation will simply establish the necessary form of the Lindblad
equation, without making any claim that it is exactly applicable to any given system.
Moreover, the Lindblad equation may be a good effective model for the evolution of the
Q-state in some physical situations, even if we cannot take it to be an exact description.
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Our equation will be a good model if the environment E has internal dynamics that “hides”
any entanglement with Q as quickly as it arises.

Consider the example of an atom Q in the surrounding electromagnetic field E, which
is initially in the “vacuum” (zero-photon) state |0〉. If Q emits a photon into E, it quickly
propagates away. Once this has happened, the immediate vicinity of Q again appears to be
empty, and any entanglement of the atom’s state with the distant photon has no effect on
the subsequent behavior of Q. It may be a reasonable approximation to suppose that, at any
point in time, the evolution of Q proceeds as if the environment E is in a fixed uncorrelated
state.

Now we derive the form of the Lindblad equation. Over a short interval of time δt, the
state of Q evolves from ρ to E(ρ) = ρ + δρ, where δρ is small.2 The map E is given by
an operator–sum representation:

ρ + δρ =
∑

k
AkρA†

k . (9.22)

We assume that one of the Kraus operators (call it A0) is nearly the identity operator 1,
while the other terms in Eq. 9.22 are of order O (δt). To this order we write

A0 = 1+ (L0 − ih)δt,

Ak = Lk
√

δt, (9.23)

where k �= 0. (From this point on, we will consider the k = 0 case separately, and treat
k as ranging over all other values.) The operators L0 and h are Hermitian. The terms in
Eq. 9.22 are

A0ρA†
0 = ρ + (

L0ρ + ρL0 − ihρ + iρh
)
δt +O

(
δt2

)
,

AkρA†
k = LkρL†

k δt. (9.24)

To first order in δt, therefore,

δρ =
(
{L0, ρ} + 1

i
[h, ρ] +

∑
k

LkρL†
k

)
δt. (9.25)

(You should recognize the commutator [·, ·] and the anticommutator {·, ·} of various
operators.) Our differential equation for ρ is

dρ

dt
= {L0, ρ} + 1

i
[h, ρ] +

∑
k

LkρL†
k . (9.26)

To finish our derivation, we need two more ingredients. First, by comparing our results
so far to Eq. 8.51, we recognize that the Hamiltonian of the open system Q must be H = �h.
This Hamiltonian may include both the internal dynamics of Q and correction terms due to
the interaction of Q with its environment. The following exercise completes the analysis:

2 The physical assumptions behind our derivation can be expressed this way: δt � TQ, the timescale over which
changes in the Q-state take place; but δt � TE , the timescale over which entanglement is “lost” in the dynamics
of system E.
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Exercise 9.13 Since Tr ρ = 1 for all times, the trace of dρ
dt must be zero whatever ρ may

be. Show that this implies that

L0 = −1
2

∑
k

L†
kLk . (9.27)

We arrive at the Lindblad equation:

dρ

dt
= 1

i�
[H, ρ] +

∑
k

(
LkρL†

k −
1
2
{L†

kLk , ρ}
)

. (9.28)

The Lk are called Lindblad operators. These operators have units of (time)−1/2.

How do we know what Lindblad operators to use for a given physical situation? Since
we regard the Lindblad equation merely as a plausible model of open system dynamics,
valid only when the entanglement is rapidly “lost” in the environment E, we will not try
to derive the Lindblad operators from the overall Hamiltonian evolution of QE. Rather, we
will choose the Lk operators in a pragmatic way to describe the dynamical phenomena for
Q that we wish to model.

As a first example, suppose Q is a two-level atom with ground state |0〉 and excited state
|1〉. Over time, the atom decays to its ground state, perhaps by the emission of a photon.
This is not a unitary process, since any initial state should eventually approach |0〉. To
model this process with the Lindblad equation, we will need Lindblad operators to produce
the transition |1〉 → |0〉. We therefore consider a single Lindblad operator

L = � |0〉〈1| , (9.29)

where � is real. For simplicity, we shall take the system Hamiltonian H = 0. The Lindblad
equation with a single Lindblad operator is

dρ

dt
= LρL† − 1

2

(
L†Lρ + ρL†L

)
. (9.30)

How does the state of the two-level atom evolve under this equation?
Noting that L†L = �2 |1〉〈1| , our Lindblad equation becomes

dρ

dt
= �2

(
〈1| ρ |1〉 |0〉〈0| − 1

2

(
|1〉〈1| ρ + ρ |1〉〈1|

))
. (9.31)

To solve this, we write the density operator using its matrix elements with respect to the
standard basis:

ρ = ρ00 |0〉〈0| + ρ01 |0〉〈1| + ρ10 |1〉〈0| + ρ11 |1〉〈1| , (9.32)

where ρ00, etc., depend on time. From Eq. 9.31 we obtain the system of differential
equations

d
dt

(
ρ00 ρ01
ρ10 ρ11

)
= �2

(
ρ11 −ρ01/2

−ρ10/2 −ρ11

)
. (9.33)

Exercise 9.14 Fill in the steps to derive Eq. 9.33 from Eq. 9.31.
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Exercise 9.15 Solve the system in Eq. 9.33 and show that(
ρ00(t) ρ01(t)
ρ10(t) ρ11(t)

)
=
(

1− ρ11(0)e−�2t ρ01(0)e−�2t/2

ρ10(0)e−�2t/2 ρ11(0)e−�2t

)
. (9.34)

Any initial density operator will over time approach the density operator |0〉〈0| . The
population ρ11, which is the probability that the atom would be found in the state |1〉, decays
exponentially with time constant τ = 1/�2. The off-diagonal elements (coherences) also
decay exponentially, with a longer time constant 2τ .

Exercise 9.16 How would this result change if we introduce a Hamiltonian H = ε |1〉〈1|
for the atom Q? (This Hamiltonian gives |0〉 zero energy and |1〉 an energy ε.)

Here is another qubit example. If we randomly flip the relative phase of |0〉 and |1〉, then
the effect will be to wipe out the coherences in the density operator ρ. This “decoherence”
process was analyzed in Problem 8.5. The relative phase flip could be accomplished by
the Pauli Z operator. Thus, to model a continuous decoherence process using the Lindblad
equation, we again introduce a single Lindblad operator L = �Z. Since Z2 = 1, the Lindblad
equation (Eq. 9.30) has a very simple form:

dρ

dt
= �2 (ZρZ− ρ) . (9.35)

This can be solved as before.

Exercise 9.17 Show that under Eq. 9.35 the density operator populations ρ00 and ρ11
remain constant, while the coherences ρ01 and ρ10 decay exponentially with time constant
τ = 1/(2�2).

As the time t →∞, the coherences are suppressed.
Further examples of Lindblad dynamics can be found in the problems at the end of the

chapter.

9.4 Heat and work

Our discussion of open system dynamics can shed some light on the basic ideas of ther-
modynamics. A thermodynamic system can exchange energy with its surroundings in two
ways, called heat and work. The heat d–Q transferred to the system represents energy
changes in the microscopic degrees of freedom of the system. The work d–W done by the
system is associated with changes in its external parameters – changes in volume, external
magnetic field, etc. The net change in the thermodynamic energy Eθ of the system is

dEθ = d–Q− d–W . (9.36)

This is known as the First Law of Thermodynamics. The signs in Eq. 9.36 – heat trans-
ferred to the system, work done by the system – are a customary, if slightly confusing,
convention. The symbol d– denotes an inexact differential. The heat and work involved
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in a process generally depend on the exact “path” that the process follows, not just the
beginning and ending states of the system. The net change in the energy, on the other hand,
depends only on the starting and ending states, so we represent that change by an exact
differential dEθ .

The thermodynamic system is a quantum system whose state is described by a density
operator ρ. The thermodynamic energy of the system is the expectation value of its energy:
Eθ = 〈E〉 = Tr ρH, where H is the system Hamiltonian. Adopting the convenient “dot”
notation for time derivatives, the rate of change of Eθ is

Ėθ = Tr ρ̇H+ Tr ρḢ. (9.37)

Heat transfer is associated with changes in the microscopic state of the system, while the
external parameter changes in work affect the system by modifying its Hamiltonian. Thus,
we can identify the two terms in Eq. 9.37 as the heat transfer rate PQ and the work rate PW :

PQ = Tr ρ̇H and PW = −Tr ρḢ. (9.38)

These rates are defined so that d–Q = PQdt and d–W = PW dt for a small interval of time dt.
They have units of power (J/s).

Suppose our system is informationally isolated during some process. The time evolution
will be unitary, described by a (possibly time-dependent) Hamiltonian according to

dρ

dt
= 1

i�
[H, ρ]. (Re 8.51)

Then we have

Ėθ = 1
i�

Tr (HρH− ρH2)+ Tr ρḢ. (9.39)

But Tr HρH = Tr ρH2, so there is no heat transfer. Thermodynamically, a process in which
a system remains informationally isolated is also an adiabatic process.3

A particularly simple case arises when the Hamiltonian changes suddenly, much more
rapidly than ρ changes. No heat is transferred in such a process. If the Hamiltonian changes
from Ha to Hb, the net work done by the system is

W = −
Eθ = Tr ρ(Ha − Hb). (9.40)

We are sometimes interested in the external work done on the system in a transformation.
We shall denote this by W = −W . A sudden change in the Hamiltonian requires external
work W = 
Eθ .

Imagine that the system evolution can be modeled by the Lindblad equation, Eq. 9.28.
The work rate for the system is still PW = −Tr ρḢ, and the heat rate is given by the
Lindblad operators Lk .

3 The term adiabatic is also used in quantum theory to describe a gradual change in the Hamiltonian of an
informationally isolated system. According to the adiabatic theorem, a system in an energy eigenstate will
“follow” a slow change in the Hamiltonian of the system, remaining in an energy eigenstate at every stage. This
use of the term adiabatic is related to, but distinct from, the thermodynamic usage here. We apply the term even
to processes involving rapid changes in H, provided there is no heat transfer.



193 Heat and work

Exercise 9.18 Show that

PQ = 1
2

Tr ρ

(∑
k

L†
k[H, Lk] + [L†

k , H]Lk

)
. (9.41)

One special case is of interest. If the Lk operators commute with the Hamiltonian H, then
PQ = 0. No heat is transferred, so the process is adiabatic in the thermodynamic sense.
However, the system is not at all informationally isolated from its environment. The typical
effect of this type of evolution is to destroy coherences between energy eigenstates of H.
Here is a simple example.

Exercise 9.19 A qubit evolves by the Lindblad equation with Hamiltonian εZ and a single
Lindblad operator �Z. Show that the system’s evolution is thermodynamically adiabatic,
but that the system is not informationally isolated.

A slightly more elaborate example is given in Problem 9.8.
The interaction of a thermodynamic system with a thermal reservoir brings it to thermal

equilibrium, leading to the canonical state given in Eq. 8.70. This process could be modeled
with an appropriate set of Lindblad operators. Suppose the system continues in contact with
a reservoir at fixed T while its Hamiltonian undergoes a very slow change. If this happens
slowly enough, the system will essentially remain in a canonical state at any given moment:

ρ(t) = 1
Z(t)

exp (−H(t)/kBT) , (9.42)

where we recall the partition function Z = Tr exp(−H/kBT). If the system continually
remains in equilibrium with the reservoir, we say that it undergoes an isothermal process.
The isothermal work rate is

PW = −Tr Ḣ e−H/kBT

Z = kBT
Ż
Z = d

dt
(kBT lnZ) . (9.43)

We define the free energy Fθ = −kBT lnZ . This is a function of the system’s (canonical)
state, not the process by which it arrived at the state. The work done by the system in a
small interval of time is thus d–W = −dFθ . For an isothermal process, the total work done
by the system is given by the net change in the free energy function:

W = −
Fθ . (9.44)

(Again, the external work required is W = −W = 
Fθ .)
Equation 9.44 is reminiscent of the relation between the work done by forces in a

mechanical system and the change in the potential energy function for those forces. For this
reason, the free energy Fθ is called a thermodynamic potential for isothermal processes. We
will return to this subject, armed with more powerful mathematical tools, in Section 19.5.
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9.5 Measurements on open systems

A quantum system Q that undergoes a measurement is certainly open. However, we have
found that we do not need to provide a detailed description of the measuring apparatus
in order to figure out the probabilities and expectations of measurement results. That is,
the effect of the measurement can be represented using vectors and operators for Q itself.
This is very much in the spirit of our discussion of open system dynamics in the previous
sections. The map E describes how Q’s own state is changed by its interaction with the
environment, without giving any details about how the environment itself is affected. In this
section, we will delve a little deeper into the mathematical description of the measurement
process.

Our most elementary type of measurement is the basic measurement, in which each
outcome k is associated with an element |k〉 of an orthonormal basis for the Hilbert space
H(Q). If the system is in the pure state |ψ〉, then the probability that the outcome k occurs
is p(k) = |〈k |ψ 〉|2. In terms of the density operator ρ = |ψ〉〈ψ | ,

p(k) = 〈k| ρ |k〉 = Tr ρ �k , (9.45)

where �k = |k〉〈k| is the projection onto the basis state |k〉. In the measurement of a
real-valued observable, the basis state |k〉 is associated with a numerical value Ak . The
same basic probability rule also holds for mixed states.

We have also discussed incomplete measurements, which correspond to observables with
degeneracy. Each outcome α is associated with a projection operator �α . For a real-valued
observable, this is the projection onto the eigenspace of eigenvalue Aα . The probability of
measurement outcome α is

p(α) = Tr ρ �α , (9.46)

(compare Eq. 3.118). The projection operators �α map to orthogonal subspaces and satisfy
the completeness relation ∑

α

�α = 1. (Re 3.119)

The role of the projections �α in the measurement process was further explored in
Section 4.3.

Again, note that these rules refer to Q itself and not to the details of the external apparatus
that performs the measurement.

Now suppose that Q is part of a larger system QE, where the external system E is in the
fixed initial state |0〉. We make a measurement on the joint system QE described by a set
of projection operators �α . If Q is in the state ρ, the probability of the outcome α is

p(α) = Tr
(
ρ ⊗ |0〉〈0|

)
�α . (9.47)

We can think of this in a different way, as a measurement procedure applied to Q only.
The external system E is to be regarded merely as a part of the apparatus for making this
measurement. What sort of mathematical description can we give for this? For each α,
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define the Q-operator Eα by the partial inner product

Eα = 〈0|�α |0〉 . (9.48)

It follows that

p(α) = Tr ρEα . (9.49)

This has the same form as Eq. 9.46, but the operators Eα are not necessarily projection
operators. The following exercise, however, tells us two important facts:

Exercise 9.20 Use Eq. 9.48 to prove:

(a) Eα is a positive operator.

(b)
∑

α Eα = 1. (Compare Eq. 3.119.)

Nothing we have said involves any real extension of the quantum theory. The measure-
ment we perform on QE is one of the usual sort. But if we regard E as part of the apparatus
and treat the process as a measurement on Q alone, we are forced to consider it as a new
and more general type of measurement. The possible outcomes α of the procedure are
associated with positive operators Eα , rather than projections. These outcome operators
sum to the identity operator 1. The rule for calculating outcome probabilities is given
in Eq. 9.49. We call this new type of measurement procedure a generalized or positive
operator measurement, to distinguish it from the ordinary or projection operator variety.

A generalized measurement can differ from an ordinary one in many ways. For example,
suppose that dimH(Q) = d. Then a basic measurement on Q has exactly d possible outcomes,
and a projection operator measurement has no more than d. But a generalized measurement
is really a measurement on the larger system QE, and so may have more than d possible
outcomes. Here is an example of a four-outcome generalized measurement on a qubit:

Exercise 9.21 Suppose Q and E are qubits and E is initially in the state |+〉 = 1√
2
( |0〉 +

|1〉). We make a basic measurement on QE using the following basis:

|0, 0〉 |�+〉 ,
|1, 1〉 |�−〉 ,

(9.50)

where |�±〉 are two of the Bell states from Eq. 7.13. Verify that these do indeed form an
orthonormal basis, and then determine the outcome operators for the resulting generalized
measurement on Q.

Now suppose that we wish to describe the most general possible type of measurement
procedure. Such a procedure would be characterized by a set of outcomes α, each with a
corresponding rule that takes the quantum state ρ as input and calculates the probability
p(α) as output. We could denote this function by p(α|ρ). What sort of probability rule is
possible?

We first note that p(α|ρ) should be linear in ρ. Consider an ensemble of systems, a
fraction p1 of them in the state ρ1 and the remaining p2 of them in the state ρ2. The overall
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ensemble is described by ρ = p1ρ1 + p2ρ2. If the same measurement is made on each
member of the ensemble, then for a given outcome α,

p(α|p1ρ1 + p2ρ2) = p1p(α|ρ1)+ p2p(α|ρ2). (9.51)

We conclude that the function p(α|ρ) must be a linear functional on density operators.

Exercise 9.22 Explain this reasoning in more detail.

A linear functional on the operator Hilbert space B (H) is always given by an operator
inner product with some element in B (H). By Eq. 8.36, we conclude that there must exist
operators Eα such that for each α

p(α|ρ) = Tr ρEα . (9.52)

This is just the same as Eq. 9.49. It remains only to show that the outcome operators Eα

satisfy the appropriate properties.

Exercise 9.23 From the fact that probabilities are non-negative and sum to unity, show that
the outcome operators Eα must satisfy the two properties in Exercise 9.20.

Although we have derived the positive operator measurements by thinking about projection
operator measurements on a larger system, we now see that this generalized framework
will suffice to describe any sort of experimental procedure.

9.6 Information and open systems

Let us review our discussion by considering a prototype of a quantum physics experiment.
We prepare a system Q in a state |φ〉 and then subject it to time evolution described by
the unitary operator U, after which the state is

∣∣φ′〉 = U |φ〉. At this point we make a basic
measurement using the basis { |k〉}, obtaining the result k with probability

∣∣〈k ∣∣φ′ 〉∣∣2.
The experiment thus consists of three stages: state preparation, dynamical evolution, and

measurement. In each, we consider Q “in itself,” without reference to any external systems.
But an external system E may intrude at any stage, or indeed at all three. How do we handle
this? One possibility is simply to include E in the system, and describe the preparation,
dynamics, and measurement of QE. In many cases, this may be the best and easiest thing
that we can do. But if the external system is only involved in one of the three stages, we
can get away with something simpler:

• Suppose E is involved only in the preparation stage, so that QE is prepared in some
joint state |�〉. Then Q and E do not interact afterwards, and the final measurement
only involves Q. Then we can adopt a generalized description of the initial state of Q,
ascribing to it a density operator

ρ = Tr(E) |�〉〈�| . (9.53)
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This evolves according to ρ → ρ′ = UρU† , and the result k occurs in the final
measurement with probability Tr ρ′ |k〉〈k| .

• Suppose E is not involved in the preparation stage, but instead is always in a fixed initial
state |0〉. Systems Q and E do interact during the dynamical evolution; but since our final
measurement only involves Q, we need only to know the final state of that subsystem.
In this case, we can adopt a generalized description of the dynamics of Q. If the initial
state is given by the density operator ρ, we get

ρ −→ ρ′ = E( |φ〉〈φ| ). (9.54)

Again, the final result k occurs with probability Tr ρ′ |k〉〈k| .
• Finally, suppose that E has a fixed initial state and does not interact with Q at all during

its time evolution, but that the final measurement is actually a joint measurement on QE.
Then we can adopt a generalized description for this measurement process. If the final
state of Q is ρ′, then the outcome k occurs with probability

p(k) = Tr ρ′ Ek , (9.55)

where Ek is a positive outcome operator.

In each case, the fact that E is involved in only one stage of the experiment allows us to
arrive at a generalized description of that stage that only refers to Q itself. Density oper-
ators, general evolution maps, and positive operator measurements are the mathematical
expressions of the preparation, time evolution, and measurement of open quantum systems.

All of this generalization raises important issues. At various places in this book we have
derived results about the information properties of quantum systems. These have been
important guiding principles for our understanding of quantum states. A list of the key
theorems would certainly include:

• the basic decoding theorem of Section 4.1;
• the basic distinguishability theorem of Section 4.2;
• the no-communication theorem of Section 6.4; and
• the no-cloning theorem of Section 7.2.

Our original proofs of these theorems involved pure states, unitary time evolution, and
basic measurements. In Section 8.3 and Problem 8.7, we adapted all but the last for mixed
states. How well do these results hold up when we consider the generalized forms of time
evolution and measurement appropriate for open systems?

All four of our key theorems still hold good in the open system context. A close review
of the original proofs will show why. In each case, we could append an external system
E in the state |0〉 and allow any measurement or dynamical evolution to involve E. For
the basic decoding and distinguishability theorems, our proofs explicitly allowed that the
measurements might take place in a larger Hilbert space. The no-communication theorem
is unchanged by the involvement of an external E (as pointed out in Exercise 6.26). The
details are left to the following exercises.
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Exercise 9.24 Review the proof of the basic decoding theorem in Section 4.1, and show
that it still holds if we allow a measurement that involves an external system E. What if we
also allow mixed states, as in Section 8.3?

Exercise 9.25 Review the proof of the basic distinguishability theorem in Section 4.2 and
show that it still holds if we allow a measurement that involves an external system E. What
if we also allow mixed states, as in Section 8.3?

Exercise 9.26 Explain why the availability of an external system E for Alice does
not alter the no-communication theorem of Section 6.4. State a general form of the
no-communication theorem for open systems.

The no-cloning theorem is even easier to generalize. Since we can always regard an
external system E to be part of the cloning machine M, the theorem stands for open systems
without any changes.4

We have now established our key information theorems for a system Q that interacts
in a unitary way with an external system E. But are the resulting generalized dynamical
evolution and measurement processes the only possibilities? Or could we imagine even
more generalized dynamics and measurements, for which our information results could
fail? Within quantum theory, the answer is (roughly speaking) that no further generalization
is possible; therefore, the various information theorems are secure. The technical details of
this answer may be found in Appendix D.

Problems

Problem 9.1 Consider a quantum system Q described by a Hilbert space H.

(a) Suppose we are given a subspace T of H and a linear map from kets in T to others
in H: |ψ〉 → ∣∣ψ ′〉 (linear). This map preserves inner products of vectors in T ,
so that

〈
φ′
∣∣ψ ′ 〉 = 〈φ |ψ 〉. Show that there exists a unitary operator V on H such

that
∣∣ψ ′〉 = V |ψ〉 for any |ψ〉 in T . Hint: Use the fact that any orthonormal set of

vectors may be extended to a complete basis.
This allows us to build up a “unitary-like” map on a subspace into a full unitary

operator – a handy fact in some mathematical arguments. For example:
(b) Start with a map E on density operators for Q that has the operator–sum form (Eq. 9.10)

for a set of Kraus operators satisfying Eq. 9.12. Append a system E in state |0〉 and
consider the following linear map on kets:

|ψ〉 ⊗ |0〉 −→
∑

k

(
Ak |ψ〉

)
⊗ |ek〉 , (9.56)

for an orthonormal set of E-states |ek〉. Show that there exists a unitary U(QE) that
does this.

4 The generalization of the no-cloning theorem to mixed states – called the no-broadcasting theorem – is outside
the scope of this book.
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In other words, every E on Q that has a normalized operator–sum representation can be
realized as the result of unitary evolution on a larger system QE.

Problem 9.2 Given systems Q and E with an interaction U, show that Q is informationally
isolated for every initial E-state if and only if Q and E are dynamically isolated. Note: “if”
is easy, but “only if” is much harder. For each initial E-state |χ〉, we have

U |φ, χ〉 = Vχ |φ〉 ⊗
∣∣eχ

〉
, (9.57)

where the Q evolution operator Vχ and the final E-state
∣∣eχ

〉
might depend on |χ〉, but

not |φ〉. The essential trick is to adjust the phases of the
∣∣eχ

〉
states so that the corresponding

Vχ operators are all the same.

Problem 9.3 Suppose Q interacts with an external environment E according to Eq. 9.1, and
suppose the net effect of this is to leave every pure initial Q-state fixed: |φ〉〈φ| → |φ〉〈φ| .
Show that the same dynamics will also preserve any entangled state between Q and a
bystander system R. In the language of Section 7.5, an evolution that preserves Type I
quantum information will also preserve Type II quantum information.

Problem 9.4 Describe the qubit density operator ρ by its Bloch vector 	a. Express the
Lindblad equation for a decaying atom (Eq. 9.31) as a system of differential equations for
the components of 	a, and solve this system. Compare your results to those in Eq. 9.34.

Problem 9.5 Suppose that a two-level system Q is subject to both decay and excitation
processes – that is, both |1〉 → |0〉 and |0〉 → |1〉 may occur as a result of the interaction
of Q with its environment. (This could happen, for example, if the environment of an
atom already contained photons that could excite it.) Model this situation using a Lindblad
equation with two Lindblad operators:

L− = �− |0〉〈1| , L+ = �+ |1〉〈0| . (9.58)

For simplicity, take the Hamiltonian H = 0.

(a) Write down and solve the Lindblad equation for the evolution of the density operator
ρ for Q.

(b) As t → ∞, show that the density operator ρ must approach a particular equilibrium
density operator ρ∞. Show that ρ∞ is diagonal in the standard basis and find its
diagonal elements in terms of the �± coefficients.

Problem 9.6 Suppose E is a map describing the evolution of an open quantum system,
represented by n Kraus operators Ak .

(a) Let Ukl be an n× n unitary matrix of complex numbers, and define the operators

Bk =
∑

l
UklAl. (9.59)

Show that the Bk operators form an operator–sum representation of the same map E .
(b) How is Ukl related to a change of basis for the partial trace in Eq. 9.2?
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(c) Given a set of Lindblad operators Lk , show that another set of operators

Kk =
∑

l
UklLl, (9.60)

gives rise to an equivalent Lindblad equation.

The equivalent representations for the time evolution of an open system are sometimes
called different unravelings of that evolution.

Problem 9.7 A qubit with a Hamiltonian εZ is in thermal equilibrium with a reservoir at
absolute temperature T .

(a) Find the canonical state of the qubit. Express this as a Bloch vector 	a.
(b) Suppose the Hamiltonian suddenly changes to εX. How much work is done by the

system? (Negative work means that the external agency that changed H had to do work
on the system.)

(c) Suppose instead that the Hamiltonian is slowly changed from εZ to εX, so that the
process is isothermal. How much work is done by the system? Explain the difference
between your answers in parts (b) and (c).

Problem 9.8 A system has a fixed Hamiltonian H with energy eigenvalues En and eigen-
states |n〉. Its interaction with the environment is modeled by Lindblad operators of the form
λ |n〉〈n| (one for each |n〉). Show that the interaction of the system with its environment
involves neither work nor heat transfer. Also show that the effect of the Lindblad evolution
is to suppress the coherences between the |n〉 basis states.

Problem 9.9 Even though the operator–sum representation gives an “internal” view of the
dynamics of an open system, we can still learn something about the environment from the
Ak operators. For a given evolution map E and an input state ρ, define Wkl by

Wkl = Tr AkρA†
l . (9.61)

Show that these numbers are the matrix elements of the final density operator of the
environment E, if the initial state of E is pure (as in Eq. 9.1).

To make this more definite, suppose the Kraus operators for a qubit system are a1 and
bZ, where a and b are real parameters such that a2 + b2 = 1. First, confirm that this pair
of operators is normalized according to Eq. 9.12. Then find the eigenvalues of the final
environment state when the input qubit states are |0〉〈0| , |+〉〈+| , and 1

2 1.

Problem 9.10 Suppose two similar systems R and Q are initially in a maximally entangled
state |� (RQ)〉. System Q undergoes time evolution involving interaction with the environment
E, initially in |0(E)〉. System R, meanwhile, has no external interactions or internal dynamics
of its own. Show that the following two conditions are equivalent:

• The final (mixed) state of RE is a product state – that is, there are no correlations between
R and E.

• The evolution of Q is unitary.

Comment on the relation, if any, between this result and the isolation theorem of Section 9.2.
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Problem 9.11 Return to the two-beam interferometer example of Section 2.1, as extended
in Section 4.3. The interferometer has basis states |0〉 (no photon), |u〉 (one photon in the
upper beam, and |l〉 (one photon in the lower beam). Suppose a measurement is made
on the interferometer system using non-ideal photon detectors. These devices are plagued
with two imperfections:

• The detectors are not 100% efficient. If a photon is present, there is a probability η that
the detector does not “click” at all.

• The detectors are also noisy. Even if a photon is not present, there is a probability ν that
the detector will click anyway.

Show how to represent the measurement procedure by a set of positive operators in the
cases where (a) only one detector is used, on the upper beam; and (b) a detector is used on
each beam. The second case has four possible outcomes, even though dimH = 3. Why?



10 A particle in space

10.1 Continuous degrees of freedom

The quantum systems we have discussed so far have been described by finite-dimensional
Hilbert spaces. Basic measurements on such systems have a finite number of possible
outcomes, and a quantum state predicts a discrete probability distribution over these. Now
we wish to extend our theory to handle systems with one or more continuous degrees of
freedom, such as the position of a particle that can move in one dimension. This will
require an extension of our theory to Hilbert spaces of infinite dimension, and to systems
with continuous observables.

There is a philosophical issue here. How do we know that there really are infinitely
many distinct locations for a particle? The short answer is, we don’t. It might be that
space itself is both discrete (at the tiniest scales) and bounded (at the largest), so that the
number of possible locations of a particle is some very large but finite number. If this is
the case, then the continuum model for space is nothing more than a convenient approxi-
mation. Infinity is just a simplified way of describing a quantity that is immense, but still
finite.

In this section, we will adopt this view of infinity. We will imagine that any continuous
variable is really an approximation of a “true” discrete variable. This idea will motivate
the continuous quantities and operations that we need. But we can always appeal to the
underlying finiteness to resolve any mathematical perplexities that arise.

Continuous probability

Suppose we have a discrete probability distribution PN (k), where k takes on 2N+1 distinct
integer values from −N to +N . The real variable xk takes on 2N + 1 values that are
symmetric around zero and are evenly spaced by 
x. Thus, xk = k
x. The values of xk
range between −L and +L, where L = N
x.

We are interested in the situation where the values xk are very closely spaced and have
a wide range – and, in the limit, can take on any real value. We will take this limit in a
careful way. Fix a parameter � (with units of length) and let


x = �√
N

. (10.1)

As we take N →∞, 
x becomes arbitrarily small. The limiting size of the xk values
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L = N
�√
N
= �

√
N →∞. (10.2)

Thus, in the limit N →∞, we can regard the xks as values of a continuous variable x that
ranges over the entire real line.

Instead of the N th probability distribution PN (k), we will be interested in the N th density
function

PN (xk) = PN (k)


x
. (10.3)

We restrict our attention to families of probability assignments PN (k) for which, as N →∞,
the density functions PN (xk) converge to a continuous real function P(x). This means that,
for large values of N , no particular k can have a large probability. Furthermore, nearby
values of k (with nearby values of xk) must have probabilities that are about equal. The
limiting function P(x) is called a probability density.

Each property of the continuous probability density P(x) can be viewed as the limiting
case of the corresponding properties of the discrete distributions PN (k) that converge to it.
For instance, the normalization of probability is

1 =
∑

k
PN (k) =

+L∑
xk=−L

PN (xk)
x. (10.4)

As N →∞, this sum becomes an integral over x:

1 =
∫ +∞

−∞
P(x) dx. (10.5)

Similarly, suppose we wish to find the probability that the value of xk is in the interval
[a, b]. We have

Pr(xk ∈ [a, b]) =
∑

xk∈[a,b]
PN (xk)
x, (10.6)

which in the limit becomes

Pr(x ∈ [a, b]) =
∫ b

a
P(x) dx. (10.7)

Finally, consider some function F(xk) of the real variable xk . The expectation value of this
function is

〈F〉 =
∑

k
F(xk)PN (k) =

+L∑
xk=−L

F(xk)PN (xk)
x. (10.8)

This also becomes an integral expression in the limit:

〈F〉 =
∫ +∞

−∞
F(x)P(x) dx. (10.9)

What we have found is that for “regular” families of distributions – i.e. those that are
not too concentrated on particular values and which are not too rapidly varying – we can
replace discrete quantities by continuous ones for large N . Finite sums are replaced by
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integrals. In the limit, the probability that the variable x takes on any specific value is zero.
Only intervals of non-zero length can have non-zero probability.

Quantum states and wave functions

We can take the continuous limit for quantum states in a similar way. For each N , we have
a quantum system described by the Hilbert space HN of dimension dimHN = 2N + 1.
There is an observable xN on this system with eigenstates |k〉 and eigenvalues xk , where as
before k ranges from−N to+N and the values of xk are evenly spaced by 
x. Once again,
we will let N →∞ and 
x → 0 according to Eq. 10.1.

Instead of the orthonormal eigenstates |k〉, we will find it more convenient to consider
the related vectors

|xk〉 = |k〉√

x

. (10.10)

These are all orthogonal like the |k〉s, though their magnitudes diverge as 
x → 0. Rather
than a sequence of distributions PN (k), we will consider a sequence of state vectors |ψN 〉
in HN . In the xN eigenbasis, these have components 〈k |ψN 〉. But we are more interested
in the functions

ψN (xk) = 〈k |ψN 〉√

x

= 〈xk |ψN 〉 . (10.11)

We require that the quantum states |ψN 〉 yield “well-behaved” functions ψN (xk), so that
in the limit N → ∞ we arrive at a continuous limiting function ψ(x). That is, for large
N , the probability amplitude 〈k |ψN 〉 for any particular |k〉 is small, and the amplitudes for
nearby values of k are nearly equal.

As before, we will rewrite sums over the index k as sums over the eigenvalues xk , and
then interpret these sums as integrals in the continuum limit. That is, our approach can be
symbolically written as

∑
k

(· · ·) =
∑
xk

(· · ·)
x −→
∫ +∞

−∞
(· · ·) dx. (10.12)

However, we must include a caveat. In the large-N limit, the non-normalized eigenvectors
|xk〉 diverge in magnitude. Thus, when we write |xk〉 → |x〉, we do not mean |x〉 to be an
actual vector. The improper ket |x〉 only makes sense inside an integral over the continuous
variable x. In that situation, we may suppose that the integral actually represents an
approximation of a discrete sum over an immense number of closely-spaced values of xk .1

1 In much the same way, when we write 
x → dx, we do not mean that the infinitesimal dx is an actual number.
We are simply choosing our notation to remind ourselves how the continuous integral arises from a discrete
sum.
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For example, we can write the quantum state |ψN 〉 as

|ψN 〉 =
∑

k
〈k |ψN 〉 |k〉 =

+L∑
xk=−L

ψN (xk) |xk〉
x, (10.13)

and obtain in the continuum limit an expression for the limiting quantum state |ψ〉:

|ψ〉 =
∫ +∞

−∞
ψ(x) |x〉 dx, (10.14)

where ψ(x) = 〈x |ψ 〉 is called the continuous wave function for the quantum state |ψ〉.
This is a complex function that is the x-representation for the state |ψ〉. (In this expression,
you should note that, even though |x〉 has a divergent magnitude and thus is not literally a
vector, the amplitude ψ(x) = 〈x |ψ 〉 is well-defined in the limit.)

A typical application of the wave function idea is the quantum theory of a particle moving
in one dimension. The variable x is then the position of the particle, and the wave function
ψ(x) is a full description of the quantum state. If the particle’s state |ψ〉 depends on time,
then the wave function ψ(x, t) = 〈x |ψ(t) 〉 is a function of both x and t. (We will ignore for
now the time dependence of ψ and return to it when we discuss the dynamics of a particle
moving in one dimension.)

The wave function ψ(x) can be used to calculate probabilities. The likelihood that xk is
found to be in an interval [a, b] is

Pr(xk ∈ [a, b]) =
∑

xk∈[a,b]
|〈ψN |xk 〉|2 
x. (10.15)

This becomes

Pr(x ∈ [a, b]) =
∫ b

a
|ψ(x)|2 dx. (10.16)

Comparing this to Eq. 10.7, we can identify P(x) = |ψ(x)|2 as the probability density for
x-values in a measurement of the system.

Exercise 10.1 Show that 〈x〉 =
∫ +∞

−∞
x |ψ(x)|2 dx.

Exercise 10.2 Assuming the coordinate x has units of length, what are the physical units
of the 1-D wave function ψ(x, t)?

It is difficult to draw a graph of ψ(x), since its value at any point is complex. It is much
easier to visualize the probability density |ψ(x)|2, see Fig. 10.1.

We can write down various relations of the x-representation in the continuous limit. We
shall do that as a set of easy exercises. In each one, you should identify the original finite-
dimensional expression from Chapter 3, then show how the appropriate limit is taken. The
arguments leading to Eq. 10.14 and 10.16 should give you the general idea.
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Fig. 10.1 At the top, overlaid graphs of the real and imaginary parts of the wave function ψ(x). At the
bottom, a graph of the probability density function |ψ(x)|2. The total area under this curve is 1.

Exercise 10.3 Normalization. Show that∫ +∞

−∞
|ψ(x)|2 dx = 1. (10.17)

Exercise 10.4 Completeness. Show that∫ +∞

−∞
|x〉〈x| dx = 1. (10.18)

Exercise 10.5 Inner product in x-representation. Show that

〈φ |ψ 〉 =
∫ +∞

−∞
φ∗(x) ψ(x) dx. (10.19)

Each of these should be readily recognizable as a continuous analog to a familiar discrete
Hilbert space expression.

One more issue deserves more careful attention: the “orthonormality” of the |x〉 kets.
The underlying discrete basis { |k〉} for HN is orthonormal, so

〈xk |xk′ 〉 = δkk′


x
. (10.20)

This is zero if xk �= xk′ . Furthermore, the sum

+L∑
xk=−L

〈xk |xk′ 〉
x = 1, (10.21)
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is independent of N . Therefore, in the continuum limit, we should say that
〈
x
∣∣x′ 〉 = 0

whenever x �= x′, and ∫ +∞

−∞
〈
x
∣∣x′ 〉 dx = 1. (10.22)

These are the properties of the delta function (see Appendix B). We conclude that〈
x
∣∣x′ 〉 = δ(x′ − x). (10.23)

This is the continuous version of the orthonormality condition, and based on this we say that
the |x〉s form a continuous orthonormal basis for the infinite-dimensional Hilbert space.
The delta function is not literally a function, just as the kets |x〉 are not literally elements of
a Hilbert space. Nevertheless, Eq. 10.23 does make sense within integrals, as a continuous
approximation of Eq. 10.20.

Using the continuous orthonormality condition, we can see that

1 |x〉 =
∫ +∞

−∞
∣∣x′〉 〈x′ |x 〉 dx′ =

∫ +∞

−∞
∣∣x′〉 δ(x− x′) dx′ = |x〉 , (10.24)

as we would expect. The delta function “collapses” the integral, just as the Kronecker delta
“collapses” discrete sums.2

When we pass to the continuous limit for probability distributions, we make the assump-
tion that the limiting probability density P(x) exists. This automatically excludes from
consideration a great many discrete distributions that are too concentrated or too rapidly
varying. These do not have nice continuous approximations, and we ignore them entirely.

In the same way, when we use the continuum approximation in quantum mechanics,
we must supplement the mathematical limiting procedure with an additional physical
requirement, namely that the “regular” states are, in the limit, the only physically possible
quantum states. Our physical Hilbert space consists of those states for which a continuous
wave function ψ(x) exists. Whether or not we believe that physical space is really at
some level discrete and finite – whether or not we believe that other, highly “irregular”
and discontinuous states could in principle exist – we readily accept this restriction for
everyday use.

10.2 Continuous observables

Position representation of operators

In a Hilbert space of finite dimension d, quantum states and operators are represented
by matrices. Given a basis { |n〉}, the state |ψ〉 is represented by a d×1 matrix whose
elements are

2 Notice that, when we use the completeness relation, we choose a new symbol x′ for the integration variable.
This is the continuous version of the rule that, when a discrete sum is introduced, the bound summation index
should not be the same as any index already being used in the expression.
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ψn = 〈n |ψ 〉 . (10.25)

An operator A is given by a d × d matrix with elements

Amn = 〈m|A |n〉 . (10.26)

The operator acts via matrix multiplication. If |φ〉 = A |ψ〉, then

φm =
∑

n
Amnψn. (10.27)

The same sort of machinery can be put in place for a quantum system with a con-
tinuous degree of freedom. The wave function values ψ(x) = 〈x |ψ 〉 are the elements of
a continuous matrix representing the state |ψ〉. An operator A has a continuous matrix
representation

A(x, x′) = 〈x|A ∣∣x′〉 . (10.28)

If |φ〉 = A |ψ〉, then we can write

φ(x) =
∫ +∞

−∞
A(x, x′) ψ(x′) dx′. (10.29)

Exercise 10.6 Justify Eq. 10.29. (You might start with the continuous completeness relation
in Eq. 10.18.)

Therefore, the x-representation of an operator is a function of two continuous variables,
and the action of the operator is given by the continuous matrix product in Eq. 10.29.

In practice we can often make things much simpler. Consider the operator x, defined by
a continuous spectral decomposition

x =
∫ +∞

−∞
x |x〉〈x| dx. (10.30)

This is the “position observable” for a particle moving in one dimension. The operator x
has the expected effect on an improper “eigenstate” |x〉:
Exercise 10.7 Show that x |x〉 = x |x〉.
The x-representation of x is

X (x, x′) = 〈x| x ∣∣x′〉 = x′
〈
x
∣∣x′ 〉 = x′δ(x′ − x). (10.31)

If we start with vector |x〉 having a wave function ψ(x), the vector x |ψ〉 has a wave function∫ +∞

−∞
X (x, x′) ψ(x′) dx =

∫ +∞

−∞
x′δ(x′ − x) ψ(x′) dx = x ψ(x). (10.32)

Another way to describe the x-representation of the operator x would simply be to say that
it affects the wave function by x : ψ(x) → x ψ(x). This rule contains exactly the same
information as the matrix X (x, x′) = x′δ(x′ − x), but in a more intuitive form.

Here is another easy example. The 1-D parity operator cI is a reflection about the point
x = 0, so that cI |x〉 = |−x〉 for any x. The operator cI is Hermitian, so we can also write that
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〈x| cI = 〈−x| . A state |ψ〉 with wave function ψ(x) is mapped to a state cI |ψ〉 with wave
function

〈x| cI |ψ〉 = 〈−x |ψ 〉 = ψ(−x). (10.33)

The parity operator is expressed by the simple rule that cI : ψ(x) → ψ(−x).

Exercise 10.8 Find the continuous matrix representation cI(x, x′) for the parity operator.

Exercise 10.9 Show that the only possible eigenvalues of cI are ±1. (Hint: What is cI2?)
What can we say about the wave functions for the eigenstates of parity?

Parity will be useful in Chapter 15, as we consider the stationary states of particles in 1-D
potential wells.

We have shown that, instead of writing down a continuous matrix for an operator, it
can be much more convenient to describe the x-representation of the operator by giving
a rule about how wave functions are changed by the application of the operator. This is
particularly true of the x operator. It is also true for various functions of x. We define f (x),
as we defined the operator exponential, by a power series in x:

f (x) = c01+ c1x+ c2x2 + . . . (10.34)

Exercise 10.10 From Equation 10.34, show that

f (x) |x〉 = f (x) |x〉 . (10.35)

Also show that 〈x| f (x) = f (x) 〈x| . Why does the complex conjugate not appear in this
relation?

The vector f (x) |ψ〉 has a wave function

〈x| f (x) |ψ〉 = f (x) ψ(x). (10.36)

Therefore, any function f (x) of the position operator x can be expressed by the rule
f (x) : ψ(x) → f (x)ψ(x).

Exercise 10.11 Can the parity operator cI be expressed as a function of the x operator?

Finally, we note that the expectation values of functions of x are given by simple integrals:

〈 f (x)〉 = 〈ψ | f (x) |ψ〉 =
∫ +∞

−∞
〈ψ |x 〉 〈x| f (x) |ψ〉 dx

=
∫ +∞

−∞
ψ∗(x) f (x) ψ(x) dx. (10.37)

This last expression is clearly equal to
∫ +∞
−∞ f (x) |ψ(x)|2 dx, which makes sense when we

recall that |ψ(x)|2 is the probability density over possible measured values of x.
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Momentum wave functions

Our system is a particle moving in one dimension. The position x is not the only continuous
variable that we could imagine measuring for such a particle. There is, for instance, also
the momentum p. We can easily write down momentum analogs for the expressions we
have already written for the |x〉 states:

• The momentum operator p has eigenvalues p and eigenstates |p〉.
• A physical state |ψ〉 can be represented by a momentum wave function ψ̄(p) = 〈p |ψ 〉.
• The likelihood of obtaining various results in a measurement of p is given by the

probability density
∣∣ψ̄(p)

∣∣2.
• Completeness:

∫ +∞
−∞ |p〉〈p| dp = 1.

• Orthonormality:
〈
p′ |p 〉 = δ(p− p′).

The momentum “eigenstates” |p〉, like the |x〉s above, are not literal vectors in the Hilbert
space. Nevertheless, as before, we can formally treat them as if they were.

How is the { |p〉} basis related to the { |x〉} basis? The Planck–De Broglie relations
(Eq. 1.8) tell us that the momentum of the particle is related to the wavelength of the wave
function. Thus, a state of definite momentum p must have a wave function with a definite
wave vector (a scalar in 1-D) k. We conclude that

〈x |p 〉 = Ceikx, (10.38)

where �k = p and C is a constant. Note that |〈x |p 〉|2 = |C|2, independent of x. This is not
really a probability density, since |p〉 is not an actual physical state. But informally, we can
say that, if the particle has a definite momentum p, then it is equally likely to be found at
every position x.

What is the constant C? We can choose our momentum eigenstates so that C is real and
positive. To determine its magnitude, we consult the continuous orthonormality relation
for the |p〉 states:

〈
p
∣∣p′ 〉 = δ(p′ − p). We find that

〈
p
∣∣p′ 〉 = ∫ +∞

−∞
〈p |x 〉 〈x ∣∣p′ 〉 dx

= |C|2
∫ +∞

−∞
ei(p′−p)x/� dx. (10.39)

From the theory of Fourier transforms, we remember that the delta function is given by

δ(z) = 1
2π

∫ +∞

−∞
eiyz dy. (10.40)

We conclude that C = 1/
√

2π�, and

〈x |p 〉 = 1√
2π�

eipx/�. (10.41)
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Now we can work out the relation between the momentum wave function
(p-representation) ψ̄(p) and the more familiar position wave function ψ(x).

ψ̄(p) = 〈p |ψ 〉 =
∫ +∞

−∞
〈p |x 〉 〈x |ψ 〉 dx

= 1√
2π�

∫ +∞

−∞
e−ipx/� ψ(x) dx. (10.42)

Exercise 10.12 Also show that

ψ(x) = 1√
2π�

∫ +∞

−∞
eipx/� ψ̄(p) dp. (10.43)

In other words, the momentum wave function is essentially the Fourier transform of the
position wave function:

ψ̄(p) = 1√
�

ψ̃
(p

�

)
. (10.44)

This is a highly useful result, and it sheds a lot of light on the basic properties of Fourier
transforms developed in Appendix B. For instance, consider two quantum states |φ〉 and
|ψ〉. We can compute their inner product using either the position or momentum wave
functions:

〈φ |ψ 〉 =
∫ +∞

−∞
φ∗(x)ψ(x) dx =

∫ +∞

−∞
φ̄∗(p) ψ̄(p) dp. (10.45)

The fact that these two expressions must be equal is just a restatement of Parseval’s theorem
for Fourier transforms (Eq. B.26).

The momentum operator

The momentum operator is

p =
∫ +∞

−∞
p |p〉〈p| dp. (10.46)

If we represent a state |ψ〉 using its momentum wave function ψ̄(p), then we expect that
the momentum operator has a simple expression.

Exercise 10.13 Show that the momentum wave function of the vector p |ψ〉 is just p ψ̄(p).
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Suppose instead we use the position wave function ψ(x) to describe the state of the particle.
How does the operator p affect ψ(x)?

〈x| p |ψ〉 =
∫ +∞

−∞
p 〈x |p 〉 〈p |ψ 〉 dp

= 1√
2π�

∫ +∞

−∞
p eipx/� ψ̄(p) dp

= 1√
2π�

∫ +∞

−∞
− i�

∂

∂x

(
eipx/�

)
ψ̄(p) dp

= −i�
∂

∂x

(
1√
2π�

∫ +∞

−∞
eipx/�ψ̄(p) dp

)
. (10.47)

Equation 10.43 now tells us that the p operator acts on a state |ψ〉 so that the position wave
function changes according to

p : ψ(x) →−i�
∂

∂x
ψ(x). (10.48)

For a quantum state |ψ〉, the expectation value of momentum is

〈p〉 = 〈ψ | p |ψ〉

=
∫ +∞

−∞
〈ψ |x 〉 〈x| p |ψ〉 dx

〈p〉 =
∫ +∞

−∞
ψ∗(x)

(
−i�

∂

∂x

)
ψ(x) dx. (10.49)

The p operator acts as a derivative operator on position wave functions. We can use this
fact to compute the commutator of the x and p operators. Given a vector |ψ〉, the vector
xp |ψ〉 has a wave function

(x)
(
−i�

∂

∂x

)
ψ(x) = −i� x

∂

∂x
ψ(x). (10.50)

The vector px |ψ〉 is not quite the same:

− i�
∂

∂x
(x ψ(x)) = −i� x

∂

∂x
ψ(x) − i�ψ(x). (10.51)

The commutator [x, p] = xp− px thus changes the wave function according to the rule

[x, p] : ψ(x) → i� ψ(x). (10.52)

We conclude that

[x, p] = i�1. (10.53)
This is called the canonical commutation relation for the position and momentum operators.
(With a name like that, you may safely infer that Eq. 10.53 is an important result!)
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The commutator, of course, tells us a great deal. For instance, the uncertainty relation in
Eq. 4.46 has an especially simple form for x and p observables. Since 〈1〉 = 1 for any state,


x 
p ≥ �

2
. (10.54)

This relation was first discovered by Heisenberg (before the more general uncertainty
relation of Eq. 4.46), and is often called the Heisenberg uncertainty principle. The position
and momentum of a particle are complementary observables, and there are inescapable
trade-offs in our knowledge of them. The more precisely one is determined, the more
uncertain the other must be.

This is sometimes explained by physical arguments involving the measurement processes
for position and momentum variables. For instance, if we determine a particle’s position by
scattering light from it, the best possible resolution of the measurement will be limited by
the wavelength λ of the light. A measurement with fine resolution (small λ) must therefore
use photons with greater energy and momentum, which necessarily disturb the momentum
of the particle.

Interesting as such heuristic arguments may be, they do not get to the heart of the matter.
The Heisenberg uncertainty principle does not depend on this or that particular physical
realization of a measurement process. Nor does it actually refer to the disturbance produced
by a measurement. It is a statement of the basic structure of quantum states of a particle
with a continuous degree of freedom. Our simultaneous information about x and p – that
is, our ability to predict the results of measurements of these two variables – is limited by
Eq. 10.54, however we come to obtain that information.

Exercise 10.14 Compare and contrast Eq. 5.33 and 10.54.

The canonical commutation relation between x and p leads to more general commutation
relations between functions of these operators. We can work these out through a series of
exercises.

Exercise 10.15 For an integer n > 0, show that

[xn, p] = i� n xn−1. (10.55)

Exercise 10.16 Suppose the function f is given by a power series. Show that

[f (x), p] = i� f ′(x). (10.56)

Exercise 10.17 In a similar way, show that

[x, g(p)] = i� g′(p). (10.57)

10.3 Wave packets

The eigenstates of momentum |p〉, like the position eigenstates |x〉, are not actual physical
states of a particle moving in one dimension. A plane wave C eikx is not an acceptable wave
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Fig. 10.2 Construction of a wave packet from a plane wave eikx and an envelope function φ(x).

function, since it cannot be normalized. Nevertheless, we do observe particles moving with
pretty well defined momenta – and pretty well defined positions as well. What sort of wave
function would we need to describe such a situation?

Here is a simple model that is reasonably easy to analyze: the wave packet. A wave
packet is a wave function of the form

ψ(x) = φ(x) eikx, (10.58)

where φ(x) is a well-behaved envelope function, which differs significantly from zero only
in a bounded region. The envelope φ(x) thus trims the perfect (but infinite) plane wave
down to something that can be normalized. Figure 10.2 gives the general idea. (The wave
function sketched in Fig. 10.1 is a wave packet.)

The envelope function φ(x) determines a lot about the properties of the wave function
ψ(x). For example, the probability density for this wave function is

P(x) = |ψ(x)|2 = |φ(x)|2 , (10.59)

independent of k. The particle is as localized in space as the envelope function φ(x) makes
it, and the expectation 〈x〉 is the same for both φ(x) and ψ(x). The momentum wave
function corresponding to ψ(x) is given by

ψ̄(p) = φ̄(p− �k), (10.60)

where φ̄ would be the momentum wave function if the φ(x) were the actual position wave
function. In other words, a modulation of the envelope φ(x) by eikx corresponds to a
momentum shift of the wave function by �k.

Exercise 10.18 Use the properties of the Fourier transform discussed in Appendix B to
derive Eq. 10.60.

Exercise 10.19 Show that the envelope function φ(x) determines the uncertainties in both
position (
x) and momentum (
p) for ψ(x), even if we do not know the value of k.
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A useful special case arises when the envelope function is real: φ(x)∗ = φ(x). Symmetry
properties of φ(x) can sometimes simplify matters further.

Exercise 10.20 Suppose the real envelope φ(x) is symmetric about some point a, so that
φ(a− x) = φ(a+ x). Show that 〈x〉 = a.

Unless we specify otherwise, we will henceforth consider wave packets with real envelope
functions.

The expectation value 〈p〉 is

〈p〉 = −i�
∫ +∞

−∞
ψ∗(x) ∂

∂x
ψ(x) dx

= −i�
∫ +∞

−∞
φ(x)

(
φ′(x)+ ikφ(x)

)
dx

= −i�
∫ +∞

−∞
φ(x)φ′(x) dx+ �k

∫ +∞

−∞
(φ(x))2 dx. (10.61)

Now we take a shortcut. Both integrals in the last equation are real. Since p is Hermitian,
we know that 〈p〉 must be real. Therefore, the first integral can only be zero.

Exercise 10.21 Integrate directly to show that
∫ +∞

−∞
φ(x)φ′(x) dx = 0.

The remaining part becomes

〈p〉 = �k
∫ +∞

−∞
(φ(x))2 dx = �k. (10.62)

So the plane wave part of our wave packet determines the expectation value 〈p〉 of the
momentum.

We can construct wave packets with various specific envelope functions φ(x). A common
choice is the Gaussian wave packet, in which the envelope function has a Gaussian form.
Since |φ(x)|2 would then be a Gaussian probability distribution, Equation C.8 from the
Appendix tells us that

|φ(x)|2 = 1√
2πσ 2

exp

(
− x2

2σ 2

)
. (10.63)

(Here 〈x〉 = 0 and
〈

x2〉 = σ 2.) The probability density does not determine φ(x) uniquely,

of course. Choosing φ(x) to be real and positive,

φ(x) = 1
4√2πσ 2

exp

(
− x2

4σ 2

)
. (10.64)

The full wave function is ψ(x) = φ(x) eikx, as before.
It is a straightforward exercise to determine the momentum wave function from all this,

using the Fourier transform.
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Exercise 10.22 Do the suggested calculation, arriving at

ψ̄(p) = 4

√
2σ 2

π�2 exp

(
−σ 2(p− �k)2

�2

)
. (10.65)

The probability density over momentum is
∣∣ ¯ψ(p)

∣∣2, which is also a Gaussian. In fact (by
once again comparing to Equation C.8), we can “read off” the variance in p:〈


p2
〉
= �2

4σ 2 . (10.66)

Exercise 10.23 Explain where the factor of 4 comes from in this expression.

Therefore, for the Gaussian wave packet,〈

x2

〉 〈

p2

〉
= σ 2 �2

4σ 2 ,


x 
p = �

2
. (10.67)

The Heisenberg uncertainty principle tells us that 
x 
p ≥ �

2 , so we can see that a Gaussian
wave packet has the smallest joint uncertainty possible. Thus, it is sometimes called the
minimum uncertainty wave packet.

10.4 Reflection and recoil

Since we can now describe a quantum system with a continuous degree of freedom, we can
do an analysis that illuminates some of the important ideas of the last few chapters.

Consider a photon in the two-beam interferometer from Section 2.1, one of our prototype
qubit systems. The interferometer apparatus changed the state of the photon in a unitary
way. In Section 9.2, we found that unitary evolution occurs only when the system is
informationally isolated. But is it reasonable to suppose that the photon is informationally
isolated in the interferometer? For example, when the photon encounters a beamsplitter, the
light interacts with the material of the mirror. Is it reasonable to suppose that this interaction
leaves no trace whatsoever behind in the mirror? Or could a detailed examination of the
mirror afterwards determine whether the photon had been reflected or transmitted – and
hence determine the photon’s state?

If a record were made of the photon’s state ( |u〉 or |l〉) during its interaction with the
beamsplitter, then it would not be possible to observe interference effects in the resulting
beams. In the laboratory, however, such effects are not hard to produce. Our job is to
reconcile this experimental fact with our theoretical description of the situation. We want to
show that it is reasonable to treat the photon as informationally isolated, despite its strong
interaction with the mirror.
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Suppose the photon approaches the beamsplitter in the upper beam. In our previous
treatment, the beamsplitter changes the photon state according to

|u〉 −→ 1√
2

(
|u〉 + |l〉

)
. (10.68)

Now we imagine that the mirror is free to move perpendicular to its face. Its position is
given by a continuous degree of freedom x, and its initial state is |ψ0〉 with wave function
ψ0(x) = 〈x |ψ0 〉. It is reasonable to assume that ψ0(x) for the mirror is fairly well localized,
so that it differs from zero only in the close vicinity of x = 0.

The interaction of the photon with the beamsplitter affects the mirror’s state. For simpli-
city, we assume that photon transmission leaves the mirror in state |ψ0〉; but if the photon
is reflected, then the mirror recoils. The effect of this recoil is described by an operator
R on the beamsplitter state. The joint state of the photon and the beamsplitter evolves
according to

|u〉 ⊗ |ψ0〉 −→ 1√
2

(
|u〉 ⊗ (R |ψ0〉)+ |l〉 ⊗ |ψ0〉

)
. (10.69)

To what degree is the final beamsplitter state a physical record of whether the photon
has been transmitted? If we examine only the beamsplitter, how well can we determine
whether the photon is finally in state |u〉 or |l〉? This is the problem of distinguishing the
beamsplitter conditional states |ψR〉 = R |ψ0〉 and |ψ0〉, each of which is equally likely.
The basic distinguishability theorem of Section 4.2 (generalized in Section 9.6) gives us the
answer. If we define θ so that |〈ψ0 |ψR 〉| = cos θ , then the probability PS of successfully
distinguishing between the states is bounded by

PS ≤ 1
2

(1+ sin θ) . (Re 4.20)

If |〈ψ0 |ψR 〉| ≈ 1, then PS ≈ 1/2, which is what pure guessing allows. In this case,
an examination of the beamsplitter would provide almost no information at all about the
photon’s path, and so the photon would be approximately informationally isolated.

If the photon reflects from the mirror, it transfers some momentum q to the mirror. Thus,
the effect of R is to shift the mirror’s momentum wave function by q. If ψ̄0(p) = 〈p |ψ0 〉 is
the initial momentum wave function, then the final one is ψ̄R(p) = 〈p |ψR 〉 = ψ̄0(p − q).
We know from Eq. 10.60 (and Exercise 10.18) that a shift in ψ̄ corresponds to a modulation
of ψ . Thus, the spatial wave function for the recoiling mirror is related to its initial wave
function by

ψR(x) = eiqx/�ψ0(x). (10.70)

Therefore, the inner product is

〈ψ0 |ψR 〉 =
∫ +∞

−∞
eiqx/� |ψ0(x)|2 dx. (10.71)

The mirror’s initial wave function ψ0(x) is pretty well localized in space, so we can see
how this works out in two extreme cases:
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• If q is very small, then the function eiqx/� varies much more slowly than |ψ0(x)|2.
This means that eiqx/� ≈ 1 in the bounded region around x = 0 where |ψ0(x)|2 is
non-negligible. In this situation, |〈ψ0 |ψR 〉| ≈ 1, and the two states are practically
indistinguishable.

• On the other hand, if the momentum transfer q is very large, then the oscillating factor
eiqx/� varies much more rapidly than |ψ0(x)|2. In this case, |〈ψ0 |ψR 〉| ≈ 0, and the two
states are almost perfectly distinguishable (PS ≈ 1).

That is, the distinguishability of the mirror states depends on how much momentum q is
transferred and on the spread of the undisturbed wave function ψ0(x).

To make this argument more definite, suppose that the initial mirror state is given by a
Gaussian wave packet with position uncertainty 
x. Recalling Eq. 10.64,

〈ψ0 |ψR 〉 = 1√
2π(
x)2

∫ +∞

−∞
eiqx/� exp

(
− x2

2(
x)2

)
dx. (10.72)

This is almost the Fourier transform of a Gaussian function, which is also Gaussian.

Exercise 10.24 Consult Eq. C.9 and show that

〈ψ0 |ψR 〉 = exp

(
−q2(
x)2

2�2

)
. (10.73)

Thus, if q
x � �, then the two mirror states are practically indistinguishable. If q
x � �,
then they are almost perfectly distinguishable.

Consider now the mirror in the interferometer. For a definite phase relationship to be
maintained between the beams in the apparatus, the mirror must be localized to a small
fraction of the wavelength λ of the light used. If k = 2π/λ, we require that k
x � 1 for
the mirror.3 The wavelength of the light is also related to the momentum carried by the
photons, which is �k. In the geometry of the Mach–Zehnder interferometer, this means
that the momentum transfer to the mirror is

√
2 �k. From this it follows that q
x � √

2 �,
and so Eq. 10.73 tells us that 〈ψ0 |ψR 〉 ≈ 1. The unrecoiling and recoiling mirror states
are almost indistinguishable, and the photon is effectively informationally isolated, just as
originally supposed.

Exercise 10.25 Recast this argument in terms of the momentum uncertainty 
p of the
mirror. What can we say about the distinguishability of the two mirror states when q � 
p?
When q � 
p?

10.5 More dimensions of space

What if a particle moves, not simply along a one-dimensional line, but in a space of two or
three dimensions? We can easily generalize our discussion to describe this.

3 This is easy to achieve for a macroscopic mirror made of trillions upon trillions of atoms.
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The position of the particle in space is described by Cartesian coordinates x, y, and z,
which are the components of a 3-D position vector 	r. The quantum particle has improper
position eigenstates |x, y, z〉 = |	r 〉, and its state is represented by a wave function

ψ(	r ) = 〈	r |ψ 〉 . (10.74)

The squared magnitude |ψ(	r )|2 is a probability density for the position of the particle in
an experiment. Thus, the normalization condition for the wave function is∫∫∫

|ψ(	r )|2 d3r = 1, (10.75)

where the integral ranges over all space, i.e. all values of 	r. (Our 3-D integrals will be
assumed to extend over all space unless otherwise specified.)

The position eigenstates |	r 〉 have continuous completeness and orthonormality relations.
First, completeness: ∫∫∫

|	r 〉〈	r | d3r = 1. (10.76)

The |	r 〉 improper vectors also satisfy〈	r ∣∣	r ′ 〉 = δ3(	r ′ − 	r ), (10.77)

where δ3(	r ′ − 	r ) is a 3-D delta function, which can be written in terms of the Cartesian
coordinates of the vectors:

δ3(	r ′ − 	r ) = δ(x′ − x)δ(y′ − y)δ(z′ − z). (10.78)

Exercise 10.26 Suppose |φ〉 and |ψ〉 are two states of a particle moving in space. Write
down an integral expression for the inner product 〈φ |ψ 〉.
Exercise 10.27 Consider the 3-D wave function ψ(	r ) = Ae−ar2 , where a > 0 and r2 =
x2 + y2 + z2. Find the normalization constant A (which may be assumed real and positive).
Also calculate 〈	r 〉 and

〈
r2〉 for this state.4

There is also a momentum representation for the quantum state of a particle in three
dimensions. The momentum eigenstates |	p 〉 correspond to plane waves with a wave vector
	k that satisfies 	p = �	k. We can express this as follows:

〈	r |	p 〉 = 1
(2π�)3/2 ei	p·	r/�, (10.79)

compare Eq. 10.41. The momentum wave function ψ̄(	p ) = 〈	p |ψ 〉 for the state |ψ〉 is
related to the spatial wave function via a 2-D Fourier transform.

Exercise 10.28 Show that

ψ̄(	p ) = 1
(2π�)3/2

∫∫∫
e−i	p·	r/� ψ(	r ) d3r. (10.80)

4 The expression 〈	r 〉 indicates a vector whose components are 〈x〉, 〈y〉, and 〈z〉.
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What about the 3-D vector “momentum operator” 	p? This is simply a heuristic way of
considering three component operators at once. Each component operator px, py, and pz
is exactly like the 1-D momentum operator for the corresponding coordinate. That is, we
can write

	p : ψ(	r ) →−i� 	∇ψ(	r ). (10.81)

The gradient 	∇ has “components”
∂

∂x
,

∂

∂y
, and

∂

∂z
.

Exercise 10.29 Consider the commutation relations among the x, y, z, px, py, and pz. Show
that all of the commutators are zero except

[x, px] = i�1, [y, py] = i�1, [z, pz] = i�1. (10.82)

10.6 How not to think about ψ

A particle moving in space is described by a wave function ψ(	r, t) that evolves in time
according to the Schrödinger equation (Eq. 11.26), which is a linear partial differential
equation. The function ψ(	r, t) is the “wave” part of the wave–particle duality discussed in
Section 1.2.

This invites analogies to other wave systems – the vibrations of a stretched wire or
membrane, sound waves in the air, or electromagnetic waves. Each of these is a disturbance
in a field described by a function of space and time variables. For instance, a sound wave
traveling in space can be described by the function P(	r, t), the air pressure as it depends on
	r and t. This function is governed by a partial differential equation, and the mathematical
machinery used in its analysis contains many elements also found in the analysis of quantum
wave functions: initial-value problems, boundary conditions, separation of variables, vector
space methods, Fourier transforms, etc.

Nevertheless, the mathematical analogy can be misleading. The wave function ψ(	r, t) is
not a physical field like the air pressure P(	r, t).

To see why, consider a situation in which two sound wave pulses move in opposite
directions. The pressure field function P(	r, t) consists of two separate disturbances moving
to the left and the right. After a long time, the waves may impinge on two widely separated
sound detectors. These detectors will behave completely independently.

This is true whether the detectors have a deterministic response to sound or they act in a
noisy, probabilistic way. Because the physics of sound and sound-detectors is entirely local,
the left-hand detector only “sees” the left-hand part of the sound wave, and its response only
depends on that part of the wave, no matter what is happening on the right side. Knowing
the experimental set-up, we gain no information about the response of the left-hand detector
from knowledge of the response of the right-hand detector. Or, to put it another way, the
local values P(	r1, t) and P(	r2, t) of the field at two different locations have independent
experimental meaning, in terms of the responses of local sound-detectors.
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The situation is not the same for a quantum particle described by a wave function
ψ(	r, t). We can prepare this system in a state that is a superposition of two localized
wave packets moving in opposite directions: ψ(	r, t) = ψL(	r, t) + ψR(	r, t). Yet here we
must be careful in our thinking. There may be two wave packets in ψ(	r, t), but the wave
function still represents the state of a single particle. If a measuring device on the right-
hand side detects the presence of the particle, we know for certain that a detector on
the left-hand side will not. The detection probabilities PL and PR are parts of the same
probability distribution, not probabilities for independent events. Unlike the local values
of a physical field, the local values of the wave function do not have an independent
meaning.

A second (and even more compelling) reason why the wave function cannot be considered
as a physical field arises whenever the system includes more than one particle. If ψ were a
field, then we would expect the two-particle situation to be described by a ψ with greater
magnitude (e.g. a normalization of 2), or perhaps by two distinct fields ψ1 and ψ2 for the
two particles. But, as we will see in Chapter 14, neither of these is correct. The two-particle
system is described by a single wave function that depends on both particle coordinates and
time: ψ(	r1, 	r2, t). In other words, the wave function is now a function of a six-dimensional
space. For more particles, things get even worse. The wave function ψ(	r1, . . . , 	rN , t)
for an N-particle system in one spatial dimension depends on 3N spatial coordinates
(and time).

In this way, the quantum wave function ψ(	r, t) seems more like a probability distribution
than a physical field. Imagine a classical particle that moves in space, described at any
time t by its position 	r and momentum 	p. We may not have exact knowledge of x and p, so
we will describe the particle by a probability distribution P(	r, 	p, t) that depends on time.
Newtonian motion of the particle produces a time evolution of P that can be expressed
as a partial differential equation. Furthermore, if we have more than one particle, the
probability distribution will be a function of all of the variables describing the classical
state of the system. For two particles, the joint distribution function will have to be written
P(	r1, 	p1, 	r2, 	p2, t).

Yet this analogy, too, can be misleading, as the phenomenon of interference shows.
The quantum wave function ψ(	r, t) is neither a field nor a probability distribution. It is
a creature of a new and different sort, and we must regard all such analogies with an
appropriate suspicion.

Problems

Problem 10.1 The continuous collection of “eigenstates” |x〉 for our regular Hilbert space
is a linearly independent set, although the exact formulation of this idea is a bit tricky. After
all, the kets |x〉 are not themselves regular states. Here is a simple way to express it: For
any continuous function c(x) such that∫ +∞

−∞
c(x) |x〉 dx = 0, (10.83)
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then c(x) = 0 for all x. (You should compare this definition with the usual condition of
linear independence in a finite-dimensional space.) Use the fact that the |x〉 are linearly
independent to show that the wave function for a given state |ψ〉 is unique.

Problem 10.2 A quantum wave function is given by

ψ(x) =
{

A
(
a2 − x2)2 |x| < a

0 |x| ≥ a
, (10.84)

where A is a constant chosen to normalize ψ(x).

(a) Show that ψ(x) and its derivative ψ ′(x) are both continuous, and find a suitable constant
A. What are the units of A?

(b) Calculate 〈x〉, 
x, 〈p〉, and 
p for this wave function. Verify the Heisenberg uncertainty
principle (Eq. 10.54).

Problem 10.3 Repeat all parts of Problem 10.2 for the slightly modified wave function

φ(x) =
{

Bx
(
a2 − x2)2 |x| < a

0 |x| ≥ a
. (10.85)

Are the quantum states in this problem and that one orthogonal to one another?

Problem 10.4 A wave packet is a finite train of plane waves with an envelope function
that is a square “pulse” over the interval [a, b],

ψ(x) =
{

Ceikx a ≤ x ≤ b
0 otherwise

. (10.86)

(This ψ(x) is not continuous, but for now ignore that difficulty.) First, find the (real)
normalization constant C. Then calculate 〈x〉, 〈
x2〉, ψ̄(p), and 〈p〉. Also show that

〈

p2〉

is infinite.

Problem 10.5 A wave function is a superposition of two wave packets moving in opposite
directions: φ1(x)eikx and φ2(x)e−ikx, for real envelope functions φ1 and φ2. Is it possible
that the two wave packets might exactly cancel out, so that ψ(x) = 0 everywhere?

Problem 10.6 Suppose Q and P are Hermitian operators on a Hilbert space of finite dimen-
sion dimH = d. Show that these operators cannot possibly have the canonical commutation
relation [Q, P] = i�1.

Problem 10.7 The remarkable Wigner function was introduced by Eugene Wigner in 1932.
It is a useful alternative representation of quantum states. Suppose a particle is moving in
1-D and is described by a wave function ψ(x). Then the Wigner function is

P(x, p) = 1
2π�

∫ +∞

−∞
ψ∗(x+ y/2)ψ(x− y/2)eipy/� dy. (10.87)

The Wigner function has many of the characteristics of a joint probability distribution over
x and p. Prove the following properties of P(x, p):
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(a) P(x, p) is real.
(b)

∫ +∞
−∞ P(x, p) dp = |ψ(x)|2.

(c)
∫ +∞
−∞ P(x, p) dx = ∣∣ψ̄(p)

∣∣2.
(d) For two states |ψ1〉 and |ψ2〉 with Wigner functions P1 and P2,

|〈ψ1 |ψ2 〉|2 = 2π�
∫ +∞

−∞

∫ +∞

−∞
P1(x, p)P2(x, p) dx dp. (10.88)

If we integrate over either x or p, we obtain the correct quantum probability distribu-
tions over p and x. However, the Wigner function cannot be properly regarded as a joint
probability distribution. To prove this, construct an example in which P(0, 0) < 0. (Hint:
Consider an odd, real wave function.)

Problem 10.8 The state of a particle moving in 1-D may be described by a density operator
ρ. In the position representation, this will be described by a function ρ(x, x′).

(a) What is the normalization condition (Eq. 8.14) for ρ(x, x′)?
(b) Denote by |Gσ (p)〉 the state described by a Gaussian wave packet with an envelope

function φ(x) from Eq. 10.64 and a plane wave eikx with �k = p. Find the position
representation ρ(x, x′) for the density operator ρ = |Gσ (p)〉〈Gσ (p)| .

(c) Suppose that the particle is in a mixture of Gaussian wave packet states with a
continuous range of momenta near zero:

ρ = 1
2q

∫ q

−q
|Gσ (q)〉〈Gσ (q)| dq. (10.89)

Show that the coherences of the density operator are suppressed – that is, show that
ρ(x, x′) is closer to zero than in part (c), if x and x′ are different enough. (Part of your
job is to pin down the phrase “different enough.”)
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11.1 Dynamics in 1-D

The 1-D Hamiltonian

It is time to think about time. The quantum state |ψ(t)〉 of a particle in 1-D depends on
time t, and so do the position and momentum wave functions:

ψ(x, t) = 〈x |ψ(t) 〉 and ψ̄(p, t) = 〈p |ψ(t) 〉 . (11.1)

All of our previous results about these wave functions and their relationship to one another
still hold true. The improper |x〉 and |p〉 eigenstates are not time dependent; nor are the x
and p observables.

The time dependence of the state is governed by the Schrödinger equation:

H |ψ(t)〉 = i�
d
dt
|ψ(t)〉 . (Re 5.23)

But what Hamiltonian operator are we to use? Our answer is based on two ideas. First, the
Hamiltonian operator is the energy operator for the particle. Second, the particle’s energy
is the sum of its kinetic and potential energies, and these are functions of the momentum
and position of the particle.

Thus, the kinetic energy K for a non-relativistic particle moving in one dimension is
related to the momentum p by

K = p2

2μ
, (11.2)

where μ is the particle’s mass. The potential energy is a function of the position x only:

U = U(x). (11.3)

The total energy of the system is thus

E = K + U = p2

2μ
+ U(x). (11.4)

The Hamiltonian operator should be related to the operators x and p by

H = 1
2μ

p2 + U(x). (11.5)
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This is the operator that governs the time evolution of the quantum state via Eq. 5.23, as
follows: (

1
2μ

p2 + U(x)
)
|ψ(t)〉 = i�

d
dt
|ψ(t)〉 . (11.6)

Notice that our procedure here is to begin with a prior understanding of a classical
system (a particle moving in one dimension) that is analogous to the quantum system of
interest. We adapt classical relations between position, momentum, and energy variables
into quantum relations between operators, from which we derive the dynamics of the
quantum system. This procedure is called quantization. This is a good strategy for guessing
the Hamiltonian operator governing a quantum system of a given sort. But it is not the way
that Nature works. Quantization is a heuristic procedure, not a physical process. Yet the
analogy between classical and quantum systems, so useful to us here, is by no means an
accident. The real connection runs in the opposite direction, from the underlying quantum
physics to the approximate, effectively classical picture that emerges from it.

How can this “emergence” happen? This is a difficult question, some aspects of which
are still poorly understood. However, we can give a partial answer. Recall that, for a
time-independent observable A, the expectation value 〈A〉 evolves according to

d
dt
〈A〉 = 1

i�
〈ψ | [A, H] |ψ〉 . (Re 5.27)

We can use this to determine how 〈x〉 and 〈p〉 change over time, relying on the canonical
commutation relation and its corollaries. For instance,

d
dt
〈x〉 = 1

i�
〈ψ |

[
x ,

(
p2

2μ
+ U(x)

)]
|ψ〉 . (11.7)

Since x commutes with any function of x, this reduces to

d
dt
〈x〉 = 1

2iμ�
〈ψ | [x, p2] |ψ〉 . (11.8)

Equation 10.57 tells us that [x, p2] = 2i�p. Therefore,

d
dt
〈x〉 = 〈p〉

μ
. (11.9)

This has a familiar look to it! The average position 〈x〉 of the wave function moves with
a velocity equal to the average momentum 〈p〉 divided by μ. The classical connection
between momentum and velocity holds good in the quantum realm – at least in expectation
values.

In a similar way, we can examine how 〈p〉 evolves:

d
dt
〈p〉 = 1

i�
〈ψ |

[
p ,

(
p2

2μ
+ U(x)

)]
|ψ〉

= − 1
i�
〈ψ | [U(x), p] |ψ〉 . (11.10)
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Recall that F(x) = −∂U
∂x

is the classical force acting on a particle subject to a potential
U(x). Then Eq. 10.56 lets us write that

d
dt
〈p〉 = 〈F(x)〉 . (11.11)

Once again, we have recovered an expression that strongly resembles a classical law – in
this case, the Newtonian equation of motion of a particle in one dimension.

Equations 11.9 and 11.11 are together known as Ehrenfest’s theorem. Let us compare
these results explicitly to the classical equations of motion for a particle in one dimension,
with xc and pc representing the classical position and momentum variables.

Classical Quantum

dxc
dt

= pc
μ

d
dt
〈x〉 = 〈p〉

μ

dpc
dt

= F(xc)
d
dt
〈p〉 = 〈F(x)〉 . (11.12)

If we replace xc and pc by the quantum expectations 〈x〉 and 〈p〉, the two sides are almost
in agreement: almost, but not quite.

Exercise 11.1 What is the difference between F(〈x〉) and 〈F(x)〉? Construct an example –
that is, describe a function F(x) and a wave function ψ – for which these are quite different.
Under what circumstances should these two be about the same?

A particle is in a “quasi-classical” state if it is described by a wave packet that is pretty well
localized in both position and momentum (subject to the requirements of the Heisenberg
uncertainty relation, of course). From the macroscopic point of view, the expectations 〈x〉
and 〈p〉 are the actual effective position and momentum of the particle. In this case, the
classical equations of motion will work pretty well.

The Schrödinger equation for wave functions

Since we have been describing our state via its wave function ψ(x, t), it makes sense to
find the position representation for the Schrödinger equation – that is, a representation as
an equation governing ψ(x, t). We take each part of Eq. 11.6 in turn:

1
2μ

〈x| p2 |ψ(t)〉 = − �

2μ

∂2

∂x2 ψ(x, t),

〈x|U(x) |ψ(t)〉 = U(x) ψ(x, t),

i� 〈x|
( d

dt
|ψ(t)〉

)
= i�

∂

∂t
ψ(x, t). (11.13)
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We arrive at the following equation for the wave function:

− �2

2μ

∂2

∂x2 ψ(x, t)+ U(x) ψ(x, t) = i�
∂

∂t
ψ(x, t). (11.14)

The Schrödinger equation thus becomes a partial differential equation governing the wave
function ψ(x, t).

The x-representation of the 1-D Schrödinger equation contains an enormous amount of
physics in highly compressed form. For instance, consider what it says about stationary
states of a particle moving in one dimension. Such a state evolves in time according to

|ψ(t)〉 = e−iEt/� |ψ(0)〉 . (11.15)

The wave function is therefore

ψ(x, t) = 〈x |ψ(t)〉 = ψ(x) e−iEt/�, (11.16)

where ψ(x) = 〈x |ψ(0) 〉, a function that depends only on the position x. Notice that we
have “separated the variables” x and t, writing ψ(x, t) as the product of a function ψ(x) of
x and a function e−iEt/� of t.

The state |ψ(0)〉 is an eigenstate of the Hamiltonian operator, so ψ(x) must satisfy the
position representation of the energy eigenvalue equation:

− �2

2μ

d2

dx2 ψ(x)+ U(x) ψ(x) = Eψ(x). (11.17)

(Note that the derivatives are now total derivatives, since the wave function ψ(x) =
〈x |ψ(0) 〉 only depends on x.) We can also get this from Eq. 11.14 and 11.16 directly.

Exercise 11.2 Substitute Eq. 11.16 into Eq. 11.14 and obtain the “time-independent
Schrödinger equation” (Eq. 11.17).

We have already noted the importance of finding energy eigenstates, so solving Eq. 11.17
for E and ψ(x) will deserve some considerable attention. The whole of Chapter 15, in fact,
is devoted to that problem.

The flow of probability

As the quantum state evolves and the wave function ψ(x, t) changes, the probabilities for
finding the particle in various locations will also change. The Schrödinger equation can
tell us something about how this happens. At any given point, the probability density
changes by

∂

∂t
(ψ∗ψ) = ∂ψ∗

∂t
ψ + ψ∗ ∂ψ

∂t

= 1
−i�

(
− �2

2μ

∂2ψ∗

∂x2 + U(x)ψ∗
)

ψ

+ 1
i�

ψ∗
(
− �2

2μ

∂2ψ

∂x2 + U(x)ψ

)
. (11.18)
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(Note that we have used both Eq. 11.14 and its complex conjugate.) This looks like a mess;
but the terms involving the potential U(x) cancel. After some simplification, we get

∂

∂t
(ψ∗ψ) = − i�

2μ

(
∂2ψ∗

∂x2 ψ − ψ∗ ∂2ψ

∂x2

)
. (11.19)

Now we define the probability flux J to be

J(x, t) = i�
2μ

(
∂ψ∗

∂x
ψ − ψ∗ ∂ψ

∂x

)
. (11.20)

Then

∂

∂t
(ψ∗ψ) = −∂J

∂x
. (11.21)

Our claim is that J represents the “flow of probability” along the x-axis. This is a slightly
weird idea, but it does make sense. Consider, for instance, a particular interval from a to b.
The total probability that the particle is found in that interval is

P =
∫ b

a
ψ∗ψ dx. (11.22)

As the wave function changes, this probability changes. How? Like this:

dP
dt
=
∫ b

a

∂

∂t
(ψ∗ψ) dx

= −
∫ b

a

∂J
∂x

dx

= J(a, t)− J(b, t). (11.23)

In other words, the probability P that the particle is in [a, b] only changes due to probability
flows across the boundaries of the interval at the points a and b. Probability within [a, b]
cannot just appear or disappear.

Imagine that the wave function ψ(x, t) is only appreciably non-zero in two disjoint
regions on the x-axis. This might represent a particle that is confined to a pair of boxes, but
is completely excluded from the region between the boxes. The wave function ψ allows us
to calculate the probability of finding the particle in one box or the other. But if the particle
can never be found between the boxes, then ψ = 0 there, and so J = 0 as well. In this
case, the probability for each box must remain constant over time.

Exercise 11.3 If x has units of length, what are the units of J?

Exercise 11.4 Suppose at a given moment, the wave function is a wave packet φ(x)eikx,
where the envelope function φ is real. Show that the probability flow J satisfies

J = (probability density)× (classical velocity). (11.24)

Which classical velocity do we mean?
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Wave functions in three dimensions

All of this can easily be generalized to 3-D space. The Hamiltonian for a particle of mass
μ moving in 3-D space typically has the form

H = 1
2μ

p2 + U(	r), (11.25)

where p2 = p2
x + p2

y + p2
z , and U is the potential energy, a function of position. From this,

we can derive the Schrödinger equation for the time-dependent wave function ψ(	r , t) =
〈	r |ψ(t) 〉:

− �2

2μ
∇2ψ + U(	r)ψ = i�

∂ψ

∂t
. (11.26)

You should recall that in Cartesian coordinates the Laplacian ∇2 is given by

∇2ψ = ∂2ψ

∂x2 + ∂2ψ

∂y2 + ∂2ψ

∂z2 . (11.27)

Expressions for ∇2 in other coordinates are also very useful, as we will see.
If the particle is in an energy eigenstate with energy E, then its wave function must satisfy

− �2

2μ
∇2ψ + U(	r)ψ = Eψ . (11.28)

The time-dependent wave function for a stationary state is ψ(	r , t) = ψ(	r , 0)e−iEt/�.
Finally, in three dimensions the probability flux is a vector:

	J = i�
2μ

(
ψ 	∇ψ∗ − ψ∗ 	∇ψ

)
. (11.29)

The connection between 	J and changes in probability density is worked out in
Problem 11.13.

Exercise 11.5 This is the generalization of Exercise 11.4 to three dimensions. If ψ(	r) =
φ(	r)ei 	k·	r, where φ(	r) is real, then show that

	J = |φ|2 �	k
μ

. (11.30)

11.2 Free particles in 1-D

Time evolution

A particle is a free particle if the potential function U(x) = 0. Then the Hamiltonian
operator for the system is

H = p2

2μ
. (11.31)
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Clearly, the momentum eigenstates |p〉 are also energy eigenstates for the system:

H |p〉 = p2

2μ
|p〉 . (11.32)

Because of this, the time evolution of a quantum state |ψ(t)〉 of a free particle is particularly
simple in the momentum representation. That is,

i�
∂

∂t
ψ̄(p, t) = i� 〈p|

( d
dt
|ψ(t)〉

)
= 〈p|H |ψ(t)〉

= p2

2μ
〈p |ψ(t)〉

i�
∂

∂t
ψ̄(p, t) = p2

2μ
ψ̄(p, t). (11.33)

We can solve this to find ψ̄(p, t) in terms of the initial momentum wave function ψ̄(p, 0):

ψ̄(p, t) = e−ip2t/2μ� ψ̄(p, 0). (11.34)

Alternatively, we can use the momentum representation to write down the time-evolution
operator U(t):

U(t) = e−iHt/� =
∫ +∞

−∞
e−ip2t/2μ� |p〉〈p| dp. (11.35)

Exercise 11.6 Show by evaluating 〈p |ψ(t) 〉 = 〈p|U(t) |ψ(0)〉 that Eq. 11.35 leads to the
solution given by Eq. 11.34.

We have now completely solved the Schrödinger equation for a free particle moving
in one dimension! The fact that our solution is given in terms of the momentum wave
function is a slight inconvenience, of course, since we are often more interested in the
x-representation of the quantum state. Nevertheless, if we know the initial position wave
function ψ(x, 0), we can find ψ(x, t) at any later time t by a three-step procedure:

• We first find ψ̄(p, 0) via the Fourier transform of ψ(x, 0).
• We then find ψ̄(p, t) from Eq. 11.34.
• Finally, we use the inverse Fourier transform to obtain ψ(x, t).

An alternative, somewhat more direct method is suggested in Problem 11.5.

Moving wave packets

Can we get more insight than this into the behavior of a free particle wave function
ψ(x, t)? We can – indeed, we are able to draw surprisingly general conclusions about this
time evolution. Let 〈· · ·〉0 represent the initial expectation value of a quantity, taken with
respect to the initial state |ψ(0)〉. Since p commutes with the Hamiltonian H, the particle’s
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momentum is conserved, and so 〈p〉 = 〈p〉0 at all times. The first half of Ehrenfest’s
theorem, Eq. 11.9, now tells us that

d
dt
〈x〉 = 〈p〉0

μ
. (11.36)

The expectation value 〈x〉 moves uniformly with time, according to

〈x〉 = 〈p〉0
μ

t + 〈x〉0 . (11.37)

The uniform motion of 〈x〉 and the value of 〈p〉0 do not tell the whole story. The wave
function ψ(x, t) is spread out around 〈x〉 in some way, which we measure by the uncertainty

x. In a similar way, the uncertainty 
p measures how spread out the momentum wave
function is. Initially, these have values 
x0 and 
p0. How do the uncertainties change over
time?

It is mathematically easier to deal with the variances
〈

x2〉 and

〈

p2〉, which are the

squares of the uncertainties 
x and 
p. Consider first the momentum. Since
〈

p2〉 =〈

p2〉− 〈p〉2, and since both p and p2 commute with H, the variance in momentum remains
at the constant value

〈

p2〉

0.

Exercise 11.7 Show that 〈E〉 = 〈p〉20 +
〈

p2〉

0
2μ

, which stays constant.

To find how
〈

x2〉 changes, we will need two more commutation relations.

Exercise 11.8 Starting with the canonical commutation relation [x, p] = i�, show that

(a)
[
x2, p2

]
= 2i�(xp+ px).

(b)
[
(xp+ px), p2

]
= 4i�p2.

Then

d
dt

〈
x2
〉
= 1

i�

〈[
x2,

p2

2μ

]〉
= 1

μ
〈xp+ px〉 . (11.38)

This expression is not constant, but the second derivative

d2

dt2
〈
x2
〉
= 1

μ

d
dt
〈xp+ px〉

= 1
2im2�

〈[
(xp+ px), p2

]〉
= 2

μ2

〈
p2
〉
= 2

μ2

(〈

p2

〉
0
+ 〈p〉20

)
, (11.39)

is constant. Therefore,
〈
x2〉 can be written

〈
x2
〉
=
(〈


p2〉
0 + 〈p〉20
μ2

)
t2 + Ct + D, (11.40)
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where C and D are constants. Clearly, D = 〈
x2〉

0, and

C =
( d

dt

〈
x2
〉)

t=0

= 1
μ
〈xp+ px〉0 . (11.41)

Exercise 11.9 From the above, show that〈

x2

〉
=
(〈


p2〉
0

μ2

)
t2 + 1

μ

(〈xp+ px〉0 − 2 〈p〉0 〈x〉0
)

t +
〈

x2

〉
0

. (11.42)

The variance
〈

x2〉 of an arbitrary free particle wave function ψ(x, t) depends on time

according to the quadratic expression in Eq. 11.42.
Things become even simpler when the initial wave function ψ(x, 0) is a wave packet

φ(x)eikx with a real envelope function φ(x). The minimum uncertainty (Gaussian) wave
packet of Eq. 10.64 is an example of this type. In this case, the linear term in Eq. 11.42 can
be computed explicitly.

First, we recall that 〈p〉0 = �k for the wave packet. Also, the canonical commutation
relation implies that

xp+ px = i�1+ 2xp. (11.43)

Thus,

〈xp+ px〉0 =
∫ +∞

−∞
φ(x)e−ikx

×
(

i�φ(x)eikx − 2i�x
∂

∂x

(
φ(x)eikx

))
dx

= i�
∫ +∞

−∞
φ2 dx− 2i�

∫ +∞

−∞
xφφ′ dx

+ 2�k
∫ +∞

−∞
xφ2 dx. (11.44)

Now we take a shortcut, the same one we used to derive Eq. 10.62 above. All of the integrals
in the last equation are real. Because the operator xp+px is Hermitian, its expectation must
be real. Thus, the integrals that are multiplied by i must add up to zero. The remaining term
yields

〈xp+ px〉0 = 2 〈p〉0 〈x〉0 . (11.45)

This means that the the linear coefficient of t in Eq. 11.42 exactly vanishes. If ψ(x, 0)

is a wave packet with a real envelope function φ(x), the variance of x varies with time
according to 〈


x2
〉
=
(〈


p2〉
0

μ2

)
t2 +

〈

x2

〉
0

. (11.46)

The initial value
〈

x2〉

0 of the variance is also its minimum value. With time it grows
quadratically, depending on the value of the momentum variance

〈

p2〉

0.
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Actually, as Problem 11.6 shows, Eq. 11.46 has nothing distinctively “quantum” about
it. Any uncertainty we have about the initial velocity of a particle will contribute to our
uncertainty about its later position. What is distinctively “quantum” is that the uncertainties
in position and momentum are related by the Heisenberg uncertainty principle. That is,〈


p2
〉
0
≥ �2

4
〈

x2

〉
0

. (11.47)

At a later time, 〈

x2

〉
≥
(

�2

4μ2
〈

x2

〉
0

)
t2 +

〈

x2

〉
0

. (11.48)

Equality holds in both expressions if ψ(x, 0) is a Gaussian wave packet. The quantum
trade-off between uncertainties in x and p means that, the narrower we make the initial
wave packet, the more rapidly the wave function will spread out over time.

Exercise 11.10 Let us put some rough numbers to this. We can estimate � ≈ 10−34 J s,
and the mass of an electron is about 10−30 kg. A free electron moves along the x-axis.
We prepare the electron in an initial Gaussian wave packet. Find the uncertainty 
x in the
electron’s position after 1 ns if the initial uncertainty is (a) 10 nm, (b) 1 nm, and (c) 0.1 nm.
(See if you can do this without touching a calculator.)

It is not difficult to write down the analogous development for a particle moving in 2-D
or 3-D. We can analyze the dynamics of 2-D and 3-D wave functions, including the motion
and spread of wave packets, as we have already done for 1-D wave functions. In fact, the
multidimensional analysis adds almost nothing, as the following exercise shows.

Exercise 11.11 For a free particle moving in 3-D, show that the three Cartesian coordinates
x, y, and z behave as three dynamically independent 1-D particles.

11.3 Particle on a circle

So far, we have considered a free quantum particle moving in one dimension along an
infinite line. It may be, however, that the space in which the particle moves is bounded in
some way.

For example, consider a particle that is constrained to move on a circle of finite cir-
cumference L, rather than a straight line. We still describe the particle’s position by the
coordinate x, but now this coordinate is wrapped around the physical space in a periodic
way. The physical location designated by coordinate x is the same as the location designated
by x+ L, x− L, etc. It follows that the improper position eigenstates satisfy |x〉 = |x+ L〉
for any x. For the wave function,

ψ(x+ L) = 〈x+ L |ψ 〉 = 〈x |ψ 〉 = ψ(x). (11.49)

Thus ψ(x) is a periodic continuous function with period L.



234 Dynamics of a free particle

We say that this quantum system is subject to periodic boundary conditions. The math-
ematical development proceeds just as before, except that all integrals over the variable x
are restricted to one period of length L, which we can take to be the interval from 0 to L.
The completeness relation becomes ∫ L

0
|x〉〈x| dx = 1. (11.50)

Exercise 11.12 From the completeness relation, show that the inner product for the particle
on the circle is given by

〈φ |ψ 〉 =
∫ L

0
φ∗(x) ψ(x) dx. (11.51)

Compare Equation 10.19.

Now consider the momentum eigenstate |p〉. As before, we suppose that this has a wave
function of the form

〈x |p 〉 = Ceikx, (Re 10.38)

where �k = p and C is a constant. However, there are a couple of new wrinkles. Since
〈x |p 〉 = 〈x+ L |p 〉 = eikL 〈x |p 〉, the possible values of k are restricted so that kL is a
multiple of 2π . In other words,

p = �k = 2π�

L
n, n = . . . ,−1, 0, 1, 2, . . . (11.52)

The discrete index n is called a quantum number. The momentum p is restricted to discrete
values related to n, which we may conveniently call pn. Since the physical space on the
circle is bounded, the momentum states |p〉 are actually normalizable quantum states. This
allows us to fix the value of the constant C in Eq. 10.38:

〈x |pn 〉 = eipnx/�
√

L
. (11.53)

Exercise 11.13 Show that the momentum states |pn〉 are orthonormal.

The completeness relation for the momentum states is discrete:∑
n
|pn〉〈pn| = 1. (11.54)

For a particle moving along an unbounded line, the momentum wave function ψ̄(p) is
essentially the Fourier transform of the position wave function ψ(x) (see Eq. 10.42). With
periodic boundary conditions, the momentum representation of a state |ψ〉 is the infinite
discrete set of Fourier coefficients

ψ̄n = 〈pn |ψ 〉 = 1√
L

∫ L

0
ei2πnx/L ψ(x) dx. (11.55)

A free particle moving on a circle has the familiar Hamiltonian

H = p2

2μ
. (Re 11.31)
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Because of the periodic boundary conditions, the energy eigenvalues are now discrete:

En =
(

2π2�2

μL2

)
n2, (11.56)

where n is an integer and μ is the particle mass. The stationary states can be taken to be the
momentum states |pn〉.
Exercise 11.14 Describe the degeneracies of the energy eigenvalues for the free particle
on a circle.

Periodic boundary conditions imply many convenient properties, such as the normaliz-
ability of the momentum states and the discreteness of the energy spectrum. However, there
are some other properties that are much less easy to understand. For instance, because the
coordinate x is not a unique function of position (x is the same point as x+L and so on) the
operator x is not well defined. We cannot calculate the expectation 〈x〉 in an unambiguous
way. Momentum, on the other hand, is a different story. We can still define an operator p
so that

p : ψ →−i�
∂ψ

∂x
, (11.57)

as before. The expectation 〈p〉 has a clear meaning and can be calculated using either the
position or momentum representation of the state.

Exercise 11.15 Even though we cannot give an unambiguous meaning to the operator x or
the expectation 〈x〉 for the particle on a circle, explain why we can nevertheless define the
expectation 〈cos(2πx/L)〉.
Exercise 11.16 The momentum eigenstates |pn〉 are also energy eigenstates for the free
particle on the circle. All of these have a probability density |〈x |pn 〉|2 for position that is
completely uniform over the circle. Construct other energy eigenstates whose probability
density is not uniform – the particle is more likely to be found in one place than another.

11.4 Particle in a box

A second type of boundary condition arises when a particle moving in one dimension is
confined to some limited region of the line. For example, we can imagine that the particle’s
position is required to be on the positive half-line. The Hilbert space describing such a
particle is a subspace of the Hilbert space describing an unlimited particle. The subspace
is “spanned” by the improper position eigenstates |x〉 with x > 0. The wave function
ψ(x) = 〈x |ψ 〉 for states in our subspace must satisfy ψ(x) = 0 for x ≤ 0. Since the wave
function is continuous, it must be that ψ(x) → 0 as x → 0.

Physically, we can interpret this situation as motion in the presence of a perfectly
impenetrable wall at x = 0. A particle initially located on the positive side of this wall can
never later be found at any point beyond it, no matter what its energy. (As we will see in
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Chapter 15, we can regard this ideal type of barrier as a limiting case of a more realistic,
hard-to-penetrate barrier.)

In the presence of the wall boundary condition, the position observable x poses no
difficulties, since the relation between physical location and coordinate x is one-to-one.
Momentum, however, is now problematic. The improper momentum eigenstates have
wave functions Ceikx that extend over the whole line, so they cannot be approximated by
the physical states in our subspace.

We may also consider a particle confined between two impenetrable walls. This is
sometimes called the particle in a box. One wall is at x = 0 and the other is at x = L,
where L is the length of the box. The position eigenstates |x〉 with 0 < x < L satisfy a
completeness relation (on the limited subspace)1∫ L

0
|x〉〈x| dx = 1. (11.58)

Wave functions for the particle in a box must satisfy ψ(0) = ψ(L) = 0.
Again, the momentum observable p is problematic, since momentum eigenstate wave

functions do not vanish at the walls. However, the squared momentum p2 is more promising.
Consider the wave function

ψ(x) =
{

A sin(kx) 0 < x < L
0 elsewhere

. (11.59)

This satisfies the wall boundary condition provided kL = πn for n = 1, 2, . . . In the interior
of the box, the squared momentum acts on this state according to

p2 : A sin(kx) →−�2 ∂2

∂x2 A sin(kx) = �2k2A sin(kx). (11.60)

The only difficulty lies at the wall, where the wave function has a step discontinuity in its
first derivative (and thus a delta function in the second derivative). A careful resolution of
this apparent problem will be given in Chapter 15. Meanwhile, we will “resolve” it simply
by agreeing to apply operators only in the interior of the box, in the open interval (0, L).
The walls themselves are excluded from consideration.

Since p2 makes sense, we can consider a free particle moving between walls, with the
free-particle Hamiltonian (Eq. 11.31) in the interval (0, L). The energy eigenstates |n〉 have
wave functions

ψn(x) =
√

2
L

sin(knx), (11.61)

where kn = πn/L and n = 1, 2, . . . Again, we have a discrete quantum number n labeling
the possible states. They have energies

En = �2k2
n

2μ
=
(

π2�2

2μL2

)
n2. (11.62)

1 This of course looks just like Equation 11.50. The subtle difference lies in how we treat the boundary points
x = 0 and x = L. On the circle, these are the same location; in the box, they are both excluded from the set of
possible locations.
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Fig. 11.1 Energy levels and stationary state wave functions for the particle in a 1-D box. It is a common
convention for the wave functions to be drawn on the corresponding energy level.

The first three energy eigenstates and eigenvalues are shown in Fig. 11.1.

Exercise 11.17 (a) Verify the normalization of the wave functions ψn(x). (b) Verify the
energy eigenvalues En.

Exercise 11.18 The energy eigenvalues En for the 1-D particle in a box appear similar to
those for a particle moving on a circle (Eq. 11.56). Both can be written En = n2E1. Identify
two crucial differences in the two expressions. Can you give an intuitive explanation for
the differences?

Exercise 11.19 Do the following rough calculation without touching a calculator. An
electron with a mass of about 10−30 kg moves in a 1-D box of size L = 1 nm. It is
convenient to approximate � ≈ 10−34 J s and 2π2 ≈ 20. Find the ground state energy E1
for the electron, and compare it to the electron-volt (1 eV = 1.6 × 10−19 J), a convenient
unit of energy for atomic-scale problems.

How should we understand the stationary states of the particle in a box? We can get an
insight into their physical meaning from the identity

sin(kx) = 1
2i

(
eikx − e−ikx

)
. (11.63)

Within the box, it appears that the energy eigenstates for the particle are superposition of
rightward and leftward moving waves. This suggests that we should imagine our particle
to be bouncing back and forth between the two walls.

This intuitive picture of a bouncing particle in a box has obvious limitations for describing
a stationary state of the system! So let us consider time-dependent states. Since we lack
a nicely behaved momentum operator p, the approach we followed for a free unlimited
particle (via commutation relations and Ehrenfest’s theorem) will not work. Instead, we
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Fig. 11.2 Time-dependent probability density |ψ(x, t)|2 for a particle in a box. At any time, the particle is
most likely to be found in a region that moves back and forth between the walls.

suppose that at time t = 0 we have a simple superposition of the two lowest eigenstates.
That is,

|ψ(0)〉 = 1√
2

(
|1〉 + |2〉

)
,

ψ(x, 0) = 1√
L

(sin (k1x)+ sin (k2x)) , (11.64)

with k1 and k2 defined as above. At a later time t, the wave function will be

ψ(x, t) = 1√
L
(
e−iω1t sin (k1x)+ e−iω2t sin (k2x)

)
, (11.65)

where �ωn = En. We are interested in |ψ(x, t)|2, the time-dependent probability density
over the location of the particle. This is

|ψ(x, t)|2 = ψ∗(x, t)ψ(x, t)

= 1
L
(

sin2(k1x)+ sin2(k2x)

+ 2 cos ((ω2 − ω1)t) sin(k1x) sin(k2x)
)
. (11.66)

We sketch the result in Fig. 11.2. Over time, |ψ(x, t)|2 sloshes back and forth in a way that
suggests the bouncing of a classical particle.

Exercise 11.20 Confirm Eq. 11.66 and explain how it leads to the behavior in Fig. 11.2.
What time is required for |ψ(x, t)|2 to return to its initial configuration?
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11.5 Quantum billiards

A rectangular box

We may also consider 2-D and 3-D problems with boundary conditions. Suppose a quantum
particle moves inside a 2-D rectangular box. The allowed region is aligned with our
coordinate axes – or, more precisely, we have chosen our (mathematical) coordinates to
line up with the (physical) box – and it ranges from 0 to Lx on the x-axis and from 0 to Ly
on the y-axis. The wave function of the particle is zero outside this region.

We regarded the 1-D particle in a box as a particle bouncing back and forth between
two walls. Our 2-D system is therefore something like a particle bouncing around inside a
rectangular enclosure, like a ball on a billiard table. Quantum particles in 2-D enclosures
are in fact called quantum billiard systems, and have been extensively studied in connection
with quantum chaos. (Our aims in this section, however, are less ambitious.)

What are the stationary states of the particle in a 2-D rectangular box? Inside the box,
they have wave functions of the form

ψnxny(	r) = A sin
(

nxπ

Lx
x
)

sin
(

nyπ

Ly
y
)

, (11.67)

where nx and ny are two independent quantum numbers that can take on values 1,2, . . .

Exercise 11.21 Show that the wave function ψnxny(	r) satisfies the boundary condition at
the walls of the box. Also evaluate the normalization constant A.

Exercise 11.22 Verify that ψnxny(	r) represents a stationary state of the 2-D free particle
with energy

Enxny =
2π2�2

μ

(
n2

x
L2

x
+ n2

y

L2
y

)
. (11.68)

The rectangular box is easy to analyze because there are independent boundary conditions
for x (ψ = 0 except between 0 and Lx) and y (ψ = 0 except between 0 and Ly). Also, the
free particle Hamiltonian is

H = 1
2μ

p2
x +

1
2μ

p2
y , (11.69)

the sum of x and y terms. As in Exercise 11.11, the x and y degrees of freedom for the
particle amount to non-interacting subsystems of the particle. The stationary states are
product states with wave functions of the form ψ(x)χ(y), and their energies are the sum of
two independent terms.

Unfortunately, things are almost never this simple. For any other shape of box, the
boundary conditions will not be expressible as independent conditions on x and y.
In situations with a high degree of symmetry, however, the problem may still be
tractable.
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A circular box

Now imagine that a free 2-D quantum particle is inside a circular box of radius a, at whose
center we place our coordinate origin. In terms of the Cartesian coordinates x and y, our
boundary condition is that the wave function ψ(x, y) = 0 when x2 + y2 = a2. We certainly
do not have separate boundary conditions for x and y.

On the other hand, the problem is much simpler if we re-cast it in plane polar coordinates
r and φ. These are related to the Cartesian coordinates by

x = r cos φ and y = r sin φ. (11.70)

The wave function now depends on r and φ. There are two boundary conditions:

• ψ(a, φ) = 0 for any φ; and
• ψ(r, φ + 2π) = ψ(r, φ) for any r and φ.

There are separate boundary conditions for the two coordinates. (The second condition
arises because the angular coordinate φ wraps around the plane with period 2π .)

To find the stationary states of the particle, we need to solve the energy eigenvalue
equation, which in the coordinate representation is

− �2

2μ
∇2ψ = Eψ , (11.71)

subject to our boundary conditions. To do this, we need a polar coordinate form for the
Laplacian. This is derived in Problem 11.11. The equation we wish to solve is

∂2ψ

∂r2 + 1
r

∂ψ

∂r
+ 1

r2
∂2ψ

∂φ2 = −2μE
�2 ψ . (11.72)

Now we try a product form for the wave function, ψ(r, φ) = R(r)�(φ). We are motivated
to do this because our boundary conditions affect R and � separately: R(a) = 0 and
�(φ + 2π) = �(φ). Our equation becomes

� R′′ + �

r
R′ + R

r2 �′′ = −2μE
�2 R�. (11.73)

Here R′, R′′, and �′′ represent derivatives of these functions with respect to their arguments.
There is a trick that makes this equation much simpler. If we multiply by r2/R� and

rearrange terms, we have
r2

R
R′′ + r

R
R′ + 2μE

�2 r2 = − 1
�

�′′. (11.74)

The left-hand side of this equation is a function only of the radial coordinate r, while the
right-hand side depends only on φ. The two sides can be equal only if both of them equal
the same constant K. We therefore arrive at two separate ordinary differential equations for
R and �:

�′′ = −K �, (11.75)

r2R′′ + rR′ + 2mE
�2 r2R = KR. (11.76)
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The same K appears in both equations, but otherwise they are independent. This general
trick is called separation of variables, and the linking constant K is called a separation
constant.

The angular equation (Eq. 11.75) is easy to solve:

�(φ) = eimφ , (11.77)

where m2 = K. The quantum number m must be a positive or negative integer to satisfy
the boundary condition �(φ + 2π) = �(φ).

What is the meaning of the angular quantum number m? Recall first that the chain rule
for partial derivatives is

∂

∂φ
=
(

∂x
∂φ

)
∂

∂x
+
(

∂y
∂φ

)
∂

∂y
. (11.78)

From this, it is easy to work out the following exercise:

Exercise 11.23 For a particle moving in 2-D, consider the operator xpy − ypx. Show that
this affects the wave function by

(xpy − ypx) : ψ →−i�
∂ψ

∂φ
. (11.79)

The combination xpy − ypx, of course, is just the angular momentum of the particle about
the origin, which we denote Lz. (The z label reminds us that the 3-D angular momentum
vector is perpendicular to the plane of the particle’s motion.) For 2-D wave functions with
an angular quantum number m, the angular momentum operator acts according to

Lz : R(r) eimφ → m� R(r) eimφ . (11.80)

States with angular quantum number m are angular momentum eigenstates with eigen-
values m�.

We now turn to the radial part of the problem, Eq. 11.76. The combination
2μE
�2 has

units of (length)−2. If we define k = √
2μE/�2, then we can replace the radial coordinate

r by the dimensionless coordinate ρ = kr. The radial function R(r) will be

R(r) = C J(kr), (11.81)

where the constant C takes care of any necessary wave function normalization. The function
J(ρ) satisfies

ρ2J ′′ + ρJ ′ + (ρ2 − m2)J = 0, (11.82)

where m has a fixed integer value corresponding to some angular momentum.
Equation 11.82 is known as Bessel’s equation. Its solutions, known as Bessel functions,

are well understood and discussed in detail in any text on mathematical methods of physics.2

2 See, for instance, Mathematical Methods for Physicists (6th edn) by G. B. Arfken and H. J. Weber, Chapter 11
(Burlington, MA: Elsevier Academic Press, 2005).
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Fig. 11.3 Graphs of the first three Bessel functions.

We denote by Jm the Bessel function for a given non-negative integer value of m. This can
be expressed as a power series:

Jm(ρ) = ρm

2m

∞∑
ν=0

(−1)ν

2νν!(ν + m)! ρ
2ν . (11.83)

Exercise 11.24 Write down the first five terms of the power series for J0. Show that J0
solves Eq. 11.82.

What about a negative index? The Bessel function J−m solves the same equation as Jm. By
convention, we let J−m = (−1)mJm.

A few Bessel functions are plotted in Fig. 11.3. Notice that, for ρ � 1, the function Jm
is about proportional to ρm. Thus, for m �= 0, the wave function of the particle vanishes
at r = 0. If the particle has non-zero angular momentum, it cannot be found exactly at the
center of the circular box.

Of particular interest to us are the roots of the Bessel functions, the points where Jm = 0.
Figure 11.3 shows that each Bessel function has a whole sequence of distinct roots. Define

ρnm = the nth non-zero root of Jm, (11.84)

for n = 1, 2, . . . Here are a few of these roots:

J0 J1 J2 J3
n = 1 2.4048 3.8317 5.1356 6.3802
n = 2 5.5201 7.0156 8.4172 9.7610
n = 3 8.6537 10.1735 11.6198 13.0152

Exercise 11.25 Seven of these roots appear on the graphs in Fig. 11.3. Identify the ones
shown.
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The boundary condition at the wall of the box is that R(a) = C Jm(ka) = 0, from which we
conclude that ka = ρnm for some value of n. This condition tells us the possible energies
of the particle:

Enm = �2

2μa2 (ρnm)2. (11.85)

As in the rectangular box, the energy depends on two quantum numbers – in this case, a
radial quantum number n and an angular quantum number m.

Exercise 11.26 Derive Eq. 11.85. Comment on the degeneracy of the energy levels,
explaining any assumptions you make.

Exercise 11.27 Our stationary state wave functions are

ψnm(r, φ) = C Jm(knmr) eimφ , (11.86)

where knma = ρnm. For all of these, the probability density |ψnm|2 depends only on r, not
on φ. The distributions are radially symmetric. Verify this. Then construct some stationary
state wave functions for the circular quantum billiard system whose probability densities
are not radially symmetric.

Compare the circular quantum billiard system to the 1-D situations we considered at the
beginning of this chapter. For a particle with periodic boundary conditions, we could not
really define a position observable x, owing to the way the coordinate wrapped around the
physical space. We did, however, have a perfectly sensible momentum operator p, which
had a discrete spectrum of eigenvalues. For the circular billiard system, we cannot really
define an angular position operator φ, but the angular momentum Lz exists and has a discrete
spectrum.

For the 1-D particle in a box, the wall boundary conditions posed no difficulties for the
position operator x. However, the momentum operator became problematic. The radial
wall boundary condition in the quantum circular billiard system works the same way. We
can define a radial position operator r, calculating expectations like 〈r〉, etc., but there is no
radial momentum operator. Nevertheless, in either case the energy operator of the system
(which is quadratic in the momenta) is well defined and has a discrete spectrum.

Problems

Problem 11.1 The kinetic energy part of the Hamiltonian is K = 1
2m

p2.

(a) Show that the kinetic energy satisfies

〈K〉 ≥
〈

p2〉
2m

. (11.87)

(b) Calculate the minimum 〈K〉 for an electron whose position uncertainty 
x = 0.1 nm,
the size of a typical atom. Express your answer in electron-volts (1 eV = 1.6×
10−19 J).
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Problem 11.2 We can write any wave function ψ(x) = R(x)eiα(x), where R and α are real
functions. Write the probability density and probability flux for this wave function in terms
of R and α.

Problem 11.3 We can devise an analog to the probability flux J(x, t) for systems in a finite
dimensional Hilbert space. Given a basis { |n〉} for the space, the probability amplitudes are
ψn = 〈n |ψ 〉. We wish to know how the probabilities Pn = |ψn|2 change with time. Given
the Hamiltonian operator H, define

Jnm = 1
i�

(
ψ∗

n Hnmψm − ψ∗
mHmnψn

)
. (11.88)

We interpret Jnm as the probability flux from state m to state n. Show that

dPn
dt

=
∑

m
Jnm. (11.89)

Explain in words the meaning of this equation. If 〈m|H |n〉 = 0, what can we say about the
flow of probability from state m to state n?

Problem 11.4 A particle is moving in one dimension subject to some potential function
U . At the instant t = 0, the wave function of the system happens to be completely real.
Show that the wave function at all times satisfies

ψ(x, t) = ψ∗(x,−t). (11.90)

Comment on the following: If the wave function is ever real, the future of the system is a
perfect reflection of its past.

Problem 11.5 For a free particle, find the position representation of the time evolution
operator:

U(x, x′; t) = 〈x|U(t)
∣∣x′〉 . (11.91)

(To evaluate this explicitly, use the fact that the Fourier transform of a Gaussian function in
Equation C.9 also applies when the constant a is imaginary.) Write down the wave function
ψ(x, t) as an integral expression involving ψ(x, 0).

Problem 11.6 Suppose a random variable Z is the sum of two independent random
variables Z = X + Y . Show that the variance of Z is〈


Z2
〉
=
〈

X 2

〉
+
〈

Y2

〉
. (11.92)

(Note that, if X and Y are independent, then 〈XY 〉 = 〈X 〉 〈Y〉.)
Imagine a classical free particle of mass m moving in one dimension. Its position and

momentum are not exactly known, and so are described by a probability distribution. At
t = 0, the variables x and p are independently distributed with variances

〈

x2〉

0 and
〈

p2〉

0.
Show that, at a later time, the variance of the particle’s position is〈


x2
〉
=
(〈


p2〉
0

μ2

)
t2 +

〈

x2

〉
0

, (Re 11.46)
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exactly as we found for a quantum wave packet. (Here, of course, the uncertainties arise
from our ignorance of x and p, not any quantum indeterminacy.) In this classical problem,
are x and p independent variables at time t �= 0?

Problem 11.7 At t = 0, we prepare a free particle moving in one dimension. Our aim is
to minimize the uncertainty 
x of the particle at a later time t. We can create an initial
wave packet with a real envelope function of any shape. Notice that 
x at time t will
have to be large if 
x0 is either very large or very small. The optimum initial 
x0 is
therefore somewhere in between. Find this optimum in terms of �, m, and t. Using the
approximate values in Exercise 11.10, find minimum uncertainty 
x for a free electron
after 1 ns.

Problem 11.8 For a particle moving on a circle of circumference L, let Ts be the shift
operator defined by

Ts |x〉 = |x+ s〉 . (11.93)

Devise an expression for Ts in terms of the momentum states |pn〉, and prove that your
expression has the correct effect on wave functions.

Problem 11.9 For a particle on a circle, define the operator 	 by

	 |x〉 = R e−ix/R |x〉 , (11.94)

where R = L/2π , the radius of the circle. First, verify that 	 is well defined despite the
many-valued nature of the x-coordinate. Then answer the following:

(a) How does 	 affect the wave ψ(x) of a particle on the circle?
(b) Find 	†. (Note that this operator is not Hermitian!)
(c) What is 	 |pn〉 for the momentum state |pn〉?
(d) Compute the commutator [	, p].
Problem 11.10 This problem investigates connections between the classical and the
quantum particle in a box.

(a) Imagine a classical free particle of mass μ and energy E is bouncing back and forth
between walls separated by a distance L apart. Show that the period of this motion is

τ = 2L√
2μE

. (11.95)

(b) A quantum particle is in a superposition of the ψn and ψn+1. Initially, the state is

ψ(x, 0) = 1√
2

(ψn(x)+ ψn+1(x)) . (11.96)

Show that the probability distribution |ψ |2 changes over time. Find 〈x〉 as a function
of time.

(c) The probability |ψ |2 returns to its original configuration after a time τ . Compute τ in
terms of L, μ, and En. How does this compare with the classical expression? How do
they compare when n � 1?
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Problem 11.11 Prove that, in polar coordinates, the Laplacian operator is

∇2f = ∂2f
∂r2 +

1
r

∂f
∂r
+ 1

r2
∂2f
∂φ2 , (11.97)

where f = f (r, φ).

Problem 11.12 Consider a wave function for the circular billiard system that at t = 0 is a
superposition of the two lowest stationary states:

ψ(r, φ, 0) = aJ0(k10r)+ bJ1(k11r)eiφ . (11.98)

For simplicity, suppose that both a and b are real, positive, and non-zero.

(a) Show that the initial probability distribution |ψ |2 is not circularly symmetric. In which
half of the circle is the particle most likely to be found?

(b) Show that over time |ψ |2 moves around the circle. How long does it take to return to
the original probability distribution?

If you have access to the necessary computer software tools, create an animation of the
dynamical behavior of |ψ |2 over time, given a = b.

Problem 11.13 The divergence of a vector field is, in Cartesian coordinates,

	∇ · 	F = ∂Fx
∂x

+ ∂Fy

∂y
+ ∂Fz

∂z
. (11.99)

According to the divergence theorem, the integral of 	∇ · 	F over a bounded volume V is
related to the integral of 	F over the closed surface � enclosing the volume:∫∫∫

V
	∇ · 	F d3r =

∫∫
�

	F · n̂ dA, (11.100)

where n̂ is an outward-pointing unit vector perpendicular to the surface �.

(a) Show that, if the wave function ψ(	r , t) for a particle in three dimensions satisfies
Eq. 11.26, then it follows that

∂ |ψ |2
∂t

+ 	∇ · 	J = 0. (11.101)

(b) Let PV be the total probability that a quantum particle is found in V . Show that
dPV
dt

= −
∫∫

�

	J · n̂ dA. (11.102)
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12.1 Spin-s systems

Angular momentum is one of the fundamental quantities of Newtonian physics, and in
quantum physics its importance is at least as great. In quantum mechanics we often dis-
tinguish between two types of angular momentum: orbital angular momentum, which
a system of particles possesses due to particle motion through space; and spin angular
momentum, which is an intrinsic property of a particle.1 The distinction will be important
later, but for now we will ignore it. We will here refer to angular momentum of any sort as
“spin” and develop general-purpose mathematical tools for its description.

We have already dealt with spin systems, particularly the example of a spin-1/2 particle.
Our approach began with the empirical observation that a measurement of any spin com-
ponent of a spin-1/2 particle could yield only the results +�/2 or −�/2. We introduced
the basis states |z±〉 for the two-dimensional Hilbert space H. We also gave other basis
states such as { |x±〉} and { |y±〉} in terms of the |z±〉 states. From basis states and meas-
urement values we constructed operators for the spin components Sx, Sy, and Sz. With the
operators in hand, we could then examine the algebraic relations between them (such as
the commutation relation in Exercise 3.56).

Our job here is to generalize our analysis to systems of arbitrary spin. To do this, we will
reverse our chain of logic. We now begin with spin component operators that are assumed to
satisfy the same commutation relations we obtained for the spin-1/2 operators. Amazingly,
this will be a sufficient foundation to derive everything – the eigenvalues, eigenvectors, and
matrix representations for all of the spin operators. Later, in Section 12.3, we will see how
the commutation relations themselves follow naturally from the geometry of 3-D rotations.

Spin commutation relations

Here is our basic postulate (which previously appeared in Problem 5.2):

[Sx, Sy] = i�Sz, [Sy, Sz] = i�Sx, [Sz, Sx] = i�Sy. (12.1)

1 The terminology calls to mind a planetary analogy. The Earth has angular momentum due to its orbital motion
about the Sun and also due to its rotation about its axis. But this analogy, like most analogies in quantum
physics, is dangerous if pressed too far. Both orbital motion and rotation of a planet involve masses moving in
space, and so yield angular momentum of the “orbital” type. Intrinsic spin is a property peculiar to quantum
systems.
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A cyclic permutation of the x, y, and z axes gives an equivalent right-handed spatial
coordinate system, so it is no surprise to find that our three basic commutation relations in
Eq. 12.1 are connected by just such a permutation.

We sometimes speak (and are tempted to think) of Sx, Sy, and Sz as the components of a
vector quantity 	S, the “spin vector.” We did this in Section 10.5 for the momentum vector
	p of a particle moving in three dimensions. The spin operator vector 	S is more problematic
than that example, however, because the components do not commute with each other. For
this reason we usually cannot have eigenstates of 	S – states with “definite spin vectors.”
Nevertheless, the formal vector 	S is valuable as a heuristic, a way of suggesting what
calculations are useful and meaningful. For instance, we can combine the component
operators to determine the magnitude S2 = 	S · 	S:

S2 = S2
x + S2

y + S2
z . (12.2)

Despite our qualms about 	S, the definition of S2 is straightforward and accords with our
classical understanding of angular momentum as a spatial vector quantity.

Each of the squared component operators S2
x , etc., is positive, so their sum S2 is also

positive. This means that the eigenvalues of S2 are real and non-negative. Since S2 has the
units of the square of angular momentum, we can write any such eigenvalue in the form
s(s+ 1)�2, where the dimensionless parameter s ≥ 0, though it is at the moment otherwise
unrestricted.2

What commutation relations does S2 have with the spin component operators Sx, Sy, and
Sz? This is easy to answer if we first establish the following handy fact about commutators:

Exercise 12.1 Given three operators A, B, and C, show that

[A, BC] = [A, B]C+ B[A, C]. (12.3)

Now we find that

[Sz, S2] = [Sz, S2
x] + [Sz, S2

y]
= [Sz, Sx]Sx + Sx[Sz, Sx] + [Sz, Sy]Sy + Sy[Sz, Sy]
= i�SySx + i�SxSy − i�SxSy − i�SySx

= 0. (12.4)

The spin operator S2 commutes with Sz, and by a similar argument with the other spin
components as well.

To simplify things a bit, we will focus our attention on Hs, the eigenspace of S2 with
some particular eigenvalue s(s+1)�2. If the state of the system is restricted to such a space,

2 Why do we write s(s + 1) instead of s2 or even just s? This is one of those places where we are anticipating
how things work out later on. If we write the eigenvalues of S2 in this way, later expressions become simpler.

At any point in a mathematical derivation, we generally have two questions in mind. First, we ask whether
the step is logically sound. The answer should be clear – and had better be “yes”! Second, we ask why the step
is taken. The exact reason for the step might be hard to see right away, but usually becomes apparent later on.
To give an analogy: as we observe a game of chess, we can tell at once whether or not a given move is legal,
but we sometimes do not understand the player’s strategy until the game develops further.
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then we say that it is a spin-s system. Because the component operators all commute with
S2, they will act as operators within Hs.

Exercise 12.2 Prove that Sx, Sy, and Sz must map vectors in Hs to vectors in Hs.

What do the states of a spin-s system look like? We can choose one component, Sz for
instance, and find its eigenstates inHs. These can be written |m, α〉. The number m indicates
the Sz eigenvalue by

Sz |m, α〉 = m� |m, α〉 . (12.5)

The additional label α allows us to identify different eigenstates with the same Sz eigenvalue.
At this point we know nothing about the possible values of m except that they, like s, are
dimensionless.

Raising and lowering operators

We now define a pair of operators

S± = Sx ± iSy. (12.6)

Note that S†
+ = S−. At first, the significance of these operators may not be apparent. We

start to uncover that significance by evaluating the commutator of S+ with Sz:

[Sz, S+] = [Sz, Sx] + i[Sz, Sy]
= i�Sy + �Sx

= �S+. (12.7)

From this, we know that SzS+ = S+Sz + �S+.

Exercise 12.3 Also prove the corresponding result3 for S−:

[Sz, S−] = −�S−. (12.8)

Therefore SzS− = S−Sz − �S+.

The operator S+ acts on an Sz eigenstate |m, α〉 to produce a vector S+ |m, α〉. If we
operate on the new vector with Sz, we obtain

Sz
(
S+ |m, α〉

)
= (S+Sz + �S+) |m, α〉 = (m+ 1)�

(
S+ |m, α〉

)
. (12.9)

In other words, the vector S+ |m, α〉 acts like an eigenvector of Sz with eigenvalue (m+1)�.
We can thus say that S+ |m, α〉 = K

∣∣m+ 1, α′
〉

for some scalar factor K.

Exercise 12.4 Show that S− |m, α〉 acts like an eigenvector of Sz with eigenvalue (m−1)�.

3 Be ready for several similar exercises in the pages ahead. We will show something for S+ and let you work out
the parallel fact about S−.
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Why do we say “acts like an eigenvector” instead of “is an eigenvector”? It is because the
resulting vectors might be null, and only non-null vectors can be eigenvectors. A careful
statement of our conclusions about S± would be:

• S+ |m, α〉 is either an eigenvector of Sz with eigenvalue (m+ 1)�, or else null.
• S− |m, α〉 is either an eigenvector of Sz with eigenvalue (m− 1)�, or else null.

The S+ and S− operators are thus “raising” and “lowering” operators, incrementing the
value of m by +1 or −1 respectively. They link together the different Sz eigenstates in Hs.
We can use them to prove a variety of results about the spin component operators. The next
exercise gives an example.

Exercise 12.5 Show that Sx = 1
2
(S+ + S−). Use this to prove that 〈m, α| Sx

∣∣m′, β〉 = 0
unless m− m′ = ±1.

The vectors S+ |m, α〉 and S− |m, α〉 will not themselves be physical quantum states of
our spin-s system, since they are not normalized. Indeed, it is possible that one or both
of these vectors are the null vector. We now investigate the magnitudes of the raised and
lowered vectors.

To do this, we will need to know something about the operator product of S+ and S−.
First, note that

S+S− = S2
x + S2

y + i
(
SySx − SxSy

)
= S2 − S2

z + �Sz. (12.10)

This is an especially convenient relation for us, since the |m, α〉 states are eigenstates of
both S2 and Sz.

Exercise 12.6 In a similar way, show that

S−S+ = S2 − S2
z − �Sz. (12.11)

Now consider the vector S+ |m, α〉. The squared magnitude of this vector is of course
non-negative:

0 ≤ 〈m, α| S−S+ |m, α〉
= 〈m, α|

(
S2 − S2

z − �Sz
)
|m, α〉

0 ≤ (s(s+ 1)− m(m+ 1)) �2. (12.12)

We have arrived at an important connection between the values of m and s, namely that
m ≤ s. The non-negative parameter s acts as a “ceiling” for the possible values of m. Also,
we note that when m = s, the vector S+ |m, α〉 = 0.

But this suggests a paradox! How do we reconcile the limit m ≤ s with the action of S+
to increase the value of m by 1? If we begin with an eigenvector |m, α〉 and successively
apply S+, we can increase m to m+ 1, then m+ 2, and so on, without changing the value
of s. We climb up the Sz “ladder” higher and higher. Can we not apply S+ enough times to
climb beyond the m ≤ s ceiling, and arrive at a contradiction?
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Fig. 12.1 The “ladder” of possible m values for a spin-s system. The rungs are connected by the
S±φ operators and have unit separation.

The only hope lies in the observation that, when m = s exactly, the result of applying
S+ is the null vector. Here the upward ladder stops, and further applications of S+ lead
nowhere. We therefore conclude that successive applications of S+ must eventually lead
us to an eigenvector with m = s. That means that every possible value for m must differ
from s by exactly an integer. Otherwise, successive applications of the raising operator,
each one increasing m by 1, would jump past the m = s ceiling.

In short, the only possible values of m are of the form s, s − 1, s − 2, and so on. The
m-values form a discrete ladder, separated by unit steps, up to the maximum value m = s.
Naturally, there is a similar argument for the lowering operator S−.

Exercise 12.7 By considering the squared magnitude of S− |m, α〉, show that

0 ≥ s(s+ 1)− m(m− 1). (12.13)

From this, show how to draw the conclusion that m ≥ −s.

Exercise 12.8 Successive applications of the lowering operator S− on |m, α〉 lead to values
m−1, m−2, etc. Show that this downward sequence can only terminate at m = −s, where
the vector S− |m, α〉 = 0.

Therefore, the only possible values of m must be of the form −s, −s + 1, −s + 2, etc.
Otherwise, successive applications of S− would miss the unique “floor” value of m = −s.

The general situation is illustrated in Fig. 12.1. We know that the top of the ladder must
be at m = s, that the bottom of the ladder is at m = −s, and that adjacent values of m are
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separated by 1. It follows that the distance between −s and s must be an integer. That is,
2s = 0, 1, 2, . . . , or

s = 0,
1
2

, 1,
3
2

, . . . (12.14)

Only integer or half-integer values for s are allowed. We can have spin-0 systems, spin-1/2
systems, spin-1 systems, and so on; but no other values of s are possible. For a given s, the
Sz quantum number m can take on 2s+ 1 different values ranging from −s to s.

Exercise 12.9 Under what circumstances would the value m = 0 be possible?

Pause to reflect on our achievement so far. Beginning only with the fundamental com-
mutation relations in Eq. 12.1 (which are in fact all the same, up to a cyclic permutation of
x, y, and z), we have deduced the spectra of possible eigenvalues for S2 and Sz. This seems
a remarkable product from such meager ingredients. But we are not done yet!

Simple spin systems

Now that we know all about the possible values of s and m, we turn to the task of figuring out
the structure of the Hilbert spaceHs. Each rung of the ladder we have constructed represents
an Sz eigenvalue of m�, which corresponds to a subspace containing all the states of the
form |m, α〉. Let dm be the dimension of this subspace. What are the dimensions dm?

In fact, each of these subspaces must have the same dimension. Here is why.
Suppose |m, α〉 and |m, β〉 are two orthogonal states in the m eigenspace. The raising
operator S+ maps these to vectors that are still orthogonal:

〈m, α| S−S+ |m, β〉 = 〈m, α|
(
S2 − S2

z − �Sz
)
|m, β〉

= (s(s+ 1)− m(m+ 1)) �2 〈m, α |m, β 〉
= 0. (12.15)

If m = s, then S+ maps everything to the null vector. For m < s, an orthonormal basis
for the m eigenspace (containing dm elements) will be mapped to an orthogonal set in
the (m + 1) eigenspace. The dimension dm+1 of this eigenspace must be large enough to
accommodate this set. Therefore, dm+1 ≥ dm. As usual, a similar argument can be made
by going down the ladder using S−:

Exercise 12.10 By applying S− to orthogonal states in the (m+ 1) eigenspace, show that
dm+1 ≤ dm. Conclude that dm+1 = dm.

It follows that all of the dms are the same: dm = dm. Since there are 2s+1 different possible
values of m, the dimension of the overall space Hs is (2s + 1)dm. This suggests that we
should regard our system as a composite of two subsystems, a “spin” subsystem (with
Hilbert space dimension 2s+ 1) and an “other” subsystem (with Hilbert space dimension
dm). The overall Hilbert space is just the tensor product of those for the subsystems.
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A simple spin-s system is one for which dm = 1 for all m. This means that the spin degree
of freedom is the only degree of freedom in the system, and d = 2s+1. A familiar example
of this idea is the spin-1/2 particle we analyzed as a part of qubit quantum mechanics. For
that system we ignored the position and other degrees of freedom of the particle, considering
only its spin. The dimension of its Hilbert space was therefore 2

(
1
2

)
+ 1 = 2.

For a simple spin-s system, we do not need the additional label α for the Sz eigen-
states. Instead, we can construct a standard basis of these eigenstates using the following
procedure:

• First, choose a normalized state with m = −s to be the state |−s〉.
• For each m < s, define

|m+ 1〉 = 1
�
√

s(s+ 1)− m(m+ 1)
S+ |m〉 . (12.16)

This provides an inductive definition of all of the states |m〉, where m ranges over the
2s+ 1 values from −s to s.

• The |m〉 states are orthogonal to one another, since they are eigenstates of Sz with
different eigenvalues. The prefactor in the inductive definition is carefully chosen so that
the |m〉 states are also normalized. Since the dimension of Hs is 2s + 1, the |m〉 states
form an orthonormal basis for it.

Building upon this construction, we can express all of our spin operators in the standard
basis.

Exercise 12.11 Show that

S+ =
∑

m
�
√

s(s+ 1)− m(m+ 1) |m+ 1〉〈m| , (12.17)

where the sum ranges over all the values of m from −s to s. (The m = s term is zero, of
course.) Use this to write down the matrix representation for S+ for a spin-1 system.

Exercise 12.12 Show that, for all m,

S− |m〉 = �
√

s(s+ 1)− m(m− 1) |m− 1〉 . (12.18)

(When m = −s, this simply means that S− |−s〉 = 0.)

See also Problem 12.2, where explicit matrix representations for Sx and Sy are derived.

We have learned that the whole quantum theory of systems of arbitrary spin is somehow
“encoded” in the component commutation relations postulated in Eq. 12.1. Admittedly, we
did have to go to considerable effort to “decode” the commutation relations and draw the
appropriate conclusions; but we succeeded in building up the entire mathematical structure.
The key step in our effort was the definition of the raising and lowering operators S±, whose
properties allowed us to construct the ladder of Sz eigenstates. We will see this general
strategy again, when we analyze an infinite “ladder system” in Chapter 13. Meanwhile, the
commutator has once again proven to be a powerful tool for extracting physical meaning
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from the abstract operators of quantum mechanics. In the next two sections, we will get
some idea where the basic spin commutation relations come from.

12.2 Orbital angular momentum

Suppose a particle moves in three dimensions. Classically, the angular momentum of
the particle is 	L = 	r × 	p, the cross product of the position and momentum vectors of the
particle. We can extract three component expressions from this definition to motivate the
definitions of the three orbital angular momentum components for the quantum particle:

Lx = ypz − zpy, Ly = zpx − xpz, Lz = xpy − ypx. (12.19)

Given the canonical commutation relations between the position and momentum compo-
nents (Eq. 10.82), we can establish the commutation relations between the orbital angular
momentum components.

Exercise 12.13 Show that

[Lx, Ly] = i�Lz. (12.20)

Write down the other two commutators by cyclically permuting the coordinates.

Thus, the components of the orbital angular momentum satisfy the basic commutation
relations for spin components (Eq. 12.1). Orbital angular momentum is a kind of “spin.”
The general analysis of Section 12.1 immediately tells us that we can find simultaneous
eigenstates of L2 and Lz with quantum numbers l and m. The eigenvalues are l(l+ 1)�2 and
m�, respectively.

To get a bit more detail, let us explore how angular momentum works in the position
representation. The particle is described by a wave function ψ(	r ). Though we are inter-
ested in the Cartesian components Lx, Ly, and Lz, it is in fact easiest to regard ψ as a
function of spherical coordinates r, θ , and φ. The relation between spherical and Cartesian
coordinates is

x = r sin θ cos φ, y = r sin θ sin φ, z = r cos θ , (12.21)

or equivalently,

r =
√

x2 + y2 + z2,

θ = cos−1

(
z√

x2 + y2 + z2

)
,

φ = tan−1
(y

x

)
. (12.22)

From the chain rule for partial derivatives (Eq. 11.78 and its generalizations) we can work
out how the Lx, Ly, and Lz operators affect the wave function ψ(r, θ , φ). The following two
exercises show how this is done:
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Exercise 12.14 Here are the partial derivatives of the spherical coordinates (r, θ , φ) with
respect to the Cartesian ones (x, y, z).

∂r
∂x
= sin θ cos φ,

∂θ

∂x
= 1

r
cos θ cos φ,

∂φ

∂x
= −1

r
sin φ

sin θ
,

∂r
∂y
= sin θ sin φ,

∂θ

∂y
= 1

r
cos θ sin φ,

∂φ

∂y
= 1

r
cos φ

sin θ
,

∂r
∂z
= cos θ ,

∂θ

∂z
= −1

r
sin θ ,

∂φ

∂z
= 0. (12.23)

Verify as many of these as you need to be convinced of the whole set. You should work
out at least one in each column and one in each row. (Not fair picking the one in the lower
right!)

Exercise 12.15 From the results in Eq. 12.23, show that

y
∂

∂z
− z

∂

∂y
= − sin φ

∂

∂θ
− cot θ cos φ

∂

∂φ
, (12.24)

z
∂

∂x
− x

∂

∂z
= cos φ

∂

∂θ
− cot θ sin φ

∂

∂φ
, (12.25)

x
∂

∂y
− y

∂

∂x
= ∂

∂φ
.

It follows that

Lx : ψ → i�
(

sin φ
∂ψ

∂θ
+ cot θ cos φ

∂ψ

∂φ

)
,

Ly : ψ → i�
(
− cos φ

∂φ

∂θ
+ cot θ sin φ

∂ψ

∂φ

)
,

Lz : ψ →−i�
(

∂ψ

∂φ

)
, (12.26)

and thus the orbital ladder operators L± = Lx ± iLy are

L± : ψ → �e±iφ
(
±∂ψ

∂θ
+ i cot θ

∂ψ

∂φ

)
. (12.27)

Exercise 12.16 From Eq. 12.26, show that

L2 : ψ →−�2

(
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

sin2 θ

∂2ψ

∂φ2

)
. (12.28)

Notice that derivatives with respect to r do not appear in any of these expressions.
Let us suppose that the wave function ψlm represents an eigenstate of both L2 and Lz with

quantum numbers l and m. The Lz eigenvalue equation yields

− i�
∂ψlm
∂φ

= m�ψlm. (12.29)
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The solution to this differential equation is

ψlm = flm(r, θ)eimφ , (12.30)

for some function flm. Since the wave function is single-valued, the value of m must be an
integer. This tells us that orbital angular momentum quantum numbers must be integers:

l = 0, 1, 2, . . . and m = −l, . . . , 0, . . . ,+l. (12.31)

What about the function flm(r, θ)? If m = −l, then the state represented by ψlm is on the
bottom rung of the “ladder” of angular momentum states for a given l, so that L− |ψl−l〉 = 0.
This leads to

− ∂fl−l
∂θ

+ l cot θ fl−l = 0, (12.32)

with solution

fl−l = R(r) sinl θ . (12.33)

Exercise 12.17 Derive Eq. 12.32 and its solution Eq. 12.33. (For the solution, the
substitution u = sin θ is handy.)

Thus, ψl−l = R(r) sinl θ e−ilφ .
The function R(r) is arbitrary and does not affect the angular momentum of the state.

Furthermore, all of the angular momentum eigenstates can be generated from these by
application of the L+ ladder operator, as in Eq. 12.16, which we here rewrite:

|ψl m+1〉 = 1
�
√

l(l + 1)− m(m+ 1)
L+ |ψlm〉 . (12.34)

None of these operations will affect R(r) in the wave function at all.
Therefore, we conclude that every eigenstate of both L2 and Lz can be written

ψlm(r, θ , φ) = R(r) Ylm(θ , φ), (12.35)

where the functions Ylm are called spherical harmonics.4 These have the form

Ylm(θ , φ) = Plm(θ) eimφ , (12.36)

where Pl−l(θ) = Kl sinl θ and

Pl m+1(θ) = 1√
l(l + 1)− m(m+ 1)

(
dPlm
dθ

− m cot θ Plm

)
. (12.37)

The constant Kl is determined by normalization. We choose to normalize the spherical
harmonics so that |Ylm|2 integrates to unity over the (θ , φ) sphere. With a standard (but
arbitrary) choice of sign, we obtain

Kl = (−1)l

2ll!
√

(2l + 1)!
4π

. (12.38)

4 So called because the functions Ylm arise in a great many wave problems with spherical symmetry – for instance,
in the “ringing modes” of a spherical bell.
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The spherical harmonics are among the most useful functions in mathematical physics. For
l = 0 and l = 1 these are

Y0 0 = 1√
4π

,

Y1 ±1 = ∓
√

3
8π

sin θ e±iφ ,

Y1 0 =
√

3
4π

cos θ . (12.39)

Exercise 12.18 Given that Y2 0 =
√

5
16π

(3 cos2 θ − 1), find Y2 ±1 and Y2 ±2.

Exercise 12.19 Rewrite each of the spherical harmonics with l ≤ 2 in the following form:

Ylm = r−l f (x, y, z). (12.40)

12.3 Rotation

In Section 5.4 we discussed how the state of a spin-1/2 system changes under rotations. We
found that, if we rotate the spin by an angle α about the z-axis, then its state is changed by
the unitary operator

Rz(α) = e−iSzα/�, (12.41)

(compare Eq. 5.56). We said that the spin operator Sz is the “generator” of rotations about
the z-axis.

We can now see that a similar relation holds for orbital angular momentum. A rotation
by α about the z-axis changes the spherical harmonic function by

Rz(α) : Ylm(θ , φ) → Ylm(θ , φ − α) = e−imαYlm(θ , φ), (12.42)

which allows us to write

Rz(α) |ψ〉 = e−iLzα/� |ψ〉 , (12.43)

for a particle moving in 3-D. Again, the z-component of angular momentum is the generator
of rotations about the z-axis. And in fact, this is a general relationship. To see why, we will
take a closer look at the geometry of rotations in 3-D space.

A rotation in 3-D space is represented by a 3× 3 matrix, which tells how the Cartesian
coordinates transform: ⎛⎝ x′

y′
z′

⎞⎠ =
⎛⎝ Rxx Rxy Rxz

Ryx Ryy Ryz
Rzx Rzy Rzz

⎞⎠⎛⎝ x
y
z

⎞⎠ . (12.44)
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Fig. 12.2 Rotations of a book about the y- and x-axes lead to different results depending on the order of the
operations.

It is easy to find matrices describing rotations by α about the x-, y-, and z-axes:

Rx(α) =
⎛⎝ 1 0 0

0 cos α −sin α

0 sin α cos α

⎞⎠

Ry(α) =
⎛⎝ cos α 0 sin α

0 1 0
−sin α 0 cos α

⎞⎠

Rz(α) =
⎛⎝ cos α −sin α 0

sin α cos α 0
0 0 1

⎞⎠ . (12.45)

We can consider rotations by a small angle ε by expanding the cosine and sine functions in
a power series to a specified order.

Exercise 12.20 To order O
(
ε2), show that

Rx(ε) =
⎛⎝ 1 0 0

0 (1− ε2/2) −ε

0 ε (1− ε2/2)

⎞⎠ . (12.46)

Also write down O
(
ε2) expressions for Ry(ε) and Rz(ε).

Spatial rotations do not commute with each other. A rotation about the y-axis followed
by one about the x-axis produces a different result than the same two rotations performed in
the opposite order (see Fig. 12.2). Consider now rotations by a small angle ε. We imagine
making rotations about the y- and x-axes by ε, then about the y- and x-axes by −ε. If
rotations were commutative, this would result in zero net rotation. However, because they
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are non-commuting, there is some residual rotation “left over” afterwards. Working to
O
(
ε2) we find

Rx(−ε)Ry(−ε)Rx(ε)Ry(ε) =
⎛⎝ 1 −ε2 0

ε2 1 0
0 0 1

⎞⎠ . (12.47)

Exercise 12.21 Confirm this.

Note that the residual rotation is, to O
(
ε2), a rotation about the z-axis. Thus

Rx(−ε)Ry(−ε)Rx(ε)Ry(ε) = Rz(ε
2). (12.48)

So far, we have only been considering the geometry of rotations in 3-D space. What does
this imply about rotation of a quantum system?

Rotation about a fixed axis is a continuous uniform family of unitary operators. Thus,
we write the rotation operators

Rx(α) = e−iαGx , Ry(α) = e−iαGy , Rz(α) = e−iαGz , (12.49)

for generators Gx, Gy, and Gz. For rotations by a small angle ε, we expand the operator
exponentials to O

(
ε2) and get

Rx(ε) = 1− iεGx − ε2

2
G2

x , (12.50)

and so on.

Exercise 12.22 Show that, to O
(
ε2),

Rx(−ε)Ry(−ε)Rx(ε)Ry(ε) = 1− (GxGy − GyGx)ε
2. (12.51)

But our previous geometrical analysis tells us that this composition of rotations is, to
the same order O

(
ε2), Rz(ε

2) = 1 − iε2Gz. Furthermore, all of our relationships should
remain the same if x, y, and z are cyclically permuted (amounting to a mere relabeling of a
right-handed Cartesian coordinate system). Thus, the generator operators must satisfy

[Gx, Gy] = iGz, [Gy, Gz] = iGx, [Gz, Gx] = iGy. (12.52)

If we now define spin component operators Sx = �Gx and so on, then:

• The rotation operators Rx(α) = e−iαSx/� , etc.; and
• The spin components automatically satisfy the fundamental commutation relations of

Eq. 12.1.

We might sum this up by saying that angular momentum is related to rotation in a
transformational rather than a dynamical way. Any quantum system whose state is affected
by an overall spatial rotation has angular momentum observables that generate the rotation
operators. Because of the geometry of 3-D rotations, these observables must have the spin
commutation relations. Since a particle’s spatial wave function is affected by rotation, it
has orbital angular momentum (related to position and momentum variables in the familiar
way). If its internal state is also affected, the particle also has an internal spin. These two
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types of angular momentum, though quite different in physical significance, have just the
same general mathematical structure.

12.4 Adding spins

A quantum system may contain more than one angular momentum variable. An electron
has orbital angular momentum due to its motion through space and also internal spin. The
total angular momentum of the electron system is the sum of these. The addition of quantum
angular momenta requires some careful analysis, which is the business of this section.

Consider a composite system made up of two simple spin systems. The total angular
momentum is 	S = 	S(1) + 	S(2). This stands for three component operator relations:

Sx = S(1)
x + S(2)

x , Sy = S(1)
y + S(2)

y , Sz = S(1)
z + S(2)

z . (12.53)

Exercise 12.23 Show that the total spin component operators Sx, etc., satisfy the basic spin
commutation relations of Eq. 12.1.

Therefore, the vector sum of two angular momenta is an angular momentum. We can treat
a composite of two spins as a spin system.

Exercise 12.24 Consider a general linear combination of two spins: 	T = a1	S(1) + a2	S(2).
If the components of 	T must satisfy the basic spin commutation relations, show that the
only non-trivial coefficients are a1 = a2 = 1. Thus, the vector sum 	S(1) + 	S(2) is an angular
momentum, but a more general linear combination is not.

To get a better idea of how this works, we consider a pair of spin-1/2 systems. Each
subsystem is described by a Hilbert space of dimension 2, so the joint system has

dimH(12) = dim
(
Q(1) ⊗Q(2)

) = 2× 2 = 4. (12.54)

Eigenstates of Sz can be constructed from the single-spin eigenstates |↑〉 and |↓〉 for the
individual spins:

Sz |↑,↑〉 = +� |↑,↑〉 , Sz |↑,↓〉 = 0,
Sz |↓,↓〉 = −� |↓,↓〉 , Sz |↓,↑〉 = 0.

(12.55)

Exercise 12.25 Verify Eq. 12.55.

Note that the eigenvalues of Sz are+�, 0, and−�. This is what we would expect for s = 1,
which would lead us to the comfortable conclusion that two spin-1/2 systems combine to
make a spin-1 system. But there are two orthogonal eigenstates with eigenstate 0, so this
cannot be the whole story. We need a more careful analysis.

We can construct ladder operators for the joint spin system

S± = Sx ± iSy = S(1)
± + S(2)

±. (12.56)
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The state |↓,↓〉 is the eigenstate of lowest Sz value, so it must be the “bottom rung” of a
spin-state ladder with s = 1. We write

|s, m〉 = |1,−1〉 = |↓,↓〉 . (12.57)

We apply S+ to obtain the higher rungs of the spin-state ladder.

Exercise 12.26 Use Eq. 12.16 to show that

|1, 0〉= 1
�
√

2
S+ |1,−1〉= 1√

2

(
|↑,↓〉 + |↓,↑〉

)
,

|1,+1〉= 1
�
√

2
S+ |1, 0〉 = |↑,↑〉 . (12.58)

We have constructed the expected three-rung spin-state ladder for a spin-1 system. What
have we missed?

Exercise 12.27 Consider the state |0, 0〉 = 1√
2
( |↑,↓〉 − |↓,↑〉) of a pair of spin-1/2

systems. Show that

S+ |0, 0〉 = S− |0, 0〉 = 0, (12.59)

so that |0, 0〉 is the only rung on a spin-state ladder for spin-0.

To summarize, a pair of spin-1/2 systems can be treated as a single spin system with spin
number s = 1 or s = 0. The three s = 1 states (with m = +1, 0,−1) are called “triplet”
states, and the s = 0 state is called the “singlet” state of the pair of spins.5

In general, the composite of simple spin systems with s1 and s2 will have a Hilbert space
of dimension (2s1 + 1)(2s2 + 1). We can of course describe this Hilbert space using the
product basis vectors |s1, m1; s2, m2〉 for the individual spins. But we can also form a basis
of eigenstates of the total spin observables S2 and Sz. These are the |s, m〉 states, and for
each possible s value there will be a “ladder” of 2s+ 1 values of m.

We would like to write the |s, m〉 states in terms of the product basis states |s1, m1; s2, m2〉:

|s, m〉 =
∑

m1,m2

|s1, m1; s2, m2〉 〈s1, m1; s2, m2 |s, m 〉 . (12.60)

The components 〈s1, m1; s2, m2 |s, m 〉 are called Clebsch–Gordon coefficients, and they
arise in many different quantum mechanical situations. We have already calculated several

5 The singlet state was already introduced for abstract qubits in Eq. 6.50, and was used extensively in our
discussion of entanglement, the EPR argument, and Bell’s theorem.
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Clebsch–Gordon coefficients:〈
1
2

,+1
2

;
1
2

,+1
2

∣∣∣∣1,+1
〉
=1,〈

1
2

,+1
2

;
1
2

,−1
2

∣∣∣∣1, 0
〉
= 1√

2
,

〈
1
2

,−1
2

;
1
2

,+1
2

∣∣∣∣1, 0
〉
= 1√

2
,〈

1
2

,−1
2

;
1
2

,−1
2

∣∣∣∣1,−1
〉
=1,〈

1
2

,+1
2

;
1
2

,−1
2

∣∣∣∣0, 0
〉
= 1√

2
,

〈
1
2

,−1
2

;
1
2

,+1
2

∣∣∣∣0, 0
〉
=− 1√

2
. (12.61)

All other Clebsch–Gordon coefficients with s1 = s2 = 1/2 are zero.6

Exercise 12.28 Verify the coefficients in Eq. 12.61.

Exercise 12.29 Show that 〈s1, m1; s2, m2 |s, m 〉 = 0 unless m = m1 + m2. Hint: Consider
the eigenvalue of Sz.

In practice, one usually looks up the Clebsch–Gordon coefficients in a reference book;
but they can be computed from first principles, as we have done for the pair of spin-1/2
systems. To illustrate how this works, we will consider a composite of systems with spin
1 and 1/2. The dimension of the composite Hilbert space is 2 × 3 = 6. We wish to find a
basis of |s, m〉 states for the total angular momentum of the two spins.

What values of s and m are possible? Since m = m1 + m2, we can deduce the possible
values of m and the corresponding degeneracies (i.e. the dimensions of the Sz eigenspaces).

Exercise 12.30 By considering product basis states |s1, m1; s2, m2〉, show that the
degeneracies for the m values are

m value −3
2

−1
2

+1
2

+3
2

,

degeneracy 1 2 2 1.

There is only one way to arrange six such m-eigenstates into angular momentum ladders –
that is, into sequences that run from−s to s for one or more values of s. This way is shown
in Fig. 12.3. The two possible values of s are 3

2 and 1
2 . Since m = − 3

2 has degeneracy 1,
we know one of the |s, m〉 states to be∣∣∣∣32 ,−3

2

〉
=

∣∣∣∣1,−1;
1
2

,−1
2

〉
, (12.62)

so that
〈
1,−1; 1

2 ,− 1
2

∣∣∣ 3
2 ,− 3

2

〉
= 1. By applying S+ = S(1)

+ + S(2)
+ to this “bottom rung” state,

we can construct the remaining states in the s = 3
2 ladder.

6 Since the overall phases of the |s, m〉 states are arbitrary, we could construct Clebsch–Gordon coefficients with
different complex phases. In general the phases are chosen so that the coefficients are all real, as they are here.
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Fig. 12.3 Ladders of |s, m〉 basis states for the combination of spin-1 and spin-1/2 systems.

Exercise 12.31 Show that∣∣∣∣32 ,−1
2

〉
=
√

2
3

∣∣∣∣1, 0;
1
2

,−1
2

〉
+ 1√

3

∣∣∣∣1,−1;
1
2

,+1
2

〉
,∣∣∣∣32 ,+1

2

〉
= 1√

3

∣∣∣∣1, 1;
1
2

,−1
2

〉
+
√

2
3

∣∣∣∣1, 0;
1
2

,+1
2

〉
,∣∣∣∣32 ,+3

2

〉
=

∣∣∣∣1,+1;
1
2

,+1
2

〉
. (12.63)

Write down the corresponding Clebsch–Gordon coefficients.

Now we need to write down the basis states in the other, s = 1
2 ladder. To do this, we

note that the “bottom rung” state
∣∣∣ 1

2 ,− 1
2

〉
must be a linear combination of the

∣∣∣1, 0; 1
2 ,− 1

2

〉
and

∣∣∣1,−1; 1
2 ,+ 1

2

〉
product basis states, and that

S−
∣∣∣∣12 ,−1

2

〉
= 0. (12.64)

After we solve Eq. 12.64, we can apply S+ to obtain the remaining ladder state
∣∣∣∣12 ,+1

2

〉
.

Exercise 12.32 Show that∣∣∣∣12 ,−1
2

〉
= 1√

3

∣∣∣∣1, 0;
1
2

,−1
2

〉
−
√

2
3

∣∣∣∣1,−1;
1
2

,+1
2

〉
,∣∣∣∣12 ,+1

2

〉
=
√

2
3

∣∣∣∣1, 1;
1
2

,−1
2

〉
− 1√

3

∣∣∣∣1, 0;
1
2

,+1
2

〉
. (12.65)

Write down the corresponding Clebsch–Gordon coefficients.
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Exercise 12.33 Suppose we make a composite system from two simple spin-1 systems.
Draw a diagram analogous to Fig. 12.3 showing the possible values for the total spin
quantum numbers s and m. (Problem 12.4 continues the calculation of the Clebsch–Gordon
coefficients in this case.)

In general, if we combine systems with spins s1 and s2, the total angular momentum s
will take on values between |s1 − s2| and s1 + s2 separated by integers. For a given s, the
quantum number m will range from −s to s, also in integer steps. The Clebsch–Gordon
coefficients specify how the |s, m〉 basis states are related to the |s1, m1; s2, m2〉 product
basis states.

We can apply these ideas to our original example of an electron moving in 3-D space.
The orbital angular momentum has quantum numbers l and ml for observables L2 and Lz,
and the spin angular momentum has quantum numbers s = 1/2 and ms for S2 and Sz. The
total angular momentum 	J = 	L+ 	S has quantum numbers j and mj for J2 and Jz. These have
values

j = l ± 1
2

and mj = −j, . . . ,+j, (12.66)

for l �= 0. (For l = 0, only j = 1/2 is possible.) The angular momentum state of the electron
is characterized by four quantum numbers. These can be chosen to be l, ml, s = 1/2, and
ms, since orbital and spin degrees of freedom are in effect different “subsystems” of the
electron. However, we could also choose to describe the electron by l, s = 1/2, j, and mj,
and in many problems of atomic physics this choice is better.

Exercise 12.34 Write J2 in terms of the orbital and spin angular momentum components.
What are the possible eigenvalues of the operator 	L · 	S? Work out specific examples for
l = 1 and l = 2. (In atomic physics, the spin–orbit interaction for an electron involves just
such a dot product.)

12.5 Isospin

The properties of angular momentum operators lead us to quantum systems that are naturally
described by finite ladders of eigenstates. It is sometimes useful to reverse this logic. In
quantum systems with finite-dimensional Hilbert spaces, it can be useful to define operators
that have the same properties as angular momentum. These operators, however, need have
nothing at all to do with rotation in space.

One famous example of this arises in the theory of nuclear reactions. It is observed that
nuclear particles occur in families, the members of which are similar in mass and nuclear
interactions, but different in other characteristics such as electric charge. For instance, the
family of nucleons includes the proton and the neutron.

Heisenberg suggested that such families be regarded as a single type of particle, differing
in an internal spin-like property called isospin. The nucleon, for instance, is an isospin-1/2
particle, so it has two distinguishable states: the proton state |p〉 and the neutron state |n〉.
These form a basis for the internal isospin degree of freedom of the nucleon.
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The isospin operators I1, I2, and I3 do not correspond to spatial directions, but they are
assumed to satisfy spin-like commutation relations:

[I1, I2] = iI3, [I2, I3] = iI1, [I3, I1] = iI2. (12.67)

Except for factors of �, all of the general results about spin systems also hold for isospin.
The eigenvalues of the isospin magnitude operator I2 are I(I + 1), where I = 0, 1

2 , 1, . . .;
and the eigenvalues I3 of I3 range from −I to I and are separated by 1.

The isospin states |I , I3〉 of the proton and neutron are taken to be

|p〉 =
∣∣∣∣12 ,+1

2

〉
, |n〉 =

∣∣∣∣12 ,−1
2

〉
. (12.68)

Other families of particles have other values of isospin. For instance, we observe that there
are three types of pi meson (or pion), denoted π+, π0, and π−. These have nearly the same
mass and almost exactly the same properties under the strong nuclear force. We regard
these as distinct isospin states of a generic pion, which is an isospin-1 system. The states
are ∣∣π+〉 = |1,+1〉 ,

∣∣π0〉 = |1, 0〉 ,
∣∣π−〉 = |1,−1〉 . (12.69)

Heisenberg’s key insight was that the isospin operators commute with the part of the system
Hamiltonian involving the strong nuclear force. In other words, isospin is conserved by
strong nuclear interactions.

This idea has many consequences, one of which we will describe here. There is a
very short-lived particle called the 
(1232). (The “1232” designation refers to the rest
energy of this particle, which is around 1232 MeV, but we shall omit this label for the
remainder of our discussion.) In fact this is a family of four closely-related particles:

++, 
+, 
0, and 
−. We therefore consider these as states of a single generic 


having isospin 3/2: ∣∣
++〉 = ∣∣∣∣32 ,+3
2

〉
,

∣∣
+〉 = ∣∣∣∣32 ,+1
2

〉
,∣∣∣
0

〉
=

∣∣∣∣32 ,−1
2

〉
,

∣∣
−〉 = ∣∣∣∣32 ,−3
2

〉
. (12.70)

The strong nuclear interaction causes the 
 particle to decay rapidly into a pion and a
nucleon: 
 → π + N . To work out the details of this process, we first write down all
of the possible decay processes that conserve electric charge (which is conserved in all
interactions):


++ −→ π+ + p,


+ −→ π0 + p or π+ + n,


0 −→ π− + p or π0 + n,


− −→ π− + n. (12.71)
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The 
++ and 
− each have only one “mode” of decay. The 
+, on the other hand,
might decay into either π0 + p or π+ + n. What is the relative likelihood of these two
outcomes?

The answer is given by isospin. In the decay, the isospin-3/2 
 system turns into
a composite of an isospin-1 pion and an isospin-1/2 nucleon, with isospin conserved
throughout. We therefore want to write the

∣∣∣ 3
2 ,+ 1

2

〉
isospin state as a superposition of∣∣π0; p

〉 = ∣∣∣1, 0; 1
2 ,+ 1

2

〉
and

∣∣π+; n
〉 = ∣∣∣1,+1; 1

2 ,− 1
2

〉
; the probabilities of each decay

mode will be given by the probability amplitudes for these terms. But these amplitudes are
exactly the Clebsch–Gordon coefficients calculated in Eq. 12.63:〈

1, 0;
1
2

,+1
2

∣∣∣∣32 ,+1
2

〉
=
√

2
3

,〈
1,+1;

1
2

,−1
2

∣∣∣∣32 ,+1
2

〉
= 1√

3
. (12.72)

We conclude that the decay products π0 + p should occur 2/3 of the time, and π+ + n
should occur 1/3 of the time. Experiment confirms this prediction.

Exercise 12.35 What are the relative likelihoods of the two decay modes for the 
0

particle?

We have throughout this book emphasized the isomorphism between quantum systems.
Quite distinct physical situations nevertheless have deep analogies based on a common
mathematical framework. The physics of isospin is a very striking illustration of this
general idea. Even though the distinction between proton and neutron has nothing to
do with anything spinning in space, we can nevertheless use the methods and ideas
developed for angular momentum to help us understand how these particles behave in
nuclear reactions.

Problems

Problem 12.1 A spin system can have either s = 0 or s = 1, but is otherwise a simple spin
system. Show that the observable Sz has some degeneracy, and describe its eigenspaces.
Also describe how S± act on the Hilbert space of this system.

Problem 12.2 Suppose we have a simple spin-s system with standard basis |m〉.
(a) Find the matrix representation for the operator Sz in this basis.

(b) Recall that Sx = 1
2
(S+ + S−). Use this fact to find the matrix representation for Sx in

the |m〉 basis.
(c) In a similar way, find the matrix representation for Sy.
(d) Work out the results from parts (b) and (c) for the special case of s = 1/2. Do you get

the matrices that you expect?
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Problem 12.3 The 3-D parity operator cI acts on position eigenstates by cI | 	r 〉 = |−	r 〉.
The parity has possible eigenvalues +1 (even parity) and −1 (odd parity). What is the
parity of an eigenstate of L2 and Lz described by the wave function

ψlm(r, θ , φ) = R(r) Ylm(θ , φ), (Re 12.35)

for a given l and m?

Problem 12.4 Determine all of the non-zero Clebsch–Gordon coefficients 〈s1, m1;
s2, m2〉s, m with s1 = s2 = 1. (Choose your phases so that the coefficients are real.)

Problem 12.5 Three spin-1/2 particles interact, with a Hamiltonian

H = g 	S(1) · 	S(2) + g 	S(2) · 	S(3) + g 	S(3) · 	S(1). (12.73)

Find the energy levels and corresponding degeneracies for this system. Hint: Write down
the total angular momentum operator J2.

Problem 12.6 An electron has both orbital and spin-1/2 angular momentum. Suppose that
the Hamiltonian of the electron has a rotational symmetry about the z-axis, so that Rz(θ)

commutes with H.

(a) Write down the rotation operator Rz(θ) in terms of the 	L and 	S operators.
(b) Show that a term in the Hamiltonian of the form g(r) 	L · 	S does commute with the

rotation operator. (Hence such a term might be present.)
(c) Which of the following must be conserved for the electron: Lz, Sz, and/or Lz + Sz?

Carefully explain your answer.

Problem 12.7 A deuteron d is a combination of two nucleons in an isospin-0 state. (Think:
How is this different from saying that a deuteron is made up of one proton and one neutron?)
Two deuterons collide with each other at high speed and interact via the strong nuclear
force. Here is the net reaction:

d + d → d + d + pions.

The pions produced, of course, must have zero total electric charge.

(a) Is it possible to produce a single pion? Why or why not?
(b) The reaction might produce two π0s or a π+π− pair. Find the ratio of the probabilities

for these two processes.
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13.1 Raising and lowering operators

In Section 12.1 we considered a quantum system of arbitrary spin s. For a given value of s,
we constructed a “ladder” of Sx eigenstates. These states were linked by “raising” and “low-
ering” operators S±. The properties of the raising and lowering operators (which followed
from the commutation relations between the spin components) completely determined the
structure of the Hilbert space Hs for the spin-s system.

In this chapter, we investigate a similar type of quantum system that we will call a ladder
system. The ladder system is described by an infinite-dimensional Hilbert space with a
basis of states |0〉, |1〉, |2〉, . . . These form the “rungs” of a ladder of basis states, which
has a bottom rung |0〉 but extends infinitely upwards. As we will see, many real quantum
systems are isomorphic to this. The ladder system is as useful a generalization as the “qubit”
of Chapter 2. We will adopt the special symbol J to denote the Hilbert space of a ladder
system.1

Our ladder of basis states comes equipped with a lowering operator a. This has the
property that, for any n,

a |n〉 = √
f (n) |n− 1〉 . (13.1)

The function f (n) is

f (n) = 〈n| a†a |n〉 , (13.2)

which is the squared norm of the vector a |n〉. Thus f (n) ≥ 0. We have chosen the phases
of the basis states so that the coefficient

√
f (n) in Eq. 13.1 is real and non-negative.

The adjoint operator a† acts as a raising operator. To see this, note that

〈n| a |m〉 = √
f (m) δn,m−1 =

√
f (n+ 1) δn+1,m. (13.3)

The vector a† |n〉 has components cm = 〈m| a† |n〉 = 〈n| a |m〉∗, so we can see that

a† |n〉 = √
f (n+ 1) |n+ 1〉 . (13.4)

Given the function f (n), Eq. 13.1 and 13.4 define the properties of the raising and lowering
operators a and a†.

1 Why J ? Our notation is suggested by Jacob’s ladder, as described in the Book of Genesis: [Jacob] had a
dream, and behold, a ladder was set on the earth with its top reaching to heaven; and behold, the angels of
God were ascending and descending on it. It would, of course, be too fanciful to refer to the ascending and
descending operators a† and a as “angel” operators!
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But what function should we choose for f (n)? We wish this to be as simple as possible.
We require f (0) = 0, so that the application of a to the “bottom rung” state |0〉 yields the
null vector. However, we want f (n) > 0 for n > 0. The most straightforward choice is to
let f (n) = n, so that

a |n〉 = √
n |n− 1〉 ,

a† |n〉 = √
n+ 1 |n+ 1〉 . (13.5)

From here on, we will adopt Eq. 13.5 as the defining properties for a and a† . (See
Problem 13.1 for a parallel development for operators in a finite ladder of states.)

Exercise 13.1 Write the operator a as a sum of outer products of the basis states |n〉.
From the raising and lowering operators, we can define other operators of interest for

our ladder system. For example, we may define the number operator n by n = a†a.

Exercise 13.2 Show that n is Hermitian, and

n |n〉 = n |n〉 , (13.6)

for all basis states |n〉.
The basis states |0〉, |1〉, . . . are exactly the number eigenstates of the system, and we
can write

n =
∑

n
n |n〉〈n| . (13.7)

Any number eigenstate for the ladder system can be constructed from the |0〉 state by
successive applications of the raising operator a†:

|1〉 = a† |0〉 ,

|2〉 = a†

√
2
|1〉 =

(
a†
)2

√
2
|0〉 ,

|3〉 = a†

√
3
|2〉 =

(
a†
)3

√
2 · 3

|0〉 , (13.8)

and so on. In general,

|n〉 =
(
a†
)n

√
n! |0〉 . (13.9)

As we will see, this is quite useful. It is also useful to examine the commutator of the raising
and lowering operators. For any number eigenstate |n〉,[

a, a†
]
|n〉 = aa† |n〉 − a†a |n〉

= (n+ 1) |n〉 − n |n〉 = |n〉 . (13.10)

From this we conclude that [
a, a†

]
= 1. (13.11)
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We have seen that commutation relations express a lot of mathematical information in
highly compressed form. In fact, all of the properties of a and a† can be derived from their
commutator, as is demonstrated in the following sequence of exercises. In each exercise,
assume only that a and a† are operators on the Hilbert space J satisfying Eq. 13.11.

Exercise 13.3 Define the operator n = a†a. Show that n is Hermitian. Let |ν〉 be an
eigenstate of n with real eigenvalue ν. Show that ν ≥ 0.

Exercise 13.4 Begin with the eigenstate |ν〉 and show that the vector a |ν〉 has squared
norm ν. For ν > 0, show that a |ν〉 is an eigenvector of n with eigenvalue ν − 1.

Exercise 13.5 Show that the only possible eigenvalues of n are 0, 1, 2, . . .

Exercise 13.6 Assume that the spectrum of n is non-degenerate. (This means we have a
“simple” ladder system, analogous to the simple spin system of Section 12.1.) Let |0〉 be
the eigenstate with eigenvalue 0, and define |n〉 according to Eq. 13.9. Show that the |n〉
states form an eigenbasis for n, and derive Eq. 13.5.

13.2 Oscillators

Ladder systems are not just a pleasant mathematical exercise. They turn out to be closely
related to quantum particles moving in one dimension.

To see this, define

Q = 1√
2

(
a+ a†

)
,

P = 1
i
√

2

(
a− a†

)
. (13.12)

The Q and P operators are Hermitian operators such that

a = 1√
2

(Q+ iP) ,

a† = 1√
2

(Q− iP) . (13.13)

In other words, Q and iP are
√

2 times the Hermitian and anti-Hermitian parts of a. The
commutator between Q and P is

[Q, P] = 1
2i

[
a+ a†, a− a†

]
= 1

2i

(
−
[
a, a†

]
+
[
a†, a

])
[Q, P] = i1. (13.14)
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This reminds us strongly of the commutation relation between position and momentum
operators x and p for a particle moving in one dimension. In fact, we can make the
resemblance even closer. Pick a constant α that has units of length. If we define

x = α Q,

p = �

α
P, (13.15)

then x and p will have the canonical commutation relation in Eq. 10.53.

Exercise 13.7 Show that, for x and p defined in this way,

[x, p] = i�1. (Re 10.53)

Beginning with the raising and lowering operators a and a†, we can first define the dimen-
sionless pair Q and P, and then construct x and p satisfying the canonical commutation
relation. Symbolically, our procedure is:(

a, a†

[a, a†] = 1

)
=⇒

(
Q, P

[Q, P] = i1

)
α=⇒

(
x, p

[x, p] = i�1

)
,

(where the second arrow reminds us that we must fix the length scale parameter α).
We could also reverse this procedure. For any particle moving in one dimension, the

position and momentum observables can be used to construct dimensionless Q and P
operators, from which we can create a and a† operators satisfying Eq. 13.11.

Exercise 13.8 Write down the operators a and a† in terms of x, p, �, and the scale parameter
α. Show that the canonical commutation relation in Eq. 10.53 implies Eq. 13.11.

In other words, every 1-D particle system has a ladder structure built into it. Of course,
the number eigenstates |n〉 do not necessarily correspond to physically important states of
the particle system – to energy eigenstates, for example. But as we will see next, in one
important special case they do.

A 1-D harmonic oscillator has a Hamiltonian

H = 1
2μ

p2 + 1
2

kx2, (13.16)

where k is a constant that determines the “stiffness” of the elastic force experienced by
the oscillator. A classical system with this Hamiltonian exhibits periodic motion with a
classical frequency

ω =
√

k
μ

, (13.17)

independent of the amplitude of the oscillation. We can rewrite the Hamiltonian in terms
of μ and ω:

H = 1
2μ

p2 + μω2

2
x2. (13.18)
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We define the quantum length scale α for the oscillator system according to

α =
√

�

μω
. (13.19)

Exercise 13.9 Verify that α has units of length.

This lets us define dimensionless operators Q and P according to Eq. 13.15, from which we
obtain raising and lowering operators

a = 1√
2

( x

α
+ i

α

�
p
)

,

a† = 1√
2

( x

α
− i

α

�
p
)

. (13.20)

The Hamiltonian operator can be written

H = �ω

2

(
P2 + Q2

)
. (13.21)

In terms of the raising and lowering operators, this has a very nice form.

Exercise 13.10 Show that

H = �ω

(
n+ 1

2
1
)

, (13.22)

where n = a† a.

The Hamiltonian, in other words, is closely related to the number operator n. This has
many useful consequences:

• The energy eigenstates of a harmonic oscillator are exactly the number eigenstates |n〉
of the ladder system.

• These energy eigenstates have eigenvalues given by

H |n〉 = En |n〉 =
(

n+ 1
2

)
�ω |n〉 . (13.23)

• The energy of the ground state |0〉 is �ω/2, and adjacent energy levels are separated by
�ω (see Fig. 13.1).

What are the wave functions for the stationary states of the oscillator? To find ψn(x), we
must solve Eq. 15.4, which in this case is

ψ ′′
n (x) = −2μ

�2

(
En − μω2

2
x2

)
ψn(x). (13.24)

The good news is that we already know En =
(

n+ 1
2

)
�ω. The bad news is that Eq. 13.24

is laborious to solve directly (see Problem 13.3). Luckily, there is a better way.
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Fig. 13.1 Energy levels of the quantum harmonic oscillator.

From our discussion in Section 10.2, we know that the position and momentum operators
x and p affect the wave function by

x : ψ → xψ(x) and p : ψ →−i�
∂ψ

∂x
. (13.25)

Equation 13.20, therefore, tells us how the lowering operator a changes the wave function:

a : ψ → 1√
2

(
x
α

ψ + α
∂ψ

∂x

)
. (13.26)

(The raising operator a† acts in a similar way, with the “+” changed to “−.”)
The ground state satisfies a |0〉 = 0. Thus, the wave function ψ0(x) for that ground state

must satisfy

ψ ′
0(x) = − x

α2 ψ0(x). (13.27)

This is easily solved. We find that

ψ0(x) = Ae−x2/2α2
, (13.28)

where A is determined by normalization. The ground state wave function is a Gaussian. By
comparing this to our discussion of the Gaussian wave packet in Section 10.3 (especially
around Eq. 10.64), we find that the constant A = (πα2)−1/4 and the variance in position〈

x2〉 = α2/2.

Equation 13.28 gives us the wave function ψ0(x) for the ground state. What about
the wave functions ψ1(x), ψ2(x), etc.? These are easily obtained by applying the raising
operator a† to ψ0(x). The state |1〉 = a† |0〉, so

ψ1 = 1√
2

(
x
α

ψ0 − α
∂ψ0

∂x

)
. (13.29)

Exercise 13.11 Show that ψ1(x) = Bx e−x2/2α2
. Find B.
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Fig. 13.2 Wave functions for the first four stationary states of the quantum harmonic oscillator.

We can of course iterate this idea to find the wave functions for |2〉, |3〉, etc.

Exercise 13.12 Find ψ2(x).

Exercise 13.13 Write ψn(x) = Fn
( x
α

)
e−x2/2α2

. Show by mathematical induction that Fn

must be an nth order polynomial.

The first few wave functions for the harmonic oscillator stationary states are sketched in
Fig. 13.2.

Once we have the wave functions for the stationary states of the oscillator, we can
find probability distributions over position and momentum variables. From these we can
calculate expectation values 〈x〉, 〈x2〉, 〈p〉, and so on. However, it is much easier to calculate
these expectations using a and a†. As an example, we will find

〈

x2〉 = 〈

x2〉− 〈x〉2 for the
stationary state |n〉.

The observables x and x2 are

x = α√
2

(
a+ a†

)
,

x2 = α2

2

(
a+ a†

)2

= α2

2

(
a2 + aa† + a†a+ (a†)2

)
. (13.30)
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The expectation 〈x〉 is

〈x〉 = α√
2
〈n|

(
a+ a†

)
|n〉

= α√
2

(√
n 〈n |n− 1 〉 + √n+ 1 〈n |n+ 1 〉

)
= 0. (13.31)

We next compute the expectation
〈
x2〉. To do this, we note that 〈n| a2 |n〉 = 0 since

〈n |n− 2 〉 = 0. In a similar way, 〈n| (a†)2 |n〉 = 0. This leaves〈
x2
〉
= α2

2
〈n|

(
aa† + a†a

)
|n〉

= α2

2
〈n| (n 〈n |n 〉 + (n+ 1) 〈n |n 〉)

〈
x2
〉
= (2n+ 1) α2

2
. (13.32)

This is also
〈

x2〉, since 〈x〉 = 0. The uncertainty in position for a stationary state of a

harmonic oscillator is


x =
√

(2n+ 1)α2

2
=
√(

n+ 1
2

)
�

2μω
. (13.33)

Exercise 13.14 Note that 
x is larger for higher values of n. Explain why this makes sense.

Exercise 13.15 Calculate 
p for the energy eigenstate |n〉, and find the product 
x 
p.

13.3 Coherent states

In Section 10.3 we considered wave packets, free particle wave functions with pretty well-
defined positions and momenta. Such states also exist for a harmonic oscillator system. Of
particular interest and usefulness are the coherent states, which we will describe in this
section.

The coherent states of an oscillator are eigenstates of a, the lowering operator. Because
a is not Hermitian (or even normal), these eigenstates do not form an orthonormal basis.
We have already met one of the eigenstates, the ground state |0〉 of the oscillator:

a |0〉 = 0, (13.34)

so its eigenvalue is zero. The other coherent states are labeled by their complex
eigenvalue z:

a |z〉 = z |z〉 . (13.35)
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We can write the coherent state |z〉 in terms of the number state basis:

|z〉 =
∑

n
cn |n〉 . (13.36)

Exercise 13.16 Substitute Eq. 13.36 into the definition in Eq. 13.35 and show that

cn = zn
√

n! c0. (13.37)

Exercise 13.17 The value of c0 is chosen to normalize the state |z〉. Show that c0 = e−|z|2/2

works. This will be our standard choice.

Exercise 13.18 Show that the coherent state |z〉 is not an eigenstate of the raising operator
a†. Show, in fact, that a† has no eigenstates.2

Since the coherent states are defined in terms of the lowering operator a, it is easy to
calculate various observable quantities. For example, suppose we measure the number
observable n on an oscillator in a coherent state z. Then the expectation value is

〈n〉 = 〈z| n |z〉 = 〈z| a†a |z〉 = z∗z = |z|2 . (13.38)

Exercise 13.19 What is the expectation 〈E〉 of the energy of an oscillator in the state |z〉?
We can find the wave functions ψz(x) for the coherent state |z〉 in the same way we

derived Eq. 13.28. The wave function must satisfy

ψ ′
z(x) =

(√
2 z
α

− x
α2

)
ψz(x). (13.39)

Exercise 13.20 Show that the solution to this equation is

ψz(x) = Az e−(x−b)2/2α2
eikx, (13.40)

where b = √
2 α Re(z) and k = (

√
2/α)Im(z).

We recognize this at once as a Gaussian wave packet – the ground state wave function
ψ0(x), in fact, shifted by b along the x-axis and modulated by the plane wave eikx. Even the
same normalization factor will work, at least up to an overall phase: |Az| = (πα2)−1/4. (The
phase must be chosen to stay consistent with the phase already chosen for the coefficients
in Eq. 13.36.)

Several facts immediately follow. For a coherent state |z〉,
〈x〉 = b = √

2 α Re(z), 
x = α√
2

,

〈p〉 = �k =
√

2 �

α
Im(z), 
p = �√

2 α
. (13.41)

2 This does not contradict the argument in Section 3.5 establishing the existence of eigenvalues and eigenvectors,
because that argument only applied to finite-dimensional Hilbert spaces. The space J for a ladder system is
infinite-dimensional.
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(Review the discussion of Gaussian wave packets in Section 10.3 for details.) Every
coherent state is a minimum uncertainty wave packet for the oscillator.

We now see that the real and imaginary parts of z are related to expectation values
of x and p – that is, to points in the classical phase space for a particle in one dimen-
sion. We might even say that, for the oscillator system, the coherent states are the
quantum version of phase space points. Two nearby points, however, are not completely
distinguishable.

Exercise 13.21 For coherent states |z〉 and
∣∣z′〉, show that∣∣〈z′ |z 〉∣∣2 = e−|z−z′|2 . (13.42)

No two coherent states are perfectly distinguishable by any measurement, but if the value
of
∣∣z− z′

∣∣ is large enough they can be distinguished pretty well.

Exercise 13.22 Use the basic distinguishability theorem of Section 4.2 to find the minimum
value of

∣∣z− z′
∣∣ for which two coherent states can be distinguished with success probability

PS = 0.95. Repeat this calculation for PS = 0.9999.

A close connection between coherent states of a quantum oscillator and the phase space
points of a classical oscillator can be seen in the time evolution of a coherent state. Suppose
the initial state of the oscillator is a coherent state |ψ(0)〉 = |z〉. How does this state evolve
under the oscillator Hamiltonian? The number states |n〉 are energy eigenstates with energy
En = (n+ 1/2)�ω, so the time evolution operator U(t) acts by

U(t) |z〉 = e−|z|2/2
∑

n

zn
√

n! U(t) |n〉

= e−|z|2/2
∑

n

zn
√

n! e−i(n+1/2)ωt |n〉 . (13.43)

But e−inωt = (
e−iωt)n, and so

U(t) |z〉 = e−iωt/2 ∣∣e−iωt z
〉
, (13.44)

where
∣∣e−iωt z

〉
is the coherent state with eigenvalue e−iωt z. The overall phase factor e−iωt/2

is unimportant. The main point is that coherent states evolve into coherent states, tracing
out circular trajectories in the complex z-plane.

Exercise 13.23 Show that the coherent state trajectory in (x, p) phase space satisfies the
harmonic oscillator equation of motion.

Finally, consider the expansion of a coherent state in terms of the number states |n〉.
Each of these states can be built from |0〉 by applying the raising operator a†, as in Eq. 13.9.
We have

|z〉 = e−|z|2/2
∑

n

zn
√

n! |n〉 = e−|z|2/2
∑

n

zn

n!
(
a†
)n |0〉 . (13.45)
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We recognize an operator power series here, which allows us to write

|z〉 = e−|z|2/2 exp(za†) |0〉 . (13.46)

The operator exp(za†) shifts the coherent state |0〉 to a vector parallel to |z〉. In fact, this is
a special case of a more general “shift” property, stated in the next exercise.

Exercise 13.24 Show that

exp(z′a†) |z〉 = C
∣∣z+ z′

〉
, (13.47)

and evaluate the scalar C. To do this, you will want to recall that exp(A) exp(B) =
exp(A+ B), provided that A and B commute.

13.4 Thermal states of a ladder system

A ladder system might be in a mixed state described by a density operator ρ. A particularly
useful example of this is the canonical state of Eq. 8.70. Given the Hamiltonian H =
(n+ 1/2)�ω, this is

ρ = 1
Z e−H/kT = 1

Z
∑

n
e−(n+1/2)�ω/kT |n〉〈n| . (13.48)

This is the mixed state of an oscillator that is in thermal equilibrium with a reservoir system
at absolute temperature T .

Exercise 13.25 Show that the partition function Z = Tr e−H/kT in the canonical state is

Z = e−�ω/2kT

1− e−�ω/kT . (13.49)

This relies on the sum of the geometric series:
∞∑

n=0

xn = 1
1− x

, (13.50)

for |x| < 1. What plays the role of x here?

We wish to calculate expectations of the form 〈A〉 = Tr ρA. Since the canonical density
operator in Eq. 13.48 is diagonal in the number state basis, this is the most convenient basis
to use for evaluating the trace. For instance, the average energy of the oscillator in this
mixed state is

〈E〉 = Tr ρH = 1
Z

∞∑
n=0

(n+ 1/2)�ω e−(n+1/2)�ω/kT

=
(

�ω

e�ω/kT − 1

)
+ �ω

2
. (13.51)
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Exercise 13.26 Verify Eq. 13.51. You will find the following fact useful:

∞∑
n=0

nxn = x
d
dx

( ∞∑
n=0

xn

)
= x

(1− x)2 . (13.52)

(This can be derived from Eq. 13.50.)

At very low temperatures (kT � �ω) the first term in Eq. 13.51 is negligible, and so
〈E〉 ≈ �ω/2, the energy of the ground state. At very high temperatures (kT � �ω) we can
approximate the exponential by e�ω/kT ≈ 1+ �ω/kT and obtain 〈E〉 ≈ kT .

This last result is in accordance with the equipartition theorem of classical statistical
mechanics, which states that each quadratic term in the Hamiltonian of a system in equi-
librium should have an average energy of kT/2. Since the harmonic oscillator has two
quadratic terms, the average oscillator energy should be kT .

The heat capacity C of a system measures how the average energy changes with changes
in temperature. For a single quantum oscillator, a short calculation finds

C = d 〈E〉
dT

= e�ω/kT

(e�ω/kT − 1)2
(�ω)2

kT2 . (13.53)

Again, we can examine the behavior of this at high and low temperatures:

• If kT � �ω, then C ≈ e−�ω/kT (�ω)2

kT2 , and so C → 0 as T → 0.
• If kT � �ω, then C ≈ k, a constant.

The quantum heat capacity of an oscillator played an important role in the early history
of quantum theory. In the 19th Century, classical statistical mechanics was applied to find
the heat capacities of crystalline solids. The atoms in such a solid should behave roughly
as 3-D harmonic oscillators. By the equipartition theorem, each atom should thus have an
average energy of 3kT . An assembly of N atoms should have a heat capacity of 3Nk. One
mole has Avogadro’s number NA = 6.02 × 1023 atoms, so the molar heat capacity of a
crystalline solid should be

3NAk = 24.9 J / K mol. (13.54)

And indeed, the molar heat capacity of many solids is close to this value. This fact is called
the Dulong–Petit Law, discovered in 1819. Other solids, however, have a much smaller
heat capacity at room temperature.

In 1907, Einstein explained this behavior by applying early quantum ideas to the oscillat-
ing atoms in the solid. In our terminology, he regarded one mole of a solid to be composed
of 3NA identical quantum oscillators. The characteristic frequency ω of the oscillators fixed
an Einstein temperature TE = �ω/k. The heat capacity of one mole is

C = 3NAk
eTE/T

(eTE/T − 1)2

(
TE
T

)2
. (13.55)



280 Ladder systems

Any solid should thus have a heat capacity that agrees with the classical predication for
T � TE but approaches zero for T � TE. Different solids, however, differ in their values
for TE.

Einstein’s theory marked the first time that quantum ideas had been applied to matter by
itself. (Previous quantum work, such as Planck’s explanation of the blackbody spectrum
and Einstein’s explanation of the photoelectric effect, concerned the interaction of light
with matter.) The theory qualitatively explained the behavior of the heat capacities of solids
over a wide range of temperatures. A later refinement of Einstein’s ideas by Peter Debye
made the agreement quantitatively accurate as well.

Problems

Problem 13.1 Suppose we are constructing a finite ladder of basis states |0〉, . . . , |d − 1〉.
We need to make a different choice for the function f (n) in Eq. 13.1 and 13.4. To avoid
“stepping off the ladder” at the top and bottom, we will require that f (0) = f (d) = 0, but
that f (n) > 0 for 0 < n < d. The simplest algebraic choice is

f (n) = n(d − n). (13.56)

Now consider the ladder of Sz eigenstates for a simple spin-s system, discussed in
Section 12.1. There are d = 2s + 1 states that are indexed by m-values ranging from
m = −s to m = +s. How are the spin raising and lowering operators S± related to the a
and a† operators defined by Eq. 13.1 and 13.4? (Here is an example where the “simplest
choice” for f (n) gives a good result!)

Problem 13.2 The position operator x for the harmonic oscillator is

x = α√
2

(
a+ a†

)
. (13.57)

Use this fact to calculate
〈
x3〉 and

〈
x4〉 for the energy eigenstate |n〉.

Problem 13.3 Suppose ψ(x) satisfies

ψ ′′(x) = −2μ

�2

(
E − μω2

2
x2

)
ψ(x), (13.58)

for some E. Let ψ(x) = F
( x
α

)
e−x2/2α2

, where α is defined as in Eq. 13.19.

(a) Find a differential equation for the function F.
(b) Assume that F is a polynomial function that is either even or odd. Find the

corresponding values En, where n is the degree of the polynomial.
(c) Find the first four polynomials F0, F1, F2, and F3. (Do not worry about normalization.)
(d) (Optional) By considering a general series solution to your differential equation from

part (a), show that the condition in part (b) must hold for the resulting wave function
ψ(x) to be normalizable.
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Problem 13.4 Suppose at t = 0 an oscillator is in the state |ψ(0)〉 =∑
n cn |n〉. Show that,

after a time T = 2π/ω (the classical oscillation period) the state |ψ(T)〉 is indistinguishable
from the original state |ψ(0)〉.
Problem 13.5 Suppose the number observable n is measured on an oscillator system
in a coherent state |z〉. We have already found the expectation 〈n〉 = |z|2. Find the
probability P(n) that the result n is obtained. Also calculate

〈
n2〉 and 
n. (Hint: Recall that

aa† = a† a+ 1, which is just Eq. 13.11.)

Problem 13.6 Define the displacement operator D(z) by

D(z) = exp(za† − z∗a). (13.59)

(a) Show that D(z) is unitary.
(b) Show that the coherent state |z〉 = D(z) |0〉. (You will need to use the Baker–Campbell–

Hausdorff identity from Problem 5.8.)
(c) Evaluate D(z′) |z〉 for the coherent state |z〉.
This version of the displacement operator has somewhat more elegant properties than the
simpler one mentioned in Exercise 13.24.

Problem 13.7 A ladder system subject to spontaneous decay can be modeled with a
Lindblad equation (see Section 9.3). This involves a single Lindblad operator �a, where
� is a constant with units (time)−1/2. The equation can be written

d
dt

ρ = 1
i�
[H, ρ] +�2aρa† − �2

2

(
a†aρ + ρa†a

)
. (13.60)

Take the Hamiltonian operator to be H = �ωa†a. Suppose that the state of the system at
any time is diagonal in the number basis:

ρ(t) =
∑

n
pn(t) |n〉〈n| . (13.61)

Derive rate equations for the time-dependent eigenvalues pn(t), and show that the
expectation 〈n〉 decays exponentially with time.

Problem 13.8 This is a variation on Problem 13.7. The ladder system with Hamiltonian
�ωa†a undergoes Lindblad-type evolution with two Lindblad operators, �a and κ�a†,
with 0 < κ < 1. Thus, the environment can both raise and lower the ladder state, though
the lowering process is “stronger.” Show that a canonical state ρ = Z−1 exp(−H/kBT) can
be a constant under this evolution, for a particular relation between κ and T .
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14.1 Two-particle wave functions

In this chapter we will consider quantum systems composed of two or more particles. To
make our analysis look as simple as possible, we will suppose that these particles each
move in one dimension. However, as the exercises will make clear, our results can be easily
generalized to particles moving in 3-D space.

To begin, suppose a system has just two particles, designated #1 and #2. The Hilbert
space for this composite system is H(1) ⊗H(2), the tensor product of the Hilbert spaces for
each particle. Let |x1, x2〉 = |x1〉 ⊗ |x2〉 be the product of improper position eigenstates
for the two particles.1 The wave function for the system in state |�〉

�(x1, x2) = 〈x1, x2 |� 〉 . (14.1)

Just as the composite system has only one state vector |�〉, it also has only one wave
function �(x1, x2), which is a function of both particle coordinates.2 The square of the
magnitude of � gives the joint probability density over x1 and x2:

P(x1, x2) = |�(x1, x2)|2 . (14.2)

This means that the probability that x1 ∈ [a1, b1] and x2 ∈ [a2, b2] is

P(x1 ∈ [a1, b1], x2 ∈ [a2, b2]) =
∫ b1

a1

∫ b2

a2

|�(x1, x2)|2 dx1dx2. (14.3)

Exercise 14.1 What is the normalization condition for the joint wave function �(x1, x2)?

Exercise 14.2 Suppose we have two particles moving in three dimensions. The overall
wave function � will be a function of how many Cartesian coordinates?

1 To avoid some later confusion with exponentiation, we will use subscripts to designate the coordinates for
different particles. However, we will continue to use our regular superscript notation in other contexts where
this confusion is impossible. This is why we write |x1, x2〉 rather than

∣∣x(1), x(2)
〉
, but still write H(1) ⊗H(2). We

will switch from superscripts to subscripts as needed without further comment, trusting that the reader will be
able to sort things out without too much trouble.

2 Note the similarity between this two-particle situation and a single particle moving in two dimensions. From
the standpoint of the abstract theory, both are examples of a quantum system with two continuous degrees of
freedom.
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A product state |ψ , φ〉 yields a wave function that is a product of one-particle wave
functions:

�(x1, x2) = 〈x1, x2 |ψ , φ 〉 = ψ(x1)φ(x2). (14.4)

This is the only case in which it is possible to ascribe a definite wave function to each
particle separately.

Exercise 14.3 Show that a product state of two 1-D particles leads to a probability
distribution in which the position variables x1 and x2 are independent.

Exercise 14.4 Given a joint probability distribution P(x1, x2), we can find a distribution
over x1 simply by integrating over x2. That is,

P(x1) =
∫ +∞

−∞
P(x1, x2) dx2. (14.5)

Why does this not work with wave functions? What is wrong with defining ψ(x1) =∫ +∞
−∞ �(x1, x2) dx2?

There are position operators x1 and x2 for each particle, and corresponding momentum
operators p1 and p2. These satisfy the canonical commutation relations

[x1, p1] = i�1 and [x2, p2] = i�1. (14.6)

All other pairs of these operators commute. The momentum operators affect the wave
function as follows:

p1 : � −→ −i�
∂

∂x1
� and p2 : � −→ −i�

∂

∂x2
�. (14.7)

Expectation values of observables are calculated from the wave function in the usual way.
The Hamiltonian of a two-particle system typically consists of separate kinetic energy

terms for each particle and a potential energy that may depend on both x1 and x2. That is,

H = 1
2μ1

p2
1 +

1
2μ1

p2
1 + U(x1, x2), (14.8)

where μ1 and μ2 are the masses of the two particles. The Hamiltonian steers the time
evolution of the system via the Schrödinger equation. In terms of the time-dependent wave
function �(x1, x2, t), this is

− �2

2μ1

∂2�

∂x2
1
− �2

2μ2

∂2�

∂x2
2
+ U(x1, x2)� = i�

∂�

∂t
. (14.9)

This single partial differential equation governs the time evolution of the joint wave function
�, and therefore the behavior of the entire system.

Exercise 14.5 Write down the Schrödinger equation for the wave function of two particles
in three dimensions. Compare Eq. 11.26. (Here is a useful piece of notation: 	∇1 is the
gradient with respect to the coordinates in 	r1, and ∇2

1 is the corresponding Laplacian. We
define 	∇2 and ∇2

2 in the same way.)
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Exercise 14.6 Suppose two 1-D particles are non-interacting, so that the potential energy
U(x1, x2) = U1(x1) + U2(x2). Let ψ1(x1, t) and ψ2(x2, t) be solutions to the separate
single-particle Schrödinger equations. Show that the product

�(x1, x2, t) = ψ1(x1, t)ψ2(x2, t), (14.10)

is a solution to Eq. 14.9.

Exercise 14.6 makes an important conceptual point. In classical mechanics, a system of
many particles has dynamics described by a system of many equations of motion, which
are ordinary differential equations in the variable t. To analyze the dynamics of an isolated
subsystem, we need only consider the equations of motion for the subsystem’s own degrees
of freedom – equations which will be uncoupled from the rest of the system.

However, in quantum mechanics, even a system of many particles has only one equation
of motion, the Schrödinger equation, which is a partial differential equation involving
all particle coordinates and t. Exercise 14.6 nevertheless tells us that, if the particles are
dynamically isolated and the system is in a product state, we can effectively analyze the
dynamics of the individual particles via separate one-particle “Schrödinger equations.”3

Since, as a practical matter, we are always applying quantum mechanics to small pieces of
the entire world, it is a very good thing that such effective descriptions exist!

14.2 Center of mass and relative coordinates

It may happen that our two-particle system is subject only to internal forces, so that the
potential energy depends only on the relative position of the particles:

U(x1, x2) = U(x2 − x1). (14.11)

This means that, if we translate both particles by exactly the same amount, the potential
is unchanged. In fact, such a joint translation is a dynamical symmetry, as defined in
Section 5.4.

Exercise 14.7 Let T(s) be the unitary operator that translates both particles by s. That is,

T(s) : �(x1, x2) −→ �(x1 − s, x2 − s). (14.12)

(Why the minus signs?) If Eq. 14.11 holds, show that

[T(s), H] = 0, (14.13)

for the two-particle Hamiltonian of Eq. 14.8.4

3 This is also implied by the general discussion in Section 6.2, which you might wish to review at this time.
4 This is the definition of a dynamical symmetry given in Eq. 5.61. As an additional exercise, find the Hermitian

observable that generates the one-parameter family T(s).
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We can adopt an alternative description of our two-particle system that exploits this
symmetry. Define the operators

X = 1
M

(μ1x1 + μ2x2) and x = x2 − x1, (14.14)

where M = μ1 + μ2. We recognize X as the operator corresponding to the system’s center
of mass, while x is the relative position of particle #2 with respect to particle #1. Now our
potential is U(x), a function of x only.

A joint position eigenstate |x1, x2〉 is also an eigenstate of X and x, so we can also write
it as |X , x〉, where X and x are the corresponding eigenvalues.

Exercise 14.8 What is the X eigenvalue X for the (improper) joint position eigenstate
|x1, x2〉? What about the x eigenvalue?

Given a two-particle quantum state |�〉, we can write down its wave function �(X , x) =
〈X , x |� 〉 in terms of variables X and x.

Our system has been introduced as a composite of two 1-D particles – that is, as two
quantum systems, each with a single continuous degree of freedom. The overall Hilbert
space is H = H(1) ⊗H(2). Now we wish to regard the same system in a different way, as a
composite of a center-of-mass degree of freedom (associated with coordinate operator X)
and a relative position degree of freedom (associated with x). The same Hilbert space H
will be decomposed as H(cm) ⊗H(rel). To do this, we must find momentum operators P and
p corresponding to the new position operators X and x. These momentum operators should
affect �(X , x) in the expected way:

P : � −→ −i�
∂

∂X
� and p : � −→ −i�

∂

∂x
�. (14.15)

These X and x derivatives are related to the x1 and x2 derivatives by the chain rule:

∂

∂X
=
(

∂x1

∂X

)
∂

∂x1
+
(

∂x2

∂X

)
∂

∂x2
= ∂

∂x1
+ ∂

∂x2
,

∂

∂x
=
(

∂x1

∂x

)
∂

∂x1
+
(

∂x2

∂x

)
∂

∂x2
= −μ2

M
∂

∂x1
+ μ1

M
∂

∂x2
. (14.16)

Therefore, we define

P = p1 + p2 and p = 1
M

(μ1p2 − μ2p1) . (14.17)

So the momentum P associated with the center of mass X is exactly the total momentum
of the system. The other new momentum p associated with the relative coordinate x is less
easily recognized. If we define the reduced mass μ for the system by

1
μ
= 1

μ1
+ 1

μ2
= M

μ1μ2
, (14.18)

then the definition of p becomes

p = μ

(
p2

μ2
− p1

μ1

)
. (14.19)
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Heuristically, the relative momentum p is just the reduced mass μ times the relative velocity
of the particles.

Exercise 14.9 Show that the reduced mass μ is less than either μ1 or μ2. What is μ if
μ2 = μ1? If μ2 � μ1?

Exercise 14.10 Show that the operators X, P, x, and p satisfy the canonical commutation
relations

[X, P] = ı�1 and [x, p] = ı�1, (14.20)

with all other commutators equal to zero.

Exercise 14.11 Show that

p1 = μ1

M
P− p, p2 = μ2

M
P+ p. (14.21)

This last exercise leads to a very significant result. We can write the kinetic energy terms
in the two-particle Hamiltonian (Eq. 14.8) using P and p. When we include the potential,
the complete Hamiltonian is

H = 1
2M

P2 + 1
2μ

p2 + U(x). (14.22)

Exercise 14.12 Verify Eq. 14.22.

Notice that we can write this Hamiltonian as H(cm) + H(rel), where

H(cm) = 1
2M

P2, H(rel) = 1
2μ

p2 + U(x). (14.23)

In other words, the center of mass and the relative position are completely non-interacting
quantum systems. The center of mass behaves as a free particle of mass M , while the
relative position behaves independently as a particle of mass μ moving in an external
potential U(x).

The same system can be regarded as a composite of two particles (with coordinate
operators x1 and x2, or as a composite of a center of mass (X) and a relative position
(x). So which decomposition is the “right” one? The answer, of course, is that both are
equally “correct.” Nothing in quantum theory requires us to adopt one or another way of
dividing an overall system into subsystems. For a given physical situation, our choice of
decomposition will be made on purely practical grounds. For instance, if our measurement
devices allow us to observe the two particles individually, it may be easier to think of x1
and x2 as observables for separate subsystems. On the other hand, when external forces
are absent, the Hamiltonian in Eq. 14.22 suggests that the X, x view may have significant
advantages.

Our discussion so far easily generalizes to a pair of particles moving in three dimensions.
Our particles have positions 	r1 and 	r2. As before, we define center of mass position 	R and
relative position 	r, and write the wave function in terms of these coordinates. We leave the
details for:
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Exercise 14.13 Start at the beginning of this section and derive all of the analogous results
for two particles moving in 3-D. For most steps, this is no more complicated than writing
down a vector version of the 1-D equation, but in a couple of places (Eq. 14.17, for instance)
you may need more of a derivation.

Exercise 14.14 A two-particle system in 3-D is subject only to internal forces, and we
write its time-dependent wave function �(	R, 	r, t) in terms of center-of-mass and position
coordinates. Show that the Schrödinger equation for � can be written

− �2

2M
∇2

R� − �2

2μ
∇2

r � + U(	r)� = i�
∂

∂t
�, (14.24)

where ∇2
R and ∇2

r are the Laplacians for the 	R and 	r coordinates, respectively.

Everything can also be generalized to quantum systems having more than just two
particles. For N particles moving in 1-D, the Hilbert space is H(1) ⊗ · · · ⊗H(N). The wave
function � is a function of all N coordinates:

�(x1, . . . , xN ) = 〈x1, . . . , xN |� 〉 . (14.25)

Thus the spatial wave function for a system of many particles is a function of the entire
configuration of the system. The evolution of the joint wave function � is described by a
single Schrödinger equation.

We can devise center-of-mass and relative coordinates for systems of many particles.
For instance, consider three particles numbered #0, #1, and #2. Define

X = 1
M

(μ0x0 + μ1x1 + μ2x2) , x′1 = x1 − x0, x′2 = x2 − x0, (14.26)

where M = μ0+μ1+μ2. (In this scheme, we have singled out particle #0 for a special role
as the reference point for the relative coordinates.) If there are only internal forces in this
system, then the potential energy is a function only of the relative coordinates: U(x′1, x′2).

Exercise 14.15 Explain why this is true, even if there are forces between each pair of
particles, so that the potential energy depends on all three relative positions: x1 − x0,
x2 − x0, and x2 − x1.

As before, we define momentum operators P, p′1, and p′2 so that the wave function
�(X , x′1, x′2) is affected by the expected derivatives. This enables us to write the three-
particle Hamiltonian in terms of the center-of-mass and relative variables.

Exercise 14.16 Derive the operators P, p′1, and p′2 in terms of the single-particle momenta
p0, p1, and p2. Show that the Hamiltonian of the three-particle system is

H = 1
2M

P2 + 1
2μ′1

p′1
2 + 1

2μ′2
p′2

2 + U(x′1, x′2), (14.27)

where the reduced masses μ′k (k = 1, 2) are

1
μ′k

= 1
μ0

+ 1
μk

. (14.28)
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It is straightforward to extend this scheme to three dimensions and to more than three
particles.

An atom is a composite system containing a postively-charged nucleus (particle #0)
and N electrons (particles #1 through #N). The atom is held together by internal forces.
Thus, it is most convenient to consider the atom in terms of center-of-mass and relative
coordinates. Simplifying to 1-D, the center of mass X gives the position of the “whole
atom,” which moves through space as a free particle. The relative coordinates x′1, . . . , x′N
of the various electrons with respect to the nucleus are internal degrees of freedom of the
atom. These are dynamically isolated from the center-of-mass motion and thus may be
considered separately from it.

Exercise 14.17 Consider the hydrogen atom, which consists of one proton and one electron.
By what percentage does the reduced mass μ of their relative position differ from the
electron’s mass? Repeat the same calculation for positronium (whose “nucleus” is a positron
having the same mass as the electron). Also repeat it for the relative position of an electron
and the nucleus of a gold atom.

These ideas provide an answer to a question that may have occurred to the reader back in
Chapter 1. In Problem 1.4 we described an experiment demonstrating interference effects
in a beam of C60 molecules, known as “buckyballs.” The wavelength we assumed for these
molecules was 3 pm. Yet this is hundreds of times smaller than the diameter of a buckyball,
which is about 1 nm!

No real paradox is involved, however. The wavelength is associated with the motion
of the molecule’s center of mass, which acts like a point particle moving freely through
space. The molecule’s diameter depends on all the relative positions of the constituent
carbon atoms. The center of mass and relative positions are completely independent and
non-interacting “subsystems” of the buckyball.5

14.3 Identical particles

According to proverb, no two snowflakes are identical. We may generalize the principle:
in fact, no two macroscopic objects of any sort are identical. This is because macroscopic
objects have vast numbers of microscopic degrees of freedom – the exact atom-by-atom
composition, the spatial arrangement of quadrillions of molecules, and so forth. The likeli-
hood that even two grains of sand on a beach have exactly the same internal configuration
is effectively zero. Thus, we could use the internal configuration of a sand grain as a sort
of label, a unique physical “serial number” that identifies that grain and no other.

5 The dynamical isolation of center of mass and relative position also helps to explain why the complicated
buckyballs in the experiment can be informationally isolated enough to exhibit interference effects. Even
though the carbon atoms have very strong interactions with each other, these interactions have nothing to do
with the location of the center of mass.
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Elementary quantum systems, however, are radically simpler than macroscopic objects.
All electrons have exactly the same charge, mass, and so forth. They behave exactly the
same way in all experiments. Therefore, if we exchange two electrons in a system, we
arrive at a physical situation that is exactly equivalent in every respect to the original one.
No experimental test, however refined, would allow us to distinguish one situation from
the other.

In other words, electrons are truly identical particles. They do not possess unique physical
“serial numbers” of any kind. Furthermore, the same is true of other types of particles such
as protons, neutrons, photons, etc. This fact has far-reaching implications for the quantum
mechanics of many-particle systems.

Suppose the state of a single particle is described by a state vector in the Hilbert space
H. We shall denote these one-particle states by |α〉, |β〉, and so on. According to our
previous work on composite systems, the state of two similar particles should be a vector
in the tensor product space H ⊗H. The state might either be a product state |α, β〉 or an
entangled state.

If the particles are identical, though, difficulties arise. Suppose the one-particle states
|α〉 and |β〉 are orthogonal (and thus distinguishable). Under the usual tensor product rule,
the two-particle system will have two distinguishable states |α, β〉 and |β, α〉. But for
truly identical particles, these state vectors should actually correspond to indistinguishable
physical situations.

The problem is thatH⊗H is too large to describe the states of a pair of identical particles.
For this reason, we take the physical Hilbert space for the pair to be a proper subspace of
H ⊗ H. But which subspace? To find the right one, we introduce the particle exchange
operator X, which acts on H⊗H. On product states, this has the effect

X |α, β〉 = |β, α〉 . (14.29)

The particle exchange operator has several key properties.

Exercise 14.18 Show that the particle exchange X is both unitary and Hermitian, that
X2 = 1, and that the only possible eigenvalues for X are ±1.

If the particles are really identical, then the energy of the system is always unchanged if we
exchange the particles. This means that X and the Hamiltonian H must commute:

Exercise 14.19 Suppose that, for all |ψ〉 in H⊗H, |ψ〉 and X |ψ〉 have exactly the same
expectation value for H. Show that [X, H] = 0. (You may wish to recall the useful facts
from Problem 3.7.)

Thus X is a dynamical symmetry of the two-particle system. Considered as an observable,
X is always exactly conserved.

We postulate that the physical Hilbert space for the two-particle system must be
an eigenspace of the exchange operator X. This is an attractive notion because this
exchange property (the eigenvalue of X) must remain constant over time. There are two
possibilities:
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• The eigenvalue may be +1, so that X |ψ〉 = + |ψ〉. We denote this Hilbert space by
H[2]
+ . In this case, we say that the particles are Bose–Einstein particles, or just bosons.

• The eigenvalue may be −1, so that X |ψ〉 = − |ψ〉. We denote this Hilbert space by
H[2]
− . In this case, we say that the particles are Fermi–Dirac particles, or just fermions.

In quantum theory, there are two possible ways that particles can be identical. Both ways
occur in nature. Electrons, protons, and neutrons are all fermions. Photons are bosons;
entire atoms like 4He can behave as bosons as well.

Suppose the particles are bosons. Then the physical Hilbert space H[2]
+ contains all

product states of the form |φ, φ〉, in which both particles are in the same one-particle state.
Given orthogonal one-particle states |α〉 and |β〉, neither |α, β〉 nor |β, α〉 is present, but
we do have the symmetric combination

1√
2

(
|α, β〉 + |β, α〉

)
. (14.30)

Now suppose the particles are fermions. The physical Hilbert space H[2]
− contains

antisymmetric combinations like

1√
2

(
|α, β〉 − |β, α〉

)
. (14.31)

However, H[2]
− contains no state of the form |φ, φ〉, in which the two particles are in the

same state. Hence, two identical fermions cannot be in the same quantum state. This is the
famous Pauli exclusion principle.

Exercise 14.20 For any one-particle state |φ〉 and any fermion state |�〉 in H[2]
− , show that

〈φ, φ |� 〉 = 0. Thus, the probability that a measurement finds two identical fermions in the
same state is always zero. (How is this statement of the Pauli exclusion principle different
from the one we just gave?)

Exercise 14.21 Prove that every state of two identical fermions is entangled.

Exercise 14.22 If dimH = d, find dimH[2]
+ and H[2]

− .

Boson and fermion states are said to be symmetric and antisymmetric under particle
exchange, respectively. What about systems of more than two identical particles? Again,
the physical Hilbert space is a subspace of the tensor product spaceH⊗N . Here the exchange
symmetries are more complicated, since every pair of particles has an exchange operator:
X12 exchanges particles #1 and #2, X23 exchanges #2 and #3, etc. Once again we postulate
that there are just two types of exchange symmetry. For a collection of N identical bosons,
the quantum state is an eigenstate of all of the exchange operators, with eigenvalue +1. This
specifies the completely symmetric subspace H[N]

+ . For a collection of identical fermions,
the quantum state is an eigenstate of all of the exchange operators, with eigenvalue −1.
The state resides in the completely antisymmetric subspace H[N]

− .

Exercise 14.23 Show that the Pauli exclusion principle must hold for any state of N
identical fermions. Hint: If particles #m and #n are in the same state, then Xmn |�〉 = − |�〉.
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To put it more generally, for a collection of N identical particles we have N ! permutation
operators P. Each permutation can be written as a product of the two-particle exchange
operators X12, etc. It turns out that permutations fall into two distinct types: even permu-
tations can only be written as products of an even number of pairwise exchanges, and odd
permutations are always products of an odd number of exchanges.

Exercise 14.24 Write down all six permutations of the three letters ABC. (Do not forget
the identity permutation ABC.) Which permutations are even and which are odd?

A system of bosons must be in an eigenstate of all of the particle permutation operators,
each of them having eigenvalue+1. That is, P |�〉 = |�〉 for any P. A system of fermions
is also in an eigenstate of all of the permutations, but its eigenvalues are +1 for the even
permutations and −1 for the odd. This may be written

P |�〉 = (−1)π(P) |�〉 , (14.32)

where π(P) is the parity of the permutation P, and equals 0 for even and 1 for odd.

But how do we find such symmetric and antisymmetric states? Suppose we choose a
basis { |a〉 , |b〉 , . . .} of one-particle states. Then we proceed as follows:

• Write down an N-particle product state |a, b, . . .〉. For symmetric states, the same one-
particle state may appear more than once; for antisymmetric states, all of the one-particle
basis states must be distinct.

• Write down all N ! permutations of the product state. (For the symmetric case with a
repeated basis state, some of these may be the same.)

• Construct a superposition of the permuted states. In the symmetric case, each term will
appear with a + sign. In the antisymmetric case, even permutation terms will appear
with a + sign and odd permutations will appear with a – sign.

• Normalize the resulting state.

Symbolically, we write

| S (a, b, . . .)〉 = N
∑
P

P |a, b, . . .〉 ,

|A (a, b, . . .)〉 = N
∑
P

(−1)π(P)P |a, b, . . .〉 . (14.33)

For the antisymmetric state |A (a, b, . . .)〉, all of the terms in the superposition are orthog-
onal to each other, so the normalization constant may be chosen to be 1/

√
N !. In the

symmetric case, the normalization may vary depending on whether any one-particle state
is repeated.

It remains to show that the symmetric and antisymmetric states we have constructed
satisfy the requirements of boson and fermion states. This is done in general in Problem 14.2.
Here, we consider a few examples.
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First, consider some antisymmetric states. For the one-particle states |a〉 and |b〉 for two
particles, our procedure yields

|A (a, b)〉 = 1√
2

(
|a, b〉 − |b, a〉

)
, (14.34)

which is a correct quantum state for two identical fermions, one in state |a〉 and one in
|b〉 (see Eq. 14.31). For three particles, we need three one-particle states |a〉, |b〉, and |c〉.
Then

|A (a, b, c)〉 = 1√
6

(
|a, b, c〉 − |b, a, c〉 + |b, c, a〉

− |c, b, a〉 + |c, a, b〉 − |a, c, b〉
)

. (14.35)

Exercise 14.25 Show that |A (a, b, c)〉 is an eigenstate of any pairwise exchange of par-
ticles with eigenvalue−1. That is, |A (a, b, c)〉 is a correct quantum state for three identical
fermions in the states |a〉, |b〉, and |c〉.
For the symmetric states | S (a, b)〉 and | S (a, b, c)〉, we obtain similar expressions in which
only + signs appear.

Exercise 14.26 Show that | S (a, b)〉 and | S (a, b, c)〉 are correct quantum states for two or
three identical bosons.

Exercise 14.27 Write down the state | S (a, a, b)〉 and show that it is a correct boson state.

From state vectors, we can derive wave functions. Suppose two identical particles move
in one dimension.6 The particle exchange operator affects the position basis states in
this way:

X |x1, x2〉 = ± |x2, x1〉 , (14.36)

with + for bosons and − for fermions. Thus, the wave function for the system will have
the property

�(x1, x2) = ±�(x2, x1). (14.37)

As before, we can construct symmetric and antisymmetric wave functions for systems of
two or more bosons or fermions. The fermion case is particularly interesting. Suppose
ψ1(x), ψ2(x), etc., are the one-particle wave functions for orthogonal states of a particle,
and our system consists of N identical fermions. Then an antisymmetric wave function can
be formally written as a matrix determinant:

�(x1, . . . , xN ) = 1√
N !

∣∣∣∣∣∣∣
ψ1(x1) · · · ψN (x1)

...
. . .

...
ψ1(xN ) · · · ψN (xN )

∣∣∣∣∣∣∣ . (14.38)

6 We are assuming for the moment that each particle is completely characterized by its position and has no other
degrees of freedom such as spin.
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This construction is called a Slater determinant. Exchange of two particles amounts to
exchanging two rows in the matrix, which multiplies the determinant by −1, consistent
with Eq. 14.37.

Exercise 14.28 Write a wave function for Eq. 14.35 as a Slater determinant.

14.4 Energy levels

Next we discuss the energy spectrum of a system composed of two or more non-interacting
particles. If the particles are identical, then their exchange symmetry will have important
effects on this spectrum.

Each particle has a Hamiltonian H. The stationary states (energy levels) are denoted by
|0〉, |1〉, . . . , with corresponding energies E0, E1, and so on. These energies may or may not
be degenerate. For simplicity, we here assume that the Hilbert space H for one particle has
finite dimension dimH = d; but many of our results also hold for an infinite-dimensional
Hilbert space.

Suppose now that we have two such particles. Because the particles are non-interacting,
the total Hamiltonian is H(1) + H(2). The particles are similar enough so that the two Hamil-
tonians are the same, but are otherwise distinguishable. The energy level states of the pair
can be taken to be products of the one-particle states: |0, 0〉, |0, 1〉, |1, 0〉, |1, 1〉, etc. The
energy of the |m, n〉 state is just Em,n = Em + En. Some of these levels are necessarily
degenerate; for instance, E4,2 = E2,4. Other “accidental” degeneracies might also occur, as
the following exercise shows:

Exercise 14.29 Consider two distinguishable similar particles. Each particle has three
energy levels with energies E1 = 1 eV, E2 = 2 eV, and E3 = 3 eV. Write down the nine
energy levels for the composite system, together with their energies. Draw an energy level
diagram for the system, showing all the degeneracies.

Exercise 14.30 In the previous exercise, suppose that the energy E2 is increased by a slight
amount, say 0.1 eV. Draw an energy level diagram to show how the various levels of the
composite system change. How have the degeneracies changed?

If the particles are identical, then the energy levels are not quite the same. Identical boson
energy levels are of the symmetric form | S (m, n)〉, while those of identical fermions are
the antisymmetric states |A (m, n)〉. Each of these will have the energy Em+En. However,
the energy level diagram for each situation will be different. The boson diagram will have
less degeneracy, since for m �= n there will be only one state, | S (m, n)〉 rather than two
degenerate states |m, n〉 and |n, m〉. The fermion diagram will have less degeneracy as
well; also, certain energies will be missing entirely, since there are no states of the form
|A (m, m)〉.
Exercise 14.31 Suppose a single particle has four energy levels with energies of 1 eV,
2 eV, 4 eV, and 7 eV. Draw side-by-side energy level diagrams for (a) two similar but
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distinguishable particles, (b) two identical bosons, and (c) two identical fermions. How
many energy level states are there in each case?

It is also straightforward to work out the energy levels for three or more particles.

Exercise 14.32 Given the same single-particle energy levels as the previous exercise, find
all the possible energy levels (and their degeneracies) for three identical fermions.

The effect of exchange symmetry on the energy level structure of a multiparticle system
can have far-reaching consequences. To get some inkling of this, consider the following
toy model.7 We imagine N particles of a type that has only two energy level states, which
we can label by energy: |0〉 and |ε〉. The N-particle system is in equilibrium with a
thermal reservoir at absolute temperature T . Thus, by Eq. 8.70, the density operator for the
system is

ρ =
∑

s

e−Es/kT

Z |s〉〈s| , (14.39)

where k is Boltzmann’s constant, the |s〉 states are the stationary states of the system, and
Z =

∑
s

e−Es/kT . We wish to calculate the probability P0 that the entire system will be

found in its ground state – that is, that all N particles would be found in the state |0〉. This
will be

P0 = Tr ρ |0 · · · 0〉〈0 · · · 0| = 1
Z . (14.40)

The energy Es = nε, where n is the number of excited particles in the state |s〉. If the
particles are distinguishable, the binomial coefficient

(N
n
)

gives the number of orthogonal
energy eigenstates with this energy. This yields

Z =
N∑

n=0

(
N
n

)
e−nε/kT =

(
1+ e−ε/kT

)N
. (14.41)

The probability that all particles are found in the ground state is thus

P0 =
(

1+ e−ε/kT
)−N

. (14.42)

In a macroscopic system, the number of particles N is extremely large. If we take N →∞,
then we find that P0 → 0. The likelihood that all of the N particles will be found in the
ground state is negligible.

7 Toy model is a term for an example that is far too simplified to be useful for calculating real-world effects, but
nevertheless does illustrate some feature of the basic physics of a situation.
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On the other hand, suppose that the particles are bosons. Then the energy level states are
symmetric states:

|φ0〉 = | S (0, 0, . . . , 0)〉 ,

|φ1〉 = | S (ε, 0, . . . , 0)〉 ,
...

|φN 〉 = | S (ε, . . . , ε)〉 . (14.43)

For any n between 0 and N , there is only one symmetric state |φn〉 with energy nε. The
spectrum of the N boson system has no degeneracy at all. Thus, we find that

Z =
N∑

n=0

e−nε/kT = 1− e−(N+1)ε/kT

1− e−ε/kT , (14.44)

and so

P0 = 1− e−ε/kT

1− e−(N+1)ε/kT . (14.45)

In the macroscopic limit N →∞, we find that P0 → 1−e−ε/kT , which is not zero. Indeed,
for kT � ε, this might be close to unity, and it would be quite likely to find all N identical
bosons in exactly the same quantum state.

Although our model is too simplified to be taken very seriously, it does suggest the real
phenomenon of Bose condensation, which can occur in systems of identical bosons at low
temperatures. In Bose condensation, a macroscopically significant number of the particles
are in fact in the same quantum state. The exchange symmetry of the particles can have a
drastic effect on the system’s low-temperature behavior.

Exercise 14.33 Why did we not consider a system of N two-state fermions?

14.5 Exchange effects

Suppose we have two particles (#1 and #2) moving in one dimension. Two particles
occupy orthogonal quantum states |a〉 and |b〉 with wave functions ψa(x) and ψb(x).
We will consider three possible states of the composite system: the product state |a, b〉
(appropriate for distinguishable particles) and the symmetric and antisymmetric states
| S (a, b)〉 and |A (a, b)〉.

The particles have position observables x1 and x2, and the joint wave function �(x1, x2)

yields a joint probability distribution over the particle positions.

Exercise 14.34 Evaluate the probability density P(x, x) where the two positions are equal
for (a) the product state, (b) the symmetric state, and (c) the antisymmetric state. Summarize
your results as a qualitative statement about the likelihood of finding the particles close
together in the three cases.
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As this exercise suggests, the symmetry or antisymmetry of the two-particle state influences
how probable it is to find the particles near to one another.

Let us approach this question in a slightly different way. Let s = x2 − x1 be the relative
position of the two particles. We wish to consider s2, the particles’ squared separation.
This is

s2 = x2
1 + x2

2 − 2x1x2. (14.46)

The expectation
〈
s2〉 ≥ 0. The larger the value of

〈
s2〉, the more widely separated we expect

to find the two particles. For the simple product state,〈
s2
〉
= 〈a, b| s2 |a, b〉

=
〈
x2
〉
a
+
〈
x2
〉
b
− 2 〈x〉a 〈x〉b , (14.47)

where 〈· · ·〉a and 〈· · ·〉b denote single-particle expectations for states |a〉 and |b〉,
respectively.

Exercise 14.35 Fill in the derivation of Eq. 14.47. Note that the single-particle expectations
do not depend on which particle we are talking about, but only on its state. Thus 〈x1〉a =
〈x2〉a = 〈x〉a and so on.

We designate this expectation
〈
s2〉

dist
, where “dist” stands for “distinguishable.”

How are things different if the particles are in a symmetric or an antisymmetric state?
These two states will differ only by a sign; thus, we will combine our calculations to
find

〈
s2〉

±: 〈
s2
〉
± =

1
2

(
〈a, b| ± 〈b, a|

)
s2
(
|a, b〉 ± |b, a〉

)
. (14.48)

When we substitute Eq. 14.46 and evaluate this expectation, we obtain all of the terms we
had before plus a few more. Some of the additional terms are zero. For instance,

〈a, b| x2
1 |b, a〉 = 〈a| x2 |b〉 〈b |a 〉 = 0. (14.49)

Other terms are not necessarily zero,

〈a, b| x1x2 |b, a〉 = 〈a| x |b〉 〈b| x |a〉 = |xab|2 , (14.50)

where xab = 〈a| x |b〉, the off-diagonal matrix element for the single particle operator x.
Putting everything together, we find〈

s2
〉
± =

〈
s2
〉

dist
∓ |xab|2 . (14.51)

Exercise 14.36 Explain why the ± gets “inverted” to ∓ in Eq. 14.51.

Thus, |xab|2 determines how large an effect the exchange symmetry of the two-particle
state has on the separation of the particles. Particles in a symmetric state tend to be closer
together, while those in an antisymmetric state tend to be farther apart. This tendency is
sometimes called an exchange force, since the particles behave as if they were subject to a
peculiar attraction (symmetric) or repulsion (antisymmetric), depending on their exchange
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properties. But no force is present, for the effect has nothing to do with dynamics. It is
simply a consequence of the structure of the symmetric and antisymmetric two-particle
Hilbert spaces H[2]

± .
In terms of the wave functions ψa and ψb for the two states, the matrix element xab is

xab =
∫ ∞

−∞
x ψ∗

a (x) ψb(x) dx. (14.52)

This has an interesting physical consequence. Suppose that ψa and ψb have little or no
overlap – that is, the wave functions are significantly different from zero only in disjoint
regions of space. (We might imagine two well-separated wave packets, for instance.) In
this case the matrix element xab is zero, and there are no exchange effects in

〈
s2〉. Exchange

effects can only be important when the wave functions overlap significantly.
The “exchange force” is not a real force, but it can have an indirect effect on the energy

of the system if the particles are interacting in some way. Suppose the Hamiltonian of
the system includes an interaction potential term Uint(x1, x2). If the particles repel one
another, for example, then Uint is greater when the particles are closer together. Thus, we
expect that 〈Uint〉 would be larger for a symmetric two-particle state and smaller for an
antisymmetric one.

Exercise 14.37 For two particles moving in 3-D, we define the squared separation operator
to be

s2 = (x2 − x1)
2 + (y2 − y1)

2 + (z2 − z1)
2 . (14.53)

Derive a version of Eq. 14.51 for symmetric and antisymmetric states of two particles
in 3-D.

We have been careful so far in this section to refer to “symmetric” and “antisymmetric”
spatial wave functions, without mentioning “bosons” and “fermions.” The reason is that
real particles are often characterized by more than just their position degree of freedom.
They may also have spin.

Consider electrons, which are spin-1/2 fermions. As we mentioned in Section 6.3, the
Hilbert space for a single electron can be written

H = Hspace ⊗Qspin. (Re 6.28)

Any quantum state of a pair of electrons is an antisymmetric state in the Hilbert space8(
H(1)

space ⊗H(2)
space

)⊗ (
Q(1)

spin ⊗Q(2)
spin

)
. (14.54)

Suppose that the two-electron state is a product of spatial and spin degrees of freedom:∣∣� (12)
〉 = ∣∣ψ (12)

space

〉⊗ ∣∣χ (12)
spin

〉
. (14.55)

8 For convenience, we have rearranged and grouped the terms in this tensor product. This has no effect on the
structure of the Hilbert space.
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Then the electrons have both a spatial wave function (in 1-D) ψ(x1, x2) =
〈
x1, x2

∣∣ψ (12)
space

〉
and a spin state

∣∣χ (12)
spin

〉
. The electron exchange operator X exchanges both the spatial and

spin degrees of freedom. That is,

X = Xspace ⊗ Xspin. (14.56)

We know that X |� (12)〉 = − |� (12)〉. This can happen in two ways:

• The spin state
∣∣χ (12)

spin

〉
is antisymmetric under Xspin, but the spatial wave function ψ(x1, x2)

is symmetric.
• The spin state

∣∣χ (12)
spin

〉
is symmetric under Xspin, but the spatial wave function ψ(x1, x2) is

antisymmetric.

The spatial wave function of a pair of electrons can be either symmetric or antisymmet-
ric, depending on the spin state. The spin state symmetry is related to the total angular
momentum:

Exercise 14.38 Review Section 12.4 on the addition of spins. Show that:

(a) Xspin

∣∣χ (12)
spin

〉 = − ∣∣χ (12)
spin

〉
if and only if the pair of spins is in a spin-0 (“singlet”) state.

(b) Xspin

∣∣χ (12)
spin

〉 = + ∣∣χ (12)
spin

〉
if and only if the pair of spins is in a spin-1 (“triplet”) state.

If an electron pair has total spin 0, we may say informally that the electrons have “opposite”
spins. In this case, their spatial wave function is symmetric – and indeed, the two electrons
might be in the same spatial state. If the spins are not opposite, so that the total spin is 1,
then the spatial wave function must be antisymmetric. The exchange effect in Eq. 14.51 is
thus spin-dependent.

Finally, notice that nothing in our derivation of Eq. 14.51 relied on the fact that x1 and
x2 were position observables. Particles tend to be “clumped together” in a symmetric state
and “spread apart” in an antisymmetric state, regardless of the variable we are considering.

Exercise 14.39 For a pair of spin-1/2 systems, consider three states: |↑↓〉, the symmetric

(spin 1) combination
1√
2
( |↑↓〉 + |↓↑〉), and the antisymmetric (spin 0) combination

1√
2
( |↑↓〉− |↓↑〉). We are interested how far apart the x-components of the spins are likely

to be. Use Eq. 14.51 to find
〈
(S(1)

x − S(2)
x )2〉 for each state.

14.6 Occupation numbers

Consider a composite quantum system composed of two subsystems, each described by the
Hilbert space H. According to Section 6.1, the joint system must be described by the tensor
product space H⊗H. As we have seen in this chapter, however, this rule does not hold for
a pair of identical particles. The states of such a pair are restricted to lie in the symmetric
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or antisymmetric subspace H[2]
± of H⊗H. The unrestricted tensor product rule is thus not

valid for systems containing identical particles.
In this section, we sketch a very different point of view. We will argue that the symmetric

and antisymmetric states introduced so far, though useful for calculations, disguise a more
fundamental point. The unrestricted tensor product rule is in fact always valid in quantum
mechanics, even for systems containing identical particles. The essential difficulty is that
particles are not subsystems.

First, we introduce the idea of the direct sum of two or more Hilbert spaces. Given H1
and H2, then the direct sum H1⊕H2 is the smallest Hilbert space in which H1 and H2 are
orthogonal subspaces.9 Any vector in the direct sum can be written

|ψ〉 = |ψ1〉 + |ψ2〉 , (14.57)

for |ψ1〉 in H1 and |ψ2〉 in H2.

Exercise 14.40 (a) Carefully explain the mathematical difference between H1 ⊗H2 and
H1 ⊕ H2. (b) How are these different as Hilbert spaces of quantum systems? (c) If
dimH1 = d1 and dimH1 = d2, find the dimension of each larger space.

The direct sum Hilbert space has a basis { |j1〉 , |k2〉}, including all the elements of the { |j1〉}
basis for H1 and the { |k2〉} basis for H2.

Now consider a system of identical fermions, each described by the space H with
dimension d. For n such fermions, we have described the system by the antisymmetric
subspace H[n]

− of H⊗n. We can also consider the possibility that there are no fermions at
all, in which case there can only be a single possible physical state, the vacuum state |vac〉.
We summarize all this in the following table:

0 particles H[0]
− , which has dimH[0]

− = 1
1 particle H[1]

− = H
2 particles H[2]

− , a subspace of H⊗H
3 particles H[3]

− , a subspace of H⊗H⊗H

and so on. Since dimH = d, we can have no more than d identical fermions and still respect
the Pauli exclusion principle. The Hilbert space that encompasses all of these possibilities –
and also superpositions of them (i.e. states of indeterminate particle number) – would be
the direct sum

H[0]
− ⊕H[1]

− ⊕H[2]
− ⊕ · · · ⊕H[d]

− =
d⊕

n=0

H[n]
− . (14.58)

The various subspaces H[n]
− are the eigenspaces of a “total particle number” observable N

with eigenvalues n.

Exercise 14.41 Work out the dimension of this Hilbert space if d = dimH has the values
2, 3, or 4. Conjecture a general formula for arbitrary d. (See Problem 14.5.)

9 In the language of Problem 3.2, H1 = (H2)⊥ in this larger space.
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Given a basis { |k〉} of one-particle states in H, we can write down a basis for the
whole space:

{ |vac〉 , |k〉 , |A (j, k)〉 , |A (j, k, l)〉 , . . .}. (14.59)

We can label these basis states in another way. The basis state |A (j, k, . . .)〉 is identified
by specifying which states j, k, . . . have a particle in them; from this we can construct
the appropriate antisymmetric combination of product states. Thus, we could equally well
specify the state simply by listing all of the single particle basis states and specifying how
many particles (0 or 1) are present in them. This idea is the kernel of the occupation number
representation for a system of fermions. It works like this:

• Find a basis { |k〉} for one-particle states of the system.
• For each k, introduce a qubit system Q(k). The operator n(k) = ∣∣1(k)

〉〈
1(k)

∣∣ is the occupation
number observable for the state k. It has eigenvalues 0 (no particle in state k) and 1 (one
particle in state k).

• The Hilbert space for the entire system is the tensor product H =
⊗

k
Q(k).

In other words, the d one-particle basis states have become d independent subsystems,
each one a qubit that stores the information about whether or not the state is occupied. The
correspondence between our previous antisymmetric basis states and the new occupation
number states is

|A (j, k, . . .)〉 ↔ ∣∣0(1), . . . , 1(j), . . . , 1(k), . . . , 0(d)
〉
. (14.60)

Exercise 14.42 Explain why this is a one-to-one correspondence – that is, why there is
exactly one occupation number basis state for each antisymmetric basis state, and vice
versa.

Arbitrary superpositions of these basis states are also possible.
The total particle number operator is N =

∑
k

n(k). If we know that we have a given

number N of particles, then the system’s state is restricted to the eigenspace of N with
eigenvalue N . This subspace is the same as the antisymmetric space H[N]

− . If total particle
number N is conserved (as often happens), then we may be able simply to restrict our
attention to one such subspace. But the occupation number approach is also applicable to
situations in which particles are created or destroyed.

For identical bosons, things work out in a similar way, with the following difference. The
number of particles occupying a given one-particle state can be 0, 1, 2, . . . The independent
subsystems assigned to the one-particle states will not be qubits, but the ladder systems of
Chapter 13. The procedure is thus:

• Find a basis { |k〉} for one-particle states of the system.
• For each k, introduce a ladder system J (k). The operator nk = ak

†ak is the occupation
number observable for the state k. It has eigenvalues 0 (no particle in state k) and 1 (one
particle in state k).

• The Hilbert space for the entire system is the tensor product
⊗

k
J (k).
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Again, there is a correspondence between symmetric basis states and the new occupation
number states. Any given | S (j, k, . . .)〉 can be uniquely identified by how many particles
are in each basis state.

To see these ideas in action, recall the two-beam interferometer of Section 2.1. Photons
are identical bosons. The one-photon basis states |u〉 and |l〉 (for the photon in the upper
or lower beams, respectively) are now identified with two distinct ladder systems. The
occupation number state |m, n〉 describes a situation in which there are m photons in the
upper beam and n photons in the lower beam. So far, we have considered the states
|u〉 = |1, 0〉 and |l〉 = |0, 1〉 – and, in Section 4.3, the “no photon” state |0〉 = |0, 0〉.
Now we can describe states containing two, three or more photons.

Each mode has its own photon annihilation and creation operators. We denote these by
a and a† for the upper beam and b and b† for the lower beam. Then

a |m, n〉 =√m |m− 1, n〉 , a† |m, n〉 = √
m+ 1 |m+ 1, n〉 ,

b |m, n〉 =√n |m, n− 1〉 , b† |m, n〉 = √
n+ 1 |m, n+ 1〉 . (14.61)

Exercise 14.43 Write down all of the commutation relations between the operators a, a†,
b, and b†.

The total photon number operator is N = a†a+ b†b, the sum of the number operators for
the two modes.

Exercise 14.44 Show that N |m, n〉 = (m+ n) |m, n〉.

Photon number states can be constructed from the vacuum state by the application of photon
creation operators:

|m, n〉 = 1√
m! n!

(
a†
)m (

b†
)n |0, 0〉 . (14.62)

Any quantum state of the interferometer system is a superposition of these basis states. Thus,
any quantum state of the system can be written in the form |state〉 = (operator) |vacuum〉.

If the system evolves according to the unitary operator U, then the photon number state
|m, n〉 evolves to

U |m, n〉 = 1√
m! n! U

(
a†
)m (

b†
)n |0, 0〉

= 1√
m! n!

(
Ua†U†

)m (
Ub†U†

)n
U |0, 0〉 . (14.63)

Exercise 14.45 Where did all these extra U and U† operators come from?

Thus, in order to specify how U acts on the basis state |m, n〉, we need to specify:

• U |0, 0〉, the effect of U on the vacuum state, and
• Ua†U† and Ub†U†, the effect of U on the two photon creation operators.
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Recall that the interferometer contains only linear optical devices. The unitary U describing
such a device has the following properties. First, the vacuum state is unaffected by the
device, so that U |0, 0〉 = |0, 0〉. (This makes sense because the devices do not emit
photons.) The second property is that U transforms each photon creation operator into a
linear combination of both creation operators. That is,

Ua†U† = w a† + x b†,

Ub†U† = y a† + z b†, (14.64)

where w, x, y, and z are complex scalars. Formally, we may write this as

U
(

a†

b†

)
U† =

(
w x
y z

)(
a†

b†

)
. (14.65)

We can relate this to the analysis in Section 2.1 by considering how U affects single-photon
states. We find that

U |1, 0〉 = Ua†U†U |0, 0〉
= (wa† + xb†) |0, 0〉 = w |1, 0〉 + x |0, 1〉 . (14.66)

In a similar way, U |0, 1〉 = y |1, 0〉 + z |0, 1〉.
Exercise 14.46 Suppose that the initial state of the interferometer is |ψ〉 = α |1, 0〉 +
β |0, 1〉, which evolves into U |ψ〉 = α′ |1, 0〉 + β ′ |0, 1〉. Show that(

α

β

)
−→

(
α′
β ′

)
=
(

w y
x z

)(
α

β

)
. (Re 2.7)

Notice that we have met this exact equation before in our analysis of the single-photon
interferometer!

Exercise 14.47 Show that unitarity of U implies that
(

w x
y z

)
is a unitary matrix.

When we apply these ideas to multiphoton states, we arrive at some fascinating results.
Suppose our linear device is a balanced beam-splitter Bl, described by the coefficient matrix
in Eq. 2.10. If we send in an input state |1, 1〉, what output state emerges?

Exercise 14.48 Show that

Bl |1, 1〉 = 1√
2

(
|2, 0〉 − |0, 2〉

)
. (14.67)

In other words, if one photon goes into the beamsplitter along each beam, then the output
photons will always emerge together.10

Further developments are found in the problems at the end of this chapter.
Consider a system of two electrons, designated #1 and #2. If we describe its state

by an antisymmetric state vector, we are faced with a conceptual puzzle. No product
state is antisymmetric; thus, it appears that every physical state of the electron pair must

10 This example is the simplest instance of an observable quantum effect that is called photon bunching.
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be entangled. Since any electron anywhere can be considered one member of a pair of
electrons, it appears that no electron could ever be found in a pure state.

Yet such a conclusion seems incorrect. If a single electron resides in a lab in Cambridge,
surely it may be prepared in a pure state. The mere existence of a second electron in a
distant lab – in Pasadena, say – should have no effect on this fact. Where does our argument
go wrong?

To resolve this puzzle, let us first consider the Hilbert space of a single electron that
might be in either Cambridge or Pasadena. This electron’s state lies in a direct sum Hilbert
space H(1)

Cam ⊕ H(1)
Pas. This has a basis { |kCam〉 , |nPas〉} that includes all the elements of the

{ |kCam〉} basis for H(1)
Cam and the { |nPas〉} basis for H(1)

Pas.
Now consider any number of electrons. In the occupation number representation, we

identify one-particle basis states with distinct subsystems, each described by a qubit Hilbert
space Q. The overall Hilbert space for any number of electrons in either Cambridge or
Pasadena would then be

H =
⎛⎝⊗

kCam

QkCam

⎞⎠⊗
(⊗

nPas

QnPas

)
= HCam ⊗HPas. (14.68)

In the occupation number representation, therefore, the two laboratories are the distinct
subsystems, described by HCam and HPas. The single-electron subspaces mentioned above
may be regarded as N = 1 subspaces of these two.

Exercise 14.49 Explain how H(1)
Cam can be regarded as a subspace of HCam. To do this,

write each of the basis vectors { |kCam〉} for H(1)
Cam in the appropriate occupation number

representation.

A situation with one electron in each laboratory can therefore be described as an element
of the tensor product space H(1)

Cam ⊗H(1)
Pas. Product states are perfectly possible.

In other words, we have “permission” to think of two identical particles as distinct
subsystems, provided that there is some physical observable (location, for instance) that
can be used as an effective label. We choose a single-particle basis to be compatible with
this label observable. In the occupation number representation, the different label values
then correspond to distinct subsystems, with a tensor product Hilbert space.

Let us return to our original puzzle, in which identical electrons #1 and #2 are represented
by an antisymmetric state. It is true that every antisymmetric state of the two electrons must
be entangled; but this does not mean that any correlations are observable. The subsystem
labels #1 and #2 do not correspond to any physical difference between the particles, and
so we cannot construct measuring devices that observe them individually. No “correlation”
between #1 and #2 is directly observable.

But the labs in Cambridge and Pasadena can examine their electrons individually. This
fact is more clearly expressed in the occupation number representation, which is mathemat-
ically equivalent to the antisymmetric state approach. In this representation, measurement
results in the two labs may or may not be correlated, depending on the quantum state.

Exercise 14.50 Are exchange effects (as described in Section 14.5) observable for the
electrons in Cambridge and Pasadena?
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Exercise 14.51 We have framed our discussion for identical fermions in the two
laboratories. What, if anything, would work out differently if the particles were bosons?

Problems

Problem 14.1 From the Hamiltonian in Equation 14.8, derive a two-particle version of
Ehrenfest’s theorem:

d
dt
〈x1〉 = 〈p1〉

μ1
,

d
dt
〈x2〉 = 〈p2〉

μ2
,

d
dt
〈p1〉 =

〈
− ∂U

∂x1

〉
,

d
dt
〈p2〉 =

〈
− ∂U

∂x2

〉
.

(14.69)

(See Eq. 11.9 and 11.11.)

Problem 14.2

(a) Suppose {P} is the set of all possible permutations of N particles. Suppose we multiply
each permutation by the particle exchange Xmn. Show that the resulting set {XmnP} is
still the set of all possible permutations of the N particles.

(b) Show that the symmetric and antisymmetric states defined in Eq. 14.33 satisfy the
postulates for boson and fermion states of N particles.

Problem 14.3 Two non-interacting particles move in the 1-D box of length L described
in Section 11.4. The particles are in the n = 1 and n = 2 stationary states. Calculate the
expected square separation

〈
s2〉 of the two particles if they are in (a) a product state, (b) a

symmetric state, and (c) an antisymmetric state. Your answers should all be of the form
c L2, where c is a numerical factor.

Problem 14.4 Show that

HA ⊗ (HB ⊕HC) = (HA ⊗HB)⊕ (HA ⊗HC) . (14.70)

That is, tensor products distribute over direct sums of Hilbert spaces. (Mathematicians may
wish to ponder what the “=” sign means!)

Problem 14.5 Suppose the one-fermion Hilbert space has dimension dimH = d and we
have n identical fermions.

(a) Show that dimH[n]
− =

(
d
n

)
, the binomial coefficient.

(b) Show that dim

( d⊕
n=0

H[n]
−

)
= 2d . How does this fact relate to the occupation number

representation for the system?

Problem 14.6 Consider a system of identical bosons. The one-particle Hilbert space has
dimH = 3, with basis states |a〉, |b〉, and |c〉. The occupation number basis states can be
written |na, nb, nc〉. Write down the symmetric basis state forms of the occupation number
basis states |1, 0, 0〉, |2, 0, 0〉, |1, 0, 1〉, |1, 1, 1〉, and |2, 1, 0〉. What about |0, 0, 0〉?
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Problem 14.7 Consider a two-beam interferometer for fermions. The ladder operators
for the qubit Hilbert space Q are a = |0〉〈1| and a† = |1〉〈0| . A linear element of an
interferometer alters these operators just as in Eq. 14.64. Suppose the two-fermion state
|1, 1〉 is acted upon by a balanced fermion beamsplitter. What happens?

Problem 14.8 Quasi-classical light. Photon number eigenstates are quite difficult to pro-
duce in the laboratory. The light produced by a laser is actually in a coherent state |z〉
of that beam. Suppose a two-beam interferometer has an input state |zu, zl〉, a product of
two coherent beam states. Show that any linear optical element will yield an output state
that is also a product of two coherent beam states. Show also that the complex coherent
state parameters z can exhibit constructive and destructive interference in an interferometer.
(Hint: Represent the coherent states using Eq. 13.46.)



15 Stationary states in 1-D

15.1 Wave functions and potentials

In this chapter we will continue our discussion of the dynamics of a particle of mass μ

moving in one dimension, which we began back in Chapters 10 and 11. Our focus here will
be on the stationary states (energy eigenstates) and associated energies of such a particle.
As we have seen, a knowledge of the stationary states and their energies is enough to
determine the time evolution of an arbitrary, non-stationary state as well.

We have already studied stationary states of 1-D particles in some important special
cases:

• In Chapter 11 we found the energy eigenstates for free particles. These are “plane waves”
with any E ≥ 0 for a particle that moves along an unbounded line. When there are special
boundary conditions, the situation may change. For example, if the particle is constrained
to move between impenetrable walls separated by a distance L, only discrete energies
are possible

E(box)
n =

(
π2�2

2μL2

)
n2, (15.1)

for n = 1, 2, . . . (see Eq. 11.62).
• In Chapter 13 we saw that a particle moving in a harmonic oscillator potential U(x) =

μω2x2/2 has an infinite ladder of stationary states, with

E(osc)
n =

(
n+ 1

2

)
�ω, (15.2)

for n = 0, 1, 2, . . . (see Eq. 13.23).

These two special examples are well worth keeping in mind.
The purpose of this chapter will be to study the energies and stationary states of more

general 1-D systems. Each of the examples just given involves particles that are spatially
“trapped” (by impenetrable walls or the harmonic oscillator force) and have a discrete
energy spectrum. As we will see, other types of energy eigenstate are possible in the more
general case.

The energy eigenvalue equation for a particle moving in one dimension is

H |ψ〉 =
(

1
2μ

p2 + U(x)
)
|ψ〉 = E |ψ〉 . (15.3)
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As we have seen, this may be written in terms of the wave function ψ(x) for the energy
eigenstate |ψ〉 as follows:

− �2

2μ

d2

dx2 ψ(x)+ U(x) ψ(x) = Eψ(x). (Re 11.17)

Thus ψ(x) satisfies

ψ ′′(x) = −2μ

�2 (E − U(x)) ψ(x). (15.4)

Typically, we know the potential U(x) and wish to find the various possible eigenvalues of
the energy E together with the corresponding wave functions ψ(x).

In Section 10.1, we required the wave function ψ(x) to be continuous. For energy
eigenstates, Eq. 15.4 gives us some additional restrictions. For instance, if the potential
function U(x) is everywhere continuous, then the second derivative ψ ′′(x) must also exist
and be continuous for all x. This obviously implies that the first derivative ψ ′(x) also exists
and is continuous.

What if the potential U(x) is not continuous? Then we note that, for a reference point x0,

ψ ′(x) = ψ ′(x0)− 2μ

�2

∫ x

x0

(
E − U(x′)

)
ψ(x′) dx′. (15.5)

The potential U(x) might be discontinuous at some value of x but still bounded – for
instance, there might be a “step” discontinuity in U(x) there. In this case, the integral
expression above will still be continuous at x. We draw the following general conclusions
about the wave function ψ(x) for an energy eigenstate:

• ψ(x) is continuous for all x.
• If the potential U(x) is bounded in a region, then the wave function has a continuous

derivative ψ ′(x) in that region.
• If the potential is continuous in a region, then the second derivative ψ ′′(x) of the wave

function must also be continuous.

If the potential has a vertical asymptote or actually “becomes infinite” at some point x, then
the derivative ψ ′(x) may be discontinuous there.

Exercise 15.1 Suppose U(x) = −ε δ(x), which is singular at x = 0. For an energy
eigenstate find the difference between

lim
x→0−

ψ ′(x) and lim
x→0+

ψ ′(x),

in terms of ε, �, μ, and ψ(0).

Except for idealized limiting cases like this one, we will suppose that the potential U(x) is
finite everywhere.

Equation 15.4 is a second-order ordinary differential equation. For a given E, we can
uniquely determine a particular solution to this equation by choosing a point x0 and spe-
cifying the values of ψ(x0) and ψ ′(x0) there. This has an interesting consequence. Can we
ever have a stationary state wave function with both ψ(x0) = 0 and ψ ′(x0) = 0 at some
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point? No, because these data uniquely specify the mathematical solution ψ(x) = 0 to
Eq. 15.4, which is not a physical wave function.

What energies E are possible for a given potential function? Let us suppose that the
potential is bounded below, so that U(x) ≥ Umin. Then for any state |ψ〉, the expectation
value of the energy is

〈E〉 = 〈ψ |H |ψ〉
= 1

2μ
〈ψ | p2 |ψ〉 + 〈ψ |U(x) |ψ〉 . (15.6)

The “kinetic energy” term
1

2μ
〈ψ | p2 |ψ〉 ≥ 0. That means that

〈E〉 ≥ 〈ψ |U(x) |ψ〉 =
∫ +∞

−∞
ψ∗(x)U(x)ψ(x) dx

=
∫ +∞

−∞
P(x)U(x) dx, (15.7)

whereP(x) = |ψ(x)|2, the probability density over the position x. Let Umin be the minimum
value of the potential function. Since U(x) ≥ Umin, the expectation 〈E〉 must satisfy

〈E〉 ≥ Umin. (15.8)

If the state |ψ〉 is a stationary state, then its energy E ≥ Umin. Thus, Umin is a lower bound
for the spectrum of possible energy values of the system.

Exercise 15.2 Show that this result also holds for a classical particle moving in one
dimension.

Solutions or states?

Yet there is a difficulty here. Look back at Eq. 15.4. This is a second-order linear ordinary
differential equation. We can find a mathematical solution ψ(x) for this equation for any
value E of the energy, including values for which E < Umin. How does this square with
our conclusion that E ≥ Umin?

Consider once again a free particle, for which U(x) = 0 everywhere. We found that the
stationary states of a free particle are momentum eigenstates |p〉. For these,

H |p〉 = p2

2μ
|p〉 , (15.9)

so that E = p2

2μ
≥ 0.

The wave function for a |p〉 state is ψ(x) = (2π�)−1/2 eipx/�, a plane wave. This wave
function is not properly normalized, however, reflecting the fact that |p〉 is not a proper
physical state in the Hilbert space H.

Nevertheless, there are physical states represented by wave packets φ(x)eipx/� (as
described in Section 10.3) that are approximate momentum and energy eigenstates.
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Exercise 15.3 For a free particle wave packet φ(x)eipx/� with a real envelope function
φ(x), show that:

(a) 〈p〉 = p.

(b) 〈E〉 = p2

2μ
+

〈

p2〉
2μ

.

(c) If the wave packet is Gaussian with variance σ 2, as in Eq. 10.64, that 
p → 0 and

E → 0 as σ 2 →∞.

For a very wide, flat envelope function φ(x), the wave function closely resembles a plane
wave over a wide region, and Exercise 15.3 shows that this leads to a physical state that has
almost definite values for momentum and energy. Even though the improper eigenstates
|p〉 are not physical states, we can use them as a convenient shorthand for these very wide
wave packet states.1

Now suppose we try to construct a state with negative energy. The solutions to Eq. 15.4
with E < 0 are of the form ebx and e−bx, where b is a real parameter such that b2 =
−2μE/�2. Like the plane wave solutions, these exponential functions cannot be normalized,
and so they cannot represent physical states. On the other hand, inspired by the wave packet
analysis above, we might introduce an envelope function φ(x). Does this lead us to an
approximate eigenstate with negative energy?

In fact, it does not. The function φ(x)e±bx is a normalized wave function, so that
Eq. 15.8 applies; thus 〈E〉 ≥ 0 no matter how wide and flat the envelope function might
be. Therefore, the negative-energy exponential solutions e±bx cannot represent a limit of
physically meaningful quantum states.

To sum up, solutions to the differential equation in Eq. 15.4 come in three varieties:

• Some solutions represent normalized energy eigenstates.
• Some solutions, like the plane wave solutions for a free particle, are not normalizable,

but can be approximated by normalized wave functions.
• Some solutions, like the negative energy exponential solutions for the free particle, can

be neither normalized nor approximated by normalized wave functions.

In either of the first two cases, we accept the solution together with its corresponding energy
value E as a physically meaningful situation. These are our “stationary states.” Solutions
of the third type have no physical meaning, and must be discarded even as idealized
descriptions of a physical state.

The interaction zone

Suppose a particle moves in one dimension and interacts with its surroundings. The particle
remains informationally isolated, so that no “record” is created in the environment of the

1 This is much like we use Dirac’s delta function – as a notational shortcut that stands for a sophisticated limiting
argument.
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Fig. 15.1 The potential U(x) is constant on each side of a bounded interaction zone.

particle’s position. However, the interaction does determine the potential function U(x)
and the consequent forces experienced by the particle.

For the next few sections (through Section 15.5), we will consider the situation in which
these forces are localized in space. We will assume that the potential U(x) is constant
everywhere except within a region called the interaction zone lying between xL and xR.
This is shown in Fig. 15.1. To the left of the interaction zone (for x < xL) the potential
U(x) = UL, and to the right of it (for x > xR) the potential U(x) = UR. The constants UL

and UR may be, but need not be, equal.

Exercise 15.4 Does the free particle fall into this general type of problem? How about the
1-D harmonic oscillator?

In any region where U(x) = U0 (a constant), the mathematical solutions to Eq. 15.4 fall
into two categories:

• If E > U0, then the general solution is of the form

ψ(x) = Aeikx + Be−ikx, (15.10)

where k =
√

(2μ/�2)(E − U0). That is, the general solution is a superposition of
rightward and leftward moving plane waves.

• If E < U0, then the general solution is of the form

ψ(x) = Aebx + Be−bx, (15.11)

where b =
√

(2μ/�2)(U0 − E). This is a superposition of increasing and decreasing
exponential functions.

(The special case E = U0 can be viewed as a limit of either of these.) One or the other of
these situations must obtain in the regions outside the interaction zone.

What sort of stationary states are possible for this type of localized potential? There are
three distinct cases, depending on the energy E. This energy might be larger than both UL

and UR, it might be less than both, or it might be larger than one and less than the other (see
Fig. 15.2). These three cases lead to three different types of state.
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Fig. 15.2 Three possible relations between the energy eigenvalue E and the constants UL and UR.

Fig. 15.3 General form of a reflecting state.

15.2 Reflecting, scattering, and bound states

Reflecting states

Let us suppose that UL < UR, and that E lies between them: UL < E < UR. In this
case we call the stationary state a reflecting state. On the left-hand side of the interaction
zone (x < xL), the wave function must be a superposition of plane waves eikLx and e−ikLx,

where kL =
√

(2μ/�2)(E − UL). On the right-hand side (x > xR), the wave function is a

superposition of exponentials ebRx and e−bRx, where bR =
√

(2μ/�2)(UR − E). However, as
we have seen, the exponentially increasing solution ebRx cannot be interpreted as a physical
wave function. The exponentially decreasing solution is okay because it applies only in the
region x > xR, where the exponential remains bounded. We therefore conclude that

ψ(x) =
{

AeikLx + Be−ikLx x < xL

Ce−bRx x > xR
, (15.12)

and something else between xL and xR, in the interaction zone. Any solution of this form
describes a physically meaningful situation for the particle.

Even without a detailed knowledge of the potential U(x) within the interaction zone,
we can say more about the relations between the coefficients A, B, and C. Suppose we
choose some particular value of C. This will determine both ψ(x0) and ψ ′(x0) for a point
x0 > xR. These completely determine the solution to Eq. 15.4 at all points, including the
coefficients A and B. This means that we can find physically meaningful improper states for
any value of E between UL and UR. The spectrum of possible energies of reflecting states
is continuous.
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We have shown that, if we specify a value of C, the values of both A and B are
determined. Suppose instead that we specify A. Does this also determine the solution
everywhere? It does:

Exercise 15.5 Suppose we have two reflecting solutions to Eq. 15.4 with the same energy
E but different coefficients A and A′. Show that these two solutions cannot have the same C
coefficients. (It might be useful to consider the difference between the solutions, which is
also a solution.) Thus, the relationship between A and C is one-to-one, and a solution may
be uniquely specified by giving the value for either C or A.

For a stationary state, the probability density |ψ(x)|2 is independent of time. This means
that the probability flux J defined in Eq. 11.20 is independent of x.

Exercise 15.6 Explain why.

Let us evaluate J on both sides of the interaction zone for a reflecting state described by
Eq. 15.12.

J = �kL

μ

(
|A|2 − |B|2

)
x < xL,

J = 0 x > xR. (15.13)

Exercise 15.7 Verify the calculations of J in Eq. 15.13.

Since J must be the same for all x, we conclude that |A|2 = |B|2 for a reflecting state.
This has a simple interpretation. The flux J represents the “flow of probability” in the

positive direction. On the left-hand side of the interaction zone (x < xL), the terms AeikLx

and Be−ikLx (rightward and leftward moving plane waves) make positive and negative
contributions to this flow. Since the two contributions cancel, we conclude that particles in
a reflecting state “bounce back” from the potential with probability 1. In the region where
x > xR, even though the wave function is non-zero there is no rightward flow of probability.

In classical mechanics, a particle moving from the left with energy E < UR does not
have sufficient energy to reach the right-hand side of the interaction zone. At some point
it must turn around and travel back to the left. So far, the classical and quantum theories
are in accord. However, in the quantum case the wave function ψ(x) �= 0 for x > xR, so
there is a non-zero probability for finding the quantum particle on the “wrong” side of the
interaction zone – a region it is classically forbidden to reach.

Our analysis is easily adapted to the case where UR < E < UL. In this situation, particles
impinge on the interaction from the right and are reflected, with an exponential “tail” of the
wave function found on the left-hand side.

Scattering states

Suppose that E is greater than both UL and UR. The wave function ψ(x) for a stationary state
involves plane waves on either side of the interaction zone. We will consider the special
situation in which the wave function in the region x > xR contains no leftward moving
plane wave. That is, the “incoming” probability comes entirely from the left-hand side of
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Fig. 15.4 General form of a scattering state.

the interaction zone. This models the situation in which a particle comes from the left and
“scatters” from the potential, either passing through the interaction zone or reflecting from
it. We call this a scattering state.

Outside the interaction zone, the solution to Eq. 15.4 for a scattering state has the form

ψ(x) =
{

AeikLx + Be−ikLx x < xL

CeikRx x > xR
, (15.14)

where kL,R =
√

(2μ/�2)(E − UL,R). As before, if we specify any one of the coefficients A,
B, and C, the other two are determined. This means that any energy E greater than both UL

and UR is a possible energy for a scattering state. Scattering states have a continuous range
of energy.

Exercise 15.8 Write down the form of a scattering state analogous to Eq. 15.14, except
that the particle is coming in from the right. Show that the general scattering state is a
superposition of “in-from-the-left” and “in-from-the-right” states.

The probability flux J is

J = �kL

μ

(
|A|2 − |B|2

)
x < xL,

J = �kR

μ
|C|2 x > xR. (15.15)

It is no longer the case that J = 0 everywhere. That is, the scattering state wave function
in Eq. 15.14 includes a net positive flow of probability. We interpret this by saying that a
particle approaching the interaction zone from the left may either be reflected or transmitted
by the potential. The transmission coefficient T is the ratio of the transmitted flux to the
incident flux:

T = kR |C|2
kL |A|2

. (15.16)

Similarly, the reflection coefficient R is the ratio of the reflected flux to the incident flux:

R = |B|2
|A|2 . (15.17)

Exercise 15.9 Why do kR and kL appear explicitly in the expression for T but not R?
Give both the simple algebraic explanation and also a physical interpretation involving the
meaning of kR and kL.
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Fig. 15.5 A wave packet with well-defined energy scatters from an interaction zone. After a long time, the T
and R coefficients give the probabilities for finding the particle to the right and left of the barrier.

Exercise 15.10 Show that T +R = 1. Is it possible for an incoming quantum particle with
E > UL, UR to be permanently “trapped” in the interaction zone?

Without a detailed knowledge of the potential U(x) in the interaction zone, we cannot
say much more about the transmission and reflection coefficients. Both T and R will be
functions of the particle energy E. They can have some surprising properties. For example,
we can have T > 0 even if E < Umax, the maximum value of the potential in the interaction
zone. The particle may be transmitted even if it does not have sufficient energy to get “over
the barrier.” This phenomenon is called quantum tunneling.

Equally strange is the fact that we can have R > 0 even if E > Umax. This would not
happen for a classical particle, which will certainly pass through the interaction zone if
E > Umax. The classical situation can be summarized as follows:

• If E < Umax then R = 1 and T = 0.
• If E > Umax then R = 0 and T = 1.

For a quantum particle the situation is more complicated.
We can interpret T and R as the transmission and reflection probabilities for a particle of

energy E. That is, suppose the initial state is described by a wave packet approaching the
interaction zone from the left. This wave packet has an expectation value 〈E〉 for the energy,
with an energy uncertainty 
E that is very small.2 Over time the wave packet strikes the
interaction zone and evolves in a complicated way in the potential there. A long time later,
the wave function has split into two parts moving away from the interaction zone to the
left and right. The total probability for finding the particle to the left of the zone is about
R (evaluated at the mean energy 〈E〉), and the total probability that the particle is found to
the right of the zone is about T . This is illustrated in Fig. 15.5.

2 Here “very small” means that the functions T and R do not vary significantly over the range of likely energies.
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Fig. 15.6 General form of a bound state.

Bound states

Now we turn to the last case, in which E is less than both UL and UR. Since E ≥ Umin, this can
only happen if the interaction zone contains regions of lower potential. In this case, both the
left-hand and right-hand regions have only exponential solutions. As previously discussed,
we must exclude exponential solutions that increase without bound, since these cannot be
approximated by normalized states. Thus, the wave function outside the interaction zone
has the form

ψ(x) =
{

AebLx x < xL

Ce−bRx x > xR
, (15.18)

where bL,R =
√

(2μ/�2)(UL,R − E).

Exercise 15.11 Show that J = 0 for the bound state in Eq. 15.18.

Notice that ψ → 0 as x → ±∞. In fact, the bound state wave functions are normalizable
and thus represent actual physical states.

Note that we are imposing a boundary condition on both sides of the interaction zone. This
poses a bit of a puzzle. If we specify the value of A in Eq. 15.18, fixing both ψ(x0) and ψ ′(x0)

for some x0 < xL, then we can solve the differential equation in Eq. 15.4 and determine
ψ(x) everywhere. In general, this wave function will have the form Ce−bRx + DebRx to the
right of the interaction zone. How can we guarantee that the coefficient D winds up being
zero, as required?

In general, we cannot guarantee this! When we solve Eq. 15.4 we usually get both C �= 0
and D �= 0. However, for certain discrete values of the energy E, it can happen that D = 0.
Only these energies can be associated with physically acceptable wave functions. Thus, the
bound states of the potential have a discrete spectrum of energy eigenvalues.

15.3 A potential step

We will now begin to apply our general results about reflecting, scattering, and bound states
to some particular examples, chosen because they are especially easy to solve and because
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Fig. 15.7 A potential step, with typical energies for reflecting and scattering states.

they illustrate the types of behavior seen in more complex situations. The simplest of them
is the potential step, for which U(x) has the following form, illustrated in Fig. 15.7:

U(x) =
{

0 x < 0
U0 x ≥ 0

. (15.19)

The interaction zone for the potential step consists of the single point x = 0, and the
constants UL = 0 and UR = U0. This discontinuous potential is of course an idealization of
a situation in which U(x) changes from 0 to U0 within a small interval, where the particle
experiences a strong force.

Solving the Schrödinger equation for this potential amounts to adapting our general
solutions, “pasting” the left-hand and right-hand solutions together at x = 0. How do we
do this? By remembering that both ψ(x) and ψ ′(x) must be continuous at x = 0.

Consider first a reflecting state. We suppose that U0 > 0 and that the energy E < U0.
Equation 15.12 gives the general form of the solution. Choosing the coefficient A = 1,
we have

ψ(x) =
{

eikx + Be−ikx x < xL

Ce−bx x > xR
, (15.20)

where k =
√

(2μ/�2)E and b =
√

(2μ/�2)(U0 − E). The continuity of ψ(x) and ψ ′(x)
will yield two conditions on the coefficients B and C:

ψ(x) continuous: 1+ B = C,

ψ ′(x) continuous: ik(1− B) = −bC. (15.21)

From these we can easily determine the coefficients B and C:

B = ik + b
ik − b

,

C = 2ik
ik − b

. (15.22)

Exercise 15.12 Show that |B|2 = 1, and interpret this mathematical fact.
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Exercise 15.13 Show that we can simplify Eq. 15.22 to obtain

B = i
√

E +√U0 − E
i
√

E −√U0 − E
,

C = 2i
√

E
i
√

E −√U0 − E
. (15.23)

As Eq. 15.23 indicates, the coefficients B and C are functions of the incident energy E. It
is interesting to note the qualitative behavior of these. For E � U0, we find that |C|2 � 1.
This means that there is little likelihood of finding the particle to the right of x = 0. On
the other hand, suppose that E is very close to U0, so that the incoming particle has almost
enough energy to climb the step. Then C has a much larger value, and the particle is much
more likely to be found in the classically forbidden region. Furthermore, the exponential
coefficient b will be small, so that this likelihood extends very far beyond x = 0.

Exercise 15.14 Show that lim
E→U0−

C = 2.

Now let us assume that E > U0, so that the particle is in a scattering state. Once again,
we can use our previous work to write down the form of the wave function on either side
of the step, then impose continuity of ψ(x) and ψ ′(x) to solve for the coefficients. Letting
A = 1 as before and simplifying our notation somewhat, Eq. 15.14 becomes

ψ(x) =
{

eikx + Be−ikx x < xL

Ce−ik′x x > xR

, (15.24)

where k =
√

(2μ/�2)E and k′ =
√

(2μ/�2)(E − U0) . The continuity requirements are
then

ψ(x) continuous: 1+ B = C,

ψ ′(x) continuous: ik(1− B) = ik′C, (15.25)

which have solutions

B = k − k′

k + k′
,

C = 2k
k + k′

. (15.26)

These are easily expressed in terms of E and U0:

B =
√

E −√E − U0√
E +√E − U0

,

C = 2
√

E√
E +√E − U0

. (15.27)

These coefficients are both real.
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What are the reflection and transmission coefficients for this potential? Since we have
chosen A = 1, the reflection coefficient is

R = |B|2 =
(√

E −√E − U0√
E +√E − U0

)2

. (15.28)

The transmission coefficient is just T = 1− R.
How does R behave at different values of the energy? Here is a simple exercise that sheds

some light on this.

Exercise 15.15

• Show that lim
E→U0+

R = 1.

• Evaluate R for E = 2U0.
• Show that if E � U0 then R ≈ 0.

Suppose that U0 is negative – that is, that the particle encounters a step “down” in
potential energy. Then we still have R > 0. Classically speaking, this is nothing short of
astonishing. We must imagine that a particle moving to the right experiences an impulsive
force, also directed to the right – but nevertheless may bounce back toward the left. Indeed,
the greater the “kick,” the more likely such a paradoxical outcome is!

Exercise 15.16 Show that, if −U0 � E, the reflection coefficient R ≈ 1.

Part of the blame for this counter-intuitive result can, of course, be ascribed to the generally
weird nature of quantum mechanics. But another part lies in our idealized problem. We
do not expect an actual physical potential to be discontinuous. If our idealized U(x) is
replaced by one that has a smoother step down, then we find that the anomalous reflection
probability is considerably reduced.

We close our discussion of the potential step function with the following observation:

Exercise 15.17 Prove that there are no bound states for a potential step.

15.4 Scattering from a square barrier

A square barrier is a potential of the form shown in Fig. 15.8:

U(x) =

⎧⎪⎪⎨⎪⎪⎩
0 x < 0

U0 0 ≤ x ≤ L

0 x > L

. (15.29)

The barrier is characterized by its “height” U0 and its “width” L. The interaction zone here
is the interval between 0 and L, and UL = UR = 0. Since the two outside potentials are
equal, there are no reflecting states from the barrier. In this section, we will analyze the
scattering states.
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Fig. 15.8 A square potential barrier with U0 > 0.

To solve Eq. 15.4, we can paste together known solutions for the three regions of constant
potential, using the fact that ψ(x) and ψ ′(x) are continuous at both x = 0 and x = L. There
are two different cases for the wave function in the interaction zone, depending on whether
the energy E is greater or less than U0. We will consider these two situations in turn.

First, suppose that E < U0. The wave function for an energy eigenstate has the form

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
eikx + Be−ikx x < 0

Cebx + De−bx 0 ≤ x ≤ L,

Feikx x > L

(15.30)

where k =
√

(2μ/�2)E and b =
√

(2μ/�2)(U0 − E). The boundary conditions at x = 0
tell us that

ψ(x) continuous: 1+ B = C + D,

ψ ′(x) continuous: ik(1− B) = b(C − D), (15.31)

while those at x = L are

ψ(x) continuous: CebL + De−bL = FeikL,

ψ ′(x) continuous: b
(

CebL − De−bL
)
= ikFeikL. (15.32)

Equations 15.31 and 15.32 give us a system of four linear equations in the four unknown
coefficients B, C, D, and F. We can solve this system and find the wave function everywhere.

What we are really interested in is the transmission coefficient T = |F|2, so we want to
find F. We can use Eq. 15.32 to solve for C and D in terms of F:

C = 1
2

e−bL
(

1+ ik
b

)
eikLF,

D = 1
2

ebL
(

1− ik
b

)
eikLF. (15.33)

We substitute these into Eq. 15.31, obtaining a pair of equations in B and F. Solving for F
we obtain

F = 4ikbe−ikL

(b+ ik)2e−bL − (b− ik)2ebL . (15.34)
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Now we can calculate T . It is actually a bit easier to write down the inverse of the
transmission coefficient:

1
T
= 1+ U2

0
4E(U0 − E)

sinh2 bL, (15.35)

where we have expressed b and k in terms of E and U0. Since T > 0 even though E < U0,
the particle may “tunnel” through the barrier with some probability.

The limiting behavior of Eq. 15.35 is worth noting. If the barrier is very thin, so that
bL � 1, then T ≈ 1 and the barrier is nearly “transparent.” On the other hand, suppose
that the barrier is very wide, with bL � 1. Then the hyperbolic sine function can be
approximated by sinh bL ≈ 1

2 ebL � 1. In this case,

T ≈ 16 E(U0 − E)

U2
0

e−2bL. (15.36)

For wide barriers, the tunneling probability decreases exponentially with L.

Exercise 15.18 Fill in the algebraic details from Eq. 15.31 and 15.32 to the transmission
coefficient in Eq. 15.35. Save plenty of paper for this one.

Exercise 15.19 An electron with energy 4 eV strikes a square barrier of height 6 eV. Show
that a barrier of width 3 nm satisfies bL � 1. Find the approximate ratio of the transmission
coefficients for two barriers of this height, one of width 4 nm and the other of width 3 nm.

Exercise 15.20 Find an expression for the reflection coefficient R for the square barrier
when E < U0.

Now we must consider the case where E > U0. Then our solution must be of the form

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
eikx + Be−ikx x < 0

Ceik′x + De−ik′x 0 ≤ x ≤ L

Feikx x > L

, (15.37)

where k =
√

(2μ/�2)E and k′ =
√

(2μ/�2)(E − U0).

Exercise 15.21 Find the new boundary conditions at x = 0 and x = L, analogous to
Eq. 15.31 and 15.32.

We can actually write down the solution for F by replacing the parameter b in Eq. 15.34
by ik′. This shortcut yields

F = 4kk′e−ikL

(k′ + k)2e−ik′L − (k′ − k)2eik′L . (15.38)

From this, we can calculate the transmission coefficient T , which is most easily displayed
as in Eq. 15.35:

1
T
= 1+ U2

0
4E(E − U0)

sin2 k′L. (15.39)



321 Scattering from a square barrier

Once again we note that, for a thin barrier with k′L�1, the transmission coefficient T≈1.
For wider barriers, though, the situation has an interesting new feature. At certain discrete
lengths, the sin2 k′L factor is zero, and T = 1 exactly. That is, for certain combinations of
E, U0, and L, the barrier is perfectly transparent. This is called resonant scattering. The
condition for resonant scattering is that k′L = nπ , for n = 1, 2, . . . We can get a physical
intuition for this by recalling that the wavelength within the barrier is λ′ = 2π/k′. Then

L = nπ

k′
= nλ′

2
. (15.40)

For resonant scattering, the width of the barrier must be a half-integer number of full
wavelengths:

nπ = k′L =
(√

2μ

�2 (E − U0)

)
L. (15.41)

In terms of energy,

E − U0 =
(

π2�2

2μL2

)
n2. (15.42)

We recognize the right-hand expression as the energy E(box)
n of the nth stationary state of a

particle in a box of length L (see Eq. 11.62). The condition for resonant scattering from the
potential barrier is that E − U0 = E(box)

n for some n = 1, 2, . . .

Exercise 15.22 An electron strikes a potential barrier with a height of 1 eV and a width of
2 nm. For what energies does the electron experience resonant scattering?

Exercise 15.23 Does anything in our analysis of the square potential barrier change if
U0 < 0 – that is, we are scattering from a square potential well? Can there be resonant
scattering from a square well?

Both tunneling and resonant scattering are illustrated in the graph of T versus E in Fig. 15.9.

Fig. 15.9 Transmission coefficient T versus incident energy E for a particle scattering from a square barrier.
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15.5 Bound states in a square well

We now turn our attention to the bound states in a square potential well. There are some
slight shifts in our set-up and notation that will make things more convenient. The potential
function is

U(x) =

⎧⎪⎪⎨⎪⎪⎩
U0 x < −a

0 −a ≤ x ≤ a

U0 x > a

. (15.43)

That is, the potential well has width L = 2a and is centered at the origin. Its depth is U0.
For a bound state, E < U0.

Because the well is symmetric, the parity operator cI commutes with the Hamiltonian H.
This means that we can require the energy eigenstates to be parity eigenstates as well, i.e.
we can consider only even and odd wave functions as solutions to Eq. 15.4.

Inside the well, the wave function has plane wave solutions eikx and e−ikx. However,
we wish to consider the even and odd combinations of these, which are the trigonometric
forms cos kx and sin kx. If we consider the even case, the wave function is

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
Aebx x < −a

B cos kx −a ≤ x ≤ a

Ae−bx x > a

, (15.44)

where b =
√

(2μ/�2)(U0 − E) and k =
√

(2μ/�2)E. The continuity of ψ(x) and ψ ′(x) at
x = a yields the relations

ψ(x) continuous: Ae−ba = B cos ka,

ψ ′(x) continuous: − bAe−ba = −kB sin ka. (15.45)

Exercise 15.24 What additional information do the boundary conditions at x = −a
provide?

The wave function ψ(x) for a bound state is normalizable. For a given E (and thus k and
b), this fact determines the coefficients A and B up to an overall phase. As we have seen,
for a bound state only certain energy eigenvalues E will be possible; our task is to identify
these. Dividing the ψ ′(x) boundary condition by the ψ(x) condition, we obtain

b = k tan ka. (15.46)

To understand the solutions to this transcendental equation, we introduce the variable
z = ka. We can also write ba in terms of z:

Exercise 15.25 Show that

ba =
√

z02 − z2, (15.47)

where z0 =
(√

(2μ/�2)U0

)
a.
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Thus, Eq. 15.46 takes on a particularly simple form as a condition for z:√( z0

z

)2 − 1 = tan z. (15.48)

What about the case of odd parity? Then

ψ(x) =

⎧⎪⎪⎨⎪⎪⎩
−Aebx x < −a

B sin kx −a ≤ x ≤ a

Ae−bx x > a

. (15.49)

The boundary conditions at x = a are

ψ(x) continuous: Ae−ba = B sin ka,

ψ ′(x) continuous:− bAe−ba = kB cos ka, (15.50)

the ratio of which yields
b = −k cot ka. (15.51)

Therefore, our combined equation for z is√( z0

z

)2 − 1 =
{

tan z (even)

− cot z (odd)
. (15.52)

Solutions for z determine possible values for the energy E = �2z2

2μa2 .

We can identify solutions to this equation graphically, as shown in Fig. 15.10. In the

diagram, curves for tan z, −cot z, and
√( z0

z

)2 − 1 are shown. The points of intersection of
these curves will be values of z which satisfy Eq. 15.52. These solutions for z determine
the allowed energies.

Fig. 15.10 Graphical solution of Eq. 15.52 for even and odd parity wave functions.
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Fig. 15.11 The number of bound state solutions depends on the value of z0. For z0 = 2.5 (π/2), there are
three solutions (two even and one odd). For z0 = 5.4 (π/2) there are six solutions (three even
and three odd).

As we can see, there will only be a finite number of solutions to Eq. 15.52 for a given
value of z0. How many solutions will there be?

• For any value z0 > 0, there is always at least one bound state.
• The graphs of tan z and − cot z cross the z-axis at the points 0, π/2, π , etc. Therefore, if

the value of z0 satisfies
nπ

2
< z0 <

(n+ 1)π

2
, (15.53)

for an integer n, then there are exactly n+ 1 bound states (see Fig. 15.11).
• The ground state (state of lowest energy) always has an even wave function. The wave

functions for higher energies alternate between odd and even.

In fact, many of these points can be expressed very nicely by comparing the square well
system to a free particle in a box with the same width L = 2a, having energies E(box)

n for
n = 1, 2, . . .

Exercise 15.26 Show that if E(box)
n < U0 < E(box)

n+1, then there are exactly n+ 1 bound states
for the square well. (By convention, we take E(box)

0 = 0, even though there is no n = 0 state
of the particle in a box.)

Exercise 15.27 For the bound state energies En of the square well, show that
E(box)

n−1<En<E(box)
n .

What are the wave functions for square-well bound states? Figure 15.12 shows them for
a well with three bound states. Note that, since the energy eigenvalue equation (Eq. 15.4)
is a real equation, we can find real solutions ψn(x), as shown.

Suppose now that U0 is extremely large, and we consider only those stationary states for
which En � U0. In other words, the energy “walls” around the system are much higher (in
energy terms) than the energy of the particle. What sort of energies and bound states can
we expect in this extreme situation?

Of course, there will be very many bound states, because Eq. 15.52 has very many
solutions. The intersections of the curves in Fig. 15.10 occur near the vertical asymptotes
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Fig. 15.12 Wave functions for the three bound states of a square well. As is often done, we have sketched
the wave functions relative to their energy levels in the well.

of the tan z and − cot z functions; that is, near z = nπ/2 for n = 1, 2, . . . This means that
the energy levels with En � U0 have approximate values

En ≈ π2�2

8μa2 n2 = E(box)
n , (15.54)

the energies we found for the particle in a box of width L = 2a.
How about the wave functions? For a square well, each bound state wave function has

exponential “tails” extending beyond the edges of the well. But if En � U0, then these tails
drop off extremely rapidly, relative to the well’s width. This can be seen in the following
exercise:

Exercise 15.28 If the energy En � U0, show that z0 = ba � 1. Thus, the exponential
tails of the bound state will decrease almost to zero in a distance very much less than a.

In the limiting case U0 →∞ (the infinite square well) the “tail” part of ψn(x) is completely
negligible. The wave function is effectively zero at the wall and everywhere beyond it.

In short, a particle in a very deep square potential well is a pretty good approximation to
the particle in a box with perfectly impenetrable walls, provided we only consider low-lying
energy levels. The very high potential barriers at x = ±a impose an approximate boundary
condition that |ψ(−a)| = |ψ(a)| ≈ 0. Though ψ(x) is continuous at these points, the
derivative ψ ′(x) changes so abruptly that it appears to be discontinuous. We end up with
energy levels of the familiar form in Eq. 11.62.

Our analysis here sheds light on a question that we mentioned in Section 11.4, when we
first introduced the particle in a box. There, we noted that the discontinuity in ψ ′(x) at the
walls of the box might lead to a significant contribution to the total energy of the state, since
the kinetic energy involves second derivatives of ψ . But we do not get such a contribution
from the sharp “elbows” at the sides of the wave functions in a very deep finite potential
well. This is because, while ψ ′′(x) is very large there, ψ(x) is extremely tiny, so the integral〈

p2

2μ

〉
= − �2

2μ

∫ +∞

−∞
ψ(x)ψ ′′(x) dx, (15.55)

does not receive a significant contribution from this small region. We were justified in
ignoring the “corners” in the wave functions for the idealized situation.
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15.6 The variational method

Suppose we are looking for the bound-state energies for a given potential function U(x). For
any but the simplest potentials, we cannot solve the energy eigenvalue equation (Eq. 15.3)
exactly. This means that we must resort to approximation techniques. In Chapter 17 we will
develop a “perturbation” method that works well if U(x) is close to a potential for which
we can find the energy eigenvalues. In this section, though, we introduce a technique that
can be used for estimating the ground state energy for almost any potential. This is the
variational method.

The essential idea is simple. If E0 is the energy of the ground state (a normalized bound
state), then for any normalized state |ψ〉, it must be that 〈E〉 = 〈ψ |H |ψ〉 ≥ E0. This is
very easy to see:

Exercise 15.29 Expand |ψ〉 in the energy eigenbasis for H and prove that 〈E〉 ≥ E0.

Instead of finding the actual ground state, we could simply guess a “test state” |ψ〉 and
calculate 〈E〉. We know that this expectation is an upper bound for E0; but for a clever
choice of the test state |ψ〉 we might hope that 〈E〉 and E0 were reasonably close. But how
do we choose a “clever” test state?

We do this by considering an entire continuous family of test states |ψα〉, where α is a
real parameter. If E(α) = 〈ψα|H |ψα〉, then E(α) ≥ E0 for all values of α. To find the best
test state in our family, we simply find the α that minimizes E(α). That is, we solve

dE
dα

= d
dα

〈ψα|H |ψα〉 = 0. (15.56)

The resulting value of Emin = min
α

E(α) can be used as an (upper) estimate for the ground
state energy E0. This is the variational method.

The closeness of the estimate depends on how well we choose the family of test states
|ψα〉. On the one hand, we try to incorporate known properties of the ground state into the
test states. If the potential U(x) is a symmetric function, for instance, then we know that
the ground state will have a symmetric wave function ψ0(x). We should therefore choose
our test states to be states of even parity.

On the other hand, we wish to make our calculation of E(α) as simple as possible. Thus,
we will choose test wave functions ψα(x) with relatively simple algebraic forms. Here we
mention two popular choices of symmetric test wave functions.

Gaussian test states. In this case we choose our test states to have familiar Gaussian
wave functions:

ψα(x) = Cα exp
(
−α2x2

)
, (15.57)

where the normalization coefficient Cα = (2α2/π)1/4.

Exercise 15.30 Verify that this choice of Cα yields a normalized wave function.
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Fig. 15.13 Triangular test wave function ψα(x).

The parameter α measures how “narrow” the test wave function is. The energy expectation
for this state is

E(α) = 〈ψα|
(

p2

2μ

)
|ψα〉︸ ︷︷ ︸

K(α)

+〈ψα|U(x) |ψα〉 . (15.58)

We can go ahead and calculate the kinetic energy term K(α), which will be the same for
any problem using the Gaussian test states.

Exercise 15.31 For the Gaussian test states, show that

K(α) = �2α2

2μ
. (15.59)

Triangular test states. In this case we choose our test states to have “triangular” wave
functions, as shown in Fig. 15.13. That is,

ψα(x) =
(

Cα(1− α |x|) |x| ≤ 1/α

0 |x| > 1/α

)
. (15.60)

The constant Cα is determined by normalization.

Exercise 15.32 Show that we should choose

Cα =
√

3α

2
. (15.61)

Again we will find it useful to calculate the expectation of the kinetic energy, which will be
the same for any variational problem using these test states. This is somewhat complicated
by the fact that the test wave functions are not smooth. The delta function can clarify our
analysis.

Exercise 15.33 Show that it makes sense to write

d2

dx2 |x| = 2δ(x). (15.62)

Exercise 15.34 For the triangular test states, show that

K(α) = 3�2α2

2μ
. (15.63)
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Explain how each of the three “corners” of ψα(x) contributes to this result.

For both types of test state, we chose ψα(x) to be a function of αx, where α has units of
(length)−1. This is why the the two expressions for K(α) (Eq. 15.59 and 15.63) have the
same form aside from numerical factors.

To see the variational method in action, let us apply it to the harmonic oscillator potential
U(x) = kx2/2. We have

〈U〉 = 〈ψα|U(x) |ψα〉 =
∫ +∞

−∞
|ψα(x)|2 kx2

2
dx. (15.64)

For the Gaussian test state this becomes

〈U〉 = kC2
α

2

∫ +∞

−∞
x2 exp(−2α2x2) dx = k

8α2 . (15.65)

The energy expectation is thus

E(α) = �2α2

2μ
+ k

8α2 . (15.66)

This is minimized when E′(α) = 0, which happens at α = (kμ/4�2)1/4. Thus, our estimate
for the ground state energy is

E0 ≈ min
α

E(α) = 1
2

�ω, (15.67)

where ω = √
k/μ. This result is actually exact, since the ground state of the harmonic

oscillator is in fact a Gaussian state. We got lucky!
Suppose instead we use the triangular test states. Then

〈U〉 = kC2
α

∫ 1/α

0
x2(1− αx)2 dx = k

20α2 . (15.68)

The energy expectation is

E(α) = 3�2α2

2μ
+ k

20α2 . (15.69)

At the minimum value, E′(α) = 0, which occurs when α = (kμ/30�2)1/4. Our estimate
becomes

E0 ≈ min
α

E(α) =
√

3
10

�ω = 0.548 �ω. (15.70)

This is a remarkably good estimate, considering how unphysical the triangular test states
are. Further applications of the variational method are found in the problems at the end of
the chapter.

We can extend the variational method in several ways. It is not restricted to single particles
moving in one dimension, and indeed it is often used in more complicated situations. We
may choose a family of test states |ψ(α, β, . . .)〉 that depend on two or more parameters α,
β, etc., minimizing the expectation function E(α, β, . . .) over all these parameters.
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Finally, it is sometimes possible to use the variational method to estimate, not just the
ground state energy, but also the energy of one or more excited states. For example, if the
potential U(x) is a symmetric function, then we expect the ground state |ψ0〉 to have even
parity and the first excited state |ψ1〉 to have odd parity. The excited state energy E1 is the
lowest energy among all odd parity states, which are all orthogonal to |ψ0〉. If we consider
only odd parity states in our family of test states, then 〈E〉 ≥ E1 for every member of the
family. The variational method using even parity states leads to an estimate of E0, while
using odd parity states leads to an estimate of E1.

The main difficulty of the variational method is that we do not have a firm idea of how
accurate its results are. As a practical matter, the variational method can yield a good
estimate for the ground state energy even when the test states used are extremely crude.
The variational method is therefore better at estimating energies than wave functions. If we
keep this limitation in mind, the variational method is a very useful tool for understanding
the quantum mechanics of particles in complicated potentials.

15.7 Parameters and scaling

A particle of mass μ moves in one dimension. Suppose that the Hamiltonian for the particle
includes an adjustable parameter λ, which may appear in either the kinetic energy or the
potential energy, or both. We write the Hamiltonian as Hλ. The energy eigenvalue Eλ and
corresponding normalized eigenstate |ψλ〉 also depend on the parameter.3 For any λ,

Eλ = 〈ψλ|Hλ |ψλ〉 . (15.71)

Let us assume that Hλ, Eλ, and |ψλ〉 are all smooth functions of λ. Then

dEλ

dλ
= 〈ψλ|

(
dHλ

dλ

)
|ψλ〉 +

( d
dλ
〈ψλ|

)
Hλ |ψλ〉 + 〈ψλ|Hλ

( d
dλ
|ψλ〉

)
= 〈ψλ|

(
dHλ

dλ

)
|ψλ〉 + Eλ

( d
dλ
〈ψλ |ψλ 〉

)
. (15.72)

Since 〈ψλ |ψλ 〉 = 1 for all λ, we obtain

dEλ

dλ
= 〈ψλ|

(
dHλ

dλ

)
|ψλ〉 . (15.73)

This is called the Feynman–Hellmann theorem.4 It appears simple, but it has a remarkable
number of applications.

3 In the last section, |ψα〉 was a test state for a fixed Hamiltonian H, and the resulting expectation E(α) was
the basis for an estimate of the ground state energy. Now, |ψλ〉 is an exact eigenstate of Hλ with exact
eigenvalue Eλ.

4 And also, curiously enough, the Hellmann–Feynman theorem.
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Consider, for instance, the quantum harmonic oscillator. We can write the
Hamiltonian as

H = 1
2μ

p2 + 1
2

kx2, (15.74)

where μ is the particle mass and k is the elastic constant of the harmonic potential. The
energy of the eigenstate |n〉 is

E(osc)
n =

(
n+ 1

2

)
�

√
k
μ

, (15.75)

(see Eq. 15.2). We can treat μ and k as adjustable parameters and apply the Feynman–
Hellmann theorem. For the parameter μ, we find that

dE(osc)
n

dλ
= 〈n|

(
dH

dμ

)
|n〉 ,

− (n+ 1/2)�

μ

√
k
μ
= − 1

2μ2 〈n| p2 |n〉 , (15.76)

so that 〈n| p2 |n〉 = (n+ 1/2)�
√

μk for all n.

Exercise 15.35 Treat k as an adjustable parameter and show that

〈n| x2 |n〉 = (n+ 1/2)
�√
μk

, (15.77)

for any stationary state |n〉 of a harmonic oscillator.

We previously used the properties of ladder operators to find these expectations (see
Section 13.2, particularly Eq. 13.32). The Feynman–Hellmann theorem is a useful shortcut.

The Feynman–Hellmann theorem provides some insight into the scaling properties of
energy eigenstates. Suppose that |ψ〉 is a solution to

H |ψ〉 =
(

1
2μ

p2 + U(x)
)
|ψ〉 = E |ψ〉 , (Re 15.3)

for some energy eigenvalue E. Now modify the Hamiltonian by multiplying the potential
energy and dividing the mass by the same scaling factor κ:

U(x) → κU(x), μ → μ

κ
. (15.78)

If κ > 1, for example, we have transformed our system into one with a less massive particle
moving in a deeper potential well. This has the overall effect of H → κH, and so the same
|ψ〉 is an energy eigenstate with new energy κE.

Exercise 15.36 Apply the Feynman–Hellmann theorem to the parameter κ and show that
it simply leads back to Eq. 15.3.
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Now let us consider a less trivial example of scaling. Instead of changing the depth of
our potential well, we will stretch the system spatially, so that x → λx. This will involve
changes to the potential function and the mass, both involving the stretching parameter λ.
To see how this ought to be done, consider the wave function ψ(x) = 〈x |ψ 〉, which
satisfies

− �2

2μ

d2

dx2 ψ(x)+ U(x) ψ(x) = Eψ(x). (Re 11.17)

If we simply replace x by λx in this equation, we get a rescaled version of the same:

− �2

2μλ2
d2

dx2 ψ(λx)+ U(λx) ψ(λx) = Eψ(λx). (15.79)

The function ψ(λx) can be renormalized, so that it becomes the wave function of an energy
eigenstate state |ψλ〉 for a system with mass λ2μ moving in the potential U(λx). That is:

Hλ |ψλ〉 =
(

1
2λ2μ

p2 + U(λx)
)
|ψλ〉 = E |ψλ〉 . (15.80)

Therefore, if |ψ〉 is an eigenstate of the original Hamiltonian with eigenvalue E, then |ψλ〉
is an eigenstate of the modified Hamiltonian with the same eigenvalue.

Exercise 15.37 Find the renormalization factor for ψ(λx).

The Feynman–Hellmann theorem now tells us that

〈ψλ|
(
− 1

λ3μ
p2 + xU ′(λx)

)
|ψλ〉 = 0. (15.81)

If we set λ = 1, then for any bound state |ψ〉,

2 〈ψ |
(

p2

2μ

)
|ψ〉 = 〈ψ | xU ′(x) |ψ〉 . (15.82)

This is called the quantum virial theorem for 1-D systems. It relates the expectation value
of the kinetic energy K of the system to an expectation related to the potential energy. This
is especially simple if the potential function is of the form U(x) = Cxn. Then the quantum
virial theorem becomes

2 〈K〉 = n 〈U〉 . (15.83)

Exercise 15.38 What does Eq. 15.83 tell us about the energy eigenstates of the harmonic
oscillator?

Exercise 15.39 Suppose we know the bound states of a particle of mass μ moving in a
potential U(x). What can we say about the bound states of the same particle moving in the
potential λ2U(λx)? Apply your answer to the bound states of a finite square well.
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Problems

Problem 15.1 A delta function potential has the form U(x) = −K δ(x) where K > 0 is a
constant.

(a) Show that there is only one bound state for this potential.
(b) Find the energy eigenvalue and the wave function for this bound state.

There are several ways to approach this problem; one is to treat the delta function potential
as a limiting case of a very narrow and deep square well potential.

Problem 15.2 As a follow-up to Problem 15.1, consider a situation in which the potential
contains two delta functions:

U(x) = −K (δ(x− a)+ δ(x+ a)) . (15.84)

How many orthogonal bound states does this potential have and what are their energies?

Problem 15.3 Calculate the reflection and transmission coefficients for scattering from the
delta function potential in Problem 15.1.

Problem 15.4 Consider a stationary state for a potential that is zero outside the interaction
zone. If E > 0, the wave function is

ψ(x) =
{

Aeikx + Be−ikx x < xL

Ceikx + De−ikx x > xR

, (15.85)

and something else within the interaction zone. We can write(
B
C

)
= S

(
A
D

)
, (15.86)

where S is a 2 × 2 complex matrix called the scattering matrix for the potential. The
scattering matrix gives the “outgoing” amplitudes in terms of the “incoming” amplitudes.
The matrix S depends on the potential function U(x) and the particle energy E.

(a) Show that the scattering matrix S is unitary.
(b) Suppose the potential is an even function, so that U(−x) = U(x). Show that S has the

form

S =
(

α β

β α

)
, (15.87)

for complex parameters α and β.

Problem 15.5 Consider a potential given by

U(x) =

⎧⎪⎪⎨⎪⎪⎩
∞ x ≤ 0

0 0 < x < a

U0 x > a

. (15.88)
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This is a square well next to an impenetrable wall; physically, this might model a reflecting
barrier that is slightly “sticky.” Find the bound states for this potential, and give the
conditions under which there are exactly n such states for n = 0, 1, 2, . . . (Hint: Compare
this problem to the symmetric square well.)

Problem 15.6 Consider the following wave function:

ψ(x) =
{

A(1+ cos kx) −a < x < a

0 elsewhere
, (15.89)

where ka = π . Find a potential function and an energy value E so that this is a stationary
state. Make a sketch of U(x) and E.

The family of wave functions of this type, with a as an adjustable parameter, is useful in
variational problems.

Problem 15.7 Suppose two potential functions U1(x) and U2(x) are both zero outside the
same interaction zone, and that within the zone U1(x) ≤ U2(x). Is it necessarily true that,
at a given energy E, the transmission coefficients for the two potentials satisfy T1 ≥ T2? If
so, prove this result; if not, construct a counter-example.

Problem 15.8 Suppose U(x) is an even (symmetric) function of x and has some bound
states. Does the ground state (lowest energy bound state) of U(x) always have an even
parity wave function ψ(x)? Why or why not?

Problem 15.9 A particle of mass μ moves in a 1-D “triangular well” potential

U(x) = F |x| . (15.90)

Use triangular test states to estimate the ground state energy of the particle as a function of
C. Calculate a numerical result when the particle is an electron and F = 20.0 eV/nm.

Problem 15.10 As in the previous problem, consider a particle of mass μ moving in a
potential given by Eq. 15.90.

(a) Use Gaussian test functions to estimate the ground state energy of the particle.
(b) We can use Gaussian functions to create a family of odd parity test states with wave

functions

φα = Cα x exp
(
−α2x2

)
. (15.91)

Find the normalization constant Cα for this family and the kinetic energy function
K(α).

(c) Use the odd parity test states to estimate the energy of the first excited state of the
particle in this potential.
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Problem 15.11 A quantum bouncer. A particle can move up and down along the z-axis.
At z = 0 there is an impenetrable “floor,” and above this floor the particle is subject to the
potential U(z) = μgz, where μ is the particle’s mass and g is the acceleration of gravity.
Use test state wave functions of the form

ψα(z) = Aα z exp(−αz) (z > 0), (15.92)

to estimate the minimum energy of a helium atom bouncing on a hard horizontal surface.

Problem 15.12 A particle is in a bound state of the finite square well potential given by
Eq. 15.43. Show that

1
μ

〈
p2
〉
= aU0 |ψ(a)|2 . (15.93)
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16.1 Central potentials

In this chapter we will consider the stationary states of a particle of mass μ moving in three
dimensions. (As we discussed in Section 14.2, this may in fact represent a relative position
degree of freedom of a system of two or more particles, in which case μ is the reduced
mass.) For a stationary state with energy E, the wave function ψ(	r ) must satisfy

− �2

2μ
∇2ψ + U(	r)ψ = Eψ . (Re 11.28)

We wish to find the possible eigenvalues E and the corresponding wave functions ψ for
a given potential function U( 	r ). In fact, our focus will be even narrower, in two important
respects. First, we will consider only bound stationary states, which are normalizable.
Second, we will assume that the potential is a central potential U(r) that depends only
on the distance r from the coordinate origin. Even in such a restricted context, solving
Eq. 11.28 is a matter of considerable physical interest!

Since the potential energy function depends only on r, it makes sense to do our analysis in
spherical coordinates (r, θ , φ), as defined in Eq. 12.21 and 12.22.1 In spherical coordinates,
the Laplacian operator is

∇2ψ = 1
r2

∂

∂r

(
r2 ∂ψ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

r2 sin2 θ

∂2ψ

∂φ2 . (16.1)

Exercise 16.1 From the definition of the Laplacian in Cartesian coordinates (Eq. 11.27)
and the partial derivatives in Eq. 12.23, derive Eq. 16.1.

We recognize part of this as the position representation of the orbital angular momentum
operator L2:

L2 : ψ →−�2

(
1

sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+ 1

sin2 θ

∂2ψ

∂φ2

)
. (Re 12.28)

We can draw the following conclusions:

1 This is an excellent time to review the discussion of spherical coordinates and orbital angular momentum in
Section 12.2.
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• For a central potential U(r), the Hamiltonian of the particle in the position representation
depends only on the angular coordinates θ and φ via the orbital angular momentum
operator L2.

• Both L2 and Lz, which depend only on the angular coordinates, commute with the
Hamiltonian for the particle. Thus, we can find energy eigenstates that are also eigenstates
of these angular momentum operators.

This simplifies our problem considerably. In Section 12.2 we established that the eigen-
states of L2 and Lz have wave functions of the form R(r) Ylm(θ , φ), where Ylm is a spherical
harmonic function. Given a function of this form, Eq. 11.28 becomes an equation for the
radial function R(r):

− �2

2μ

[
1
r2

d
dr

(
r2 dR

dr

)
− l(l + 1)

r2 R
]
+ U(r)R = ER. (16.2)

Solving this ordinary differential equation will yield the stationary state wave functions
and associated energy eigenvalues.

Exercise 16.2 What happened to the spherical harmonic Ylm(θ , φ) in Eq. 16.2?

What can we say about the functions R(r) and the energies E that solve Eq. 16.2? Both
may depend on the L2 quantum number l, which appears in the equation. However, the Lz
quantum number m does not appear in the equation, so we conclude that neither R(r) nor
E depends on m. For a given l, there may be many possible solutions to Eq. 16.2, which
we can designate by a third radial quantum number n. The energy eigenstates |nlm〉 have
wave functions

〈r, θ , φ |nlm 〉 = ψnlm(r, θ , φ) = Rnl(r) Ylm(θ , φ), (16.3)

and energies Enl (independent of m). The radial equation becomes

1
r2

d
dr

(
r2 dRnl

dr

)
+ 2μ

�2

(
Enl − U(r)− l(l + 1)�2

2μr2

)
Rnl = 0. (16.4)

We can simplify this even further. First, we note that the term
l(l + 1)�2

2μr2 , though derived

from the kinetic energy term in the Hamiltonian, formally appears like an l-dependent term
in the potential energy. A potential of this form would provide a force pushing away from
the origin, so that we call it the centrifugal term. We define the effective potential Ueff(r) to
be the sum of the real potential energy and the centrifugal term:

Ueff(r) = U(r)+ l(l + 1)�2

2μr2 , (16.5)

(see Fig. 16.1). Rather than working with the function Rnl(r) directly, it is sometimes easier
to consider unl(r) = rRnl(r). This simplifies the derivatives somewhat.
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Fig. 16.1 The effective potential is the sum of U(r) and the centrifugal term, which depends on the angular
momentum quantum number l. For l > 0 there is an infinite “centrifugal barrier” at r = 0.

Exercise 16.3 Show that
1
r2

d
dr

(
r2 dRnl

dr

)
= 1

r
d2unl

dr2 .

We arrive at the equation

d2unl

dr2 + 2μ

�2 (Enl − Ueff(r)) unl = 0. (16.6)

This is exactly the same as the energy eigenvalue equation for a 1-D particle moving in the
effective potential Ueff. (Compare it with Eq. 11.17 and 15.4.)

What boundary conditions does the function unl satisfy? The wave function is bounded
at the origin, so we know that unl(r) → 0 as r → 0. As far as the function unl is concerned,
there is an impenetrable “wall” at r = 0. The boundary condition as r → ∞ requires
slightly more thought. Since the bound state is normalized,∫∫∫

|ψnlm|2 dV =
∫∫∫

|Rnl|2 |Ylm|2 r2 sin θ dφ dθ dr = 1, (16.7)

where the integration includes all of 3-D space. The angular integrals are done by
recognizing that the spherical harmonics have the normalization∫ 2π

0
dφ

∫ π

0
sin θ dθ |Ylm|2 = 1. (16.8)

Thus, our wave function normalization becomes∫ ∞

0
|Rnl|2 r2dr =

∫ ∞

0
|unl|2 dr = 1. (16.9)

We conclude from this that unl(r) → 0 as r →∞.
Because there are boundary conditions on unl in both directions, we expect the spectrum

of possible energy eigenvalues Enl to be discrete. See the discussion in Section 15.2.
We conclude our general discussion with a bit of nomenclature borrowed from atomic

physics. The values l = 0, 1, 2, 3, . . . for the L2 quantum number may be denoted by the
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letters S, P, D, F, etc. A state with l = 0 is called an S-state, one with l = 1 is called a
P-state, and so on.

The S-states of a particle in a central potential are special in a couple of ways. First of
all, since the spherical harmonic Y00 is a constant, these states have radially symmetric
wave functions. Also, the effective potential Ueff(r) for an S-state has no centrifugal term.
Because such a term can only increase the energy of a state, it follows that the ground state
of a particle in a central potential is always an S-state.

Exercise 16.4 Prove the last assertion by showing that, for any energy eigenstate having
l �= 0, there is an S-state with a lower expectation value 〈E〉 for its energy.

16.2 The isotropic oscillator

When exploring a new set of ideas, it is often useful to apply those ideas to a problem for
which the answer is already known. For a particle moving in a central potential, we have a
perfect example: the isotropic harmonic oscillator. In the isotropic oscillator, the potential
energy function is

U( 	r ) = μω2

2
r2 = μω2

2

(
x2 + y2 + z2

)
. (16.10)

This is at the same time both a central potential and a potential of the form Ux(x) +
Uy(y) + Uz(z). The three Cartesian coordinates are non-interacting degrees of freedom,
each of which is a 1-D harmonic oscillator with classical frequency ω. We can construct
independent ladder operators ax, ay, and az, with corresponding number operators

nx = a†
xax, ny = a†

yay, nz = a†
z az. (16.11)

The Hamiltonian for the system is

H = �ω

(
nx + 1

2
1
)
+ �ω

(
ny + 1

2
1
)
+ �ω

(
nz + 1

2
1
)

. (16.12)

The stationary states for this system are eigenstates of the total number operator N =
nx + ny + nz. This operator has eigenvalues N = 0, 1, 2, . . .

There is some degeneracy in this system, of course. We can give a specific basis
of stationary states by choosing the joint eigenstates

∣∣nx, ny, nz
〉

of the three Cartesian
coordinate number operators. Then

H
∣∣nx, ny, nz

〉 = (
N + 3

2

)
�ω

∣∣nx, ny, nz
〉
, (16.13)

where N = nx+ny+nz. The degeneracies associated with the various energy levels – that is,
the dimensions of the eigenspaces associated with each energy – can be worked out simply
by enumerating the (nx, ny, nz) combinations for each given N . For N = 0, 1, 2, 3, . . . the
corresponding degeneracies are 1, 3, 6, 10, . . .

Exercise 16.5 Confirm these results and find the degeneracy for N = 4.
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So much for the Cartesian analysis. The isotropic oscillator is also a central potential,
so that we should be able to find energy eigenstates that are also eigenstates of the angular
momentum operators L2 and Lz. The eigenstates can be labeled |nlm〉, where n is a radial
quantum number and l and m are angular momentum quantum numbers. Our previous
analysis immediately yields the following facts:

• L2 |nlm〉 = l(l + 1)�2 |nlm〉, and Lz |nlm〉 = m� |nlm〉.
• The energy of the state |nlm〉 is Enl, which depends only on n and l. Since we already

know from Eq. 16.13 that the energy is determined by the total quantum number N , we
infer that this N is a function of n and l.

• The energy is not dependent on the Lz quantum number m. This leads to some degeneracy
in the energy levels. There may also be additional degeneracy – that is, distinct values
of n and l might yield the same Enl.

• The state |nlm〉 will have a wave function of the form Rnl(r) Ylm(θ , φ), where the radial
function Rnl is a solution to the radial equation, Eq. 16.4.

We could now proceed by solving this radial differential equation (Eq. 16.4) directly. In
fact, we will follow exactly this strategy for the Coulomb potential in the next section. This
time, however, it is more interesting to approach the problem algebraically.

The Cartesian coordinates and momenta can be written in terms of the corresponding
ladder operators. Thus,

x =
√

�

2μω

(
ax + a†

x

)
and px = −i

√
�μω

2

(
ax − a†

x

)
, (16.14)

with similar expressions for the other two coordinates.

Exercise 16.6 Derive Eq. 16.14 from the analysis of the harmonic oscillator in Section 13.2.

The components of the angular momentum are Lx = ypz − zpy, etc. We can therefore write
the angular momentum operators in terms of the Cartesian ladder operators.

Exercise 16.7 Use Eq. 16.14 (and the corresponding relations for the other coordinates)
to show

Lx = i�
(
aya†

z − a†
yaz

)
,

Ly = i�
(
aza†

x − a†
z ax

)
,

Lz = i�
(
axa†

y − a†
xay

)
. (16.15)

From these, we could work out a lengthy expression for L2. But it is easier to postpone the
algebra for a bit. We first establish two useful elementary facts about ladder operators.

Exercise 16.8 Suppose a and a† are the ladder operators for an oscillator, and n = a†a is
the corresponding number operator. From the commutation relation [a, a†] = 1, show that
(a) [a2, a†] = 2a; and (b)

(
a†
)2

a2 = n2 − n.
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Next, we define a radial ladder operator A by

A = a2
x + a2

y + a2
z . (16.16)

Why define A in this way? Intuitively, the Cartesian ladder operators appear in a
“Pythagorean” way in this definition. More crucially, this operator commutes with all
of the angular momentum components:

[Lx, A] = [Ly, A] = [Lz, A] = 0. (16.17)

Exercise 16.9 Choose one of these commutators and confirm that it is zero.

It follows that [L2, A] = 0 as well. The operator A has a definite effect on the energy –
or, equivalently, on the total quantum number N . Suppose |ψ〉 is an eigenstate of N with
eigenvalue N . Then A |ψ〉 and A† |ψ〉 are also N-eigenstates.

NA |ψ〉 = (N − 2)A |ψ〉 and NA† |ψ〉 = (N + 2)A† |ψ〉 . (16.18)

We can see this in two distinct ways. The first would begin by calculating the commutator
[N, A] = −2A, and then proceed from there. The second way to see this is simply to note
that A involves squares of the Cartesian ladder operators. Thus, every term in A has the
effect of changing the sum N = nx + ny + nz by exactly −2. The opposite is of course true
for A† .

Now we can derive a compact expression for L2. We leave the detailed algebra for
Problem 16.4, and here simply state the final result:

L2 = �2
(
N(N+ 1)− A†A

)
. (16.19)

It is now straightforward to construct the states |nlm〉. For each choice of l and m, there is
a “ladder” of states |0lm〉, |1lm〉, |2lm〉, and so on. Each state is an eigenstate of N (and
thus the total energy) with eigenvalue N . Adjacent rungs of each ladder are connected by
the A and A† operators. The bottom “rung” of each ladder is defined by A |0lm〉 = 0. What
is the value of N for this state? We find that

L2 |0lm〉 = �2N(N+ 1) |0lm〉 − �2A†A |0lm〉 ,

l(l + 1)�2 |0lm〉 = N(N + 1)�2 |0lm〉 . (16.20)

It follows that, for the bottom rung state, N = l. By applying A† (and normalizing as
necessary) we obtain |1lm〉, |2lm〉 and so on. Each time we apply A†, we increase N by 2.
Thus N = 2n+ l, and the energy is

Enl =
(

N + 3
2

)
�ω =

(
2n+ l + 3

2

)
�ω. (16.21)

How does the overall pattern of energy levels, including degeneracy, compare with the
pattern we found using Cartesian coordinates? Figure 16.2 shows the arrangement. There
is a “ladder” of different values of n for each l, and each rung of this ladder corresponds to
2l+ 1 degenerate basis states differing in m. These are arranged according to the quantum
number N = 2n+l. Thus, states on the same horizontal line (same N) have the same energy.
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Fig. 16.2 Energy levels
∣∣nlm

〉
of the isotropic oscillator in 3-D, showing the degeneracy for each combination

of n and l. At the right are the degeneracies for each N = 2n + 1.

The total degeneracy for each N-value is exactly as we found in the Cartesian analysis.
(The eigenstates |nlm〉 are, however, generally superpositions of the various Cartesian∣∣nx, ny, nz

〉
states. Some of the details are worked out in Problem 16.5.)

16.3 Hydrogen

In the hydrogen atom, a single electron of charge −e moves around a nucleus (generally a
proton), bound by the Coulomb attraction between them. Generalizing slightly, we consider
a nucleus of arbitrary charge +Ze, where Z is the atomic number.2 The potential energy
function of the system is

U(r) = −kZe2

r
, (16.22)

where r is the distance between the nucleus and the electron (the magnitude of the relative
position vector) and the Coulomb constant is k = 8.99 × 109 N m2/C2. What are the
stationary bound states and the corresponding energies for this system?

Note that U(r) < 0, with U(r) → 0 as r →∞. Thus, the bound stationary states will be
the energy eigenstates having E < 0. From our general analysis in Section 16.1, we know
that we can make sure the eigenstates are at the same time eigenstates of L2 and Lz. The
wave functions are of the form R(r)Ylm(θ , φ), where R(r) satisfies the radial equation

− �2

2μ

[
1
r2

d
dr

(
r2 dR

dr

)
− l(l + 1)

r2 R
]
+ U(r)R = ER, (Re 16.2)

2 Thus, our analysis will cover H atoms, He+ ions, Li++ ions, etc.
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where μ is the relative mass of the electron with respect to the nucleus, which is nearly
equal to the electron mass. This leads to

d2R
dr2 +

2
r

dR
dr
+ 2μ

�2

(
E + kZe2

r
− l(l + 1)�2

2μr2

)
R = 0. (16.23)

Since the energy is negative, E = − |E|.
To work with this equation, we employ a trick we previously used in our discussion of the

quantum circular billiard system in Section 11.5. We use combinations of the parameters
in Eq. 16.23 to construct a dimensionless radial coordinate ρ:

ρ = α r =
√

8μ |E|
�2 r. (16.24)

Equation 16.23 can now be rewritten

d2R
dρ2 +

2
ρ

dR
dρ

− l(l + 1)

ρ2 R+
(

λ

ρ
− 1

4

)
R = 0, (16.25)

where the dimensionless parameter λ is

λ = kZe2

�

√
μ

2 |E| . (16.26)

Exercise 16.10 Confirm that the coordinate ρ and the parameter λ are both dimensionless.
Then verify Eq. 16.25.

Equation 16.25 has two “kinetic” terms involving derivatives of R and three “potential”
terms. To learn more about its solutions, we will consider how they behave when the
coordinate ρ is very small or very large.

First, suppose that ρ � 1. Then the centrifugal potential term will dominate (provided
l > 0) and the other two will be negligible. If we suppose that the solution is given by a
power series R =

∑
n

cnρ
n, then the first non-zero term csρ

s also dominates. Then

d2R
dρ2 = s(s− 1)csρ

s−2,

2
ρ

dR
dρ

= 2scsρ
s−2,

l(l + 1)

ρ2 R = l(l + 1)csρ
s−2, (16.27)

and therefore

(s(s+ 1)− l(l + 1)) csρ
s−2 = 0. (16.28)

Either s = l or s = −(l+ 1). The second possibility, however, would mean that R diverges
as ρ → 0, so we exclude it. We conclude that R ∝ ρl close to the origin.3

3 This is a pretty general fact, and should hold whenever the potential V (r) is “less singular” than 1/ρ2.
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Next, consider what happens when ρ → ∞. Then the only non-negligible terms from
Eq. 16.25 yield

d2R
dρ2 −

1
4

R = 0. (16.29)

The independent solutions of this equations are exp(ρ/2) and exp(−ρ/2). The first solution
cannot apply, because for a bound state we must have R → 0 as ρ →∞.

All of this motivates us to write the general solution in the form

R = ρl f (ρ) exp
(
−ρ

2

)
, (16.30)

where f (ρ) is an as-yet-undetermined function. Equation 16.25 becomes an equation for f .

Exercise 16.11 Show that Eq. 16.25 becomes

d2f
dρ2 +

(
2(l + 1)

ρ
− 1

)
df
dρ

+
(

λ− (l + 1)

ρ

)
f = 0. (16.31)

We solve this equation by letting f (ρ) =
∞∑

j=0

ajρ
j. Equation 16.31 implies a recursion

relation for the series coefficients aj:

aj+1 = j+ (l + 1)− λ

(j+ 1)(j+ 2(l + 1))
aj. (16.32)

Exercise 16.12 Check this. Along the way, you will do some “reindexing” of the sums.
For example, you have to rewrite the second derivative term

∞∑
j=0

j(j− 1) ajρ
j−2 as

∞∑
j=0

(j+ 1)j aj+1ρ
j−1. (16.33)

Explain why this is okay.

As k → ∞, both λ and l become negligible. Then aj+1 ≈ aj/j. But this is the same
asymptotic recursion relation for f (ρ) = exp(ρ). This looks like a serious problem, since it
would mean that R →∞ as ρ →∞, which is impossible for a normalized wave function.

The only way to avoid this unphysical disaster is to posit that the series for f (ρ) terminates
at some point – that is, to insist that f (ρ) is a polynomial of finite degree. Then there exists
an integer j such that j + (l + 1) − λ = 0. This amounts to a restriction on the possible
values of λ, namely that λ = n, for some integer n ≥ l+1. We call n the principal quantum
number for the system, and then rewrite Eq. 16.26 as

n2 =
(

kZe2

�

)2
μ

2 |E| . (16.34)
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The bound state energy E = − |E| depends only on the principal quantum number n. We
can write

En = −
(

μk2Z2e4

2�2

)
1
n2 . (16.35)

The boundary condition that R → 0 as ρ →∞ forces the energy levels of the atom to be
quantized according to Eq. 16.35.

Exercise 16.13 For the actual hydrogen atom, Z = 1. Show that the constant factor in
Eq. 16.35 has a value of 13.6 eV. Write down the energies of the lowest five levels of the
atom, and sketch an energy-level diagram.

We can make things look a little simpler by defining a characteristic length, the Bohr radius
a, to be

a = �2

μkZe2 . (16.36)

Then the dimensionless radial coordinate is ρ = 2r/na and

En = −kZe2

2a
1
n2 . (16.37)

Let us summarize our results. In addition to angular momentum quantum numbers l
and m, the hydrogen wave function has a principal quantum number n. We can have
n = 1, 2, 3, . . . , and for a given value of n the angular momentum quantum number
l = 0, . . . , n− 1. As usual, m ranges over−l, . . . , l. The radial function Rnl depends on the
quantum numbers n and l, but not m. Thus, we will have R10, R20, R21, R30, and so on. The
energy eigenvalue of the state depends only on n, according to Eq. 16.35 (or 16.37). The
general form of the radial function is

Rnl = A
( r

a

)l (
polynomial in

( r
a

))
exp

(
− r

na

)
, (16.38)

where A is a normalization constant, a is the Bohr radius, and the polynomial
function4 has degree n− (l + 1).

We can obtain a good deal of qualitative information simply by inspecting Eq. 16.38.
The asymptotic (r → ∞) drop-off rate is determined by n, so that wave functions with
higher n decrease more slowly with r. On the other hand, the behavior of the wave
function near the origin is strongly influenced by l. For larger values of l, the wave
function is shifted outward, away from the origin. This makes excellent sense, because
a larger orbital angular momentum means a higher “centrifugal barrier” in the effective
potential.

4 These polynomials are well known in mathematical physics. For l = 0 they are the so-called Laguerre
polynomials, and for l > 0 they are the associated Laguerre polynomials.
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Here are the first few radial functions Rnl(r):

R10(r) = 2 a−3/2 exp(−r/a),

R20(r) = 1√
2

a−3/2
(

1− 1
2

( r
a

))
exp(−r/2a),

R21(r) = 1√
24

a−3/2
( r

a

)
exp(−r/2a),

R30(r) = 2√
27

a−3/2
(

1− 2
3

( r
a

)
+ 2

27

( r
a

)2
)

exp(−r/3a),

R31(r) = 8
27
√

6
a−3/2

( r
a

)(
1− 1

6

( r
a

))
exp(−r/3a),

R32(r) = 4
81
√

30
a−3/2

( r
a

)2
exp(−r/3a), (16.39)

where a is the Bohr radius from Eq. 16.36.

Exercise 16.14 Compare the radial functions in Eq. 16.39 to the general form in Eq. 16.38
and identify each of the parts.

Exercise 16.15 Why is there a factor of a−3/2 in each Rnl(r). Hint: What are the units of
the wave function?

Exercise 16.16 Show that the radial function R20 is properly normalized.

Given the hydrogen stationary state wave functions Rnl(r)Ylm(θ , φ), we can compute
various useful expectation values directly. However, many of these expectations can be
found by other techniques, as we will now discuss.

16.4 Some expectations

Recall Eq. 16.6 for the radial function unl(r) = rRnl(r), which we repeat here in a slightly
modified form:

− �2

2μ

d2unl

dr2 + Ueff(r)unl = Enlunl. (16.40)

As we saw, this is exactly the energy eigenvalue equation for a 1-D particle of mass μ

moving in the potential Ueff(r), which for the hydrogen atom is

Ueff(r) = −kZe2

r
+ l(l + 1)�2

2μr2 , (16.41)

(see Eq. 16.5). The energy eigenvalues Enl are given by Eq. 16.35.
Let |unl〉 be the energy eigenstate of this equivalent 1-D problem. We can now apply the

results of Section 15.7 to find certain expectation values for the hydrogen wave functions.
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For instance, we can apply the Feynman–Hellmann theorem of Eq. 15.73 to the parameter
Z and obtain

〈unl|
(
−ke2

r

)
|unl〉 = −

(
μk2Ze4

�2

)
1
n2 , (16.42)

which in turn tells us that 〈
1
r

〉
=
(

μkZe2

�2

)
1
n2 =

1
n2a

. (16.43)

Exercise 16.17 Apply the Feynman–Hellmann theorem to the mass parameter μ and obtain
an expression for the average kinetic energy 〈K〉. (Remember, the physical kinetic energy
includes one of the terms in the effective 1-D potential.)

We must apply the Feynman–Hellmann theorem with some care. For example, the
angular momentum quantum number l appears as a parameter in Eq. 16.40. Applying the
theorem to this parameter should yield an expectation value for

〈
1/r2〉. However, the energy

Enl is apparently independent of l, so we are tempted to conclude that
〈
1/r2〉 = 0 – a plainly

absurd result. What has gone wrong?
The answer is subtle. When we solved the radial equation for the hydrogen atom, we

found there must be an integer j (the degree of a polynomial) such that j + (l + 1) = λ, a
dimensionless parameter related to the energy (defined in Eq. 16.26). The principal quantum
number was the combination n = j+ (l+ 1). If we now vary the l parameter continuously,
the integer j remains unchanged, but not the combination n. Thus

dE
dl
= −kZe2

2a
d
dl

(
1
n2

)
= kZe2

a
1
n3 . (16.44)

Exercise 16.18 Verify this result. Then use it to show that〈
1
r2

〉
= 2

a2
1

(2l + 1)n3 , (16.45)

for a stationary state of the hydrogen atom.

These results can be extended in various ways. For example, suppose we wish to find
the expectation

〈
p4〉 for the |nlm〉 state of the hydrogen atom. At first, this seems very

challenging. However, we can write this as

p4 =
(
p2
)2 = 4μ2 (H− U(r))2 , (16.46)

with the Hamiltonian H.

Exercise 16.19 Show that for the state |nlm〉,〈
p4
〉
= 4μ2

(
E2

n + 2kZe2En

〈
1
r

〉
+ k2Z2e4

〈
1
r2

〉)
, (16.47)

where En is given by Eq. 16.37. Do the algebra and write
〈
p4〉 in terms of physical constants

and the quantum numbers n and l.
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Finally, we mention an extremely useful fact about the |nlm〉 states, called Kramer’s
rule, which relates the expectations

〈
rk 〉 for various integers k. The derivation of the rule is

somewhat involved, so we will merely state the rule here without giving its proof.

k + 1
n2

〈
rk
〉
− (2k + 1)a

〈
rk−1

〉
+ k

4

(
(2l + 1)2 − k2

)
a2

〈
rk−2

〉
= 0. (16.48)

Exercise 16.20 Verify Kramer’s rule for k = 0.

Problems

Problem 16.1 A free particle of mass μ moves in a spherical box of radius R. The wave
function ψ = 0 for all r ≥ R, but within the box its potential is U = 0. Find the ground
state energy of this particle.

Problem 16.2 A particle moves in three dimensions subject to a delta function potential
U( 	r ) = −ε δ3( 	r ). This is a radially symmetric potential, so its ground state should be an
S state. Find the ground state and its energy. Are there any other bound states?

Problem 16.3 In this problem we adapt the variational method of Section 15.6 to finding
the lowest-energy solutions of the radial equation (Eq. 16.6), which we interpret as the
energy eigenvalue equation for a particle moving in one dimension subject to the effective
potential Ueff(r). Since the radial function R(r) = u(r)/r ∝ rl as r → 0, we choose the test
function

uα(r) = Aαrl+1e−αr, (16.49)

for r ≥ 0. We will consider only the cases l = 0, 1, 2.

(a) For each l, find Aα so that u(r) is properly normalized.
(b) Calculate the expectation values for the kinetic and centrifugal terms in the equivalent

1-D Hamiltonian.
(c) Suppose the actual potential U(r) = kr2/2, the isotropic oscillator potential. Use the

variational method to estimate the minimum energies for S, P, and D states. Compare
your results to the exact oscillator energies.

(d) Do the same for the hydrogen atom potential. (The l = 0 result is actually correct.
Why?)

Problem 16.4 For the isotropic oscillator, show that the angular momentum operator L2 is
given by

L2 = �2
(
N(N+ 1)− A†A

)
, (Re 16.19)

where N and A are as defined in Section 16.2.

Problem 16.5 The isotropic oscillator has radial energy eigenstates |nlm〉 which can be
written in terms of Cartesian energy eigenstates

∣∣nx, ny, nz
〉
.
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(a) Write the three radial states |01m〉 as superpositions of the Cartesian states |1, 0, 0〉,
|0, 1, 0〉, and |0, 0, 1〉.

(b) Write the radial states |10m〉 and |02m〉 as superpositions of Cartesian basis states.

Problem 16.6 The size of the atomic nucleus is of the order of 10−4 times the Bohr radius
a, which is why we can regard it as a point charge in our analysis. Nuclear interactions only
take place over very short ranges.

Some unstable nuclei decay by electron capture, in which an orbital electron is absorbed
by the nucleus, transforming a proton into a neutron. (A neutrino is emitted in this process.)
The captured electron essentially always comes from a 1S orbital state. Why?

Problem 16.7 Tritium (3H) is an unstable isotope of hydrogen, which can undergo beta
decay and become helium-3 (3He). The decay happens so fast that the wave function of the
orbiting electron is unchanged. However, an energy eigenstate for 3H (Z = 1) is not one
for 3He (Z = 2). Suppose the electron is in its ground state in the tritium atom immediately
before the decay. Calculate the probability that it will be found in the ground state of the
helium atom immediately afterwards.

Problem 16.8 Use Kramer’s rule to find 〈r〉 for the |nlm〉 state of hydrogen. Check the
result for the |210〉 state by doing the appropriate integral.



17 Perturbation theory

17.1 Shifting the energy levels

In physics, it often happens that the problem we wish to solve is close to – but not quite
the same as – a problem we actually can solve. For example, for motions close to a stable
equilibrium point, a classical 1-D particle can usually be regarded as a harmonic oscillator,
because the potential function U(x) is approximately a parabola near its minimum. This fact
accounts for the very great importance of the harmonic oscillator in mechanics. The same
is true for a quantum particle.1 We can solve the classical and quantum harmonic oscillator
problems very well by now. Yet most real potential functions are only approximately
parabolic around an equilibrium point. How can we make our analysis more exact?

The general strategy for this type of quantum problem is known as perturbation theory.
We imagine that the Hamiltonian is composed of two parts, an “unperturbed” part H0
and a perturbation HP, both of which are independent of time. (We are therefore doing
time-independent perturbation theory.) That is,

H = H0 + HP. (17.1)

For the harmonic oscillator example, H0 is the exact harmonic oscillator Hamiltonian, and
HP is the small difference between the real potential U and the local parabolic approxi-
mation. We assume that we know the stationary states |n〉 and the corresponding energy
levels εn for the unperturbed Hamiltonian H0; for now, we shall suppose that these levels
are non-degenerate. Our job in time-independent perturbation theory is to approximate
the energy levels En and stationary states |ψn〉 for the full Hamiltonian H. In fact,
what we will do is develop a sequence of better and better approximations to the exact
answer, a sort of “power series” in the perturbation. If the perturbation is small, then we
may be able to make do with only the first couple of corrections to the unperturbed εn
and |n〉.

To see how this works, introduce a parameter λ and let

Hλ = H0 + λHP. (17.2)

1 True, with the following reservation. Unlike the classical oscillator, the quantum harmonic oscillator has a
natural length scale

√
�/μω. Even the ground state is spread out over a region of this size. The harmonic

oscillator approximation will only make sense in the quantum case if the potential is nearly parabolic over an
interval wider than this.
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For the unperturbed situation, λ = 0, and for the situation of interest, λ = 1. The role of the
parameter λ is to smoothly interpolate between these.2 The Hamiltonian, stationary states
and energy eigenvalues all become functions of λ and satisfy

(H0 + λHP) |ψn(λ)〉 = En(λ) |ψn(λ)〉 , (17.3)

for all λ. We can express the states |ψn(λ)〉 in terms of the unperturbed |n〉 basis:

|ψn(λ)〉 = |n〉 +
∑
k �=n

ckn(λ) |k〉 , (17.4)

where ckn(λ) = 〈k |ψn(λ) 〉. For algebraic convenience, we have chosen not to normalize
the vector |ψn(λ)〉, but it nevertheless is a solution to Eq. 17.3. Now write En(λ) and the
coefficients ckn(λ) as power series in λ:

ckn(λ) = λ c(1)
kn + λ2c(2)

kn + . . . ,

En(λ) = E(0)
n + λE(1)

n + λ2E(2)
n + . . . (17.5)

For λ = 1, this reduces to ckn = c(1)
kn + c(2)

kn + . . . and En = E(0)
n + E(1)

n + E(2)
n + . . .

Exercise 17.1 Why did we not include a λ0 term in the power series for ckn(λ)?

Equation 17.3 becomes

(H0 + λHP)
(
|n〉 + λ c(1)

kn + . . .
)
=
(

E(0)
n + λE(1)

n + . . .
) (

|n〉 + λ c(1)
kn + . . .

)
. (17.6)

Each side of Eq. 17.6 is a function of λ expressed as a power series. For two power series
to be equal, the terms involving corresponding powers of λ must be equal. The O

(
λ0)

terms in Eq. 17.6 yield the relation

H0 |n〉 = E(0)
n |n〉 . (17.7)

This holds provided that we identify the zeroth-order energy term E(0)
n = εn, the unperturbed

energy.
The first-order (O

(
λ1)) terms give us

H0
∑
k �=n

c(1)
kn |k〉 + HP |n〉 = E(1)

n |n〉 + E(0)
n

∑
k �=n

c(1)
kn |k〉 . (17.8)

Recalling that E(0)
n = εn and H0 |k〉 = εk |k〉, we arrive at the following:

HP |n〉 = E(1)
n |n〉 +

∑
k �=n

(εn − εk) c(1)
kn |k〉 . (17.9)

Equation 17.9 tells us a great deal. For instance, suppose we act on both sides of this
equation with the dual vector 〈n| . Since 〈n |k 〉 = 0 for k �= n, we find

E(1)
n = 〈n|HP |n〉 . (17.10)

2 The λ parameter also serves as a “marker” for the perturbation HP. Wherever a factor of λ appears in an
expression involving Hλ, the operator HP also appears. Counting “powers of λ” amounts to counting powers of
the perturbation HP.
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The first-order energy correction E(1)
n is just the expectation of HP for the unperturbed

eigenstate. This is a very useful result – one that may, in fact, seem somewhat familiar:

Exercise 17.2 Discuss the connection between Eq. 17.10 and the Feynman–Hellmann
theorem of Section 15.7.

What about the first-order correction to the state vector?

Exercise 17.3 From Eq. 17.9 show that

c(1)
kn = 〈k|HP |n〉

εn − εk
, (17.11)

for k �= n.

We notice, first of all, that this depends on our assumption that the unperturbed energy
spectrum is non-degenerate, i.e. that εn �= εk for k �= n. Second, it is worth noting a fact
about the normalization of this state.

Exercise 17.4 Show that the vector |n〉 + λ
∑
k �=n

c(1)
kn |k〉 is in fact normalized, if we ignore

terms that are O
(
λ2) and higher. What constant factor would normalize this vector exactly?

Equations 17.10 and 17.11 describe the first-order effects of the perturbation HP on the
energy and stationary state. We can write

En ≈ εn + 〈n|HP |n〉 ,

|ψn〉 ≈ |n〉 +
∑
k �=n

〈k|HP |n〉
εn − εk

|k〉 , (17.12)

to first order in the perturbation HP.

Exercise 17.5 This is the world’s easiest perturbation theory problem. Let HP = η1. Show
that the first-order energy correction is E(1)

n = η, while the first-order state correction
is exactly zero. Explain why this result makes intuitive sense. What do you expect for
higher-order terms?

Can we go further? We can, and sometimes we must. It often happens that, because of
symmetry, the first-order energy corrections E(1)

n vanish. The first non-zero change in the
energy levels will be the second-order correction E(2)

n . This arises from the λ2 terms in
Eq. 17.6: ∑

k �=n
c(2)

kn E(0)
k |k〉 +

∑
k �=n

c(1)
kn HP |k〉

= E(0)
n

∑
k �=n

c(2)
kn |k〉 + E(1)

n
∑
k �=n

c(1)
kn |k〉 + E(2)

n |n〉 . (17.13)

Exercise 17.6 Apply 〈n| to Eq. 17.13 and show that

E(2)
n =

∑
k �=n

∣∣∣〈k|HP |n〉
∣∣∣2

εn − εk
. (17.14)
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We can continue the perturbation expansion by identifying higher-order terms in Eq. 17.6.
The next-order state and energy terms are worked out in Problem 17.1.

Equation 17.14, which can sometimes be the lowest-order non-zero shift in the energy
levels, has some interesting features. For example:

Exercise 17.7 Show that E(2)
0 is never positive for the ground state |ψ0〉. That is, this

correction never increases the ground state energy.

Because of the denominator εn − εk in Eq. 17.14, the contribution to E(2)
n will be larger

for nearby energy levels. Furthermore, these energy levels tend to “repel” one another.
Consider |m〉 and |n〉 such that 〈m|HP |n〉 �= 0, and suppose that εm < εn. Then

• E(2)
m contains a negative term

∣∣∣〈m|HP |m〉
∣∣∣2 /(εm − εn), while

• E(2)
n contains a positive term

∣∣∣〈n|HP |n〉
∣∣∣2 /(εn − εm).

These terms tend to move the m and n levels apart (though of course other terms may
counteract this effect).

17.2 Dealing with degeneracy

In our analysis so far, we have relied on the assumption that the spectrum of the unperturbed
Hamiltonian H0 is non-degenerate. The trouble that degeneracy causes can be appreciated
through a very simple example. Suppose that our quantum system is a qubit, and that
the unperturbed Hamiltonian is zero: H0 = 0. Every qubit state is an eigenstate of this
Hamiltonian with energy ε = 0. We choose the standard basis states |0〉 and |1〉 to serve
as our eigenbasis.

Now the system is perturbed by HP = ηX, where X is the Pauli operator. Because
〈0| X |0〉 = 〈1| X |1〉 = 0, it appears that there are no first-order changes in the energies.
But this is not right! The total Hamiltonian is ηX, which has eigenvalues ±η. These are
non-zero to first-order in the size of the perturbation. Where did we go wrong?

The problem becomes obvious when we try to calculate the first-order change in the
states. For instance, the quantity

c(1)
10 =

〈1| ηX |0〉
ε0 − ε1

= η

ε0 − ε1
, (17.15)

is infinite. Our first-order equation (Eq. 17.9) does not make sense.
The unperturbed system was degenerate, so we had some freedom of choice in specifying

the unperturbed eigenbasis. We picked the standard { |0〉 , |1〉} basis. But this was a poor
choice! To have any hope of avoiding infinities, we need to choose our unperturbed basis
states so that 〈k|HP |n〉 = 0 whenever εn = εk . Then the offending terms will not appear in
Eq. 17.9.

How can we do this? The general answer is fairly involved; here we will describe
how things work out in two common situations. First, it could be that the unperturbed
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Hamiltonian and the perturbation actually commute with each other:

[H0, HP] = 0. (17.16)

Then our course of action is clear. We choose our H0 eigenstates so that they are also HP

eigenstates. In our qubit example with the ηX perturbation, this means we choose to use
the |±〉 basis. The degeneracy of the |±〉 states is “lifted” by the perturbation, so that

E(1)
± = 〈±| ηX |±〉 = ±η, (17.17)

as expected. The degeneracy of the unperturbed situation is due to a symmetry – a kind
of rotational symmetry in this case – that is “broken” by the perturbation. We choose our
unperturbed basis states with this broken symmetry in mind.

Let us consider a more general situation, but suppose that the spectrum of H0 has
a two-fold degeneracy. That is, there is a two-dimensional H0 eigenspace spanned by
states |a〉 and |b〉 for which εa = εb = ε. Consider the matrix

W =
(

Waa Wab
Wba Wbb

)
=
(
〈a|HP |a〉 〈a|HP |b〉
〈b|HP |a〉 〈b|HP |b〉

)
. (17.18)

(This is a submatrix of a matrix representation of HP.) If the |a〉 and |b〉 basis states are
the “right” ones, then W is diagonal, and the diagonal elements are the first-order energy
corrections Waa = E(1)

a and Wbb = E(1)
b .

But what if the basis we chose happens to be a “wrong” one? It is still true that the
first-order energy corrections are the eigenvalues of the matrix W. We can find these by
solving the characteristic equation:

0 = det
(

Waa − E(1) Wab
Wba Wbb − E(1)

)

= (Waa − E(1))(Wbb − E(1))−WabWba. (17.19)

The quadratic formula gives us the two first-order energy corrections:

E(1)
± = 1

2

(
Waa +Wbb ±

√
(Waa +Wbb)2 + 4 |Wab|2

)
. (17.20)

Problems 17.6 and 17.7 explore these ideas in a simple situation with two-fold degeneracy.

17.3 Perturbing the dynamics

Once again, we suppose our unperturbed Hamiltonian H0 is independent of time and has
eigenstates |n〉 with energies εn. Now, however, the perturbation HP is not assumed to
be time-independent. Since the total Hamiltonian may now be varying with time, it may
not have stationary states and fixed energy levels. In this situation, we will seek to find
out how the perturbation affects the time evolution of quantum states of the system. The
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perturbation may induce transitions between the unperturbed eigenstates |n〉 – states that
would be entirely stationary in the absence of HP(t). Determining which transitions are
possible and calculating their likelihood is the domain of time-dependent perturbation
theory.

Time evolution is easy to work out in the unperturbed situation. We can write

|ψ(t)〉 =
∑

k
ak e−iεk t/� |k〉 , (17.21)

where the coefficients ak do not depend on time. All of the time-dependence of the state
lies in the evolving phase factors e−iεk t/�.

Exercise 17.8 Show that |ψ(t)〉 in Eq. 17.21 satisfies the Schrödinger equation

i�
d
dt
|ψ(t)〉 = H0 |ψ(t)〉 . (17.22)

Also show that ak = 〈k |ψ(0) 〉.
To restate a point we have made before, a knowledge of the system’s stationary states |n〉
and energy levels εn will suffice to describe the system’s time evolution.

Now we include the effect of the perturbation HP(t), which might vary with time. As
before, we introduce the interpolation parameter λ, so that we are in fact considering the
one-parameter family of Hamiltonians of the form Hλ = H0 + λHP(t). For any λ, we can
still describe the time evolution of a state |ψ(t)〉 using the |k〉 basis states, as in Eq. 17.21.
However, the coefficients ak are now functions of time:

|ψ(t)〉 =
∑

k
ak(t) e−iεk t/� |k〉 . (17.23)

To figure out the time evolution of the state, we need to know how the coefficients ak(t)
evolve under the action of the perturbed Hamiltonian. This is determined by the Schrödinger
equation:

i�
d
dt
|ψ(t)〉 = (H0 + λHP(t)) |ψ(t)〉 . (17.24)

Substituting Eq. 17.23 into this equation, we obtain∑
k

e−iεk t/�
(

i�
dak
dt

+ εkak
)
|k〉 =

∑
k

e−iεk t/� (εkak + λakHP) |k〉 . (17.25)

Now we apply eiεnt/� 〈n| to arrive at a governing differential equation for an(t):

i�
dan
dt

= λ
∑

k
ei(εn−εk)t/� ak(t) 〈n|HP(t) |k〉 . (17.26)

The coefficient an(t) depends on the parameter λ. We write it as a power series:

an(t) = a(0)
n (t)+ λ a(1)

n (t)+ λ2a(2)
n (t)+ . . . (17.27)

As in the time-independent theory, λ = 0 represents the unperturbed situation and λ = 1 is
the actual situation of interest. If we substitute this into Eq. 17.26 and insist on equality of
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terms with like powers of λ, we arrive at a remarkably neat sequence of equations:

i�
da(0)

n
dt

= 0, (17.28)

i�
da(1)

n
dt

=
∑

k
ei(εn−εk)t/� a(0)

k (t) 〈n|HP(t) |k〉 , (17.29)

i�
da(2)

n
dt

=
∑

k
ei(εn−εk)t/� a(1)

k (t) 〈n|HP(t) |k〉 , (17.30)

and so on. Each higher-order term a(m+1)
k (t) is obtained by solving a differential equation

involving all of the previous a(m)
n (t)s together with the perturbation HP. In many situations,

it might suffice to include only the first couple of iterations of this process – the “first-order”
solution ak(t) ≈ a(0)

n (t)+ a(1)
n (t).

Let us focus on a specific type of problem. At t = 0, our quantum system is in the initial
state |i〉, one of the unperturbed stationary states. Therefore, ai(0) = 1 and ak(0) = 0 for
k �= i. We are interested in finding the amplitude an(t) that the system will be found in
another basis state |n〉 at a later time t > 0. The resulting transition probability P(i → n) =
|an(t)|2.

We do have the freedom to assign the initial conditions ak(0) as we wish among the
terms of various orders: a(m)

k (0). If there were no perturbation (λ = 0), then only the a(0)
k

terms would be present; and even in the perturbed case, it makes sense to include as much
as possible in the lowest-order terms. Thus, we adopt the following initial conditions:

• a(0)
i (0) = 1 and a(0)

k (0) = 0 for k �= i. (In short, a(0)
k (0) = δki.)

• a(m)
k (0) = 0 for all orders m ≥ 1.

Equation 17.28 tells us that the zeroth-order coefficients a(0)
k will all be constant over time.

Equation 17.29, applied to a(1)
n , tells us that

i�
da(1)

n
dt

= ei(εn−εi)t/� 〈n|HP(t) |i〉 . (17.31)

Exercise 17.9 In Eq. 17.29 there is a sum over basis states |k〉, but no such sum appears in
Eq. 17.31. Where did it go?

We can write down the solution to Eq. 17.31:

a(1)
n (t) = 1

i�

∫ t

0
ei(εn−εi)t′/� 〈n|HP(t′) |i〉 dt′. (17.32)

Since we are considering n �= i (so that a(0)
n = 0), this is the first-order transition amplitude

from |i〉 to |n〉.
A kicked oscillator. Consider a harmonic oscillator consisting of a particle of mass μ

moving in a harmonic potential with elastic constant k and frequency ω = √
k/μ. Initially,

the oscillator is in its ground state |0〉. At t = 0, the particle is subjected to an impulsive
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“kick” in the positive direction. We can describe this kick by the perturbation

HP(t) = −κδ(t)x. (17.33)

Exercise 17.10 Explain why Eq. 17.33 represents a “kick” of the type described. Show
that κ is the total impulse provided by the kick.

If we recall that the position operator x = √
�/2μω(a†+a), it is easy to evaluate Eq. 17.32:

Exercise 17.11 Show that for the kicked oscillator, all of the amplitudes a(1)
k are zero

except
a(1)

1 = iκ√
2�μω

. (17.34)

What is the first-order probability that the quantum oscillator is excited by the kick?

Now suppose the perturbation HP is constant over time, at least for t > 0. The first-order
transition amplitude from |i〉 to |n〉 is

a(1)
n (t) = 1

i�
〈n|HP |i〉

∫ t

0
ei(εn−εi)t′/� dt′

= 2
i�
〈n|HP |i〉 eiωnit/2

(
sin(ωnit)

ωni

)
, (17.35)

where ωni = (εn− εi)/�. The transition probability is
∣∣∣a(1)

n (t)
∣∣∣2. We will instead look more

closely at the mean transition rate w(i → n), which is the transition probability divided by
the time t:

w(i → n) = 4
�2

∣∣∣〈n|HP |i〉
∣∣∣2 ( sin2(ωnit)

ωni2t

)
. (17.36)

This expression leads us to several valuable insights.
First, the first-order transition rate is zero if the matrix element 〈n|HP |i〉 = 0. Such

processes are known as forbidden transitions. They can still occur, of course, due to
higher-order terms in the perturbation series. But if HP is small, the higher-order terms will
generally be smaller than first-order ones. Forbidden transitions will be substantially less
likely than unforbidden ones.

Next, consider the function sin2(ωt/2)/ω2t, where ω stands for ωni. A graph of this
function of ω is found in Fig. 17.1. The function is small unless |ωt| � 1. In our problem,
this means that the transition rate w(i → n) is suppressed if |εn − εi| t � �. What does
this mean? Unless the transition is very rapid (so that t is small), this function enforces
an approximate conservation of the unperturbed energy: the transition rate is negligible
unless εn ≈ εi.

Exercise 17.12 How is this connected to the time–energy uncertainty relation discussed in
Section 5.3?

As t increases, this function gets both narrower and higher. The area under the curve,
however, remains constant.
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Fig. 17.1 The function
sin2(ωt/2)

ω2t
.

Exercise 17.13 Show that ∫ +∞

−∞
sin2(ωt/2)

ω2t
dω = π

2
. (17.37)

(This is a difficult integral; the easiest way to evaluate it is to consider the function f (x) =
(sin x)/x, find its Fourier transform, and apply Parseval’s Theorem. See Appendix B.)

For a large value of t, we can regard this as an approximation of the delta function:

sin2(ωt/2)

ω2t
−→ π

2
δ(ω) = π�

2
δ(εn − εi). (17.38)

Thus, as t →∞,

w(i → n) = 2π

�

∣∣∣〈n|HP |i〉
∣∣∣2 δ(εn − εi). (17.39)

The delta function reflects the fact that energy is conserved in possible transitions.3

It often happens that the quantum system of interest has a great many states that are
degenerate or nearly degenerate in energy. We describe the spectrum of such a system by a
smooth density of states function ρ(ε). The number dN of distinct energy eigenstates in the
small energy range dε is dN = ρ(ε) dε. Discrete sums over energy levels can be regarded
as integrals: ∑

n

( · · · ) −→ ∫ ( · · · ) ρ(ε) dε. (17.40)

We are usually interested in the total transition rate W from |i〉 to any final state |n〉 in the

allowed narrow range of energies. This will be W =
∫

w ρ(ε) dε, where ε is the energy of

3 Since the total Hamiltonian H0 + HP is time-independent, the actual total energy is exactly conserved. The
energy we mean here is that due to the unperturbed Hamiltonian H0.
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the final state. If we let
∣∣∣〈n|HP |i〉

∣∣∣2 represent the average squared magnitude of the matrix
element for final states in the energy range, we obtain a total transition rate

W = 2π

�

∣∣∣〈n|HP |i〉
∣∣∣2 ρ(εi). (17.41)

Equation 17.41 is a simple result with a remarkably wide range of applications. Enrico
Fermi used it to great effect in nuclear and particle physics, so that it has become known as
Fermi’s golden rule.

We can also derive a useful variant of Eq. 17.41. Suppose that the states of our system
are characterized both by their energy ε and by other observable attributes, which we
collectively denote by α. A free particle in space, for example, has stationary states
characterized by the particle’s energy and its direction of motion. We can give a more
refined description of its spectrum by letting the density of states depend on both properties:
ρ(ε, α). The number of states dN in a small range of these variables is dN = ρ(ε, α) dε dα.
We are interested in the total transition rate to states |n〉 whose αn values lie in a narrow
range dα. This is

dW = 2π

�

∣∣∣〈n|HP |i〉
∣∣∣2 ρ(εi, αn) dα. (17.42)

(We have written dW as an infinitesimal to reflect the fact that only final states within dα

are to be counted.) This refined version of Fermi’s golden rule allows us to give a more
detailed description of the transitions of the system.

Equations 17.41 and 17.42 indicate that it will be useful to work out the density of states
ρ for various quantum systems. For example, a 1-D harmonic oscillator with frequency
ω has energy levels that are uniformly separated by �ω. An energy range dε (tiny on the
macroscopic scale, but large compared to the level spacing �ω) contains dN = dε/�ω

distinct levels. Thus, ρ(ε) has the constant value 1/�ω.

Exercise 17.14 Consider a free particle of mass μ moving in a 1-D box of length L. Show
that the density of states is

ρ(ε) = L
π�

√
μ

2ε
. (17.43)

Now let us consider a free particle of mass μ moving in 3-D. To simplify our calculation
somewhat, we will make the rather peculiar assumption that the 3-D space is periodic in each
Cartesian direction. That is, each (x, y, z) coordinate is in effect a circle of circumference L,
as described in Section 11.3. The wave function ψ(x, y, z) for the particle must therefore be
periodic in each coordinate. The total volume of this periodic space is V = L3. At a later
stage in our analysis, we will remove the periodic condition by allowing V →∞.

The three Cartesian directions are independent degrees of freedom. The quantum system
therefore has three integer quantum numbers nx, ny, and nz, which we can regard as the
components of a quantum number vector 	n = nxx̂ + nyŷ + nzẑ. The stationary states are
labeled by a discrete wave vector 	k, where

	k = 2π

L
	n. (17.44)
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Fig. 17.2 Allowed values of �k lie on a discrete cubical lattice in �k-space. The vector shown may be

designated �k233.

The possible values of 	k are arranged as the points of a 3-D cubical lattice with spacing 2π/L
(see Fig. 17.2). The density of states in 	k-space is therefore V/(2π)3 per unit 	k-volume.
For a given wave vector 	k, the stationary state wave function is ψ( 	r ) = V−3/2 exp(i	k ·	r ),
and its energy is ε = �2k2/2μ.

We describe 	k-space by a radial coordinate k together with angular coordinates θ and φ

that we collectively designate �. The 	k-volume element in these coordinates is k2 dk d�.
(Here d� represents an element of “solid angle,” a tiny range of directions given by
d� = sin θ dθ dφ.) The number of states dN in this 	k-volume is

dN = V
(2π)2 k2 dk d� = μV

(2π)3�3

√
2με dε d�, (17.45)

from which we recognize the density of states

ρ(ε, �) = μV
(2π)3�3

√
2με. (17.46)

Exercise 17.15 Write k and dk in terms of ε and dε to fill in the gaps in the derivation of
Eq. 17.46.

17.4 Cross-sections

In a common type of experiment, a stream of particles is aimed at a target, producing certain
detectable events. The events may be anything: particle absorption, an induced reaction
in the target, or the scattering of the incoming particles in some direction. The mean rate
at which a particular type of event occurs is proportional to the intensity of the incoming
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Fig. 17.3 Cross-section for impact on an obstacle.

stream – that is, to the beam’s flux, the number of particles in the stream per unit area per
unit time. Then (

event
rate

)
= σ ×

(
incident

flux

)
, (17.47)

where the quantity σ is called the cross-section for this type of event. The cross-section has
units of (length)2, or area.

The term “cross-section” comes from an elementary classical example. Suppose the
stream of particles encounters a solid obstacle, and we count how many particles impact
the obstacle’s surface. The cross-section σ for impact is precisely the geometric cross-
sectional area of the obstacle, the size of its projection onto a plane perpendicular to the
stream. The cross-section σ of the obstacle is, in effect, the size of its shadow (see Fig. 17.3).

More generally, the cross-section is a probabilistic quantity that expresses the likelihood
that an event will take place. Instead of a whole stream of particles, we can consider a
single incident quantum particle. The event that is counted is a transition from the incident
state to another distinguishable state, and the event rate is just the transition probability
rate W discussed in the previous section. The incident particle flux is the probability
flux 	J defined in Eq. 11.29. The quantum cross-section for the event is defined by the
relation W = σJ .

Consider the problem of particle scattering from a target described by a fixed potential
U(	r ). We treat the scattering potential as a perturbation to the free particle Hamiltonian,
and consider only the first-order contribution to the scattering probability. This is called the
Born approximation. The initial state of the particle is the momentum eigenstate |	p〉. As
in the previous section, we imagine that the 3-D space is periodic in each of its Cartesian
directions, with a total volume V . Then the normalized wave function associated with the
state |	p〉 is

ψ(	r) = 〈	r |	p 〉 = 1√
V

ei	p·	r/�. (17.48)
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The energy of this state is ε = p2/2μ. The probability flux is

	J = 	p
μV

= 1
V

√
2ε

μ
k̂, (17.49)

where k̂ is a unit vector in the direction of 	p, the initial direction of motion of the particle.

Exercise 17.16 Derive Eq. 17.49. (This follows from the result of Exercise 11.5, so if you
have not already worked that exercise, do so now.)

We wish to calculate the cross-section for the particle to scatter into another momentum
eigenstate

∣∣ 	p ′〉. Since our previous analysis tells us that the final energy of the particle
equals its initial energy (ε′ = ε), the final and incident momenta

∣∣ 	p ′〉 and | 	p 〉 can differ
only in direction. So, to be precise, we will calculate the total cross-section for scattering
into any direction within a small solid angle d� about a given direction of interest, which
we label �′.

The “refined” version of Fermi’s golden rule (Eq. 17.42) tells us that the total rate for
this scattering process is

dW = 2π

�

∣∣∣〈	p ′|U(	r) |	p 〉
∣∣∣2 ρ(ε, �′) d�. (17.50)

All of the final momenta 	p ′ in the average (· · · ) are nearly the same, so the matrix elements〈	p ′∣∣U(	r) |	p〉 are essentially equal in the average. We can calculate this matrix element in
the position representation:〈	p ′∣∣U(	r) |	p〉 = 1

V

∫∫∫
ei	q·	rU(	r) d3r, (17.51)

where 	q = 	p− 	p ′ is called the momentum transfer.

Exercise 17.17 Is 	q the momentum transfer from the target to the scattered particle, or the
other way around?

Exercise 17.18 Express Eq. 17.51 in terms of the 3-D Fourier transform of the potential
function, which we can write Ũ(	k).

The cross-section for the scattering event is dσ , which is written as an infinitesimal
because it is proportional to the range of scattering directions d�. The cross-section is
related to the rate by dW = J dσ . Combining all this with the density of states from
Eq. 17.46, we obtain

1
V

√
2ε

μ
dσ = 2π

�

1
V 2

∣∣∣∣∫∫∫ ei	q·	rU(	r) d3r
∣∣∣∣2 μV

(2π)3�3

√
2με d�. (17.52)

The same net factor of 1/V occurs in each side, so that our final relation does not depend
on the volume of our periodic space, and we can take the limit V →∞. The factor of

√
ε

is also the same on each side, and cancels. Our goal is to find the differential cross-section,
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the cross-section per unit solid angle:

dσ

d�
= μ2

4π2�4

∣∣∣∣∫∫∫ ei	q·	rU(	r) d3r
∣∣∣∣2 . (17.53)

Note that the differential cross-section depends on the scattering direction only through its
dependence on the momentum transfer 	q.

Equation 17.53 is an extremely useful conclusion, as we can see from a couple of simple
examples.

Scattering by slow particles. Suppose the potential U(	r) is zero outside a region of
radius R about the origin, and that the incident momentum is low enough that pR � �.
Then the exponential factor in Eq. 17.53 will be essentially the same for any scattering
direction, and so

dσ

d�
= μ2

4π2�4

∣∣∣∣∫∫∫ U(	r) d3r
∣∣∣∣2 . (17.54)

This is independent of the scattering angle, so the scattering process is isotropic. The
scattering from a small potential well (U(	r) < 0) is the same as from a potential “bump”
(U(	r) > 0). (This expression for the differential cross-section should hold good for small
angle scattering even for fast particles, since it depends only on the momentum transfer 	q
satisfying qR � �.)

For slow particles, the total cross-section for scattering in all directions (except the
incident one) will be

σ =
∫ ( dσ

d�

)
d� = μ2

π�4

∣∣∣∣∫∫∫ U(	r) d3r
∣∣∣∣2 . (17.55)

Exercise 17.19 Find the differential and total scattering cross-sections for a delta-function
potential εδ3(	r) in the Born approximation.

Scattering from a crystal. For a single “dimple” in the potential at the origin, the
scattering cross-section is ( dσ

d�

)
1
= μ2

4π2�4 |u|2 , (17.56)

where u =
∫∫∫

ei	q·	r/�U d3r. This potential “dimple” might represent a single atom. Now

suppose the particle scatters from a collection of N such atoms located at various points in
space: 	r1, 	r2, . . . , 	rN . The amplitude u will be replaced by a sum of N terms, each of them
corresponding to a shifted version of the original potential. That is,( dσ

d�

)
N
= μ2

4π2�4 |K(	q) u|2 = |K(	q)|2
( dσ

d�

)
1

, (17.57)

where

K(	q) =
∑

n
ei	q·	rn/�. (17.58)
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The cross-section is multiplied by the factor |K|2, which we can write

|K(	q)|2 = N +
∑
m,n

m�=n

ei	q·(	rm−	rn)/�. (17.59)

This may be as small as zero if the phase factors in Eq. 17.58 exactly cancel out. If the atoms
are randomly distributed in space, then the complex phases in Eq. 17.59 will typically add
up to about zero, and the total cross-section will be roughly N times larger than for a single
atom – just as if the scattering from each atom contributed equally (and incoherently) to
the total probability.

The greatest possible scattering enhancement factor is |K|2 = N2, in which case the
scattering probability is N2 times greater than any single atom would produce. This is
due to constructive interference in the scattering amplitudes from the individual atoms.
Equation 17.59 tells us that this will happen if and only if 	q · (	rm − 	rn)/� is a multiple of
2π for every pair of atoms m and n. What does this mean? If we choose the z-axis to be
parallel to 	q, then the condition means that zm− zn is always an integral multiple of 2π�/q.
In other words, the atoms all lie in a set of parallel planes – planes of constant z – that are
perpendicular to 	q and separated by multiples of 2π�/q.

Suppose the atoms are somehow arranged in a set of parallel planes separated by d. We
do an experiment in which we send in particles at an angle θ to these planes, and we look
for scattering at the same “reflected” angle. The momentum transfer is perpendicular to the
planes and has a magnitude q = 2p sin θ . Our analysis tells us that we will have a very
strong likelihood of scattering in this direction provided that d = 2πn�/q for some integer
n = 1, 2, . . . That is,

n
2π�

p
= nλ = 2d sin θ . (17.60)

Here λ = 2π�/p, the de Broglie wavelength of the incident particles. Equation 17.60 is
known as Bragg’s Law and governs the scattering of X-rays and electrons from crystals.
The regular arrangement of atoms in the crystal means that the atoms lie in various sets
of parallel planes, with different orientations and values of d (see Fig. 17.4). The intensity

Fig. 17.4 Scattering from the regular arrangement of atoms in a crystal. The scattering probability will be
greatest if the separation d of the atomic planes satisfies d = 2πn�/

∣∣�q∣∣.
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of the scattered beam will be greatest if the condition in Eq. 17.60 holds for some set of
atomic planes. In this way, the diffraction of X-rays or electrons allows us to measure d for
various planes and map out the atomic structure of the crystal.

Exercise 17.20 Suppose 75% of the N atoms lie in planes perpendicular to the momentum
transfer 	q and separated by d = 2π�/q, but the other 25% of the atoms lie in other planes
exactly halfway between these. Find the scattering enhancement factor |K|2. What if the
proportions were 50% and 50%?

Problems

Problem 17.1 Consider the perturbed Hamiltonian H0 + HP, where the energy spectrum
of H0 is non-degenerate. Derive expressions for the second-order state coefficients c(2)

kn and
the third-order energy correction E(3)

n .

Problem 17.2 Consider a 1-D harmonic oscillator with U(x) = 1
2

kx2. We perturb this
system by adding a term bx to the potential.

(a) Show that the perturbed problem is still a harmonic oscillator, with shifts in the
equilibrium position and minimum energy. What are these shifts?

(b) Show that E(1)
n = 0 for the harmonic oscillator |n〉 states.

(c) Find the first-order correction to the state |n〉. Use this to calculate 〈x〉 for the perturbed
ground state.

(d) Find E(2)
n .

(e) Explain how the results of parts (c) and (d) make sense in light of your results in
part (a).

Problem 17.3 Calculate the first-order shift in the energies of a harmonic oscillator due to
the addition of an anharmonic term Cx4 to the potential.

Problem 17.4 A free particle moves in 1-D between impenetrable walls at x = 0 and
x = L. The particle is moving so fast that we cannot entirely neglect the effects of relativity.
This has the approximate effect of adding a term to the kinetic energy:

HP = − p4

8μ3c2 , (17.61)

where c is the speed of light. (Consult a textbook on special relativity to find the origin of
this term.) Find the first-order changes to the energy levels and the stationary state wave
functions due to this perturbation.

Problem 17.5 A particle of mass μ and charge q is bound in a central potential U(r).
An external uniform magnetic field in the z-direction is applied to the system. The orbital
angular momentum of the particle leads to a magnetic moment that couples to the field. (This
is roughly sketched in Section 2.2 and Problem 2.4.) The perturbation is HP = −(qBz/2μ)Lz.
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Describe in detail how this perturbation lifts the degeneracy of the energy levels of the
system. Calculate the magnitude of the “level splitting” for an electron in a 0.5 T field.

In atomic systems, the resulting change in the observed atomic spectrum is called the
“normal” Zeeman effect. Because of electron spin, however, what is actually observed in
real atoms is usually the more complicated “anomalous” Zeeman effect.

Problem 17.6 A particle moves on a circle of circumference L, as discussed in Section 11.3.
The particle is subject to a perturbing Hamiltonian HP = βp, where p is the momentum.4

Find the first-order corrections to the energy levels and stationary states of the particle on
a circle.

Problem 17.7 A particle moves on a circle of circumference L, as discussed in Section 11.3.
In addition to the kinetic energy, the particle is subject to a weak potential U(x) =
η cos(2πx/L). Explain why the term “tilted circle” is a good description of this situation.
Then find the energy levels of this system to first order in η.

Problem 17.8 Apply the impulsive perturbation of Eq. 17.33 to an oscillator that is initially
in an excited state |n〉. To first order, what is the relative likelihood (ratio of probabilities)
that the oscillator’s energy is increased or decreased by the kick?

Problem 17.9 Consider a quantum system subject to an oscillating perturbation:

HP = Ae−iωt + A†eiωt, (17.62)

where A need not be Hermitian. Show that for large t this perturbation leads to first-order
transitions that may either absorb or emit an energy �ω, and that the first-order rates for
these are

wabs(i → n) = 2π

�

∣∣∣〈n|A |i〉∣∣∣2 δ(εn − εi − �ω),

wem(i → n) = 2π

�

∣∣∣〈n|A† |i〉
∣∣∣2 δ(εn − εi + �ω). (17.63)

This is sometimes used as a semiclassical approach to analyzing the interaction of an
atom with the electromagnetic field, in which the field is treated as an external classical
perturbation to the (quantum) atom. A passing electromagnetic wave subjects the atom to
an oscillating potential gradient, so that the atom may either absorb or emit an energy �ω.

Problem 17.10 A particle scatters from a Gaussian potential well

U(	r) = −U0 exp

(
− r2

λ2

)
. (17.64)

The potential is radially symmetric; U0 measures its depth and λ its width. Using the
Born approximation, find the differential cross-section dσ/d� as a function of the incident
energy ε and the angle θ between the initial and final momenta of the particle.

4 Such a perturbation could arise from an external magnetic field.
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18.1 Quantum circuits

If the state of a quantum system is a kind of information, then the dynamics of that system is
a kind of information processing. This is the basic idea behind quantum computing, which
seeks to exploit the physics of quantum systems to do useful information processing. In this
chapter we will acquaint ourselves with a few of the ideas of quantum computing, using
the idealized quantum circuit model. Then we will turn our attention to an actual quantum
process, nuclear magnetic resonance, that can be understood as a realization of quantum
information processing.

In a quantum circuit, we have a set of n qubit systems whose dynamical evolution is
completely under our control. We represent the evolution as a sequence of unitary operators,
each of which acts on one or more of the qubits. Graphically, we represent the qubits as
a set of horizontal lines, and the various stages of their evolution as a series of boxes or
other symbols showing the structure of the sequence of operations. In such a diagram,
time runs from left to right1 (see Fig. 18.1.). The n qubits form a kind of “computer,” and
its overall evolution amounts to a “computation.” The key idea is that very complicated
unitary operations on the n qubits can be built up step-by-step from many simple operations
on one, two or a few qubits.

The individual steps of the evolution – the elementary operations on one, two or a small
number of qubits – are usually called quantum gates, by analogy with the basic elements
of digital circuit design. The simplest gates are unitary operators U that affect single qubits.
Among these are the identity 1 and the Pauli operators X, Y, and Z.

Exercise 18.1 The ordinary (classical) logic gate NOT inverts the value of a bit. Show that
X is the Pauli operator most closely analogous to this. How does it differ from Y?

The Z gate multiplies the |1〉 basis state by −1, changing its phase relative to the |0〉 basis
state. We can generalize this by defining the phase gate 	(α) with a matrix representation

	(α) =
(

1 0
0 eiα

)
. (18.1)

Then Z = 	(π).

1 This can lead to some confusion in translating between diagrams and algebraic expressions. Recall that the
operator product ABC should be interpreted from right to left: first perform C, then B, then A. The diagram for
such a sequence of operators would look like C B A .
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Fig. 18.1 A quantum circuit for three qubits. First, A is applied to the first qubit and B to the second qubit;
then C is applied to the first and second qubits; and finally D is applied to the second and third
qubits.

Another particularly useful elementary gate is the so-called Hadamard gate H, which
has the matrix representation

H = 1√
2

(
1 1
1 −1

)
. (18.2)

Like the Pauli gates, H is its own inverse: H2 = 1.

Exercise 18.2 Here are three easy exercises about the Hadamard gate H.

(a) What interferometer element from Section 2.1 corresponds to H? How about the phase
gate 	(α)?

(b) Show how to construct an X gate using two H gates and one Z gate. Express your answer
as a circuit diagram like Fig. 18.1 (with only one line).

(c) If an H gate is applied to each of n qubits initially in the state |0n〉 = |0〉⊗n, show that
the result is a uniform superposition of all 2n basis states of the qubits.

Now let us consider two-qubit gates. Among the simplest and most useful of these are
the controlled gates. In controlled gates, one qubit serves as the control qubit and one as the
target qubit. Roughly speaking, the gate applies a unitary operator to the target provided
that the control qubit is in the state |1〉. However, no measurement is involved; rather, we
have a unitary operator of the form

controlled-U = |0〉〈0| ⊗ 1+ |1〉〈1| ⊗ U. (18.3)

Exercise 18.3 Show that if U is unitary, then so is controlled-U.

In a quantum circuit diagram, the controlled-U gate is represented as shown in Fig. 18.2.
The controlled-X gate, also known as the controlled-NOT or CNOT gate, is particularly
simple and useful in designing quantum circuits. It is also shown in Fig. 18.2.

Exercise 18.4 The symbol ⊕ represents modulo-2 addition (XOR) of two bits. Show that
the action of the CNOT gate on basis states |a, b〉 is described by CNOT |a, b〉 = |a, b⊕ a〉.
Which of these qubits acts as the control and which the target?
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Fig. 18.2 The controlled-U gate, together with two symbols for the CNOT gate. The control qubits are above
and the target qubits below.

Fig. 18.3 Making a controlled-Z gate from a CNOT and two H gates.

With respect to the standard product basis ( |00〉, |01〉, etc.) the CNOT gate has a matrix
representation

CNOT =

⎛⎜⎜⎝
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎠ . (18.4)

At first, it appears that there is a fundamental asymmetry between the control and target
qubits in the CNOT gate. The control qubit appears unchanged by the interaction, but its
state affects the target qubit. We might express this by saying that the CNOT gate has
“one-way information flow” from the control to the target. This idea, however, is quite
wrong in the quantum context, as the following exercise shows:

Exercise 18.5 Suppose that each qubit in a CNOT gate is acted upon by H both before and
after the gate. Show that the result is also a CNOT gate, but with the target and control
qubits reversed.

Exercise 18.6 Consider the controlled-Z gate, a close cousin of the CNOT. Is there really
any distinction between target and control for this gate?

Exercise 18.7 Verify that Fig. 18.3 shows how to make a controlled-Z gate from a CNOT
gate and two H gates. How would you make a CNOT from a controlled-Z gate and some
H gates?

Not every two-qubit gate is a controlled gate, but they are useful as building blocks. For
instance:

Exercise 18.8 The SWAP gate just exchanges the states of two qubits, so that |a, b〉 →
|b, a〉. Show how to make a SWAP gate from three CNOTs.

How does one approach such problems? It is always possible to analyze the action of
a quantum circuit by multiplying matrix representations of the gates involved. With the
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Fig. 18.4 An identity for controlled gates.

assistance of a computer, various designs for the circuit can be tried out relatively quickly.
Alternately, we can simply work out the action of a circuit on all possible standard basis
inputs. (This may be especially easy when many of the gates are controlled operations.)
These approaches are handy for small numbers of qubits; but the size of the matrices and
the number of basis states both grow exponentially with the number of qubits in the system.
Even worse, the number of possible combinations of elementary gates grows even more
rapidly, so mere trial-and-error is unlikely to be a successful strategy.

It is better, whenever possible, to use the algebraic properties of the gate operators.
Efficient quantum circuit designers keep these properties firmly in mind. For instance, the
CNOT gate is its own inverse, so that two identical CNOTs in a row will “cancel out.”
In Exercise 18.8 our task is to construct a SWAP gate from three CNOTs. There are eight
possible ways to put together three CNOT gates for two qubits, depending on how the
control and target qubits are chosen for each gate. Six of these ways involve successive
identical CNOT gates, so each one reduces to a single CNOT. The remaining two ways are
both solutions to the exercise, as can be quickly verified.

Another common technique in quantum circuit design is to place an operation U between
another operation V and its inverse. Both Exercises 18.5 and 18.7 use this idea, as does the
following exercise, which is a generalization of Exercise 18.7.

Exercise 18.9 Prove the equality shown in Fig. 18.4. This provides a method for
constructing new controlled gates from old ones.

We can use certain quantum gates to construct other, more complicated unitary operations.
What relatively simple gates belong in our basic “toolbox” for building quantum circuits?
One answer is contained in a pair of remarkable theorems about quantum circuits, which
we will now state without proof:

• Every unitary operator on n qubits can be constructed from one- and two-qubit gates.
• Every two-qubit quantum gate can be constructed from one-qubit gates and CNOT gates.

The first statement tells us that we need only to be able to manipulate our qubits singly and
in pairs to achieve any sort of unitary evolution we wish. The second fact makes things
even simpler: we can make do with just a single type of two-qubit gate, the CNOT. Note
that CNOT gates and single-qubit unitary operators suffice to construct any sort of quantum
evolution. They form a universal set of gates.

Exercise 18.10 Think of another two-qubit gate that could replace CNOT in this
universal set.
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Fig. 18.5 Using Toffoli gates to create a double-controlled gate.

Exercise 18.11 Prove that SWAP gates and single qubit unitary operators do not form a
universal set. That is, show that some unitary operators cannot be constructed from those
components alone.

This is very different from the classical situation. The classical analogs to unitary gates
are the reversible classical logic gates. These have the same number of input and out-
put bits, and there is a one-to-one correspondence between the input and output bit
states.2 One- and two-bit reversible classical gates are not enough to build any reversible
operation on n bits. For classical gates, any universal set must contain at least one gate with
three or more bits.

Among the many useful and interesting quantum gates on three or more qubits are the
multiple-controlled gates. The simplest of these is the quantum Toffoli gate, which is a
“double-controlled NOT” gate: all basis input states are unchanged except for

|110〉 → |111〉 and |111〉 → |110〉 . (18.5)

Roughly speaking, the X operator acts on the target qubit only if both control qubits are
in the state |1〉. The construction of the Toffoli gate from simpler gates is the subject of
Problem 18.4.

Once we have the Toffoli gate, it is not difficult to construct any double-controlled gate.
The easiest way illustrates a useful technique in quantum circuit design. We allow the
use of one or more work qubits, which are required to start out and end up in the state
|0〉, but which can participate in the circuit. The work qubits are “scratch space” for the
computation; the requirement that they experience no net change in state guarantees that
the net evolution of the remaining qubits will be unitary. (See the discussion in Section 9.2.)
The construction shown in Fig. 18.5 is easily checked.

Exercise 18.12 First, check the circuit diagram in Fig. 18.5 to make sure the work qubit is
returned to its original state |0〉. Then build a “triple-controlled NOT” gate out of Toffoli
gates, perhaps using one or more work qubits.

2 Both our X gate and CNOT are coherent “quantized” versions of classical reversible gates. The Z, Y, 	(α), H,
and controlled-Z gates, since they involve superpositions and relative phases, are not.
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18.2 Computers and algorithms

We have seen how to create unitary operators for n qubits from a sequence of much simpler
elementary operations, a process that is conveniently described by the quantum circuit
model. In effect, a quantum circuit expresses the program or algorithm that is to be exe-
cuted by an n-qubit quantum computer. Such computers function coherently, transforming
superpositions of input states to superpositions of output states. During the computa-
tion, the different components of the computer may become highly entangled. For this to
take place, the computer must remain informationally isolated from its environment – a
physical requirement that usually becomes harder to meet in systems with many qubits.
This is one of the main obstacles to the practical realization of large-scale quantum
computation.

We can describe the quantum computer’s program by a quantum circuit. To give a more
complete picture of the computer, we need to discuss two further issues, the input and the
output:

• We will assume that all of the n qubits in the computer are initially in the basis state |0〉.
If any other input state is desired, its preparation will be the first part of the program.

• At the end of the unitary evolution, we suppose that individual qubits are measured in
the standard { |0〉, |1〉} basis. If some other basic measurement is desired, then the last
part of the program will be a unitary rotation of that basis into the standard basis.

Both of these deserve some further comment. We can use one- and two-qubit gates to
transform the initial |0n〉 state into a more general state of n qubits. For instance, the
two-qubit circuit shown in Fig. 18.6 creates the maximally entangled Bell state |�+〉 from
the standard input state |00〉.

Exercise 18.13 Design circuits to create each of the other three Bell states |�−〉, |�+〉,
and |�−〉, starting with the standard input |00〉.

Exercise 18.14 Design a two-qubit circuit to prepare the state cos θ |00〉 + sin θ |11〉 from
the standard input, using only single-qubit gates and CNOTs.

Exercise 18.15 Design a three-qubit circuit to prepare the Greenberger–Horne–Zeilinger
state |GHZ〉 discussed in Section 6.7.

Fig. 18.6 Quantum circuit that creates the Bell state |	+〉 from a standard input.
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Fig. 18.7 Unitary evaluation of the function f on a set of input qubits.

Problem 18.5 describes a situation in which an entangled output measurement is
transformed into a standard measurement. It is also useful to reflect on the following
exercise:

Exercise 18.16 How could we realize a generalized positive-operator measurement in our
quantum computer, if we can make only standard basis measurements? (You might wish to
spend a few moments reviewing Section 9.5.)

Now let us take a somewhat higher-level view. Suppose f is a mathematical function
that takes a string a of k bits as input, calculating a single bit f (a) as output. Any function
calculated by a classical digital computer is made up of functions of this type. A quantum
computer executing a program to calculate such a function undergoes this dynamical
evolution on k + 1 of its qubits:∣∣∣0k , 0

〉
−→ |a, 0〉 −→ |a, f (a)〉 . (18.6)

The first stage prepares the input string a as a basis state of the first k qubits, and the second
stage evaluates the function f and writes the result in the last qubit. (The value f (a) can be
read by a standard measurement on the output state.) The function evaluation is a coherent
“program” on a quantum computer, represented by a unitary operator on k + 1 qubits:
|a, f (a)〉 = Uf |a, 0〉.

But suppose the initial state of the output qubit is |1〉 rather than |0〉? It cannot be that
Uf |a, 1〉 = |a, f (a)〉, because this would mean that two orthogonal initial states ( |a, 0〉
and |a, 1〉) map to the same final state. Instead, we will assume that the calculation of f
corresponds to the following evolution:

|a, b〉 −→ Uf |a, b〉 = |a, b⊕ f (a)〉 , (18.7)

where b⊕ f (a) is the sum modulo 2 of the bits b and f (a). This amounts to an “f -controlled
NOT” gate, in which the target qubit is negated depending on a (possibly complicated)
function f of the k control qubits. A graphical representation of this is shown in Fig. 18.7.

Exercise 18.17 Explain why Eq. 18.7 is unitary for any function f , and why it reduces to
Eq. 18.6 when the output qubit is initially |0〉.
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We can use the quantum evaluation of f as a subroutine in larger quantum programs.
This is particularly useful if we are designing a program to determine some property of
the function f itself. For instance, we may wish to know whether f is constant, or whether
f (0k) = 0, etc. To answer such a question, we may need to evaluate f one or more times.
In a quantum program, the f -controlled NOT gate from Eq. 18.7 may appear one or more
times.

If we actually know more details about the function f – if we can “get inside” the f
subroutine – then we might be able to answer our question without ever evaluating f at
all. But let us suppose that f is complicated enough that this short-cut is impractical. Then
the subroutine that calculates f acts like a “black box” that may be used to evaluate f but
cannot be further analyzed. In the language of computer science, our subroutine is regarded
as an oracle for the function f . Our problem of determining some property of f is thus an
oracle problem.

In an oracle problem, the key question is how many times we must evaluate the function
f (execute the f subroutine) to determine the property in question. For instance, suppose
we want to know whether the value of f is constant (either 0 or 1). We might learn that the
answer is “no” with as few as two evaluations, if f (a) �= f (a′). But to answer the question
conclusively – particularly if the answer is “yes” – we may have to evaluate the function
2k times. If the number k of input bits is large, then this could take a long time. It may even
be impractical to answer the question at all with the computational resources available.

What does this have to do with quantum mechanics? If we are evaluating f using a unitary
f -controlled NOT gate on a quantum computer, then the program can act, not merely on
the basis state |a〉 representing a single input string a, but on a coherent superposition of
many basis states. This new way of “interrogating” the function f may allow a new and
more efficient way of solving an oracle problem.

The simplest example of this is an abstract problem introduced by David Deutsch and
Richard Jozsa. In the Deutsch–Jozsa problem, the function f is guaranteed to be either
constant or balanced. For a constant function, f (a) is always 0 or always 1 for all k-bit
strings a. For a balanced function, f (a) is 0 or 1 for equally many (2k−1) values of a. How
many times must we evaluate f to determine which of these possibilities is true?

A classical computer, which is forced to evaluate f on its inputs one by one, might have
to evaluate up to 2k−1 + 1 (one more than half) of the possible inputs to be sure of the
answer. After all, if we have evaluated only 2k−1 inputs and have always obtained the
result 0, the remaining 2k−1 possible inputs might either be 0 (for a constant function) or 1
(for a balanced function). The difficulty of solving this oracle problem with certainty on a
classical computer is thus exponential in k.

Deutsch and Jozsa showed that, on the contrary, a quantum computer can solve this
oracle problem with only one coherent evaluation of f .

Before we examine the Deutsch–Jozsa quantum algorithm in detail, we should work out
two useful results.

Exercise 18.18 The f -controlled NOT gate of Eq. 18.7 (and Fig. 18.7) can be transformed
into an “f -controlled Z” gate, as shown in Fig. 18.8. Show that this gate has the effect

|a, 0〉 → |a, 0〉 and |a, 1〉 → (−1)f (a) |a, 1〉 . (18.8)
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Fig. 18.8 How to make an f-controlled Z gate.

Fig. 18.9 The Deutsch–Jozsa algorithm for the function f . The final measurement is in the standard basis.

Exercise 18.19 Suppose k qubits start out in the basis state |a〉, where a is a k-bit string.
We apply the Hadamard gate H to each of the qubits. Show that

H⊗k |a〉 = 1
2k/2

∑
c

(−1)a·c |c〉 , (18.9)

where a · c = a1c1 + . . . + akck , the number of places in which the two bit strings are
both 1.

Now we are ready to begin our analysis of the Deutsch–Jozsa algorithm, which is laid
out in Fig. 18.9. The k + 1 qubits start out in the state

∣∣0k , 0
〉
.

• The input state is prepared by applying a Hadamard gate to each of the k input qubits,
and by using X to convert the output qubit to |1〉:∣∣∣0k , 0

〉
−→ 1

2k/2

∑
a
|a, 1〉 . (18.10)

• The function f is evaluated once using the f -controlled Z gate. Note first that this evaluates
f on a superposition of all possible inputs, and second that we arrange for f to affect the
phases of the terms in the superposition. Thus:

1
2k/2

∑
a
|a, 1〉 −→ 1

2k/2

∑
a

(−1) f (a) |a, 1〉 . (18.11)



375 Nuclear spins

• We once more perform the Hadamard gate on all of the k input qubits. Equation 18.9
tells us how this works. Our final state is

1
2k

∑
a

(−1) f (a)

(∑
c

(−1)a·c |c, 1〉
)
=
∑

c

(
1
2k

∑
a

(−1)a·c+f (a)

)
|c, 1〉 . (18.12)

• Finally, we measure the k input qubits in the standard basis and determine an experimental
value of the bit string c.

What is the probability that the result of our final measurement of c is 0k? Equation 18.12
tells us that this is

P
(

0k
)
=
∣∣∣∣∣ 1
2k

∑
a

(−1) f (a)

∣∣∣∣∣
2

. (18.13)

If the function f is constant, the 2k terms in the probability amplitude are all of the same
sign, and P(0k) = 1. On the other hand, if the function is balanced, then the terms in the
probability amplitude exactly cancel out, so that P(0k) = 0. The measurement of c either
yields 00 . . . 0 or something else, and this determines with certainty whether f is constant
or balanced.

There are a number of remarkable features of the Deutsch–Jozsa algorithm. Its general
structure amounts to an “interference experiment” among all of the different possible com-
putations of f . (This is why we had f affect the phases of these terms in the superposition.)
Somewhat curiously, the final answer to our oracle problem lies not in the function output
qubit (which remains in the state |1〉) but in the final state of the k input qubits.

The Deutsch–Jozsa problem is a highly artificial example, of course, but it illustrates
the essential point of quantum computing. A quantum computer can sometimes determine
a global property of a function far more efficiently than any classical computer could
do. This idea is the basis for several remarkable results in quantum computer science.
The most famous of these is the quantum factoring algorithm discovered by Peter Shor
in 1994. A quantum computer running Shor’s algorithm can find the factors of a large
integer in exponentially fewer computational steps than any known classical algorithm.
The theoretical power of quantum computing has inspired a great deal of effort to realize it
in the laboratory. For more details concerning the theory and practise of quantum computing,
consult a more specialized text.3

18.3 Nuclear spins

In our discussion of quantum computers, we made a series of assumptions regarding our
system of n qubits:

3 Our favorite remains Quantum Computation and Quantum Information by Michael A. Nielsen and Isaac L.
Chuang (Cambridge: Cambridge University Press, 2000). Several other, more recent texts are also excellent.
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• The system is completely informationally isolated from its surroundings during the
computation.

• We have complete control over the system’s dynamics, including the ability to impose
one- and two-qubit evolution operators at will. When a qubit is not being manipulated
in this way, it “stays put,” neither evolving on its own nor interacting with its neighbors.

• We are able to prepare a pure |0n〉 state at the beginning of the computation.
• We can make an ideal measurement of the standard basis on one or more qubits at the

end of the computation.

Finding a real physical system for which these assumptions hold, even approximately, is
no easy task. This is why no quantum computer with many qubits has yet (at the time of
this writing) been demonstrated in the laboratory.

For the remainder of this chapter, we will discuss systems of nuclear spins that can be
controlled and measured via nuclear magnetic resonance (NMR). The NMR technique
provides detailed control over the quantum dynamics of one or more nuclei, making it an
excellent laboratory for exploring the ideas of quantum computing. It is tremendously useful
in its own right as a tool for studying the structure of molecules, and it has applications in
medical imaging and other scanning technologies. We, on the other hand, will principally
regard NMR as a natural instance of quantum information processing, which we can to
some extent control. For us, NMR is quantum computing “in the wild.”

We introduced nuclear spins as long ago as Section 2.3, where we considered a single
spin-1/2 nucleus in an external magnetic field. Here we summarize that discussion, bringing
the terminology and the notation up to date. Throughout our exploration of NMR, we will
adopt “natural units” in which � = 1. In such units, energy and frequency are the same
thing.4

The nucleus has a magnetic moment 	μ = γ 	S, where γ is a constant that depends on
the type of nucleus and 	S is the nuclear spin. The magnetic moment couples to an external
magnetic field 	B that is parallel to the positive z-axis. The nuclear spin then evolves subject
to the Hamiltonian

H0 = −	μ · 	B0 = −�

2
Z, (18.14)

where � = γ B is the Larmor frequency. For a proton in a 10.00 T magnetic field, � has a
value of about 2.675× 109 s−1, corresponding to a circular frequency of 425.7 MHz. The
Hamiltonian H0 causes the spin state to precess about the z-axis at the frequency �. This
precession may be described by the evolution operator

U0(t) = exp(−iH0t)

= exp
(

i
�t
2

Z
)
= cos

(
�t
2

)
1+ i sin

(
�t
2

)
Z. (18.15)

4 This is a simplification that both a theorist and an experimentalist can love. Our mathematical expressions will
be clearer and more elegant, pleasing the theorist. The experimentalist recognizes that in NMR systems one is
always most concerned with the control and measurement of the frequencies of radio-frequency signals, rather
than energies.
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Exercise 18.20 Verify Eq. 18.15, either by working out the power series for exp(iαZ) or
by using matrix representations.

The Hamiltonian of an actual nuclear spin, however, is not completely determined by
the external field. The local molecular environment and interactions with other nuclei
contribute to the total Hamiltonian, which we will write H0 + H. The spin state |ψ(t)〉 is
governed by the Schrödinger equation

i
d
dt
|ψ(t)〉 = (H0 + H) |ψ(t)〉 . (18.16)

For the external magnetic fields used in NMR experiments, the Hamiltonian H can be
regarded as a small perturbation of H0. That is, the spin precession at the Larmor frequency
� is much more rapid than state changes produced by H. In this case, it is convenient to
adopt the rotating frame picture, which compensates for the simple precession of the spin
state due to H0. We define the rotating frame state∣∣∣ψ̂(t)

〉
= U0(t)† |ψ(t)〉 . (18.17)

Exercise 18.21 If the perturbation H = 0, show that the rotating frame state
∣∣∣ψ̂(t)

〉
will be

constant over time.

The perturbation H will produce changes in
∣∣∣ψ̂(t)

〉
. A rotating frame version of the

Schrödinger picture governs such changes:

i
d
dt

∣∣∣ψ̂(t)
〉
= −H0

∣∣∣ψ̂(t)
〉
+ U0(t)† (H0 + H) U0(t)

∣∣∣ψ̂(t)
〉

. (18.18)

Exercise 18.22 First show that i
d
dt

U0(t) = H0U0(t). Then verify Eq. 18.18 .

We now define the rotating frame Hamiltonian Ĥ(t) = U0(t)†H U0(t), so that our evolution
equation for

∣∣∣ψ̂(t)
〉

takes the familiar form

i
d
dt

∣∣∣ψ̂(t)
〉
= Ĥ(t)

∣∣∣ψ̂(t)
〉

. (18.19)

The rotating frame Hamiltonian Ĥ is a function of time; but notice that the original H might
also be time-dependent.

How is the rotating frame Hamiltonian Ĥ(t) different from the original H? Let us write
H in terms of the Pauli operators, which form a basis for the operators on the qubit Hilbert
space Q,

H = ε01+ εxX+ εyY+ εzZ. (18.20)

The Pauli operators are affected by the rotation operators as follows:

U†
01U0 = 1, U†

0XU0 = cos �t X+ sin �t Y,

U†
0ZU0 = Z, U†

0YU0 = cos �t Y− sin �t X. (18.21)
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Exercise 18.23 This is a fine opportunity to review the algebra of the Pauli operators. First,
confirm as many of the following identities as you need in order to be confident in applying
them:

X2 = 1, YZ = −ZY = iX, YXY = ZXZ = −X,

Y2 = 1, ZX = −XZ = iY, ZYZ = XYX = −Y,

Z2 = 1, XY = −YX = iZ, XZX = YZY = −Z. (18.22)

Use these results and Eq. 18.15 to verify Eq. 18.21.

The rotating frame Hamiltonian is therefore

Ĥ(t) = ε01+ (εx cos �t − εy sin �t)X

+ (εx sin �t + εy cos �t)Y+ εzZ. (18.23)

If the original H is constant or varies only slowly, the X and Y terms in Eq. 18.23 oscillate
extremely rapidly about zero. On average, they make almost no contribution to the time
evolution of the system in the rotating frame. (Problem 18.7 makes this point in more
detail.) For practical purposes, therefore, we can ignore these terms. We can also ignore the
ε01 term, which displaces all system energies by ε0 but has no other dynamical significance.
The effective Hamiltonian in the rotating frame reduces to

Ĥ(t) = εzZ (effective). (18.24)

The main effect of the local molecular environment on the nuclear spin is to create an
additional precession in the rotating frame. Two nuclei of the same type located in different
parts of a molecule may experience different perturbing Hamiltonians and therefore precess
at slightly different net frequencies. This is the chemical shift of the nuclear spins, a source
of information about the detailed structure of molecules.

Consider a molecule containing two spin-1/2 nuclei, which may or may not be of the
same type. Each nuclear spin would freely rotate in the external field at its own Larmor
frequency �1 or �2. The rotating frame is defined by the evolution operator

U(12)
0 (t) = exp

(
i�1t

2
Z1

)
exp

(
i�2t

2
Z2

)
. (18.25)

A general perturbation H can be expanded in an operator basis that includes 1(1) ⊗ 1(2),
1(1) ⊗ X(2), X(1) ⊗ Y(2), and so on. In the rotating frame, most of these terms are rapidly
oscillating and do not contribute to the average rotating frame dynamics. Only four of the
terms do not average to zero. The 1(1) ⊗ 1(2) term yields a constant displacement of the
energy and may be ignored. The remaining effective Hamiltonian is

Ĥ(12) = ε1Z(1) + ε2Z(2) + ε12Z(1) ⊗ Z(2). (18.26)

The first two terms are chemical shifts (by ε1 and ε2) of the two nuclei. The remaining term
represents an interaction between the two nuclear spins. As it happens, there is just such an
interaction between nearby nuclei in real molecules. This J-coupling is mediated by shared
electrons in chemical bonds between atoms. Measurement of the effects of J-coupling can
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help determine how various atoms in a molecule are bonded togther – another important
way that NMR is used to probe molecular structure.5

It is clear from this discussion that we ought not to interpret the “rotating frame” as
a spinning coordinate system in 3-D space. Rather, it represents a rotating view of the
Hilbert space describing the quantum system. For a pair of spins, there is no reason why
the “frames” in H(1) and H(2) cannot be rotating at entirely different frequencies.

What if the perturbing Hamiltonian H is itself a rapidly oscillating function of time? Then
the rotating frame Hamiltonian in Eq. 18.23 will average to zero, except in one important
case. Consider

H = A(t)
(
cos(�′t − φ)X− sin(�′t − φ)Y

)
. (18.27)

This is the Hamiltonian of a nuclear magnetic moment subjected to a pulse of radio waves
of frequency �′ that is circularly polarized in the xy-plane. The amplitude of the wave is
described by the envelope function A(t) and its phase is determined by φ. Equation 18.23
becomes

Ĥ = A(t)
(

cos
(
(�−�′)t + φ

)
X+ sin

(
(�−�′)t + φ

)
Y
)

. (18.28)

Exercise 18.24 Recall the formulas for cos(α − β) and sin(α − β) and use them to derive
Eq. 18.28.

If �′ is far from the Larmor frequency �, then these terms will oscillate rapidly and
their contribution will be negligible. But suppose instead that the frequencies are exactly
matched: �′ = �. Then the rotating frame Hamiltonian is

Ĥ = A(t)(cos φ X+ sin φ Y). (18.29)

This does not oscillate rapidly and it can have a very large effect on the dynamics of the
rotating frame state

∣∣∣ψ̂(t)
〉
.

Exercise 18.25 Suppose we subject the spin to a radio pulse with the frequency � but an
opposite circular polarization. In this case,

H = A(t) (cos(�t − φ)X+ sin(�t − φ)Y) . (18.30)

What is the effect of such a perturbation in the rotating frame?

This is precisely the phenomenon of nuclear magnetic resonance. By matching the
frequency of a radio pulse to that of a precessing nuclear spin, we can “steer” the state of
the spin in the rotating frame. The phase φ of the pulse determines whether this term is
proportional to X, Y, or a combination; the amplitude function A(t) describes how Ĥ can be
turned on and off. By subjecting the spin to resonant radio pulses with precisely controlled
φ and A(t), we can produce various unitary transformations.

In general, consider a Hamiltonian of the form f (t)K, where K is a fixed operator. What
unitary operator U corresponds to the action of this Hamiltonian from time 0 to τ? We
already know from Eq. 5.38 how to answer this question for a constant Hamiltonian. We

5 With more spins, we might expect terms of the form Z, Z⊗ Z, Z⊗ Z⊗ Z, and so on. In practice, however, only
the one- and two-spin terms are significant.
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therefore imagine dividing the time interval into n smaller intervals of length 
ti, during
which f (t) essentially has the constant value f (ti). Then

U ≈ exp
(− i (f (tn)K)
tn

) · · · exp
(− i (f (t1)K)
t1

)
. (18.31)

The operators in these exponentials commute with each other, since they are all multiples
of K. We can therefore combine them as follows:

U ≈ exp

(
−i

(∑
i

f (ti)
ti

)
K

)
. (18.32)

Taking n →∞ and 
ti → 0, we obtain the exact expression

U = exp
(
−i

(∫ τ

0
f (t)dt

)
K
)

. (18.33)

For a precessing spin, let R̂x(β) and R̂y(β) represent the unitary operators (in the rotating
frame) produced by resonant pulses with phases φ = 0 and φ = π/2, respectively, such
that6 ∫ +∞

−∞
A(t) dt = β

2
. (18.34)

Exercise 18.26 Show that

R̂x(β) = e−i(β/2)X = cos(β/2)1− i sin(β/2)X,

R̂y(β) = e−i(β/2)Y = cos(β/2)1− i sin(β/2)Y. (18.35)

(You may wish to recall Exercise 18.20.)

Exercise 18.27 (a) First show that R̂x(π) = −iX and R̂y(π) = −iY. (b) Now compute
matrix representations for R̂x(π/2) and R̂y(π/2). (c) Find a product of these operators that
yields a multiple of the Pauli Z operator. (d) Do the same for the qubit Hadamard gate
operator of Eq. 18.2. (e) Describe your answers in parts (c) and (d) as sequences of resonant
radio pulses applied to a precessing nuclear spin.

An overall phase factor in a unitary operator is not important, since it only affects the
irrelevant overall phase of the state vector |ψ〉. Such a phase will make no difference in the
density operator |ψ〉〈ψ | , or in any statistical prediction. Thus, R̂x(π) = −iX is physically
equivalent to the operator X, etc. We can see this by considering how the operations affect
the Bloch vector describing a state. Both −iX and X yield the same rotation of the Bloch
sphere – in fact, a rotation by π about the X axis.

We can use radio-frequency pulses to produce any rotation about the X or Y axes. By
composing such rotations, we can create any rotation of the Bloch sphere. Therefore, up to
an irrelevant overall phase factor, we can produce any single-qubit unitary operation on a
nuclear spin by a sequence of resonant radio pulses.

6 The factor of 2 is chosen so that this definition agrees with the rotation operators for a spin-1/2 system. See, for
example, Eq. 5.56.
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18.4 NMR in the real world

Nuclear magnetic resonance provides an unparalleled degree of control over the dynamics
of a quantum system. However, to understand actual NMR experiments – including those
that use nuclear spins for quantum information processing – we must first describe some of
the real-world complications of such systems.

The magnetic field. The external magnetic field 	B is generated by a large set of coils,
often superconducting. The sample is held in a container that is as free of irregularities and
magnetic impurities as practicable. However, the field may not quite be uniform over the
sample volume – a fact which, if uncorrected, would produce an undesirable “spread” in
the precessional frequencies of the sample spins.7

To correct for this, fine adjustments to the field can be made with several much smaller
coils, called shims. Also, in many NMR systems the sample can be rapidly rotated within
the apparatus, which helps to “average out” the effects of an inhomogeneous field.

The initial state. NMR experiments are always performed on huge ensembles of
molecules rather than individual systems. Even a small sample can easily contain 1018

molecules of a given type. The spins in the sample are initially in thermal equilibrium at the
ambient temperature T , described by a canonical density operator. Consider for instance an
isolated proton. In the absence of an external field 	B, its two energy levels are degenerate,

so the canonical state is uniform: ρ = 1
2

1. But even an extremely large field will not change
the situation much.

Exercise 18.28 We can write the canonical density operator for a spin in a magnetic field
as ρ = λ0 |0〉〈0| + λ1 |1〉〈1| , where the ratio of populations is

λ0

λ1
= e−E0/kBT

e−E1/kBT = exp
(

��

kBT

)
, (18.36)

where � is the Larmor frequency. Show that, for a 10.00 T field at room temperature
(T = 300 K), this ratio differs from 1 by less than 10−5. Which of the two states has the
larger population? (We have restored the factor of � in Eq. 18.36 to make it easy to do this
calculation in conventional units.)

The concept of a pseudopure state was introduced back in Problem 8.9. This is a mixed
state that differs only very slightly from a uniform state on a d-dimensional Hilbert space.
The mixed state

π =
(

1− η

d

)
1 + η |ψ〉〈ψ | , (Re 8.84)

is the pseudopure state for the pure state |ψ〉〈ψ | , with purity η. Although |ψ〉〈ψ | and
π are very different, the pseudopure state π can for many purposes serve as a “stand-in”
for |ψ〉〈ψ | .

7 On the other hand, variations of the magnetic field can be desirable. If a spatially extended sample is placed in
a non-uniform field, then the precession frequency of a nucleus will depend on its location within the sample.
This fact is the basis for an important technological application of NMR, magnetic resonance imaging.
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Exercise 18.29 If |ψ〉〈ψ | is a qubit state represented by the Bloch vector 	a, show that the
associated pseudopure state π is represented by the Bloch vector η	a.

In Problem 8.9 you were asked to show that the dynamical evolution of the pseudopure π

tracks that of the associated pure state |ψ〉〈ψ | , and that for any traceless observable A, the
pseudopure state has 〈A〉 = Tr πA = η 〈ψ |A |ψ〉.

Exercise 18.30 If you have not already worked Problem 8.9, do so now.

Pure states cannot arise in room-temperature NMR, but pseudopure states are either
naturally available or can be constructed experimentally. (See Problem 18.8 for more
details.)

The rotating frame. Our theoretical analysis of the dynamics of nuclear spins relies on a
“rotating frame” that precesses at the Larmor frequency �. The radio pulses used to control
the spins, for instance, are defined relative to this frame. In a real NMR experiment, this
frame is established by an external high-precision oscillator. For instance, the difference
between resonant pulses that produce R̂x(β) and R̂y(β) spin rotations is simply a matter of
timing – of the relative phase of the radio signals to the fixed external oscillator. Any small
discrepancy between the oscillator frequency and the actual spin precession frequency will
appear as an extra chemical shift for the spins in the experiment.

Measurement. The last stage of a real NMR experiment is called free induction decay
(FID), in which the spins are allowed to precess in the external field, and the resulting
radio-frequency signals are detected. These signals, like those used to control the spins, can
be treated in a completely classical way. Our ensemble of N spins has a net magnetization
vector

	M(t) = Nγ
〈	S〉 , (18.37)

where 	S = (�/2)(〈X 〉 x̂+〈Y〉 ŷ+〈Z〉 ẑ). As the spins precess, this magnetization vector also
precesses, which produces a small but detectable radio signal at the precession frequency.
This radio signal provides certain types of information about the ensemble of spins:

• Since the spins precess about the z-axis, the 〈Z〉 term makes no contribution to the FID
signal.

• Types of spin with different precession frequencies each contribute to the FID signal.
Thus, it is the Fourier transform of this signal that is most often studied. Note that FID
signals from different types of nuclei, or similar nuclei with different chemical shifts, can
readily be distinguished in frequency space. (Other effects, such as J-coupling between
spins, can also be observed in the details of the Fourier transform of the FID signal.)

• By examining the amplitude of the FID signal and its phase relative to the fixed external
oscillator, we can determine both 〈X 〉 and 〈Y〉 for the spin ensemble in the rotating frame.

Decoherence and decay. The evolution of the nuclear spin state is not perfectly unitary.
In the standard basis, the populations of the density operator approach the equilibrium
populations with a time constant T1. This is called longitudinal relaxation.
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The coherences of the operator in this basis decay toward zero with a time constant T2.
This is called transverse relaxation. Problem 18.9 discusses these two processes in more
detail.

Both T1 and T2 depend on the details of the system, including the temperature and the
strength of the external field. Typically, T2 is much shorter than T1, and so decoherence
is the first important non-unitary effect. As long as the timescale τ of the experiment
satisfies τ � T2, then we can regard the system’s evolution as effectively unitary. In real
experiments, T2 can be several hundred milliseconds, which is long enough to apply quite
complicated sequences of radio pulses.

Atoms and molecules. Real experiments are done with real molecules, which in turn
are made out of real atoms. Here are some of the relevant atoms for some useful NMR
experiments:

Hydrogen. There are two naturally occurring isotopes, 1H and 2H. The 1H nucleus is
a proton with spin-1/2. The deuterium (2H) nucleus (also known as D) contains both
a proton and a neutron and has spin-1. The natural abundance of deuterium is only
around 0.015%. However, it is a very important tool in liquid-state NMR. If a molecule
of interest is dissolved in ordinary water, any NMR signal from its protons would be
completely overwhelmed by the signal of the protons in the water. This problem can
be avoided by using D2O rather than H2O as a solvent.

Carbon. Most carbon nuclei are 12C, which has spin-0 and is thus “invisible” to NMR.
Around 1% of carbon nuclei are 13C, which has spin-1/2. We can make the carbon
nuclei in a molecule more visible in NMR experiments by preparing the test sample
with 13C instead of 12C. (The Larmor frequency for 13C in a 10.00 T magnetic field is
6.726× 108 s−1, corresponding to a circular frequency of 107.0 MHz, almost exactly
one-fourth that of a proton.)

Oxygen. Almost all oxygen nuclei are 16O, which has spin-0. The isotope 17O has spin-
5/2, but its natural abundance is only about 0.04%. Oxygen can usually be ignored in
an NMR experiment.

Chlorine. The two naturally occurring isotopes of chlorine are 35Cl and 37Cl, each
of which has spin-3/2. More to the point, these two types of nuclei have significant
electric quadrupole moments, which strongly couple them to the electric fields within
a molecule. In a liquid sample, the molecules are rapidly tumbling, producing rapid
rotations in chlorine nuclei. On average, these nuclei make no contribution to the
nuclear spin Hamiltonian and thus can be effectively ignored in liquid-state NMR
experiments.

From these atoms, we can build up molecules. One of the simplest molecules for an
NMR experiment is chloroform (CHCl3), consisting of a carbon atom with one hydrogen
and three chlorine atoms (see Fig. 18.10). If the carbon atom is the more abundant 12C,
then the proton is a nearly-isolated qubit. If we make the molecule using 13C, then it
is a simple two-qubit system. Because the Larmor frequencies for 1H and 13C are very
different, these qubits can be controlled and measured independently. The J-coupling of the
hydrogen and carbon nuclei in the effective Hamiltonian (Eq. 18.26) for chloroform is about
ε12 = 1350 s−1.
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Fig. 18.10 Molecular structures of (a) chloroform, (b) methanol, and (c) trichloroethylene.

To do experiments on more qubits, we need more complex molecules. Consider methanol
(CH3OH), also shown in Fig. 18.10. Taking the most common isotopes for each atom (1H,
12C, and 16O) there are potentially four qubits in the methanol molecule, one for each
hydrogen atom. However, three of these – the ones bonded to the carbon atom – have
exactly the same chemical environment and are magnetically equivalent. They cannot be
individually “addressed” by resonant radio pulses or by measurements.8

Trichloroethylene (C2HCl3) is a more promising candidate. If we make this molecule
using 13C atoms, then it will have three possible qubits. The two carbon atoms have different
chemical environments and therefore are separated in frequency by a small chemical shift.
If we are careful, we can address these qubits individually.

18.5 Pulse sequences

Using resonant radio-frequency pulses, we can produce any desired single-qubit operation
on a nuclear spin (up to an overall phase). For at least some molecules, the various qubits can
be individually addressed by tuning the frequency of these pulses. To implement quantum
information processing in an NMR system, we need to find a way to make quantum gates
like CNOT, in which two qubits interact in a specified way. We do this by exploiting
the J-coupling between nuclear spins. The molecules are subjected to a pulse sequence
consisting of rapid pulses that produce nearly instantaneous changes in the states of various
spins, interspersed with much longer time delays during which the spins are allowed to
interact. The particular pattern of pulses and delays amounts to a kind of “program” for the
particular operation.

The obvious problem is that all of the chemical potentials and J-couplings of the spins
act at the same time. We cannot simply “turn off ” the inconvenient parts of the system
Hamiltonian Ĥ during the delays. How can we possibly design a pulse sequence to imple-
ment a particular quantum gate like CNOT? Although we cannot “turn off ” parts of the

8 The NMR characteristics of the three-hydrogen methyl group are obviously of considerable interest when NMR
is used to explore molecular structure and dynamics. Our point here is simply that the three-fold symmetry
complicates matters in using NMR to realize quantum information processing.
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Hamiltonian, there is a common technique of NMR that does something remarkably similar.
This is the technique of refocusing.

This idea is easiest to understand in the case of a single nuclear spin. This has an internal
effective Hamiltonian

Ĥ = εZ. (18.38)

We would like to find a simple way to compensate for the action of this chemical shift. If
the Hamiltonian acts for a time t, the resulting unitary operator is

V(t) = exp(−iεtZ). (18.39)

Suppose, however, we apply pulses before and after this time interval, each producing an
impulsive unitary operation X (up to an overall phase). Because XZX = −Z, we have

XV(t)X = exp(iεtZ), (18.40)

and so XV(t)XV(t) = 1. The process we envision has four stages. (1) The spin evolves for
a time interval t. (2) The spin is rapidly “flipped” via X. (3) The spin evolves for a second
equal time interval. (4) Finally, the spin is flipped again using X. The net result is that the
second half of the evolution exactly reverses the first half, regardless of the value of the
chemical shift ε or the time t.

A dramatic illustration of this is the spin echo experiment. After an initial R̂x(π/2) pulse,
the spins in a sample are rotated to a direction in the xy-plane. They should experience free
induction decay, and the magnetization of the sample should decay with a time constant
T2. However, if the magnetic field is not exactly uniform, then there will be different
Larmor frequencies for different parts of the sample. This will cause the spin precessions to
desynchronize, and the overall magnetization will appear to decay much more rapidly than
T2. The inhomogeneity of the magnetic field appears to lead to an irreversible relaxation of
the system.

However, suppose we apply an X pulse at a time t. If t � T2, then by the time 2t all
of the spins will once again be in their original direction. The magnetization will reappear
after its apparent decay. This spin revival, involving perhaps 1018 individual nuclei, can be
quite dramatic.

Exercise 18.31 Explain how a spin echo experiment can distinguish between the effects
of free induction decay and desynchronization due to field inhomogeneities. What is the
fundamental difference in these two processes?

Now consider a molecule with two nuclear spins. In the rotating frame, the effective
internal Hamiltonian of the system is

Ĥ(12) = ε1Z(1) + ε2Z(2) + ε12Z(1) ⊗ Z(2). (Re 18.26)

We wish to exploit the J-coupling term ε12Z(1) ⊗ Z(2) without having to worry about the two
chemical potential terms. We can do this by applying a refocusing operation on both spins.
The J-coupling term is affected by both refocusings, and thus undergoes no net cancellation.
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Exercise 18.32 Let V(t) = exp(−iĤ(12)t). Show that

(X(1) ⊗ X(2))V(t)(X(1) ⊗ X(2))V(t) = exp(−2iε12Z(1) ⊗ Z(2)t). (18.41)

This is exactly as if only the J-coupling acts over the time 2t.

Exercise 18.33 Describe a refocusing procedure that cancels out both the Z(2) and Z(1) ⊗ Z(2)

terms from the evolution due to Ĥ(12), but leaves the effect of the Z(1) chemical shift term.

Also see Problem 18.10 for a more complex situation.
Given a non-zero J-coupling coefficient ε12, we can use refocusing to create the net

time-evolution operator

U12 = exp
(−iθZ(1) ⊗ Z(2)

)
= cos θ 1− i sin θ Z(1) ⊗ Z(2), (18.42)

for any desired θ ≥ 0.

Exercise 18.34 Verify Eq. 18.42. Show that the standard product basis vectors evolve
according to

U12 |00〉=e−iθ |00〉 , U12 |01〉=eiθ |01〉 ,
U12 |10〉=eiθ |10〉 , U12 |11〉=e−iθ |11〉 . (18.43)

Since we can use resonant pulses to produce any single-qubit unitary (up to overall phase),
we can produce U1 = exp(iθZ(1)) and U2 = exp(iθZ(2)). The product U1U2U12 acts on
standard basis elements by

|00〉→eiθ |00〉 , |01〉→eiθ |01〉 ,
|10〉→eiθ |10〉 , |11〉→e−3iθ |11〉 .c (18.44)

Choosing θ = π/4, this becomes (up to an irrelevant overall phase of eiπ/4),

|00〉→ |00〉 , |01〉→ |01〉 ,
|10〉→ |10〉 , |11〉→− |11〉 . (18.45)

We recognize the operation in Eq. 18.43 as the controlled-Z gate from Section 18.1.
Therefore, by a pulse sequence including time delays, using refocusing to isolate the J-
coupling term, we can produce a unitary transformation that is, up to phase, equivalent to
the controlled-Z. From this we can easily construct a CNOT gate.

Exercise 18.35 Explain how the solution to Exercise 18.7 also tells us how to construct
CNOT from controlled-Z.

Therefore, any quantum circuit on a set of nuclear spins can in principle be implemented via
resonant pulses and J-couplings in an NMR system. Our practical limitations will be (1) the
choice of a molecule with suitable couplings whose spins may be individually addressed
by frequency, and (2) the requirement that all of the operations must be accomplished in a
time much less than the decoherence time T2 for the spins. Luckily, this may be as long as
several seconds, giving us time for scores or hundreds of individual gates.
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Exercise 18.36 Estimate the time required to perform a CNOT gate on the two nuclear
spins in chloroform. Compare this to T2 for the 13C nucleus, which is about 0.3 s. (T2 is
much longer for the 1H nucleus in chloroform.)

A more serious limitation comes from the use of pseudopure rather than pure states. We
make pseudopure states from thermal states as suggested in Problem 18.8. The resulting
purity, and thus the NMR signals, decreases exponentially in the number of qubits. Thus,
the NMR approach to quantum computing we have outlined has an effective limit of about
10–12 qubits.

Nuclear magnetic resonance is a highly developed experimental technique, with an
extremely rich range of applications. For a deeper look at NMR, consult a specialized text.9

Problems

Problem 18.1 We have stated that any n-qubit unitary operation U can be constructed from
single-qubit operations and CNOT gates acting between pairs of qubits. But suppose that,
for technical reasons, we can only use CNOT gates between adjacent qubits. Moreover,
the CNOT between qubits k and k + 1 must always have k as the control and k + 1 as the
target. (All single-qubit operations are still allowed.)

(a) Even under these restrictions, are we still able to accomplish any n-qubit unitary U?
Prove your answer.

(b) For n = 3, construct a quantum circuit obeying these restrictions that performs a CNOT
operation with qubit 3 and the control and qubit 1 as the target.

Problem 18.2 Design a controlled-	(α) gate on a pair of qubits using only CNOTs and
single-qubit gates. This is a useful generalization of the controlled-Z.

Problem 18.3 This problem tells how to construct multiply-controlled qubit gates.

(a) Prove the identity in Fig. 18.11.
(b) Use this same idea to show how to construct a triple-controlled unitary gate for four

qubits, starting from a version controlled by only one qubit.

Problem 18.4 Use the identity from Problem 18.3 (see Fig. 18.11) to construct the quantum
Toffoli gate from one- and two-qubit gates. Why does this procedure not work for the
classical Toffoli gate?

Problem 18.5 When describing dense coding and quantum teleportation in Section 7.4,
we made use of the Bell measurement, a basic measurement using the entangled Bell basis
states. Design a section of a quantum computer that performs this measurement on a pair
of input qubits. That is, the outputs of the final standard measurements on the two qubits

9 We recommend Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd edn, by Malcolm H. Levitt
(Chichester: John H. Wiley and Sons, 2008) as a particularly readable and comprehensive introduction.
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Fig. 18.11 How to make a doubly-controlled quantum gate. See Problem 18.3.

(00, 01, 10, and 11) identify which Bell state is present in the input. Use only single-qubit
gates and CNOTs in your design. The symbol for a final standard-basis measurement on a
qubit is

.

Problem 18.6 Here are two extensions of the discussion of the Deutsch–Jozsa problem.

(a) If we do not insist on certainty, a probabilistic quantum computer can solve the Deutsch–
Jozsa oracle problem pretty efficiently. Suppose a function f is given and we evaluate
m inputs chosen at random. We conclude that the function is constant if all of the f (a)

values are equal, and balanced otherwise. What is the probability that we would incor-
rectly identify a constant function as balanced? A balanced function as constant?
Discuss the relation between this and the “fair coin/fraudulent coin” example in
Appendix A.

(b) Suppose the function f is either nearly constant (with only a small number r of excep-
tions) or nearly balanced (with 0 and 1 outputs equal to within a small number r).
Calculate the probability that the Deutsch–Jozsa quantum algorithm yields an incorrect
answer.

Problem 18.7 An oscillating Hamiltonian. Suppose that the Hamiltonian of a quantum
system is of the form Hc cos �t. Show that the resulting time evolution is described by the
operator

U(t1, t2) = exp
(
−iHc

∫ t2

t1
cos �t dt

)
, (18.43)

where we have set � = 1. You should use the fact that the Hamiltonians at various times,
though different, at least commute with each other.

Suppose that the oscillation frequency � satisfies � � |ε| for all eigenvalues ε of
Hc. Show that U(t1, t2) ≈ 1 for all times. In short, a rapidly oscillating Hamiltonian is
approximately equivalent to a zero Hamiltonian.
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Problem 18.8

(a) Using only CNOT gates, devise a quantum circuit for two qubits that leaves the state
|00〉 unaffected but takes |01〉 → |11〉 → |10〉 → |01〉.

(b) In a system of two nuclear spins, the canonical state is not a pseudopure state. Assuming
that we can make any unitary operation we need by using pulse sequences and delays,
describe a general method by which the behavior of an ensemble of these systems,
averaged over several different experiments, is the same as that of a pseudopure state
for |00〉〈00| .

(c) Calculate the effective purity of your “synthetic pseudopure” state in part (b) for a pair
of protons at room temperature in a 10.00 T magnetic field. Compare this to the purity
of the canonical state of a single proton under these conditions.

(d) Repeat (b) and (c) for a system of three protons.

Problem 18.9 This problem considers a simplified model of the longitudinal and transverse
relaxation times for a spin in an NMR experiment. Suppose the spin evolves according
to the Lindblad equation with zero Hamiltonian H and three Lindblad operators λ |0〉〈1| ,
λ |1〉〈0| , and μZ. The first two operators represent longitudinal relaxation and the third
represents decoherence.

(a) Show that the equilibrium state is
1
2

1.
(b) Show that the coherences of the density operator in the standard basis decay

exponentially toward zero with time constant T2. Find T2 in terms of λ and μ.
(b) Show that the populations of the density operator decay exponentially toward 1/2 with

time constant T1. Find T1 in terms of λ and μ.
(c) Prove that T2 ≤ 2T1.

Problem 18.10 Suppose a molecule contains three nuclear spins. All three spins have
chemical shifts, and each pair has a J-coupling. Devise a refocusing technique to eliminate
the effects of all terms in the effective Hamiltonian except for the Z(1)⊗Z(2) term. (Assume that
the three spins can be individually addressed by frequency. The easiest solution involves
four equal time delays.)

Problem 18.11 Fill in the details of the argument in Section 18.5, and devise a pulse
sequence that implements the CNOT gate on two nuclear spins with a J-coupling ε12. For
simplicity, you may ignore the chemical shifts in the effective Hamiltonian. On the other
hand, you should write all of the single-spin operations as products of R̂x(α) and R̂y(α)

operators.

Problem 18.12 Write a brief essay discussing how the characteristics of NMR systems
match up to the list of “quantum computing assumptions” at the start of Section 18.3.
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19.1 Classical entropy

In this chapter we will generalize classical and quantum concepts of entropy and take a
deeper look at their relation to information. We begin with the classical entropy H . This was
introduced in Chapter 1 as a practical measure of the amount of information in a message.
If we consider a source that generates M equally likely messages, we define the entropy
H to be

H = log M . (Re 1.2)

This definition has a number of intuitively appealing properties. For example, if two
messages are independent, the entropy of the joint message is the sum of the individual
entropies. This entropy is also related to the thermodynamical entropy of classical statistical
mechanics.

We wish to generalize Eq. 1.2 to situations in which the various messages are not equally
likely. Consider, for instance, an English text, which we will regard as a sequence of
independent letters and spaces. If we ignore punctuation and capitalization, there are 27
distinct symbols. If the letters were equally likely the entropy would be H = log 27 = 4.75
bits per letter. But in English, some letters (space, e, t, a) are far more probable than others
(x, q, z). How can this fact be taken into account?

A limited version of this question was addressed in Problem 1.1, using an argument that
we restate in more general form here. Our “messages” are taken to be possible values of an
abstract random variable X , so that the value x has probability p(x). We will further suppose
that all of the probabilities are rational numbers, which we can write in terms of a common
denominator: p(x) = nx/N . These probabilities might arise in the following way:

• There is some larger message Z with N equally likely values.
• The values of Z are partitioned into subsets labeled by the values of X . The subset

designated x has nx equally likely outcomes.

The total probability of the x subset is p(x). To specify the value of Z, we must specify two
pieces of data: (1) the value x of X , and (2) which of the nx outcomes in that subset actually
occurs. We know that the overall entropy H(Z) = log N , and that for each particular x
(occurring with probability p(x)) the entropy of the subset is log nx. It is reasonable to
suppose that

H(Z) = log N = H(X )+
∑

x
p(x) log nx. (19.1)
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Solving for H(X ) we find

H(X ) = −
∑

x
p(x) log p(x). (19.2)

Exercise 19.1 Verify the result of Eq. 19.2.

Since any irrational probabilities can always be approximated by rational ones, we postulate
that Eq. 19.2 holds for all discrete probability distributions over X .

The general definition of entropy in Eq. 19.2 is due to Shannon and forms one of the
bases of the classical theory of information.1 The definition has a number of excellent
properties. For instance, if X has M possible values and all of them are equally likely, then
H(X ) = log M , in agreement with Eq. 1.2. This is in fact the maximum possible value for
the entropy:

Exercise 19.2 If X has M possible values, show that H(X ) is largest when all of these
values are equally likely. (Hint: Write H as a function of the probabilities, not forgetting
that the probabilities sum to one and thus p(xM ) = 1− p(x1)− . . .− p(xM−1). Maximize
this function.)

Exercise 19.3 What if the probability distribution over X contains some x for which
p(x) = 0? Then the corresponding term in Eq. 19.2 appears to be undefined. To resolve
this, show that

lim
p→0

p log p = 0, (19.3)

justifying the convention that sets 0 log 0 = 0 in the sum. This means that impossible values
for X make no contribution to H(X ).

Exercise 19.4 Show that H(X ) ≥ 0, and that H(X ) = 0 if and only if one value x has
probability 1. What is the significance of this fact if we are to regard H(X ) as a measure of
the “information content of X ”?

Exercise 19.5 If we roll two six-sided dice and add the numbers on their upper faces, the
sum could be any value between 2 and 12. Find the probability for each sum value, and
calculate the entropy of the distribution. How does this compare to log 6 (the entropy for
one die) and log 36 (the entropy of the full two-dice configuration, not just the sum)?

See also Problem 19.2, in which you are to find the letter entropy for English.
Although we have defined the entropy H(X ) with respect to a random variable X , we

should emphasize that it is really a function of the underlying probability distribution of X .
This makes sense if we regard H(X ) as a measure of information content. The value of X
can be encoded in the value of another variable Y ; in this new representation, the message
x is now designated by the encoded version y, but p(y) = p(x). Since X and Y are merely
different representations of the same information, it makes sense that H(X ) = H(Y).

1 Shannon did his work in the 1940s, but the analog of Eq. 19.2 in classical statistical mechanics had been
discovered more than half a century earlier by J. Willard Gibbs. This is in fact why Shannon called his H by
the name “entropy.”
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Joint and conditional entropies

Consider a pair of random variables X and Y with a joint distribution p(x, y). This has a
joint entropy defined in the usual way:

H(X , Y) = −
∑
x,y

p(x, y) log p(x, y). (19.4)

From the joint distribution, we can derive various other important distributions. As noted in
Appendix A, we sum the joint probabilities to obtain marginal distributions for X and Y :

p(x) =
∑

y
p(x, y), p(y) =

∑
x

p(x, y). (Re A.5)

From these we may calculate the entropies H(X ) and H(Y). For a given Y -value y with
p(y) > 0, we can also define the conditional probability distribution over X

p(x|y) = p(x, y)
p(y)

, (Re A.6)

from which we can calculate an entropy

H(X |y) = −
∑

x
p(x|y) log p(x|y). (19.5)

This depends on the particular Y -value y that is given. The conditional entropy H(X |Y) is
defined to be the average over all such values, weighted by the probability with which they
appear:

H(X |Y) =
∑

y
p(y) H(X |y) = −

∑
x,y

p(x, y) log p(x|y). (19.6)

From this, it is easy to arrive at the useful identities

H(X |Y) = H(X , Y)− H(Y),

H(X , Y) = H(Y)+ H(X |Y). (19.7)

Equation 19.7 has a satisfying interpretation. The information content of X and Y together
equals that of Y alone plus that of X given Y .

Exercise 19.6 Show also that, for random variables X , Y , and Z,

H(X , Y |Z) = H(Y |Z)+ H(X |Y , Z). (19.8)

This is sometimes called the chain rule for conditional entropies.

Since H(X |Y) ≥ 0 (as the average of non-negative terms), Eq. 19.7 implies that H(X , Y) ≥
H(Y). This property is sometimes called the monotonicity of classical entropy. If we include
more variables, the entropy – our measure of the information in the joint outcome – can
never actually get smaller.

One of the fundamental properties of the entropy function is called Gibbs’s inequality.
For two distributions p(x) and q(x) for the same random variable X ,

−
∑

x
p(x) log p(x) ≤ −

∑
x

p(x) log q(x), (19.9)
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where equality holds if and only if the two distributions are the same: p(x) = q(x). The
proof of this is not difficult, and is left for Problem 19.1. A great many facts about the
entropy function can be derived from Gibbs’s inequality.

Exercise 19.7 Suppose that X has M possible values. Use Gibbs’s inequality with q(x) =
1/M to give an alternate proof that X is maximized (at log M) for the uniform distribution.

This motivates the definition of the relative entropy D (p||q) between two distributions:

D (p||q) =
∑

x
p(x) log

p(x)
q(x)

. (19.10)

Gibbs’s inequality tells us that D (p||q) ≥ 0, with equality if and only if the two distributions
are the same. (If there exists an x for which q(x) = 0 but p(x) > 0, then we formally write
D (p||q) = ∞.) The relative entropy is a kind of non-symmetric measure of the “distance”
between two probability distributions.

The mutual information of random variables X and Y , written H(X : Y), is defined
to be

H(X : Y) = H(X )+ H(Y)− H(X , Y) =
∑
x,y

p(x, y) log
p(x, y)

p(x)p(y)
. (19.11)

Exercise 19.8 Prove the second equality in Eq. 19.11.

Exercise 19.9 Use Gibbs’s inequality with q(x, y) = p(x) p(y) to show that H(X : Y) ≥ 0
for any joint distribution over X and Y . Further prove that H(X : Y) = 0 if and only if X
and Y are independent.

Exercise 19.9 establishes that the mutual information is useful as a measure of the corre-
lation of X and Y . From this it also follows that H(X ) ≥ H(X , Y)− H(Y) = H(X |Y). In
other words, determining the value of the variable Y can never (on average) increase the
entropy of the variable X .

Exercise 19.10 We previously pointed out that H(X , Y) ≥ H(Y). Under what condition
will equality hold? Try to describe this condition plainly as a relationship between the
variables X and Y .

Convexity and concavity

A real function f is said to be convex if, for any two input values x and y and any parameter
λ such that 0 ≤ λ ≤ 1,

f (λx+ (1− λ)y) ≤ λf (x)+ (1− λ)f (y). (19.12)

We can recognize a convex function by its graph. A straight chord line joining any two
points on the graph of f must lie above that graph.

Exercise 19.11 Draw a picture to illustrate this idea, and show the relation between the
graphical characterization and the definition in Eq. 19.12.

A sufficient condition for f to be convex is for f ′′(x) ≥ 0 for all x.
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It is straightforward to generalize Eq. 19.12. Suppose x1, . . . , xn are inputs of the function
f , and the numbers λ1, . . . , λn are non-negative numbers that add up to 1. The convexity
of f means that

f

(∑
k

λkxk

)
≤
∑

k
λk f (xk) . (19.13)

The numbers xk might be the values of a random variable X , with the λks being the
corresponding probabilities. Then the convexity of f means that

f (〈X 〉) ≤ 〈f (X )〉 . (19.14)

This useful fact is called Jensen’s inequality.

Exercise 19.12 Use Jensen’s inequality to prove the familiar fact that
〈
X 2〉 ≥ 〈X 〉2.

A function g(x) is said to be concave if −g(x) is convex. To put it another way, a function
is concave provided that the direction of the inequality is reversed in Eq. 19.12 (and thus
also in Eq. 19.13 and 19.14).

Exercise 19.13 Prove that the sum of two or more convex (or concave) functions is also
convex (or concave).

Consider an abstract random variable X with probability distribution p(x). We could
consider the numbers p(x) also to be the values of a numerical random variable, which we
denote PX . This new variable has a mean

〈PX 〉 =
∑

x
p(x)2. (19.15)

The function f (y) = − log(y) is a convex function for all y > 0. Jensen’s inequality
therefore yields an inequality for the entropy:

H(X ) = −
∑

x
p(x) log p(x)

= 〈− log PX 〉

≥ − log 〈PX 〉 = − log

(∑
x

p(x)2

)
. (19.16)

Exercise 19.14 Suppose that X and X ′ are independent, identically-distributed random
variables. Use Eq. 19.16 to show that the probability the two agree is at least

Pr(X = X ′) ≥ 2−H(X ). (19.17)

The function g(y) = −y log y is concave for 0 ≤ y ≤ 1. Since the entropy function is
the sum of such terms, it too is a concave function of the probability distribution. That
is, suppose p1(x) and p2(x) are two probability distributions over the same set, and let
0 ≤ λ ≤ 1. Then we can make an average probability distribution

p(x) = λp1(x)+ (1− λ)p2(x). (19.18)
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The concavity of the entropy function means that the entropies of these distributions satisfy

H = −
∑

x
p(x) log p(x) ≥ λH1 + (1− λ)H2, (19.19)

where Hi is the entropy of the distribution pi(x). The entropy of the average distribution is
always at least as great as the average of the two entropies.

This concavity property of entropy is closely related to a fact we have already seen.

Exercise 19.15 Suppose that X and Y are two random variables with a joint distribution.
For each y, we have the conditional distribution p(x|y) over x. The ys themselves occur
with probabilities p(y), leading to an average distribution p(x). Use the concavity of the
entropy function to obtain the result that H(X ) ≥ H(X |Y).

19.2 Classical data compression

The value of the numerical measure of entropy lies in its relation to particular information
tasks. As we first saw in Section 1.1, the entropy H for uniform distributions was the
minimum number of bits required to represent a message faithfully. (To approach the
goal of using H bits per message, we must encode entire blocks of independent messages
together. The main point remains.) Does such a relation still hold when the underlying
probability distributions are not uniform?

The brief answer is yes, but to understand this answer we need to examine the problem
in more detail. We shall begin with a binary example. Suppose we have a binary message
source that produces 0s and 1s with very different probabilities: p(0) = 0.9 and p(1) = 0.1.
The entropy for this source is H = 0.469 bits. This seems to suggest that we might faithfully
code n messages from the source using around n/2 binary digits, if n is large enough.

Yet this appears to be impossible. There are 2n possible strings of n independent messages
from the source, and we cannot represent them all with fewer than n bits.

On the other hand, do we really need to represent every possible n-message string in our
code? Some of these strings are not very likely to occur. Consider the string 111 · · · 11,
which has the probability (0.1)n. If n is reasonably large, this may be quite negligible. We
might be prepared to tolerate errors in our code, provided that the total probability of error
can be made small enough.2

As we will see, for large n it is possible to identify a typical set T of message strings. Our
code will be designed to represent strings in T faithfully, but will fail for other strings. If
there are NT strings in T , our code requires about log NT bits (and thus (log NT )/n bits per
message). The probability that a randomly generated string is in T is PT . Thus, our efforts
will be successful if we can choose NT such that (log NT )/n → H bits per message, while
nevertheless PT → 1, as n becomes large.

2 We do not need to give a particular universal definition for a “small enough” probability of error. Instead, we
require that, once we establish an upper error limit ε – tiny, but non-zero – we can make sure the total probability
of error is less than ε.
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Consider strings of ten outputs of our source. We will choose as our typical set T the set
of strings with “about” 90% zeroes – to be specific, the number of zeroes is between seven
and ten (inclusive). Recall that

Number of n-strings with k zeroes =
(

n
k

)
= n!

k!(n− k)! ,

Probability of each such string = p(0)k p(1)n−k . (19.20)

The following sequence of exercises shows what happens:

Exercise 19.16 There are 210 = 1024 ten-bit message strings that the source might produce.
Show that the typical set T described above has only NT = 176 members, but has a total
probability PT in excess of 0.98. How many bits per message do we need to represent the
strings in T?

Exercise 19.17 If you have a computer system suitable for doing the calculation, consider
strings of n = 100 messages. For T , include all strings with between 82 and 98 zeroes,
inclusive. (Note that the most likely single message, 0000 · · · 00, is not in T .) Show that
PT > 0.99, but that the messages in T can be encoded using only about 0.65 bits per
message.

Exercise 19.18 Consider strings of n = 1000 messages. Let T consist of all such strings
with between 870 and 930 zeroes. Show that PT is even closer to 1 than in the previous
exercise, but we only require about 0.55 bits per message to represent the strings in T
faithfully.

The typical set T is exponentially smaller than the set of all n-message strings. Neverthe-
less, it is nearly certain that the particular string actually generated by the source lies within
T . This combination of “small size” and “high probability” allows us to use many fewer
than n bits to represent the message, while maintaining an exceedingly small likelihood of
error.

To make our argument more general and rigorous, we need a systematic way to choose
the set T , so that in the limit n → ∞ it has the requisite properties. From Appendix A
recall the following basic theorem:

Weak Law of Large Numbers. Let X1, X2, . . . , Xn be independent, identically distributed
numerical random variables, each with finite mean μ and variance σ 2. Given any δ, ε > 0,
for sufficiently large n,

Pr

(∣∣∣∣∣
(

1
n
∑

k
xk

)
− μ

∣∣∣∣∣ > ε

)
< δ. (Re A.22)

For large n, the numerical average of the xis will almost certainly be very close to the
theoretical mean μ.

Now we once again use the probabilities to construct a numerical random variable. Given
the random variable X , we can define a numerical random variable that takes on values
−log p(x). This new random variable is sometimes called the surprise of X , denoted �X ,
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because its value is large when p(x) is small (and thus x would be quite surprising). Note
that we use the probability distribution p(x) to fix both the possible values of SX and their
probabilities. The mean of �X is exactly H(X ) as defined in Eq. 19.2; and if we further
assume that the underlying set of X is finite, �X must also have finite variance.

Now consider a sequence of n independent instances of X . It is convenient to denote
such a sequence by 	X = (X1, . . . , Xn). The probability p(	x) = p(x1) · · · p(xn), and so

� 	X = − log p(	x) = − log p(x1)− . . .− log p(xn) = �X1 + . . .+�Xn . (19.21)

The surprise is thus an “additive” random variable when we create sequences of independent
X s. We can now apply the Weak Law of Large Numbers to the surprise. Given δ, ε > 0,
then for large enough n

P
(∣∣∣∣− log p(	x)

n
− H(X )

∣∣∣∣ > ε

)
< δ. (19.22)

For such large n, we define the typical set T to be the set of sequences for which

n(H(X )− ε) ≤ − log p(	x) ≤ n(H(X )+ ε). (19.23)

Equation 19.22 establishes that a sequence 	x is in this set T with probability PT > 1− δ, so
T is a “high probability” set. But how big is T? Since no individual 	x in T has a probability
less than 2−n(H(X )+ε), the total number of sequences must satisfy

NT ≤ 2n(H(X )+ε). (19.24)

Exercise 19.19 Verify the derivation of this result from Eq. 19.22. Why is the inequality
here “≤” rather than “<”?

Given any δ, ε > 0, for sufficiently large n we can find a typical set T of n-strings of X
such that PT > 1− δ, and log NT ≤ n(H(X )+ ε).

Intuitively, we say that the typical set T of n-sequences has a total probability that is
about equal to 1; that there are about 2nH(X ) sequences in T ; and that all of these sequences
have about the same probability p(	x) ≈ 2−nH(X ). These simple informal statements conceal
a good deal of mathematical machinery within the word “about”! Nevertheless, they are
useful as heuristic principles.

Since T has total probability near 1, we will be satisfied to devise a code that faithfully
represents sequences in T but fails for all others. Since T has about 2nH(X ) elements, we can
represent those elements uniquely by sequences of about nH(X ) bits. More exactly, we can
construct a code for sequences in T that uses between n(H(X )+ε) bits and n(H(X )+ε)+1
bits. The number of bits per message is thus no greater than H(X )+ ε + 1/n. By suitable
choice of ε and n, we can make this as close as we like to H(X ) itself.

We can therefore devise a code for long strings of X messages that has a probability
of error less than δ, but which only requires about H(X ) bits per message. The entropy
H(X ) quantifies the physical resources (bits) sufficient to faithfully represent X . This fact
is called the (classical) data compression theorem.

The data compression theorem is a fundamental principle of classical information theory.
In effect, it gives an operational meaning to the entropy H(X ) in terms of a definite
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communication task. But the particular scheme used to prove the data compression theorem
is not necessarily a practical one. As Exercises 19.16, 19.17, and 19.18 suggest, we might
need to encode very long sequences to compress our data to about H(X ) bits per message.
Furthermore, even though we know that a good code exists, it might be hard to describe it
in detail or to apply it efficiently. Real codes for data compression are generally based on a
different approach. Problem 19.3 suggests one such alternative.

19.3 Quantum entropy

Suppose a quantum system is in a mixed state described by the density operator ρ. The
mixed state may arise either because we are uncertain about the system’s preparation, or
because the system is entangled with other systems. When the ρ is a uniform density
operator on a subspace of dimension d in the Hilbert space, we have defined the quantum
entropy of the system to be

S = log d. (Re 8.56)
This quantum entropy is analogous to the classical entropy H for a uniform distribution.
Just as we generalized H to more general distributions, we will now generalize S to more
general density operators.

First, we should point out that the quantum entropy S has some very different properties
from classical entropy. For instance, if X and Y are two random variables, then H(X , Y) ≥
H(Y). The classical entropy of the whole is at least as great as the classical entropy of the
part. But consider an ebit, a pair of qubits A and B in a maximally entangled state. For
each qubit, the subsystem state is a uniform density operator over the whole Hilbert space
Q, and so S(A) = S(B) = 1. But the joint system AB is in a pure state, so that S(AB) = 0.
Because of entanglement, the quantum entropy of the whole can be less than the quantum
entropy of the part.3

The general definition of entropy in the quantum case was given by John von Neumann.
For a system Q with density operator ρ, the entropy is

S(A) = −Tr ρ log ρ. (19.25)

The logarithm log ρ of the operator ρ can be defined using a power series, as was done for
the operator exponential in Eq. 5.39. The resulting expression is independent of basis but
is easiest to compute in a basis that diagonalizes ρ. If the eigenvalues of ρ are ρk , then

S(Q) = −
∑

k
ρk log ρk . (19.26)

The quantum (von Neumann) entropy is just the classical (Shannon) entropy of the
eigenvalues of ρ.

3 Note that we associate the entropy S(A) with the system A, though it is a function only of the density operator
ρ(A). In the same way we associate the classical entropy H(X ) with the random variable X , though it depends
only on the set of probabilities.
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Exercise 19.20 The quantum system Q is equally likely to be prepared in the states |a〉
and |b〉, so that the density operator for the mixture is

ρ = 1
2

(
|a〉〈a| + |b〉〈b|

)
. (19.27)

However, |a〉 and |b〉 are not necessarily orthogonal. Suppose that their inner product
〈a |b 〉 happens to be real. Show that the quantum entropy is

S(Q) = −ρ+ log ρ+ − ρ− log ρ−, (19.28)

where ρ± = 1
2 (1± 〈a |b 〉). If the two states are equally likely, why is the quantum entropy

not necessarily equal to 1? What is the entropy if the two state vectors are nearly parallel
in the Hilbert space?

Suppose we apply a basic measurement to Q with basis elements |an〉. The probability
of the outcome an is

p(ak) =
∑

k
|〈ak |k 〉|2 ρk , (19.29)

which we can regard as a probability distribution over a random variable A. Consider the
matrix whose components are Mnk = |〈ak |k 〉|2 ≥ 0. Normalization gives us that∑

n
Mnk = 1 and

∑
k

Mnk = 1. (19.30)

In other words, both the rows and columns of Mnk can be regarded as probability
distributions. A matrix with this property is called doubly stochastic.

The classical entropy H(A) is

H(A) = −
∑

n

(∑
k

Mnkρk

)
log

(∑
l

Mnlρl

)
. (19.31)

Each term in the n-sum has the form f (〈R〉), where R is a random variable with values ρk
and probability Mnk (for a given n), and where f (x) = x log x, a convex function. Jensen’s
inequality yields

H(A) ≥ −
∑

n

(∑
k

Mnkρk log ρk

)
. (19.32)

Since
∑

n
Mnk = 1, a reordering of the sums yields

H(A) ≥ S(Q). (19.33)

For example, suppose Q is a qubit with ρ (Q) = |0〉〈0| . Then S(Q) = 0. A measurement in
any basis except the standard basis { |0〉 , |1〉} will yield H(A) > 0.

Exercise 19.21 Explain why Eq. 19.33 can be restated thus: The Shannon entropy of the
populations of ρ can be no less than the von Neumann entropy of ρ.
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Klein’s inequality

The same mathematical trick involving a doubly-stochastic matrix allows us to prove an
analog of Gibbs’s inequality, which in the quantum case is known as Klein’s inequality.
Suppose ρ and σ are two density operators for Q such that

ρ =
∑

k
ρk |rk〉〈rk| and σ =

∑
n

σn |sn〉〈sn| . (19.34)

Now consider the quantity

− Tr ρ log σ = −
∑

k
ρk 〈rk| log σ |rk〉

= −
∑

k
ρk 〈rk|

(∑
n

log σn |sn〉〈sn|
)
|rk〉

= −
∑

k
ρk

(∑
n

Mnk log σn

)
, (19.35)

where Mnk = |〈sn |rk 〉|2, a doubly stochastic matrix. Applying Jensen’s inequality to the
logarithm gives

− Tr ρ log σ ≥ −
∑

k
ρk log

(∑
n

Mnkσn

)

= −
∑

k
ρk log τk , (19.36)

where τk =
∑

n
Mnkσn. By Gibbs’s inequality,

−
∑

k
ρk log τk ≥ −

∑
k

ρk log ρk , (19.37)

and therefore
− Tr ρ log σ ≥ −Tr ρ log ρ. (19.38)

This is Klein’s inequality.

Exercise 19.22 The logarithm is strictly concave, which means that 〈log X 〉 ≤ log 〈X 〉
with equality if and only if one value x of X has p(x) = 1. From this (and from the equality
condition for Gibbs’s inequality) show that the two sides of Eq. 19.38 are equal if and only
if ρ = σ .

Equation 19.38 motivates us to define the quantum relative entropy

D (ρ||σ ) = Tr ρ log ρ − Tr ρ log σ . (19.39)

Klein’s inequality then tells us that D (ρ||σ ) ≥ 0, with equality if and only if ρ = σ .

Exercise 19.23 Under what circumstances is D (ρ||σ ) = ∞?

Like the classical relative entropy between distributions, the quantum relative entropy can
be considered as an asymmetrical “distance” measure between density operators.
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Properties of quantum entropy

Some of the quantities we defined for the classical entropy have straightforward analogs in
the quantum domain. For example, a composite system AB has both a joint entropy S(AB)

and subsystem entropies S(A) and S(B). The quantum mutual information is

S(A:B) = S(A)+ S(B)− S(AB). (19.40)

Exercise 19.24 Show that log(E(A) ⊗ F(B)) = (log E(A)) ⊗ 1(B) + 1(A) ⊗ (log F(B)) for positive
operators E(A) and F(B).

Exercise 19.25 Use the result of the previous exercise to show that

S(A:B) = D
(
ρ (AB)||ρ (A) ⊗ ρ (B)

) ≥ 0. (19.41)

The quantum mutual information S(A:B) is a measure of “how far” the state ρ (AB) is from
being a product of subsystem states – a measure, in short, of the degree of correlation of
systems A and B. It follows that

S(A,B) ≤ S(A)+ S(B), (19.42)

a property known as the subadditivity of the entropy.
What about a conditional quantum entropy S(A|B)? We might of course simply define

S(A|B) = S(AB)− S(B). (19.43)

But this quantity is not always positive, so it cannot be an “average” of other entropies (as
we had in the definition of H(X |Y) in Eq. 19.6). The point is that we have no obvious way
to define a conditional state ρ (A|B), a state of system A in which system B somehow acts as
a “given.”4 So the mathematical definition in Eq. 19.43 – though acceptable from a purely
mathematical point of view – is potentially more misleading than enlightening.

If A and B are in a pure state |� (AB)〉, then the density operators ρ (A) and ρ (B) have exactly
the same non-zero eigenvalues (see Exercise 8.14). Thus,

S(A) = S(B) (ρ (AB) pure). (19.44)

This entropy is a measure of the entanglement of A and B. The general fact in Eq. 19.44 is
useful for deriving even more properties of the entropy. For example, suppose the composite
system AB is in the mixed state ρ (AB), and we introduce a third system C that purifies AB.
Subadditivity (Eq. 19.42) for system AC means that S(A)+ S(C) ≥ S(AC). Since ABC is
in a pure state, complementary subsystems have the same entropy. That is, S(A) = S(BC),
S(AC) = S(B) and so on. Thus,

S(A)+ S(AB) ≥ S(B), (19.45)

4 We might try to define S(A|B) by considering the conditional states of A due to a particular measurement of
B. This is, in effect, the entropy of A conditioned on the classical variable that represents the B-measurement
outcome. This depends on the choice of measurement. It is not Eq. 19.43.
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which implies that S(AB) ≥ S(A)− S(B). The corresponding fact with A and B reversed
yields

|S(A)− S(B)| ≤ S(AB), (19.46)

a result known as the triangle inequality for entropy.

Three deep facts

We will introduce three more general properties of quantum entropy. These properties are
related to one another – we will derive the second and third from the first – but their ultimate
proof involves mathematical techniques beyond the scope of this book. On the other hand,
they are exceedingly useful for understanding the information properties of open quantum
systems, so we will state them here and use them as needed.

The first and most basic property is known as the monotonicity of relative entropy. Given
two states ρ (AB) and σ (AB) of a composite system AB,

D
(
ρ (AB)||σ (AB)

) ≥ D
(
ρ (A)||σ (A)

)
. (19.47)

That is, the relative entropy “distance” between two quantum states cannot be increased by
disregarding one of the subsystems.

This has a direct corollary for open quantum systems. Suppose ρ and σ are two
possible initial states of a system Q. This system interacts with an environment E
(initially in the state |0〉〈0| ), producing a generalized evolution map E for Q-states:
E(ρ) = Tr(E)U (ρ ⊗ |0〉〈0| )U†. Unitary evolution does not change the relative entropy
of two states. Therefore

D (ρ||σ ) = D
(
ρ ⊗ |0〉〈0| ∣∣∣∣ σ ⊗ |0〉〈0|

)
= D

(
U(ρ ⊗ |0〉〈0| )U†

∣∣∣∣U(σ ⊗ |0〉〈0| )U†
)

D (ρ||σ ) ≥ D (E(ρ)||E(σ )) . (19.48)

Therefore, relative entropy of two states cannot be increased by open system evolution.
Such evolution is contractive with respect to relative entropy.

From Eq. 19.47 we discover our second fundamental property of entropy, called the
monotonicity of quantum mutual information. In Eq. 19.41, the quantum mutual information
is given in terms of the relative entropy. It follows that, for any state of a composite quantum
system ABC,

S(A:BC) ≥ S(A:B). (19.49)

Exercise 19.26 Fill in the steps to derive the monotonicity of quantum mutual information
from the monotonicity of relative entropy.

This too has a corollary for open systems. Suppose the composite system RQ starts out in a
state with a quantum mutual information S(R:Q). Appending an environment system E in
the state |0〉〈0| , we have S(R:QE) = S(R:Q). If the QE subsystem evolves in a unitary way,



403 Quantum data compression

this will not affect the mutual information, a fact that we may write S(R:QE′) = S(R:QE).
Finally, taking the partial trace over the environment E, we find that the open system
evolution of Q cannot increase its quantum mutual information with R:

S(R:Q) ≥ S(R:Q′). (19.50)

We obtain our third fundamental property of the entropy by rewriting Eq. 19.49 in terms
of subsystem entropies:

S(A)+ S(BC)− S(ABC) ≥ S(A)+ S(B)− S(AB). (19.51)

Rearranging the terms, we arrive at the strong subadditivity of the quantum entropy:

S(ABC)+ S(B) ≤ S(AB)+ S(BC). (19.52)

This is the quantum counterpart of a classical inequality involving three random variables.
The proof of the classical inequality is not difficult (see Problem 19.4), but it relies on the
use of conditional entropies that have no quantum analog. Strong subadditivity nonetheless
holds in the quantum context as well.

19.4 Quantum data compression

The strong formal parallel between the classical and quantum entropy functions will allow
us to adapt much of the discussion of classical data compression (Section 19.2) to the
quantum realm. We begin by exploring the quantum notion of “typicality.”

Suppose we have a composite quantum system 	Q = Q1Q2 . . . Qn consisting of n indepen-
dent copies of Q. The overall system is in a product state, and each subsystem is described
by an identical density operator ρ (Q),

ρ 	(Q) = ρ (Q1) ⊗ · · · ⊗ ρ (Qn ). (19.53)

This is the quantum analog of a sequence of n independent, identically distributed random
variables. To make this analogy even more obvious, we write

ρ (Q) =
∑

x
p(x) |x〉〈x| , (19.54)

where the kets |x〉 are eigenstates of ρ (Q) with eigenvalue p(x). Then

ρ 	(Q) =
∑

x1... xn

p(x1 . . . xn) |x1 . . . xn〉〈x1 . . . xn| , (19.55)

where p(x1 . . . xn) = p(x1) · · · p(xn). The eigenvalues of ρ 	(Q) act exactly like the probabilities
of sequences of random variables – sequences, in effect, of ρ (Q) eigenstates. We can now
apply our previous results about typical sequences to the eigenvalues and eigenstates of
ρ (Q). The facts proved there do not change their mathematical form, but they take on new
meaning.

Given ε, δ > 0, for sufficiently large n we have the following:
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• There exists a typical set T of sequences x1 . . . xn. This is associated with a typical
subspace T of the tensor product space H⊗n spanned by the eigenstates |x1 . . . xn〉. The
projection � onto T can be written

� =
∑

x1... xn∈T
|x1 . . . xn〉〈x1 . . . xn| . (19.56)

• The probability Pr(x1 . . . xn ∈ T) > 1− δ. This means that

Tr ρ 	(Q) � > 1− δ. (19.57)

• The number of sequences in the typical set T satisfies NT < 2n(H(X )+ε), where H is the
Shannon entropy of the distribution p(x) (Eq. 19.24). In the quantum case, this means
that the dimension of the typical subspace satisfies

NT = dim T < 2n(S+ε), (19.58)

where S = S(Q), the quantum entropy of Q. Just as the typical set T is generally an
exponentially small subset of the set of all sequences, so T is an exponentially small
subspace of H⊗n.

• The sequence probabilities p(x1 . . . xn) lie in a range around 2−nH(X ) (see Eq. 19.22). In
the quantum case, the eigenstates |x1 . . . xn〉 that span T have eigenvalues satisfying

n(S − ε) ≤ − log p(	x) ≤ n(S + ε). (19.59)

(In fact, this is the criterion by which we construct T in the first place.)

A simple heuristic picture emerges. For large enough n, the state ρ⊗n for n independent
systems has associated with it a typical subspace T . This subspace contains almost all of
the “weight” of ρ⊗n and has a dimension of about 2nS . In this subspace, the eigenvalues of
ρ⊗n are all about 2−nS . In many respects, and with appropriate mathematical caveats given
above, the density operator ρ⊗n behaves as a uniform density operator on T .

Now let us consider a problem of quantum information transfer – or rather, a problem of
quantum information storage and retrieval. This is, in the language of Section 7.5, a Type
II process. We start with a composite system RQ in an entangled pure state |� (RQ)〉. The
quantum information of Q is transferred to another system C for storage; during retrieval,
the information is transferred back to Q. Schematically,

RQ storage−−→ RC retrieval−−−→ RQ, (19.60)

where R takes no part in the process, but merely serves to “anchor” the entanglement.
If the systems Q and C were of the same kind, then the storage and retrieval could be
accomplished by applying the unitary operator U that exchanges Q and C states:

U
∣∣ψ (Q), φ(C)

〉 = ∣∣φ (Q), ψ (C)
〉
. (19.61)

(This is like the qubit SWAP gate of Exercise 18.8.) Then, if C starts out in the state |α(C)〉,
the storage process is ∣∣� (RQ)

〉⊗ ∣∣α(C)
〉 −→ ∣∣� (RC)

〉⊗ ∣∣α(Q)
〉
. (19.62)
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In the retrieval process, the system Q must start out in a fixed state |β (Q)〉 – in other words,
we retrieve the information into a “fresh copy” of Q. The retrieval process is∣∣� (RC)

〉⊗ ∣∣β (Q)
〉 −→ ∣∣� (RQ)

〉⊗ ∣∣β (C)
〉
, (19.63)

and the RQ state is exactly restored. The entanglement fidelity of this process is Fe = 1.
But suppose that C is a smaller system than Q, so that dimH(C) < dimH(Q). Then it will

not generally be possible to store and retrieve the entangled state perfectly. Instead, we will
describe a procedure for doing so approximately, with Fe near 1.

We choose a subspace C of H(Q) such that dim C ≤ dimH(C). We call C the coding
subspace. Let �c be the projection onto the coding subspace C and �n = 1 −�c be the
projection onto the orthogonal non-coding subspace C⊥. The initial RQ state can be written∣∣� (RQ)

〉 = ∣∣� (RQ)
c

〉+ ∣∣� (RQ)
n

〉
, (19.64)

where
∣∣� (RQ)

c
〉 = �c |� (RQ)〉 and

∣∣� (RQ)
n

〉 = �n |� (RQ)〉.
The first step of our procedure is to make an ideal measurement on Q defined by the

projections �c and �n. This measurement is assumed to be minimally disturbing, so that
the projection postulate holds. The “coding” result is obtained with probability

Pc =
〈
� (RQ)

c
∣∣� (RQ)

c
〉 = Tr ρ (Q)�c, (19.65)

where ρ (Q) = Tr(R) |� (RQ)〉〈� (RQ)| . If this result occurs, nothing more is done. But if the
“non-coding” result occurs, then the Q-state is reset to a standard state |0(Q)〉 in C.

Exercise 19.27 Show that the procedure described changes the RQ-state according to∣∣� (RQ)
〉〈
� (RQ)

∣∣ → ρ̂
(RQ) = ∣∣� (RQ)

c
〉〈
� (RQ)

c
∣∣ + ∣∣0(Q)

〉〈
0(Q)

∣∣ ⊗ σ (R), (19.66)

where σ (R) = Tr(R)

∣∣� (RQ)
n

〉〈
� (RQ)

n
∣∣ .

The new RQ-state ρ̂
(RQ) has the property that Tr ρ̂

(Q)
�c = 1. That is, the new Q-state “lies

entirely within” the coding subspace C. This state can be perfectly stored and retrieved
by an operation that exchanges the states within the coding subspace C with states in a
subspace of H(C). The following exercise gives a definite prescription:

Exercise 19.28 Let { |k(Q)〉} be a basis for C that includes the vector |0(Q)〉. Let { |k(C)〉} be
a corresponding orthonormal set in H(C) (which we can find because dimH(C) ≥ dim C).
Define a unitary operator U so that

U
∣∣k(Q), l(C)

〉 = ∣∣l(Q), k(C)
〉
. (19.67)

Show, first, that such a U exists. Then show that this operation will allow perfect storage
and retrieval of the state ρ̂

(RQ), using C as a substitute for Q.

The overall process can be summarized this way:∣∣� (RQ)
〉〈
� (RQ)

∣∣ measurement−−−−→ ρ̂
(RQ) storage−−→ ρ̂

(RC) retrieval−−−→ ρ̂
(RQ). (19.68)
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The entanglement fidelity is

Fe =
〈
� (RQ)

∣∣ ρ̂ (RQ)
∣∣� (RQ)

〉
= ∣∣〈� (RQ)

∣∣� (RQ)
c

〉∣∣2
= P2

c , (19.69)

where Pc is the probability that the first measurement found the state within the coding
subspace. If Pc > 1− η, then Fe = P2

c > 1− 2η.
We have now established the following important result:

General compression lemma. Given an entangled state |� (RQ)〉, suppose we can find a
subspace C of H(Q) with projection operator �c so that

Tr ρ (Q) �c > 1− η, (19.70)

for some η > 0. Also suppose we have a system C available with dimH(C) ≥ dim C. Then
we can store and retrieve the entanglement of Q with R (Type II quantum information)
by means of C with an entanglement fidelity

Fe > 1− 2η. (19.71)

Once we have reached the general compression lemma, we do not have far to go to prove
a theorem about quantum data compression. Instead of a single pair of systems RQ, we
imagine a collection of n such systems (RQ)⊗n, each of which is in the same entangled
state |� (RQ)〉. The entropy of each Q system is S = S(Q). The state of all n Qs together is
ρ 	(Q) = (ρ (Q))⊗n. Let ε, δ > 0. For sufficiently large n, we can find a typical subspace T of
(H(Q))⊗n with projection � such that

Tr ρ 	(Q) � > 1− δ/2 and dim T < 2n(S+ε). (19.72)

We will use T as our coding subspace.
For our coding system C we will choose a collection of N qubits, where n(S + ε) ≤

N < n(S + ε) + 1. Then we have that dimH(C) = 2N ≥ dim T , as required. The general
compression lemma tells us that we can store and retrieve the entanglement of Q⊗n with
R⊗n using N qubits with an entanglement fidelity Fe > 1− δ. This uses

N
n

<
n(S + ε)+ 1

n
= S(Q)+ ε + 1

n
, (19.73)

qubits per RQ pair. We can make ε and 1/n as small as we like. Thus, S(Q) gives the
physical resources (qubits) sufficient to store the (Type II) quantum information in Q with
entanglement fidelity Fe approaching 1. This fact is called the quantum data compression
theorem.

Just as classical data compression gave the Shannon entropy H(X ) an operational sig-
nificance, so quantum data compression does the same for the von Neumann entropy S(Q).
It is just the first of many ways in which the entropy plays a decisive role in the theory
of quantum information. Before exploring these further developments, though, we will
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see how the quantum entropy and its properties apply to the thermodynamics of quantum
systems.

Exercise 19.29 Discuss how the quantum data compression theorem applies to Type I
(unknown state) quantum information in Q.

19.5 Entropy and thermodynamics

In Sections 8.6, 8.7, and 9.3, we used the density operator description to analyze the
thermodynamics of quantum systems. For uniform density operators (as in the micro-
canonical state of Eq. 8.57), the thermodynamic entropy was

Sθ = kB ln 2 S, (19.74)

(see Eq. 8.59). Now that we have a more general definition of S, we can discuss the
thermodynamic entropy of a broader class of states. We write

Sθ = −kB ln 2 Tr ρ log ρ = −kBTr ρ ln ρ. (19.75)

Denote by ω the canonical state of the system at temperature T , given in Eq. 8.70. This has
entropy

Sθ (canonical) = −kBTr

(
e−H/kBT

Z

)
ln

(
e−H/kBT

Z

)

= 1
T

(Tr ωH)+ kB lnZ (Tr ω)

= Eθ

T
+ kB lnZ , (19.76)

where Eθ = 〈E〉 for the canonical state.
Now consider another state ρ with the same expected energy as ω, so that Tr ρH =

Tr ωH = Eθ . According to Klein’s inequality (Eq. 19.38) its entropy satisfies

Sθ = −kBTr ρ ln ρ ≤ −kBTr ρ ln

(
e−H/kBT

Z

)

= Eθ

T
+ kB lnZ , (19.77)

with equality if and only if ρ = ω. The canonical state ω is therefore the density operator
having maximum entropy for a given thermodynamic energy Eθ .

The canonical state ω is the equilibrium state of a system with Hamiltonian H in contact
with a reservoir at temperature T . In Section 9.4 we defined the free energy of ω to be
Fθ = −kBT lnZ . Equation 19.76 simplifies this to

Fθ = Eθ − TSθ . (19.78)
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This relation permits us to extend the definition of Fθ to an arbitrary state ρ. The free
energy is a function of three things: the quantum state ρ, the system Hamiltonian H, and
the reservoir temperature T . Equation 19.78 becomes

Fθ (ρ, H, T) = Tr ρH+ kBT Tr ρ ln ρ. (19.79)

This leads in turn to a remarkable connection between free energy and relative entropy.
Given H and T , consider the relative entropy of a state ρ with respect to the canonical
state ω

D (ρ||ω) = Tr ρ log ρ − Tr ρ log ω

= −S − Tr ρ log

(
e−H/kBT

Z

)
. (19.80)

Multiplying by kB ln 2 shifts to thermodynamic quantities:

kB ln 2 D (ρ||ω) = −Sθ + 1
T

Tr ρH+ kB lnZ . (19.81)

From this we can see that

kBT ln 2 D (ρ||ω) = Fθ (ρ, H, T)− Fθ (ω, H, T). (19.82)

Exercise 19.30 Explain how the three terms on the right-hand side of Eq. 19.81 give rise
to just two terms on the right-hand side of Eq. 19.82.

Since the relative entropy is never negative, Fθ (ρ, H, T) ≥ Fθ (ω, H, T), with equality only
in the case where ρ = ω. The equilibrium (canonical) state is therefore the state of minimum
free energy for a given H and T .

By what process do we create a non-equilibrium state ρ? Suppose for instance that we
have some particles moving in an enclosure. In the equilibrium state these particles are
equally likely to be found anywhere within the volume. How do we arrange a situation in
which all of the particles are certain to be in the right-hand half of the available volume?
The simplest procedure is to introduce a moveable wall in the enclosure and push all the
molecules to the right side. Then the wall can be suddenly removed, leaving the particles
(momentarily) occupying only half of the original space.

Let us treat this more abstractly. Initially, we have a Hamiltonian H and a canonical state
ω at temperature T . The Hamiltonian is changed to H′, so that ρ is the canonical state
for the modified Hamiltonian and the same temperature. We can imagine that this is done
isothermally – that is, in a gradual way while maintaining equilibrium with a reservoir
system. Finally, the Hamiltonian is changed back to H, so rapidly that the system state does
not have time to evolve. We can represent this two-stage process as follows:

ω, H
isothermal−−−−→ ρ, H′ sudden−−−→ ρ, H. (19.83)

During each stage the system does work on its surroundings. Section 9.4 tells us how to
compute this work for either stage. For the first (isothermal) process, Eq. 9.44 tells us that
the work done by the system is

W1 = Fθ (ω, H, T)− Fθ (ρ, H′, T). (19.84)
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The second (sudden) stage is even easier. Equation 9.40 tells us that W2 = Tr ρH′ − Tr ρH.
During this stage the entropy of the state remains constant, so according to Eq. 19.79 the
work W2 must also be the difference of two free energies:

W2 = Fθ (ρ, H′, T)− Fθ (ρ, H, T). (19.85)

The total work W = W1 +W2 done by the system is

W = Fθ (ω, H, T)− Fθ (ρ, H, T) = −
Fθ . (19.86)

This can never be positive. Net external work W = −W must be done on the system to
shift it from the equilibrium state ω to a non-equilibrium ρ.

Note that the process in Eq. 19.83 is a reversible one. Imagine that we somehow begin
with the state ρ and the Hamiltonian H. We now reverse the order of our operations: first a
sudden change of the Hamiltonian to H′, then a slow, isothermal return to H. In this reversed
process, the state of the system will also exactly reverse its history, ending up at ω. The
work done by the system will be exactly −W .

We can generalize this to any sort of change of state.

Exercise 19.31 Initially, a system’s Hamiltonian is Ha and its state is ρa; at the end of a
process these are Hb, ρb, respectively.

(a) Show that this change can be accomplished by a sequence of sudden changes in the
Hamiltonian and isothermal processes with a reservoir at temperature T .

(b) In the process from part (a), show that the work done by the system is

W = Fθ (ρa, H, T)− Fθ (ρb, H, T) = −
Fθ . (19.87)

What if we adopted a different procedure for changing the state from ρa to ρb? How is
the work W for this alternative process related to the free energy change? This question
requires a more careful analysis of the entropy changes of a quantum system.

When a density operator changes over time, how does its thermodynamic entropy Sθ

change? To answer this, we first need to clear up a technical issue about time derivatives
of operators.

Exercise 19.32 Suppose that the operator A is time-dependent with rate of change Ȧ. The
operators A and Ȧ do not necessarily commute.

(a) Explain why, in general,
d
dt

An �= nAn−1 Ȧ .

(b) Now show that, nevertheless,
d
dt

Tr
(
An) = Tr

( d
dt

An
)
= n Tr

(
An−1 Ȧ

)
.

(c) If the function f is given by a power series, show that
d
dt

Tr ( f (A)) = Tr
( d

dt
f (A)

)
= Tr (f ′(A) Ȧ). (19.88)

The final part of this exercise is the tool we need. For a time-dependent state ρ the entropy
changes at a rate
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Ṡθ = −kBTr ((ln ρ − 1)ρ̇) = −kBTr ρ̇ ln ρ, (19.89)

since Tr ρ̇ = 0.

Exercise 19.33 Suppose ρ evolves according to Eq. 8.51. Show that Ṡθ = 0.

Consider a system that is interacting with a reservoir at temperature T , and suppose that
the evolution of its state ρ can be described by the Lindblad equation.5 We will write this
equation in somewhat simplified form:

ρ̇ = 1
i�
[H, ρ] + L(ρ), (19.90)

where the superoperator L includes the contributions of the Lindblad operators. Both H
and L may depend on time; but imagine that both are “frozen” at some particular stage
and consider the resulting evolution of the system. We now make an important assumption
about the system’s evolution, which we may designate the equilibrium assumption. We
first assume that the canonical state ω, which represents a long-term equilibrium state of
the system interacting with the reservoir, is a fixed point of the evolution:

ω̇ = 1
i�
[H, ω] + L(ω) = 0. (19.91)

Exercise 19.34 Show that this in fact means that L(ω) = 0.

We further assume that any non-equilibrium initial state will approach the canonical one
over time. Thus, ω is the only fixed point of Eq. 19.90.

Consider another state ρ and how it evolves according to the “frozen” evolution.
Equation 19.48 says that the relative entropy D (ρ||ω) cannot increase with time:

d
dt

D (ρ||ω) = Tr ρ̇ log ρ − Tr ρ̇ log ω ≤ 0. (19.92)

The rate of change of the system’s thermodynamic entropy is therefore

Ṡθ ≥ −kBTr ρ̇ ln

(
e−H/kBT

Z

)
= 1

T
Tr ρ̇H. (19.93)

From our discussion in Section 9.4, particularly the analysis leading up to Eq. 9.38, we
recognize Tr ρ̇H as PQ, the rate at which heat flows into the system. Thus, in a small interval
of time dt, the thermodynamic entropy of a system in contact with a reservoir at temperature
T changes by

dSθ ≥ d–Q
T

, (19.94)

where d–Q is the heat transfer to the system. Equality holds if and only if the state ρ = ω –
that is, if the system is in equilibrium with the reservoir. If we now consider a full time-
dependent process (maintaining at every stage the equilibrium assumption about the time

5 The Lindblad equation supposes that at any given moment we can disregard any pre-existing correlations
between the system and the reservoir. This is consistent with the general supposition that the reservoir’s
properties are the same no matter how the system changes.
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evolution), we obtain a relation between the change in entropy and the total heat Q added
to the system:


Sθ ≥ Q
T

, (19.95)

with equality for isothermal processes, i.e. those in which the system remains in the
canonical state throughout.

Equation 19.95 is exactly the result needed to answer our question about general state
transformations. The state evolves by ρa → ρb while the system Hamiltonian is changed
according to Ha → Hb. The work done by the system in the process is

W = −
Eθ + Q ≤ −(
Eθ − T 
Sθ ) = −
Fθ . (19.96)

The type of procedure from Exercise 19.31, consisting of sudden Hamiltonian changes
(having zero heat transfer) and gradual isothermal processes, therefore maximizes W –
or equivalently, minimizes the external work W done on the system to effect the change.
Other processes in which the system spends time away from equilibrium will require more
external work to accomplish.

19.6 Bits and work

Suppose Alice wishes to send a classical message to Bob by way of a quantum system Q.
Alice’s message is a classical random variable A. The message a arises with probability
p(a), and the entropy H(A) measures the information content of the message. For the
message a, Alice prepares Q in the signal state ρa and then conveys the system to Bob. If
Q undergoes any noise or distortion, then we include these effects in the definition of ρa;
these are the density operators of the received signals. The average signal state is

ρ =
∑

a
p(a)ρa. (19.97)

Bob decodes the message by making a measurement on Q, the result of which is another
random variable B. The particular value b of B is associated with a positive operator Eb,
one element of a generalized measurement (see Section 9.5). The conditional probabilities
are given by the quantum rule

p(b|a) = Tr ρaEb. (19.98)

From this we can find the joint distribution p(a, b) = p(a)p(b|a). How much information
is transmitted from Alice to Bob?

Although the conditional probabilities in Eq. 19.98 arise from quantum mechanics,
this is essentially a problem of classical information theory. The classical measure of the
information conveyed from Alice to Bob is the mutual information

H(A : B) = H(A)− H(A|B). (19.99)
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This is the average by which the entropy of A is reduced by the result of Bob’s measurement.
If H(A : B) = H(A), then H(A|B) = 0 and Bob is able to determine Alice’s message with
certainty from his measurement result.6 The value of H(A : B) will depend on Bob’s choice
of decoding observable given by the operators Eb. For a given set of signal states ρa and
probabilities p(a), how well can Bob do?

To answer this question, we introduce a way of representing the measurement process
as the generalized evolution of an open quantum system. To the Q we add a measurement
apparatus M, initially in a standard state |0〉. The different measurement results b corres-
pond to distinguishable (hence orthogonal) states |b〉 of the apparatus. These states are the
“measurement record” in M. For a given input Q-state ρ, the measurement process should
have the effect

ρ ⊗ |0〉〈0| −→ σ̂ b ⊗ |b〉〈b| with probability p(b) = Tr ρEb. (19.100)

(The final Q-states σ̂ b may be anything; we do not require the measurement process to
obey the projection rule.) Thus, we want to design an operation for which

E(ρ ⊗ |0〉〈0| ) =
∑

b
σ b ⊗ |b〉〈b| , (19.101)

where σ b = (Tr ρEb) σ̂ b, normalized by the probabilities.
Here is the simplest superoperator that does the trick. For each b define the Kraus operator

Ab = E1/2
b ⊗ |b〉〈0| . (19.102)

(The operator E1/2
b is the unique positive operator whose square is Eb.) Then

∑
b

A†
bAb =

∑
b

Eb ⊗ |0〉〈0| = 1⊗ |0〉〈0| . (19.103)

If we append the additional Kraus operator 1 ⊗ (1 − |0〉〈0| ), then the resulting set is
properly normalized. The action of the superoperator described by the {Ab, A0} set is

E(ρ ⊗ |0〉〈0| ) =
∑

b

(
E1/2

b ρ E1/2
b

)
⊗ |b〉〈b| . (19.104)

Since Tr E1/2
b ρ E1/2

b = Tr ρEb, the proposed superoperator E meets our specifications.
As Problem 9.1 shows, any normalized set of Kraus operators can be realized as unitary

evolution on a larger system including an environment E. We can either think of E as
arising from a probabilistic measurement process or from unitary evolution involving the

6 The mutual information also plays a central role in the noisy coding theorems of classical information theory.
Given a noisy channel from Alice to Bob with a mutual information H(A : B) between input and output, we
can use this channel repeatedly to send about H(A : B) bits per use with a probability of error PE → 0.
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environment.7 Therefore, the results we have derived for open system dynamics can be
applied to the measurement.

Having made Bob’s measurement more “tangible,” let us do the same for Alice’s prep-
aration. We suppose that Alice possesses a system R that contains a record of which
message she wishes to send. The initial joint state of RQ is thus a mixture of states of the
form |a〉〈a| ⊗ ρa, where the |a〉 are orthogonal record states of R:

ρ (RQ) =
∑

a
p(a) |a〉〈a| ⊗ ρa. (19.105)

Let S(Q) and S(Q|a) be the quantum entropies of the average signal state ρ and the
individual signal state ρa, respectively.

Exercise 19.35 Derive the following for the state in Eq. 19.105:

S(R) = H(A),

S(RQ) = H(A)+
∑

a
p(a)S(Q|a),

S(R:Q) = S(Q)−
∑

a
p(a)S(Q|a). (19.106)

From the last result, also prove that the quantum entropy is a concave function of density
operators.

Now let us put both ends together. Initially, the joint system RQM is in the mixed state
ρ (RQ)⊗ |0(M)〉〈0(M)| . Bob’s measurement then occurs, described by the superoperator E acting
on the QM subsystem. This produces the state

E (QM)(ρ (RQM)) =
∑
a,b

p(a) |a〉〈a| ⊗
(
E1/2

b ρaE1/2
b

)
⊗ |b〉〈b| . (19.107)

Now we discard the system Q (taking the partial trace) and consider only RM, the joint
system of the preparation record and the measurement record. Its state is

ρ (RM)′ =
∑
a,b

p(a, b) |a〉〈a| ⊗ |b〉〈b| . (19.108)

Although this is a quantum state, it is a mixture of product basis states. The final system
entropies are just the Shannon entropies for the input and output variables:

S(R′) = H(A), S(M′) = H(B), S(RM′) = H(A, B). (19.109)

7 Indeed, according to the many-worlds interpretation of quantum mechanics, first proposed in 1957 by Hugh
Everett III, every measurement process should be regarded as unitary evolution on a larger system including
measuring devices, the environment, and the observers themselves. This is a fascinating concept with far-
reaching implications for the nature of physical reality. However, one need not adopt all of its philosophical
ramifications to make use of the two equivalent ways of thinking about the same superoperator E!
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Thus, H(A : B) = S(R:M′). The mutual information of the input A and output B is just the
(quantum) mutual information of the physical systems that record these variables.8

This is the fact we need. Since M is initially in a product state with RQ, S(R:Q) =
S(R:QM). Equation 19.50 tells us that the quantum mutual information cannot be increased
by open system dynamics on one subsystem; thus, after the QM measurement process
we must have S(R:QM) ≥ S(R:QM′). Similarly, the monotonicity of quantum mutual
information (Eq. 19.49) means that S(R:QM′) ≥ S(R:M′). From this chain of inequalities
we find that, for any choice of decoding observable that Bob might make,

H(A : B) ≤ S(Q)−
∑

a
p(a)S(Q|a). (19.110)

This remarkable inequality was proved in 1973 by Aleksandr Holevo and is known as
Holevo’s theorem.

We should stress that Holevo’s theorem is an inequality. It often happens that, for a given
collection of Alice’s signal states, H(A : B) does not approach the bound for any choice of
Bob’s measurement. Nevertheless, Eq. 19.110 provides a useful fundamental limit on the
ability of quantum systems to convey classical information.

For instance, suppose that Alice’s signal states are all pure states |φa〉〈φa| , so that
S(Q|a) = 0. Then Holevo’s theorem tells us that the information conveyed is never greater
than S(Q). If the signal states are orthogonal to each other, S(Q) = H(A); also, a suitable
choice of measurement basis (namely, the |φa〉 states themselves) will allow Bob to read
the message perfectly. Thus, H(A : B) = H(A) = S(Q). On the other hand, if the states
are not very distinguishable, the density operator will have an entropy S(Q) much less than
H(A). In this case, we know that H(A : B) < H(A), and so Bob will not be able to read the
message reliably.

Exercise 19.36 Comment qualitatively on the connection between Holevo’s theorem and
the basic decoding theorem of Section 4.1. What about the extension of this result to mixed
states, found in Section 8.3?

Exercise 19.37 Suppose Alice chooses signal states of a qubit according to the BB84
scheme described in Section 4.4. Calculate H(A), S(Q), and the mutual information
H(A : B) that Bob can achieve by measuring either Z or X. You should find that
H(A : B) < S(Q) < H(A).

Holevo’s theorem has an interesting connection to relative entropy. The right-hand side
of Eq. 19.110 is sometimes designated χ . It is not hard to show that

χ = S(Q)−
∑

a
p(a)S(Q|a) =

∑
a

p(a)D
(
ρa||ρ

)
. (19.111)

Exercise 19.38 Verify this equality.

8 We use the “prime” symbol ( ′ ) to indicate that the systems involved have undergone some dynamical evolution.
The prime applies to all of the systems in the expression S(· · · ′), since the entropies are evaluated for all systems
after the evolution has taken place. (For system R, in this particular instance, S(R′) = S(R).)



415 Bits and work

The Holevo bound χ is the average relative entropy “distance” of the signal state from the
average signal state. Now consider another state σ of Q and examine the “χ -like” quantity∑

a
p(a)D

(
ρa||σ

) =∑
a

p(a)Tr ρa log ρa − Tr ρ log σ . (19.112)

Adding and subtracting Tr ρ log ρ, we obtain Donald’s identity:∑
a

p(a)D
(
ρa||σ

) = χ + D (ρ||σ ) . (19.113)

Alice must prepare the system Q in one of several possible signal states. What thermo-
dynamic resources are required for her to do so? We assume that she does all of her
operations in the presence of a thermal reservoir at temperature T . Furthermore, Q has an
internal Hamiltonian H. Alice can induce short-term departures from this Hamiltonian as
she prepares the system, but afterwards it must revert to H.

What is the initial state of Q? If this state were anything other than the canonical
equilibrium state ω, then Alice would be able to use Q itself as a source of useful
work. This would complicate our accounting. It is more reasonable to suppose that
Alice is presented with Q in the state ω, and must invest work to change this to another
state.

Recall our discussion in Section 19.5. To create the signal state ρa from ω, the work
input is

Wa ≥ Fθ (ρ, H, T)− Fθ (ω, H, T), (19.114)

where equality can be achieved via a sequence of sudden and gradual (isothermal)
modifications of H. But Eq. 19.82 tells us that this is related to the quantum relative
entropy:

Wa ≥ (kBT ln 2) D
(
ρa||ω

)
. (19.115)

The average work required will be

W̄ =
∑

a
p(a)Wa ≥ kBT ln 2

∑
a

p(a)D
(
ρa||ω

)
. (19.116)

We apply Donald’s identity to this, noting that D (ρ||ω) ≥ 0:

W̄ ≥ (kBT ln 2) χ . (19.117)

Holevo’s theorem then allows us to conclude that

W̄ ≥ (kBT ln 2) H(A : B). (19.118)

For every bit of information that Alice is able to convey to Bob (given by the mutual
information H(A : B)), Alice must expend at least kBT ln 2 of work on average. The
minimum work cost of communication in the presence of a thermal reservoir is kBT ln 2
per bit. (At a typical room temperature of 300 K, this is about 0.04 eV per bit. Actual
communication systems generally expend much more energy than this!)
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Exercise 19.39 Examine the conditions for equality in the various stages of our argument,
and devise a scheme whereby Alice is able to convey information to Bob with exactly
kBT ln 2 per bit.

Exercise 19.40 If Alice uses signal states ρa that are not very far from the equilibrium state
ω, then she can reduce the work cost of creating the signals to almost nothing. Why is this
not a good strategy for communicating to Bob?

Exercise 19.41 Suppose the initial state of Q is not an equilibrium state. As part of her work
cost for communication, Alice should include the work that she could have obtained from
Q if she had not used it to send messages to Bob. (Economists call this idea opportunity
cost.) Show that the minimum work cost is still at least kBT ln 2 per bit.

Problems

Problem 19.1 Suppose p(x) and q(x) are two distributions for the same random
variable X .

(a) Show that log z ≤ (z− 1)/ ln 2 for all z > 0.
(b) Use part (a) to prove Gibbs’s inequality:∑

x
p(x) log

p(x)
q(x)

≥ 0. (Re 19.9)

(c) Show that equality holds if and only if p(x) = q(x) for all values of x – that is, the two
distributions are identical.

Be sure to comment on how your arguments apply when one or the other probability
happens to be zero.

Problem 19.2 Look up the letter frequencies for the 26 English letters and the space, and
use these frequencies to calculate the single-letter entropy of English. How much less is
this than log 27 = 4.75 bits per symbol?

Problem 19.3 Variable-length codes. Let us suppose that we are representing the value of
a random variable X using binary codewords. We give ourselves the freedom to choose
codewords of different lengths for different xs. The codeword Cx for x has a length Lx.

We will code the string (x1, . . . , xn) in the binary sequence Cx1 · · ·Cxn . For this long
binary sequence to be readable, however, we must be able to figure out where the “breaks”
are. For instance, if C1 = 1 and C2 = 110, then when we encounter the symbol 1 in the
binary sequence we will find it difficult to tell whether it is C1 or the first part of C2.

We can avoid this problem if we insist on using a prefix-free code, one in which no
codeword Cx is an initial segment of another codeword Cx′ . Then the codewords are always
“recognizable” as the binary sequence is read. But this puts a restriction on the possible
lengths of the codewords.
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(a) Given a prefix-free code for a finite X , show that codeword lengths must satisfy the
Kraft inequality: ∑

x
2−Lx ≤ 1. (19.119)

(b) Suppose we have a set of proposed lengths Lx (all positive integers) that satisfy the
Kraft inequality. Show that it is possible to find binary codewords Cx with lengths Lx
forming a prefix-free code.

(c) For any prefix-free code, show that the mean length satisfies∑
x

p(x)Lx ≥ H(X ). (19.120)

Under what conditions is equality possible?
(d) For any distribution p(x), show that it is possible to find a prefix-free binary code for

which the mean length satisfies∑
x

p(x)Lx ≤ H(X )+ 1. (19.121)

Thus, though some messages might use more bits, the average number of bits per message
is not too much greater than H(X ).

Problem 19.4 Given random variables X , Y , and Z, show that

H(X , Y , Z)+ H(Y) ≤ H(X , Y)+ H(Y , Z). (19.122)

Hint: For each value y of Y , consider H(X : Z|y).
Problem 19.5 Calculate the quantum entropy S of the qubit state described by a Bloch
vector 	a. Your answer should only depend on the magnitude | 	a|. Why?

Problem 19.6 Adapt the calculations in Exercises 19.16, 19.17, and 19.18 into a series
of detailed worked examples of quantum data compression. What entangled state is being
transmitted? What are the resources used and the entanglement fidelity achieved in each
case?

Problem 19.7 Cooling an oscillator. A ladder system with Hamiltonian H = εa† a is in
contact with a reservoir system at temperature T , and is initially in its equilibrium canonical
state ω = Z−1 exp(−H/kBT). We wish to change the system’s state to ρ, which would be
the equilibrium state at temperature T/2.

(a) Calculate the change in free energy associated with this process. Derive approximate
expressions for 
Fθ that apply for ε � kBT and ε � kBT .

(b) To achieve this process, we can control the parameter ε in H. (Roughly speaking, this
is equivalent to adjusting the elastic constant k in a harmonic oscillator potential.)
Describe a control procedure ε(t) that accomplishes the desired state change with the
minimum necessary external work on the system.

(c) How is the work in part (b) related to the change 
Eθ in the energy of the system?
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Problem 19.8 Suppose we add a constant to the Hamiltonian of a system: H → H + ε1.
Explain how the following things change: the canonical state ω at a given temperature, the
partition function Z for this state, its entropy Sθ , and its free energy Fθ .

Problem 19.9 Suppose Alice can make various signal states ρa, each of which has a “cost
function” Ca. (This cost function is not necessarily given by any system observable on Q.)
The average cost over all signals is C̄. One of the possible signals ρ0 is special and has zero
cost: C0 = 0. Define the cost-effectiveness of Alice’s code to be the ratio χ/C̄. Show that
this is bounded above by

χ

C̄
≤ max

a

(
D
(
ρa||ρ0

)
Ca

)
. (19.123)

How does this result relate to the thermodynamic cost of communication in Eq. 19.118?
Optional: Find probabilities p(a) that approach this bound on χ/C̄.
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20.1 Undoing errors

Suppose the random variable X represents a message that Alice wishes to send to Bob.
What Bob actually receives from the communication system is Y . It is not necessarily the
case that X and Y are equal. Bob can, however, perform further data processing on Y to
obtain X̂ , his estimate of Alice’s message. The probability of error is

PE = Pr(X̂ �= X ) =
∑
x, x̂
x�=x̂

p(x, x̂). (20.1)

Under what circumstances can Bob reconstruct Alice’s message reliably, that is, with
PE = 0?

This is the problem of (classical) error correction. Noise and distortion may introduce
differences between X and Y , and we wish to know when these effects can be overcome
by a subsequent operation on Y .

We can envision a corresponding quantum communication problem. Alice begins with
the system Q, which is in a pure entangled state |� (RQ)〉 with another system R. During the
communication process, system Q evolves as an open system according to some evolution
superoperator E , so that the new joint state of RQ is ρ (RQ)′. Under what circumstances can
Bob, who has access only to Q, use a second evolution D to restore RQ to the original
state? If ρ (RQ)′′ is the final state, when can Bob make the entanglement fidelity

Fe =
〈
� (RQ)

∣∣ ρ (RQ)′′ ∣∣� (RQ)
〉 = 1? (20.2)

That is, when is quantum error correction possible?
The problem of error correction is one of the basic concerns of information theory, and we

will only be able to scratch the surface of the subject. In both the classical and the quantum
case, we will find necessary and sufficient conditions for perfect error correction, and we
will derive additional results about classical and quantum data compression that amount
to converses of the theorems of Chapter 19. We will also take a brief look at particular
methods – error-correcting codes – that can be used to achieve reliable communication
even in the presence of noise.

Error correction can be recast as a more general question: When can dynamical evolution
be inverted by subsequent dynamics? As we will see, the answer to this question in the
quantum case will shed new light on the exchange of information between quantum systems
and their surroundings.
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20.2 Classical communication and error correction

A Markov process or Markov chain is a sequential probabilistic process in which each stage
takes as input only the output of the previous stage. This seems like a trivial definition,
but it actually entails a number of important consequences. Suppose, for example, that the
random variables X , Y , and Z form a Markov chain, a fact we represent thus: X → Y → Z.
The value of Y depends on X through some conditional probability distribution p(y|x). The
value of Z then depends only on the value of Y , but not at all on the X value, except through
its influence on Y . That is, p(z|x, y) = p(z|y), and so

p(x, y, z) = p(x) p(y|x) p(z|y). (20.3)

(The conditional distribution p(z|y), of course, might be quite different from p(y|x), though
for simplicity we have used the same letter p to denote them.) One sometimes says that this
sequence of variables has “no memory.” Later stages depend only on the present random
variable, not on any earlier ones.

Exercise 20.1 For a Markov chain, show that X and Z are independent of each other,
given Y :

p(x, z|y) = p(x|y)p(z|y). (20.4)

Markov chains are very commonly used to model natural stochastic processes such as
Brownian motion. Our interest stems from their application to information processes. The
progression from Alice’s input message X to Bob’s received signal Y to Bob’s estimate X̂
is a Markov chain. This is because Bob can only use Y as a basis to obtain X̂ .

In this communication context, the input distribution p(x) for X values represents the
statistical properties of Alice’s message. The conditional probabilities p(y|x) characterize
the communication channel from Alice to Bob, while the p(x̂|y) probabilities describe Bob’s
data processing. Our basic question is this: given an input distribution p(x) and the channel
described by p(y|x), how well can Bob reconstruct Alice’s message?

We begin by noting a general property of Markov chains. The classical version of strong
subadditivity (Problem 19.4) implies that, for any three random variables X , Y , and Z,

H(X , Y , Z)+ H(Z) ≤ H(X , Z)+ H(Y , Z). (20.5)

From this it follows that H(X |Z) ≥ H(X |Y , Z). If X → Y → Z is a Markov chain, then
Eq. 20.4 also tells us that H(X , Z|Y) = H(X |Y)+ H(Z|Y). Thus

H(X , Y , Z)+ H(Y) = H(X , Y)+ H(Y , Z), (20.6)

and so H(X |Y) = H(X |Y , Z). We conclude that

H(X |Y) ≤ H(X |Z). (20.7)

In terms of the mutual information, we can write this as

H(X ) ≥ H(X : Y) ≥ H(X : Z). (20.8)
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Equation 20.8 is called the data processing inequality. It expresses an “irreversibility” in
the Markov chain: once mutual information with X has been lost at some stage of the
process, it cannot be restored at any later stage.

Exercise 20.2 By similar methods, prove the data pipelining inequality for the Markov
chain X → Y → Z:

H(Z : Y) ≥ H(Z : X ). (20.9)

For the communication process X → Y → X̂ , the data processing inequality means
that H(X : X̂ ) ≤ H(X : Y). Bob’s estimate X̂ can be no more strongly correlated with
X (in an information sense) than Y , despite his data processing. To put the same idea in
different terms, if H(X |Y) > 0 then H(X |X̂ ) > 0 as well, so that Bob cannot reliably
deduce the value of X from the estimate X̂ . Thus, the error probability PE = 0 only if
H(X |X̂ ) = H(X |Y) = 0. As we will now show, there is also a more general connection
between PE and the conditional entropy.

We introduce a new random variable, the “error” variable E, with values e (error, when
x �= x̂) and s (success, when x = x̂). These have overall probabilities PE and 1 − PE,
respectively. Since the value of E is completely determined by the values of X and X̂ ,

H(X |X̂ ) = H(X , E|X̂ )

= H(X |X̂ , E)+ H(E|X̂ )

≤ H(X |X̂ , E)+ H(E). (20.10)

The entropy H(E) = h(PE), where h(p) = −p log p − (1 − p) log(1 − p) is the binary
entropy function for the probability p. The conditional entropy

H(X |X̂ , E) = PE H(X |X̂ , e), (20.11)

because H(X |X̂ , s) = 0. Suppose that the random variable X has N possible values. Then,
given that an error has been made, it must be that H(X |X̂ , e) ≤ log(N − 1). From all of
this we can write down Fano’s inequality, which states that

H(X |X̂ ) ≤ h(PE)+ PE log(N − 1). (20.12)

For a given H(X |X̂ ) > 0, Eq. 20.12 gives an implicit lower bound on PE. A somewhat
weaker (but often useful) version of this is

H(X |X̂ ) ≤ 1+ PE log N , (20.13)

see also Problem 20.1.

Exercise 20.3 We could replace H(X |X̂ ) with H(X |Y) in both Eq. 20.12 and 20.13. Why?

Let us sum up the conclusions we can now draw about the X → Y → X̂ communication
process:

• If H(X |Y) > 0, then H(X |X̂ ) must also be non-zero by Eq. 20.7; so by Fano’s inequality
(Eq. 20.12) we know that PE > 0. Thus, we can have PE = 0 only if H(X |Y) = 0 as
well.
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• If H(X |Y) = 0, we cannot conclude that PE = 0, since Bob might introduce errors
during data processing. However, we do know that, for every possible value y of Y ,
H(X |y) = 0. This means there must be a unique possible value of x for the given y. Bob
can therefore design a data processing function that maps y to this x value, and achieve
PE = 0.

The relation between entropy and error probability amounts to a limitation on Bob’s ability
to do error correction on his received signal. Perfect (PE = 0) error correction is possible
if and only if H(X |Y) = 0, or equivalently H(X : Y) = H(X ).

We can use these results to derive a counterpart to the classical data compression theorem
of Section 19.2. The aim in that discussion was to store the values of a sequence of
independent, identically distributed variables Xi (“messages”) using bits. We proved that,
if H(X )+ ε bits are available per message, then we can store n messages in n(H(X )+ ε)

bits with PE → 0 as n →∞.
In the Markov chain X → Y → X̂ , X represents the initial message, Y represents the

state of the storage bits, and X̂ represents the retrieved message. The data compression
theorem applies if we have more than H(X ) bits per message. But suppose we have only
K < H(X ) bits available to store the message. Then H(Y) ≤ K, and

H(X |Y) = H(X , Y)− H(Y) ≥ H(X )− K. (20.14)

Equation 20.13 (with Exercise 20.3) leads to

H(X )− K ≤ 1+ PE log N , (20.15)

where N is the number of possible X values.
Now replace X with a whole sequence of n independent messages, and Y with the state

of nK available bits. There are Nn possible X -sequence values, and

n(H(X )− K) ≤ 1+ nPE log N . (20.16)

Rearranging terms we find that

PE ≥ H(X )− K
log N

− 1
n log N

. (20.17)

The term (H(X ) − K)/ log N > 0 and is independent of n; the other term tends toward
zero as n → ∞. Therefore, as n → ∞, we cannot have that PE → 0. Using fewer
than H(X ) bits per message, we cannot compress the data so that the probability of error
approaches zero for large n. This fact is known as the weak converse of the data compression
theorem.1

Exercise 20.4 In what sense is this a “converse” to the data compression theorem?

1 The strong converse of the theorem shows that PE → 1 as n →∞. Hence, the weak converse states that errors
cannot be made asymptotically impossible, and the strong converse states that errors are asymptotically certain.
The stronger statement requires more mathematical machinery to prove, and we will omit it in our discussion.
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20.3 Quantum communication and error correction

A quantum Markov process or quantum Markov chain is a process during which a system Q
undergoes two stages of open system evolution, which we can represent by Q → Q′ → Q′′.
Given an input state ρ of Q, the subsequent states are given by superoperators:

ρ −→ ρ′ = E(ρ) −→ ρ′′ = D(ρ′). (20.18)

The quantum Markov property means that the environment seen by Q in the second stage (D)
is not initially correlated with the system, notwithstanding the interaction between system
and environment in the first stage (E). Effectively, the two stages involve independent
environments. In a quantum Markov process, it is the environment that has no memory.

Exercise 20.5 Review the discussion and derivation of the Lindblad equation in Section 9.3.
What role does the Markov hypothesis play in Lindblad-type dynamics?

In the quantum communication context, we introduce a “bystander” system R and
suppose that RQ is initially in a pure state |� (RQ)〉. The quantum Markov process is RQ →
RQ′ → RQ′′ (though R’s own dynamical evolution is trivial). Given the superoperator E
describing the first stage of this process, how well can the original state be recovered by a
second, independent evolution D?

Our first step is to find a quantum data processing inequality that allows us to diagnose
irreversible losses of information in the process. In fact, we already have the basis for
such an inequality. In Eq. 19.50 we saw that the quantum mutual information between two
systems could not be increased by open system evolution. Thus,

S(R:Q) ≥ S(R:Q′) ≥ S(R:Q′′). (20.19)

This is analogous to Eq. 20.8 for the classical mutual information. As we saw in Section 19.6,
the quantum mutual information S(R:Q) can be related to the amount of classical informa-
tion conveyed in a quantum communication channel. However, it does not seem to be a very
good measure of the amount of quantum information present in the initial entanglement of
Q with R. As we saw in Section 19.4, in a pure state the amount of entanglement is most
reasonably measured by the entropy S(Q). But the quantum mutual information of such a
state is

S(R:Q) = S(R)+ S(Q)− S(RQ) = 2S(Q), (20.20)

twice as large as we wish.
One way to express the problem is to say that the mutual information measures total

correlation rather than entanglement. To suggest a better measure, note that each mutual
information in Eq. 20.19 involves the same term S(R), which remains unchanged by Q’s
evolution. If we subtract this term from each expression, we would arrive at something
with the same meaning. Define the coherent information of Q to be

I(Q ; R) = S(R:Q)− S(R) = S(Q)− S(RQ). (20.21)
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This is a quantity whose classical analog (H(Y) − H(X , Y) = −H(X |Y)) can never be
positive, but which may be positive for entangled quantum systems. The initial pure
entangled state |� (RQ)〉 has I(Q ; R) = S(Q), as we would like. These facts motivate us to
adopt coherent information I(Q ; R) as an “information measure” of the entanglement of
Q with R.

Exercise 20.6 Suppose R and Q are qubits. What are the quantum mutual information and
the coherent information for (a) the product state |φ, ψ〉; (b) the correlated mixed state
1
2
( |00〉〈00| + |11〉〈11| ); and (c) the Bell state |�+〉?

Equation 20.19 now implies that

S(Q) ≥ I(Q′ ; R) ≥ I(Q′′ ; R), (20.22)

(where we have placed the primes on Q to remind ourselves that the bystander system R
“stands aloof ” from the evolution). This will be our quantum data processing inequality.

Exercise 20.7 QR begins in a pure entangled state, and then Q interacts with the
environment E (initially in pure state |0(E)〉). Show that after this interaction

I(Q′ ; R) = S(RE′)− S(E′). (20.23)

After the first stage E of evolution, we say that perfect quantum error correction is possible
if the exact original state of RQ can be restored by the second stage D. This can happen
only if no coherent information is lost during E : I(Q′ ; R) = S(Q). (This is a necessary
condition for perfect error correction; however, we do not yet know that it is sufficient. See
below.)

We can prove a stronger connection between the coherent information and the en-
tanglement fidelity Fe, analogous to Fano’s inequality. Suppose we specify a particular
value for the entanglement fidelity after the action of D:

Fe =
〈
� (RQ)

∣∣ ρ (RQ)′′ ∣∣� (RQ)
〉
. (20.24)

What is the largest possible value for S(RQ′′)? The maximum entropy will be achieved
when Fe is the largest eigenvalue of ρ (RQ)′′, and all the other eigenvalues are equal. How
many eigenvalues are there? If dimH(Q) = d, then we can take dimH(R) = d as well, since
the original entangled state |� (RQ)〉 occupies at most a d-dimensional subspace of H(R).
Thus, dimH(RQ) = d2 and so

S(RQ′′) ≤ h(Fe)+ (1− Fe) log(d2 − 1), (20.25)

where h(p) is the binary entropy function. The joint entropy S(RQ′′) is related to the loss
of coherent information. Noting that S(Q) = S(R) = S(R′′),

S(Q)− I(Q′′ ; R) = S(R′′)− S(Q′′)+ S(RQ′′). (20.26)
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By the triangle inequality (Eq. 19.46), S(R′′)− S(Q′′) ≤ S(RQ′′). Thus,

S(Q)− I(Q′′ ; R) ≤ 2S(RQ′′). (20.27)

This yields the quantum Fano’s inequality (together with a weaker, but often useful bound):

1
2
(
S(Q)− I(Q′′ ; R)

) ≤ h(Fe)+ (1− Fe) log(d2 − 1) (20.28)

≤ 1+ 2(1− Fe) log d. (20.29)

If I(Q′ ; R) < S(Q) after the evolution E , then by the quantum data processing inequality
(Eq. 20.22) it must be that S(Q) − I(Q′′ ; R) > 0. The quantum Fano’s inequality then
gives a non-trivial upper bound on Fe.

We used Fano’s inequality in Section 20.2 to prove a weak converse to the classical data
compression theorem. We will do the same with the quantum version. In data compression,
the system Q is replaced with a composite system QC, where C is a collection of K qubits.
Initially, C is in a fixed “zero” state |0(C)〉.
• In the first stage of the process (described by E), the initial entanglement of Q with R

is transferred to C, and the state of Q is reset to some fixed |0(Q)〉. Thus, I(QC′ ; R) =
I(C′ ; R).

• In the second stage of the process (described by D), the entanglement is transferred back
to Q, and C is reset to the state |0(C)〉. Thus, I(QC′′ ; R) = I(Q′′ ; R).

Therefore,

S(R) = S(Q) ≥ I(C′ ; R) ≥ I(Q′′ ; R). (20.30)

The overall loss of coherent information is

S(Q)− I(Q′′ ; R) ≥ S(Q)− I(C′ ; R) = S(Q)− S(C′)+ S(RC′′). (20.31)

By the triangle inequality, S(RC′′) ≥ S(R)− S(C′). As before, S(R) = S(Q); and since C
is composed of K qubits, S(C′) ≤ K. Thus,

S(Q)− I(Q′′ ; R) ≥ 2 (S(Q)− K) . (20.32)

Using Eq. 20.29, we obtain

S(Q)− K ≤ 1+ 2(1− Fe) log d. (20.33)

Suppose we are compressing the entanglement (Type II quantum information) of n
copies of Q with n copies of R into nK qubits. Then the entropy is S(Qn) = nS(Q) and the
dimension of the Hilbert space is dn. We obtain

1− Fe ≥ S(Q)− K
2 log d

− 1
2n log d

. (20.34)

As n → ∞, the second term on the right tends toward zero. Therefore, if K < S(Q), we
cannot have that Fe → 1 as n → ∞. We cannot achieve asymptotically perfect quantum
data compression with fewer than S(Q) qubits per system. This is the weak converse of the
quantum data compression theorem.
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We have seen that if I(Q′ ; R) < S(Q) after the evolution E , no further operation D can
accomplish perfect (Fe = 1) quantum error correction. Now suppose I(Q′;R) = S(Q), so
that there has been no loss of coherent information. In the corresponding classical situation
(H(X : Y) = H(X )) we could always accomplish perfect error correction. Is this possible
in the quantum context?

Introduce explicitly the environment E, initially in the pure state |0(E)〉, whose interaction
with Q produces the evolution described by E . If there has been no loss of coherent
information at this stage, then

S(Q)+ S(RQ′)− S(Q′) = S(R′)+ S(E′)− S(RE′) = 0. (20.35)

Thus, RE must be a product state after the first stage of the dynamical evolution. We can
write

ρ (RE)′ = ρ (R) ⊗ σ (E)′, (20.36)

where ρ (R) is unchanged from the initial state.
Write the initial state of RQ using the Schmidt decomposition:∣∣� (RQ)

〉 =∑
k

√
λk

∣∣k(R), k(Q)
〉
, (20.37)

where λks are the eigenvalues of ρ (R), and the { |k(R)〉} and { |k(Q)〉} are orthonormal sets in
H(R) and H(Q), respectively. After the interaction of Q and E, the overall state is still a pure
state. We can write this using a Schmidt decomposition between Q and RE:∣∣� (RQE)′〉 =∑

k,a

√
λkμa

∣∣φ (Q)
ka
〉⊗ ∣∣k(R), a(E)

〉
. (20.38)

The μas are the eigenvalues of σ (E)′, and we have used the fact that the RE state is a product
state. We also note that the { ∣∣φ (Q)

ka
〉} states form an orthonormal set.

Exercise 20.8 Show that the state of RQ at this stage is

ρ (RQ)′ =
∑

a
μa

∣∣� (RQ)
a

〉〈
� (RQ)

a
∣∣ , (20.39)

where the states
∣∣� (RQ)

a
〉

are ∣∣� (RQ)
a

〉 =∑
k

√
λk

∣∣k(R), φ(Q)
ka
〉
. (20.40)

Each of the
∣∣� (RQ)

a
〉

states in Exercise 20.8 already bears a strong resemblance to the
original state |� (RQ)〉. We therefore define the second-stage evolution D by a set of Kraus
operators for Q:

Aa =
∑

k

∣∣k(Q)
〉〈
φ

(Q)
ka
∣∣ . (20.41)

This is properly normalized, since∑
a

A†
aAa =

∑
k,l,a

∣∣φ (Q)
ka
〉 〈

k(Q)
∣∣l(Q)

〉 ∣∣φ (Q)
la
〉 =∑

k,a

∣∣φ (Q)
ka
〉〈
φ

(Q)
ka
∣∣ , (20.42)
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which is the identity 1 on the subspace spanned by the
∣∣φ (Q)

ka
〉

vectors. (We can include
an additional A0 if necessary to cover the orthogonal subspace.) These operators act
according to

Aa
∣∣� (RQ)

b
〉 = δab

∣∣� (RQ)
〉
, (20.43)

and therefore

D
(
ρ (RQ)′) =∑

a
Aaρ

(RQ)′A†
a =

∣∣� (RQ)
〉〈
� (RQ)

∣∣ , (20.44)

so that the entanglement fidelity Fe = 1. We have achieved perfect quantum error correction.
To sum up, we have found that perfect quantum error correction is possible if and only

if there is no loss of coherent information in the communication process. In the case of
data compression, using fewer than S(Q) qubits per system guarantees such a loss, which
in turn guarantees that the entanglement fidelity Fe of the process cannot approach 1 as
n → ∞. The situation is strongly reminiscent of the classical theory, except that the
coherent information I(Q ; R) – which measures entanglement – plays the role that mutual
information H(X : Y) plays in the classical context.

20.4 Error-correcting codes

To give a sense of how error correction actually works, we will take a brief look at the
subject of error-correcting codes. These are ways of representing information so that it is
more resistant to degradation.

Let us begin with a classical example. Suppose that a binary digit is subject to a process
that “flips” its value with probability p. That is,

p(0|0)=1− p, p(0|1)=p,
p(1|0)=p, p(1|1)=1− p.

(20.45)

We will assume that 0 ≤ p ≤ 1
2

. Note that p = 1
2

completely randomizes the value of the
binary digit.2 If we encode a bit of information into this variable and then read it after the
process is complete, the probability of making an error is PE = p.

The simplest idea is to encode our information into several binary digits, which can be
used to check each other. For instance, we can use three binary digits, with “codewords”
0c and 1c:

0c = 000, 1c = 111. (20.46)

We encode one bit of information into the values of three binary digits using this code. This
enables us to correct for certain possible errors. If a single bit is flipped, then the correct

2 A situation in which p >
1
2

can be converted to one in which p <
1
2

by always inverting the output.
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value can still be determined by a “majority vote” of the three bits. This error correction
procedure is

000, 001, 010, 100 → 0c, 011, 101, 110, 111 → 1c. (20.47)

If we know that an error occurs on only one of the three bits, then this error correction
procedure is foolproof. A somewhat more realistic situation is one in which each binary
digit is independently subject to error with probability p. Then the net probability of error
is just the likelihood that two or three errors occur:

PE = 3p2(1− p)+ p3 = 3p2 − 2p3 ≤ 3p2. (20.48)

For any p between 0 and
1
2

, the probability of error PE < p. Thus, our three-bit code
improves the reliability of the information transfer.

For instance, suppose p = 0.1. Using the three-bit code, we can achieve PE = 3(0.1)2−
2(0.1)3 = 0.028, almost a fourfold improvement in error likelihood.

Exercise 20.9 Compute PE for the three-bit code when p = 0.25, p = 0.05, and p = 0.001.
By what factor does the three-bit code reduce PE in each case?

Also see Problem 20.3.
The three-bit code is the simplest example, but there are many other codes with various

error-correction capabilities. For instance, the five-bit code

0c = 00000, 1c = 11111, (20.49)

using the “majority vote” error-correcting procedure, can correct any two single-bit errors.

Exercise 20.10 Compute PE for the five-bit code when p = 0.1 (assuming independent
errors on each bit).

To code two bits, we could use the three-bit code (Eq. 20.46) twice, representing the bits
using six binary digits. This code would allow us to correct single-bit errors in separate
codewords (though not two errors in the same codeword). If we need to correct only one
single-bit error overall, we can make do with fewer binary digits, as the following five-bit
code illustrates:

00c = 00000, 01c = 00111,
10c = 11001, 11c = 11110.

(20.50)

Exercise 20.11 Show that we can correct any single-bit error with this code. What role
does the fifth bit play?

A useful tool for analyzing binary codes is the Hamming distance between two binary
sequences. If A and B are binary sequences of length n, then

D(A, B) = # of places in which A and B differ. (20.51)

Thus, D(011, 101) = 2. Clearly D(A, A) = 0 and D(A, B) = D(B, A). Furthermore:
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Exercise 20.12 Show that, for any sequences A, B, and C, the Hamming distance satisfies
the metric triangle inequality:

D(A, B)+ D(B, C) ≥ D(A, C). (20.52)

If we start out with a codeword A, and n single bit errors occur, we end up with a string C
such that D(A, C) = 1.

The minimum distance Dmin of a binary code is the minimum value of D(A, B) for
distinct codewords A and B. The value of Dmin determines how many single bit errors can
be corrected:

• If Dmin = 1, then there are two codewords A and B that differ only in one bit. Each
could arise from a single bit error on the other, so such errors could not be recognized
and corrected.

• If Dmin = 2, the nearest codewords A and B differ in two bits. A single bit error can
always be detected; but it may not be possible to correct such an error. Single bit errors
on A and B could give rise to the same output string C, for which D(A, C) = D(B, C) =
1. It is therefore impossible to reliably determine which of the two codewords gave
rise to C.

• If Dmin ≥ 3, then a single bit error in codeword A gives rise to a string C such that
D(A, C) = 1 but D(B, C) ≥ 2 for any other codeword B. Given C, we can determine
the unique A that could produce it by a single error. We can therefore correct any such
error.

Exercise 20.13 Show that a binary code can correct up to n single bit errors if and only if
Dmin ≥ 2n+ 1.

Exercise 20.14 Determine Dmin for the binary codes in Eq. 20.46, 20.49, and 20.50. Apply
the criterion in Exercise 20.13 to determine how many single bit errors can be corrected in
each case.

Our errors have been symmetric (the processes 0 → 1 and 1 → 0 are equally likely) and
independent. We can defend against more complicated types of error with more complicated
codes. The general lesson is this: By using more bits, we can reduce the probability of error
and communicate more reliably in the presence of noise.

Now we turn to quantum error-correcting codes. In the quantum problem we want to
find ways to preserve the entanglement fidelity of the quantum information, even if the
evolution of the system is not unitary.

Once again, we will consider a particular instructive example. Suppose that a qubit Q
is subject to partial decoherence, a process represented by two Kraus operators

√
1− p 1

and √p Z, for 0 ≤ p ≤ 1
2

. That is,

E(ρ) = (1− p)ρ + p ZρZ. (20.53)

We can understand this qubit operation as a unitary relative phase flip in the standard basis
(Z) that occurs with probability p.
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For p = 0, the process introduces no decoherence. If p = 1
2 , the decoherence is complete,

and any superposition input state of Q evolves into a simple mixture of |0〉〈0| and |1〉〈1| .
But even in this case, the states |0〉〈0| and |1〉〈1| are themselves completely unaffected
by E . If these states are used to represent a classical bit of classical data, the action
of E introduces no error into that data. Thus, a perfectly noiseless channel of classical
information may be very noisy as a channel of quantum information.

On the other hand, suppose we use the states |+〉〈+| and |−〉〈−| to represent the
classical bit. Since

Z |+〉〈+| Z = |−〉〈−| and Z |−〉〈−| Z = |+〉〈+| , (20.54)

the action of E is to produce a classical “bit flip” error with probability p, as in Eq. 20.45.
Decoherence in the { |0〉 , |1〉} basis is the same thing as a random exchange of the basis
states of the conjugate { |+〉 , |−〉} basis.

We introduce the system R (also a qubit) and suppose that RQ is initially an ebit in the
Bell state |�+〉 = 1√

2
( |00〉 + |11〉). The initial entropy S(Q) = 1. After the action of E

on Q the joint state is

ρ (RQ)′ = 1
2
( |00〉〈00| + |11〉〈11| )+

(
1− 2p

2

)
( |00〉〈11| + |11〉〈00| ). (20.55)

Exercise 20.15 Show that Fe = 1− p for this process. Also show that the entropy of ρ (RQ)′
is S(RQ′) = h(p). (This is not difficult if you first note that the eigenstates of ρ (RQ)′ are
|�+〉 and |�−〉 = Z(Q) |�+〉.) What is the coherent information I(Q′ ; R)?

Can we find a way to represent the entanglement between R and Q, perhaps using several
qubits, that is more resistant to the decoherence of the E process? The fact that decoherence
is related to bit flip suggests that we might adapt the three-bit classical code of Eq. 20.46.
Suppose R is entangled with three independent qubits, a composite system we designate
RQ3. For the three Q qubits, consider the codeword basis states

|0c〉 = |+ + +〉 |1c〉 = |− − −〉 . (20.56)

These codewords span a two-dimensional subspace of Q ⊗ Q ⊗ Q, associated with the
projection operator �c = |0c〉〈0c| + |1c〉〈1c| . The initial entangled state of RQ3 is

|�〉 = 1√
2

( ∣∣0(R), 0c
〉+ ∣∣1(R), 1c

〉)
. (20.57)

Note that R and Q3 initially form an ebit, as before, but the entanglement is spread among
the three Q qubits. Each of the Q qubits independently undergoes the partial decoherence
process E . The overall operation E ⊗ E ⊗ E can be regarded as a probabilistic application
of various possible unitary operators:

• The identity 1, which applies with probability (1− p)3.
• The operators Z(1), Z(2), and Z(3), each of which applies with probability p(1− p)2.
• Operators Z(1)Z(2), etc., each of which applies with probability p2(1− p); and the operator

Z(1)Z(2)Z(3) which applies with probability p3.
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Exercise 20.16 Write down an operator–sum representation for E⊗E⊗E and explain how
the terms correspond to the descriptions given above.

We design our quantum error correction procedure to correct any single-qubit error in
the process – that is, to correct for 1, Z(1), Z(2), or Z(3). We can do this for the following reason:

Exercise 20.17 Show that �c, Z(1)�cZ(1), Z(2)�cZ(2), and Z(3)�cZ(3) are projections onto
orthogonal subspaces of Q⊗Q⊗Q.

Thus, we could make an incomplete measurement using these projections and determine
which single-qubit error operator has acted; then we can correct for its effect. We can
summarize this by giving Kraus operators for the error correction procedure D:

D0=�c, D2=�cZ(2),
D1=�cZ(1), D3=�cZ(3).

(20.58)

Exercise 20.18 First, show that the set of Kraus operators {Dk} is properly normalized.
Then show that

D1 = |+ ++〉〈− + +| + |− −−〉〈+ − −| , (20.59)

and write down similar expressions for D2 and D3.

Now suppose we start with initial RQ3 state |�〉 from Eq. 20.57. The trio of Q qubits is
subject to the process E ⊗ E ⊗ E and then to the error correction procedure described by D.
What is the overall entanglement fidelity Fe?

This is not hard to work out if we adopt the “probabilistic unitary” picture of E ⊗ E ⊗ E .
If there is no error (1) or a single qubit error (Z(1), Z(2), or Z(3)), then the procedure D exactly
restores the original state |�〉. If there are two or three qubit errors (Z(1)Z(2), etc.) then the
error correction procedure misidentifies this error and instead restores the state∣∣� ′〉 = 1√

2

( ∣∣0(R), 1c
〉+ ∣∣1(R), 0c

〉)
, (20.60)

which is orthogonal to |�〉. The final state of RQ3 is

ρ′ = Fe |�〉〈�| + (1− Fe)
∣∣� ′〉〈� ′∣∣ , (20.61)

where the entanglement fidelity Fe = 〈�| ρ′ |�〉.
Exercise 20.19 Show that Fe = 1 − 3p2 + 2p3. Make a graph of Fe versus p for (a) the
original situation where R is entangled with a single qubit Q, and (b) the error-correction
situation where R is entangled with a trio of independent qubits.

The example of quantum error correction we have analyzed has a formal resemblance
to classical error correction. But the two concepts are quite different. In classical error
correction, we defend against error using redundancy – essentially, by making many
copies of the same information. This is not possible for quantum information! Instead, the
input state |�〉 of Eq. 20.57 stores quantum information (entanglement with R) in highly
entangled states of many qubits.



432 Error correction

We have devised a particular code that helps to defend against a single type of quantum
error. Other codes with other characteristics are possible. A quantum error-correcting code
using n qubits involves a codeword subspace of Q⊗n. The entangled state of R with the n
qubits only involves states in the codeword subspace. Correctable errors map the codeword
subspace to an orthogonal subspace, an effect that can be identified and corrected by a
subsequent operation.

Exercise 20.20 Devise a code using five Q qubits that can correct up to two qubit “phase
flip” errors. (Base this on the five-bit code in Eq. 20.49.)

Exercise 20.21 Suggest a code to defend against the error process

E ′(ρ) = (1− p)ρ + p XρX. (20.62)

See also Problem 20.5.

20.5 Information and isolation

In this section we will explore the close connection between quantum error correction
and the idea of an informationally isolated system. This will shed additional light on the
no-cloning theorem, the security of quantum cryptography, and the isolation theorem of
Chapter 9. To begin with, though, we must generalize the idea of a conditional state to
mixed states of a composite quantum system.

Let AB be a composite quantum system and let ρ (AB) be some joint mixed state. We can
always choose a basis { |n〉} of A-states and write

ρ (AB) =
∑
m,n

|m〉〈n| ⊗ σmn, (20.63)

for some B-operators σmn. These operators are given by the partial inner products

σmn = 〈m| ρ (AB) |n〉 . (20.64)

Under what circumstances is the joint state ρ (AB) a simple product state ρ (A) ⊗ ρ (B)? If it is a
product state, then for all m, n

σmn = 〈m| ρ (A) |n〉 ρ (B) = ρmnρ
(B). (20.65)

All of the σmn operators are multiples of the same operator ρ (B). Conversely, if this is true
for all m, n, then

ρ (AB) =
∑
m,n

|m〉〈n| ⊗ (
ρmnρ

(B)
) = (∑

m,n
ρmn |m〉〈n|

)
⊗ ρ (B), (20.66)

a product state.

Exercise 20.22 Show that σ mn = σ †
nm for all m, n. What does this tell us about σ nn?
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Fix a particular ρ (AB), which may or may not be a product state. Suppose a generalized
measurement is performed on A, and that the result α is associated with the positive operator
E(A)
α . The probability of this result is p(α) = Tr(A)ρ

(A)E(A)
α , where ρ (A) = Tr(B)ρ

(AB). We define
the conditional state of B given α to be

ρ (B)
α = 1

p(α)
Tr(A)ρ

(AB)E(A)
α . (20.67)

How do we know that this is a suitable definition? Consider separate measurements per-
formed on A and B. The joint measurement is described by positive operators of the form
E(A)
α ⊗ F(B)

β . The conditional probability p(β|α) is

p(β|α) = 1
p(α)

p(α, β) = 1
p(α)

Tr ρ (AB)
(
E(A)
α ⊗ F(B)

β

)
= 1

p(α)
Tr(B)

(
Tr(A)ρ

(AB)E(A)
α

)
F(B)
β

= Tr(B)ρ
(B)
α F(B)

β . (20.68)

Thus, the density operator ρ (B)
α as defined in Eq. 20.67 correctly predicts the conditional

probability of any measurement result on B.
What do the conditional states tell us about whether ρ (AB) is a product state? One

connection is very easy:

Exercise 20.23 If ρ (AB) = ρ (A) ⊗ ρ (B), show that ρ (B)
α = ρ (B) for any E(A)

α .

Now suppose that every A measurement result (associated with E(A)
α ) leads to the same

conditional state ρ (B). Express the joint state according to Eq. 20.63. Then:

Exercise 20.24 Let E(A)
α = |n〉〈n| for some A-basis ket |n〉 and show that

σ nn = p(α)ρ (B). (20.69)

Exercise 20.25 Let E(A)
α = 1

2
( |n〉 + |m〉)(〈n| + 〈m| ); show that for some xmn,

σmn + σ nm = xmn ρ (B). (20.70)

Exercise 20.26 Let E(A)
α = 1

2
( |n〉 + i |m〉)(〈n| − i 〈m| ); show that for some ymn,

σmn − σ nm = ymn ρ (B). (20.71)

From these exercises, we can see that σmn = ρmnρ
(B) for all m, n. Therefore, the joint

state ρ (AB) is a product state if and only if the conditional state of B equals ρ (B) for any A
measurement result α.

Exercise 20.27 Compare this discussion of conditional states with the one in Section 6.4.
What is the same? What is different?

In Section 20.3, we discussed a situation in which the quantum system RQ is initially in
an entangled state |� (RQ)〉, and then Q interacts with an environment system E initially in the
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state |0(E)〉. We were interested in how well the Type II quantum information (entanglement)
in Q is preserved in this process. We showed that the perfect quantum error correction was
possible if and only if no coherent information was lost: I(Q′;R) = S(Q). This happens if
and only if the system R and the environment E are in a product state ρ (RE)′ = ρ (R) ⊗ σ (E)′
(Eq. 20.36). We have now shown that this is equivalent to saying that, if we make a
measurement on R after the time evolution, the conditional state of E is independent of
the result.

We are considering two successive operations on the initial state |� (RQ), 0(E)〉: (1) Q and
E interact, and (2) a measurement is made on R. Because R does not participate in the
interaction of Q and E, the order of these operations does not matter. Suppose then we
first make a measurement on R, whose result α specifies a conditional initial state

∣∣ψ (Q)
α

〉
of Q; then Q and E interact. We have shown that the final state σ (E)

α
′ of the environment

is independent of α. Conversely, if this state is independent of α for all choices of R-
measurement, and thus for all choices of possible conditional state

∣∣ψ (Q)
α

〉
of Q, then perfect

quantum error correction is possible. We can undo the effect of E (due to the QE interaction)
by a second operation D. The map E is invertible on this set of possible Q states.

What conditional Q states are possible given an initial RQ state |� (RQ)〉? Let the support
supp G of a Hermitian operator G be the subspace spanned by non-zero eigenvectors of
G – that is, the subspace orthogonal to the kernel ker G.

Exercise 20.28 Given |� (RQ)〉, show that any state of Q can arise as a conditional state from
an R-measurement, provided that state lies in supp ρ (Q) = supp Tr(R) |� (RQ)〉〈� (RQ)| .
Perfect quantum error correction for |� (RQ)〉 means invertibility of E on supp ρ (Q), and this
in turn means that Q is informationally isolated for input states in this subspace.

Exercise 20.29 Carefully explain the meaning of the last sentence.

In fact, we have now established a large set of interconnected facts regarding an evolution
superoperator E given by an interaction between Q and its environment E:

• E is invertible on a subspace of H(Q) if and only if Q is informationally isolated on that
subspace.

• The isolation theorem of Section 9.2 states that the evolution of Q is unitary if and only
if Q is informationally isolated on all of H(Q). Thus, unitary evolution maps are the only
ones that are invertible on the whole Hilbert space of Q.

• Q is not informationally isolated if and only if the final E-state does depend, how-
ever slightly, on the initial Q-state. This happens whenever there is a loss of coherent
information in the process.

• In a quantum cryptographic set-up, we can imagine that the eavesdropper has access only
to E – that is, the “environment” also includes any devices used by the eavesdropper
to monitor the communication. If Q is informationally isolated, the eavesdropper is
completely “shut out” and the communication channel is perfectly private. This happens
if and only if quantum error correction is possible.

The final point – the link between cryptographic security and quantum error correction –
gives an insight into how that security may be rigorously established. If Alice and Bob can do
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quantum error correction on their systems, then they can guarantee that the eavesdropper
Eve is excluded. (A more sophisticated result connects approximate error correction to
approximate cryptographic security.)

Quantum error correction is therefore more than a potentially useful technique for quan-
tum communication systems. It provides a vital link in a web of fundamental connections
between information, unitarity, and cryptographic security. Quantum information is pre-
served if and only if no information escapes into the environment. If this is true for all
possible initial states, then the evolution of the system is unitary (and thus maintains super-
positions). In any case, no physical record is created in the outside world to indicate the state
of the system. To repeat the slogan of Section 1.2: Quantum mechanics is what happens
when nobody is looking.

Problems

Problem 20.1 Equation 20.12 gives a lower bound on PE that is not very easy to use.
Equation 20.13 is not useful for small values of H(X |X̂ ). In this problem, we will derive
another lower bound on PE.

(a) For 0 ≤ x ≤ 1, show that −x ln x ≤ 1
2

and −x ln x ≤ 1− x.
(b) Use the inequalities in part (a) to show that h(p) ≤ 2 ln 2√p, where h(p) is the binary

entropy function.
(c) From Eq. 20.12 prove that

PE ≥
(

H(X |X̂ )

log 4N

)2

. (20.72)

(d) Suppose X is a four-bit message (N = 4) and H(X |X̂ ) = 0.5 bit. Use Eq. 20.12, 20.13,
and 20.72 to compute lower bounds for the probability of error PE. Which gives the
most stringent bound? How difficult are these bounds to compute?

Problem 20.2 Suppose Alice’s message X has N possible values that are equally likely, so
that H(X ) = log N . She represents these as pure states of a quantum system with a Hilbert
space dimension d. Bob makes a measurement on the system, obtaining the result Y , from
which he constructs his estimate X̂ .

(a) Use Holevo’s theorem (Eq. 19.110) to show that H(X : Y) ≤ log d.
(b) Use Fano’s inequality (Eq. 20.12) to derive a lower bound on PE when N = 4 and

d = 2.
(c) How does your result compare with the basic decoding theorem of Section 4.1?

Problem 20.3 Let X be a binary input with 0 and 1 equally likely, so that H(X ) = 1 bit.

(a) Suppose the bit is subject to the bit-flip process described by Eq. 20.45 with p = 0.1.
Let Y be the output of this process. Calculate H(X : Y). By how much does this fall
short of H(X )?
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(b) Now suppose the bit is encoded into three bits according to Eq. 20.46, and that each of
these bits is independently subject to Eq. 20.45. The output Y is the final value of the
three output bits. Calculate H(X : Y) for p = 0.1.

(c) In each case, compare the actual probability of error with the bound on PE obtained
from Fano’s inequality.

Consider the three-bit code from Eq. 20.46. Let X be the input value (0 and 1 being equally
likely) and Y be the output

Problem 20.4 Our system Q consists of two qubits: R is initially in the Bell state |�+〉
with one qubit, while the other is in the state |0〉. This system undergoes an evolution by
the superoperator E . Calculate the coherent information I(Q′;R) if

(a) the evolution E swaps the states of the two Q qubits with probability p;
(b) the evolution E applies the X⊗ X operator to Q with probability p;
(c) the evolution E performs a CNOT operation on Q (with the first system as control) with

probability p; and
(d) the evolution E performs a controlled-Z operation on Q with probability p.

In each case, assume that E otherwise does not affect the state of Q. In which cases is
perfect quantum error correction possible?

Problem 20.5 In 1995, Peter Shor introduced the idea of quantum error correction. He
suggested a nine-qubit code with the following codewords:

|0c〉= 1
2
√

2
( |000〉 + |111〉)⊗ ( |000〉 + |111〉)⊗ ( |000〉 + |111〉),

|1c〉= 1
2
√

2
( |000〉 − |111〉)⊗ ( |000〉 − |111〉)⊗ ( |000〉 − |111〉).

(a) Show that we can use the Shor code to correct any single-qubit unitary error involving
the error operators Z, X, or XZ.

(b) Show that the Shor code can also correct any single-qubit non-unitary error in which
the qubit state is reset to |0〉.

For each of these, we need to show that the various possible errors map the codeword
subspace to orthogonal subspaces, which can be identified by an incomplete measurement
and corrected by some operation.3

3 In fact, the Shor code can correct any single-qubit error. (You may regard the proof of this statement as an
optional part (c) for this problem.)
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A.1 Random variables

Probability is an essential idea in both information theory and quantum mechanics. It is
a highly developed mathematical and philosophical subject of its own, worthy of serious
study. In this brief appendix, however, we can only sketch a few elementary concepts,
tools, and theorems that we use elsewhere in the text.

In discussing the properties of a collection of sets, it is often useful to suppose that they
are all subsets of an overall “universe” set U . The universe serves as a frame within which
unions, intersections, complements, and other set operations can be described. In much
the same way, the ideas of probability exist with a frame called a probability space �. For
simplicity, we will consider only the discrete case. Then � consists of an underlying set of
points and an assignment of probabilities. The set is called a sample space and its elements
are events. The probability function, or probability distribution, assigns to each event e a
real number P(e) between 0 and 1, such that the sum of all the probabilities is 1.

The probability P(e) is a measure of the likelihood that event e occurs. An impossible
event has P(e) = 0 and a certain event would have P(e) = 1; in other cases, P(e) has some
intermediate value.

The probability space itself contains all possible events that may occur, identified in
complete detail, which makes it too elaborate for actual use. Suppose we flip a coin. The
probability space contains events like, “The coin came up heads, the weather was sunny,
etc.” and also “The coin came up heads, the weather was rainy, etc.” We need a way of
disregarding the weather and other extraneous factors, identifying each of these events
as a “heads” outcome for our experiment. An abstract random variable X is a way of
labeling the events in the sample space by various possible values x. For each value x,
we have a whole collection of events in the sample space that are assigned that value:
Vx = {e : X (e) = x}. We can now define the probability of a value x:

p(x) =
∑
e∈Vx

P(e). (A.1)

These probabilities satisfy 0 ≤ p(x) ≤ 1 and
∑

x
p(x) = 1. In our coin-flip example, either

X (e) = “heads” or X (e) = “tails” for every event e, and we can define the probabilities
p(heads) and p(tails) for the two values according to Eq. A.1.

Strictly speaking, the random variable X is a labeling function for the sample space. But
informally we can regard it as a set of values equipped with its own probability distribution.
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Thus we say that x ∈ X for a value x. We have probabilities, not only for the values in X ,
but also for whole subsets of X . The probability of A ⊆ X is

p(A) =
∑
x∈A

p(x). (A.2)

Exercise A.1 If A ⊆ B ⊆ X , prove that p(A) ≤ p(B). Under what circumstances does
equality hold?

Exercise A.2 Suppose A and Ac are complementary subsets of X . Show that p(Ac) =
1− p(A).

We can also describe the probability that a particular property holds for X . Given a property
Q(x) (a statement about x values that might be true or false) there is a subset Q of X
containing exactly those x values for which Q(x) holds. Then Pr(Q(x) is true) = p(Q).

When the values of X are real numbers – representing the numerical value of some
measurement, perhaps – then we say that X is a numerical random variable. We will have
much more to say about these in the next section.

A joint random variable (X , Y) has values that are pairs (x, y) of values in X and Y ,
which are random variables in the same underlying probability space. To take a simple
example, the day’s weather may be characterized by temperature X and precipitation Y .
The joint probability p(x, y) is

p(x, y) =
∑

x∈Vx,y

P(e), (A.3)

where Vx,y = {e : X (e) = x and Y(e) = y}. (Note that a joint distribution can be defined
only if X and Y are random variables in the same probability space.)

Once we have the joint distribution, we can simply accept it as a distribution over the
pairs of values (x, y). Consider, for example, the following distribution:

p(x, y) warm cold
dry 0.4 0.2

rainy 0.1 0.3.
(A.4)

From the joint distribution we can calculate the distributions for the individual variables X
and Y . These marginal distributions are given by

p(x) =
∑

y
p(x, y), p(y) =

∑
x

p(x, y). (A.5)

In our weather example, the probability p(warm) = 0.4+ 0.1 = 0.5.

Exercise A.3 What is the probability that the day will be rainy?

Exercise A.4 Show that the probability p(x) calculated from the joint distribution via
Eq. A.5 must be equal to that calculated directly from the underlying probability space
according to Eq. A.1.
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From joint distributions we can also derive conditional probabilities. Suppose we select
some value y for Y with p(y) �= 0. Then we define the conditional probability for x given
y to be

p(x|y) = p(x, y)
p(y)

. (A.6)

For each possible y this yields a probability distribution over X , representing the likelihood
of various values of x provided that we know y has occurred. Two random variables are
said to be independent if knowledge of one does not affect the probabilities assigned to the
other – that is, if p(x|y) = p(x) for every possible y. In this case,

p(x, y) = p(x|y) p(y) = p(x) p(y), (A.7)

and the joint distribution over (X , Y) is exactly the product of the marginal distributions
over X and Y .

Exercise A.5 From Eq. A.4, what is p(cold|rainy)? Are the temperature and precipitation
independent random variables?

We often consider a sequence of independent, identically distributed random variables:
	X = (X1, . . . , Xn). (As always, these must be regarded as random variables in the same
“universe,” the same underlying probability space.) A particular outcome of this joint
variable is a sequence 	x = (x1, . . . , xn). The probability of this sequence is

p(	x) = p(x1) · · · p(xn), (A.8)

where each marginal distribution is a duplicate of the same p(x).

Exercise A.6 Suppose the weather on successive days is a sequence of independent, iden-
tically distributed random variables with the distribution given by Eq. A.4. What is the
probability that it will be warm and dry for an entire week?

Probability theory provides rational methods for making inferences based on the data.
Suppose the variable Y represents different theoretical hypotheses, so that p(y) is an estimate
of the likelihood of hypothesis y. (This is sometimes called the a priori probability for y.)
The variable X represents the result of some experiment. Each hypothesis y produces a
conditional predicted distribution p(x|y). The joint distribution is p(x, y) = p(x|y) p(y).

Now we perform the experiment and observe a particular result x. How does this obser-
vation change our judgment of the likelihood of the various hypotheses? In other words,
what is the a posteriori probability p(y|x)? This turns out to be

p(y|x) = p(x, y)
p(x)

= p(x|y) p(y)∑
y′

p(x|y′)p(y′)
. (A.9)

This result, known as Bayes’s theorem, tells us how to adjust our initial distribution over Y
based on X data.

To see Bayes’s theorem in action, imagine that we have a bag containing many coins.
Most of these are ordinary, fair coins that are equally likely to come up “heads” or “tails”
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when flipped. However, 10% of the coins are of the fraudulent, two-headed variety for
which p(heads) = 1. We draw a coin at random from the bag. In the absence of any further
data, we assign the a priori probability p(fraud) = 0.1 to the hypothesis that the coin has
two heads. The conditional probabilities are

p(heads|fair)= 0.5, p(heads|fraud)= 1.0,
p(tails|fair)= 0.5, p(tails|fraud)= 0.0. (A.10)

Now suppose the coin is flipped and comes up “heads.” This bit of data changes our
assessment of the likelihood that the coin is fraudulent:

p(fraud|heads) = p(heads|fraud)p(fraud)

p(heads|fraud)p(fraud)+ p(heads|fair)p(fair)

= 1.0× 0.1
(1.0× 0.1)+ (0.5× 0.9)

= 0.182. (A.11)

Given the result “heads” of a single coin flip, the likelihood that the coin has two heads
nearly doubles.

Exercise A.7 What adjustment to the fair/fraud probabilities should we make if the coin
comes up “tails”?

Exercise A.8 Suppose a coin is drawn from the bag and flipped three times, coming up
heads each time. What is p(fraud|heads, heads, heads)? How many times must the coin
come up “heads” before the likelihood of a fraudulent coin exceeds 99%?

A.2 Numerical random variables

A numerical random variable X labels events by values that are real numbers x. For such
a variable, we define the mean or expected value or expectation value of X , denoted 〈X 〉,
to be

〈X 〉 =
∑

x
x p(x), (A.12)

which is the sum of the various possible values of X , weighted by the probabilities. The
phrase “expected value,” of course, is slightly misleading, since the number 〈X 〉 may not
be one of the possible numerical values of X . Intuitively, 〈X 〉 is what we expect to obtain
“on average, in the long run” if we repeat our experiment many times. We will make this
intuition rigorous below.

Suppose we have a pair of numerical random variables X and Y in the same underlying
probability space. We can create new numerical variables from the sum X + Y , product
XY , etc., which also have means:

Exercise A.9 Show that 〈X + Y〉 = 〈X 〉 + 〈Y〉 for any pair X and Y . Show that 〈XY 〉 �=
〈X 〉 〈Y〉 in general, but that equality does hold for independent variables.
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How far is a variable X from its mean μ = 〈X 〉? We could imagine situations in which
the values of X cluster tightly around μ, and other situations in which the X values are very
far from μ. We would like a measure of how “spread out” the values of X are likely to be.
The difference X − μ is itself a random variable, for which we may calculate the mean:

〈X − μ〉 = 〈X 〉 − μ = 0. (A.13)

This ends up zero because 〈X − μ〉 can be either positive or negative depending on the
particular x, and such terms cancel out in the sum. We should instead consider the squared
difference (X − μ)2, which is never negative. The mean of this variable is called the
variance of X , denoted (
X )2 or var(X ):

var(X ) =
〈
(X − μ)2

〉
=
〈
X 2

〉
− 2μ 〈X 〉 + μ2 =

〈
X 2

〉
− 〈X 〉2 . (A.14)

The variance is a measure of how “spread out” the possible values of X are. A closely
related measure is the standard deviation, which is 
X = √

var(X ).

Exercise A.10 Show that
〈
X 2〉 = 〈X 〉2 if and only if the numerical value of X is certain.

Exercise A.11 A six-sided die is rolled. Let F be the number (1–6) shown on its upper face.
Calculate 〈F〉, var(F), and 
F.

Suppose we have a sequence of independent, identically distributed numerical random
variables (X1, . . . , Xn). Each variable has the same mean 〈X 〉 and variance var(X ) =〈
X 2〉− 〈X 〉2. Consider a new variable X̄ , the statistical average of the Xis:

X̄ = X1 + . . .+ Xn
n

. (A.15)

A single experiment to find X̄ would include n independent experiments to measure Xi,
after which the average in Eq. A.15 is calculated. So what are the mean and variance of this
new random variable X̄ ? It is easy to see that the mean is

〈
X̄
〉 = 〈X 〉. The variance requires

more work. First, we calculate
〈
X̄ 2〉:〈

X̄ 2
〉
= 1

n2

〈
(X1 + . . .+ Xn)

2
〉

= 1
n2

∑
i

〈
X 2

i

〉
+ 1

n2

∑
i,j

i�=j

〈
XiXj

〉
. (A.16)

The variables are identical, so that each term
〈
X 2

i
〉 = 〈

X 2〉. They are also independent, so〈
XiXj

〉 = 〈X 〉2 for i �= j; there are n2 − n such terms. The variance of X̄ is

var(X̄ ) = 1
n

〈
X 2

〉
+
(

n2 − n
n2

)
〈X 〉2 − 〈X 〉2 = var(X )

n
. (A.17)

The average X̄ of many independent “samples” of X has the same mean as X but a smaller
variance. The observed values of the average X̄ must be clustered more closely about the
mean value 〈X 〉.
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Let us probe this idea more carefully. From now on let X be a numerical random variable
with mean μ = 〈X 〉 and variance σ 2 = var(X ). For the moment, also suppose that X ≥ 0;
that is, no value x of X is negative. Then for any η > 0,

Pr(x > η) =
∑
x>η

p(x)

<
∑
x>η

x
η

p(x)

≤ 1
η

∑
x

x p(x) = μ

η
. (A.18)

This is called Markov’s inequality. For non-negative X , the likelihood that x is very much
larger than its mean – i.e. that x > η � μ – has to be small.

Using Markov’s inequality we can establish a more general result. We now no longer
assume that X ≥ 0; however, the random variable (X − μ)2 is still non-negative, with a
mean of σ 2. We can apply Markov’s inequality to this variable. For any η > 0,

Pr
(
(x− μ)2 > η2

)
<

σ 2

η2 . (A.19)

(For later clarity we have used η2 instead of η.) Rewriting the condition in the probability,
we obtain

Pr (|x− μ| > η) <
σ 2

η2 , (A.20)

a fact known as Chebyshev’s inequality. If η � σ (the standard deviation), Eq. A.20 tells
us that it is unlikely for X to be more than η removed from its mean μ.

The final step is to apply Chebyshev’s inequality to X̄ , the average value of n independent
X s. We are especially interested in the case when η is small, so we shall rename this
parameter ε. The variance of X̄ is σ 2/n. Thus, for any ε > 0,

Pr (|x̄− μ| > ε) ≤ σ 2

nε2 . (A.21)

Given ε and any δ > 0, we can choose n > σ 2/δε2, making the right-hand side itself no
larger than δ. We arrive at a very important result, which we state formally:

Weak Law of Large Numbers. Let X1, X2, . . . , Xn be independent, identically dis-
tributed numerical random variables, each with finite mean μ and variance σ 2. Given
any δ, ε > 0, for sufficiently large n,

Pr

(∣∣∣∣∣
(

1
n
∑

k
xk

)
− μ

∣∣∣∣∣ > ε

)
< δ. (A.22)

For large n, the likelihood that the average value x̄ is farther than ε from 〈X 〉 is less
than δ.
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The Weak Law of Large Numbers is one of the most significant theorems in probability
theory. Simply put, it states that a statistical average (taken over independent samples)
almost certainly approximates the probabilistic mean, provided that the sample size n is
large enough. This is exactly what we meant at the beginning of the section when we
claimed that 〈X 〉 is what we expect to obtain “on average, in the long run” if we repeat our
experiment many times.

Exercise A.12 Apply the Weak Law of Large Numbers to the statistical estimation of prob-
ability. If we count the number of times a value x occurs in a large number of independent
experiments, the frequency of occurrence is most likely close to the probability p(x). Phrase
this in a rigorous way and prove it. What numerical random variable are we considering?

The facts of probability presented in this appendix are enough to start with. A few more
results are described in the main chapters, such as continuous distributions in Section 10.1
and the classical entropy function in Sections 19.1 and 19.2. For more sophisticated
developments, including analysis of important special distributions, consult a textbook
on probability theory.

Problems

Problem A.1 Consider a simple binary experiment such that p(0) = q and p(1) = p =
1− q. Some n independent trials of this experiment are performed, and we are interested in
the random variable K that counts the number of 1s that occur. K has n+ 1 possible values
0, 1, . . . , n.

(a) Show that the probability distribution for K is given by

p(k) =
(

n
k

)
pkqn−k , (A.23)

where
(

n
k

)
= n!

k!(n− k)! is the binomial coefficient, the number of ways that k items

can be selected from among n items. Equation A.23 is called the binomial distribution.
(b) Find the mean and the variance of the binomial distribution. (You can do this by

computing a difficult summation, but there is a much easier way!)
(c) Stirling’s formula provides an approximation of n! for large n:

n! ≈ √
2πn nn e−n. (A.24)

Use this to find an approximate formula for the binomial coefficient. Once you have
done this, estimate the value of k that maximizes the probability p(k) for large n. (The
idea is to treat k as a continuous variable and apply the usual methods of calculus.)
Does your result agree with your intuition?
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B.1 The delta function

. . . [E]ven the most precise sciences normally work with more or less ill-understood
approximations toward which the scientist must maintain an appropriate skepticism
. . . . The physicist rightly dreads precise argument, since an argument which is only
convincing if precise loses all its force if the assumptions upon which it is based are
slightly changed, while an argument which is convincing though imprecise may well
be stable under small perturbations of its underlying axioms. (Jack Schwartz, The
Pernicious Influence of Mathematics on Science)

In this appendix, we review some techniques of mathematical physics. We present the
mathematics in “physics style” – that is, with apparent disregard for the mathematical
niceties. We will use “functions” whose properties cannot be matched by any actual func-
tion. We will exchange the order of limit operations by commuting integrals, derivatives,
and infinite sums, all without any apparent consideration of the deep analytical issues
involved. If the math police gave out tickets for reckless deriving, we would probably
get one.

Why risk it? Often, the “reckless” derivation is a useful shorthand for a more sophisticated
(and rigorous) chain of mathematical reasoning. An ironclad proof of a result may have to
deal with many technical issues that, though necessary to close all of the logical loopholes,
act to obscure the central ideas. The less formal approach is therefore both briefer and
more revealing. Finally, we should remember (as the above quotation reminds us) that
the mathematical objects used in physics are already drastic idealizations of real physical
entities. Mathematics is capable of a level of rigor that is simply inappropriate for such
rough approximations to reality.

Does this mean that mathematical rigor should be banished from physics? Not at all.
Any chain of logical reasoning, even an informal one, must avoid the pitfalls of fallacy and
self-contradiction. Ultimately, the only defence against these is careful logic. Generations
of mathematicians have labored to make rigorous the customary tools of physics, from
calculus to the path integrals of quantum field theory. We as physicists are confident that
our tools are safe and effective in daily use, but the ultimate source of that confidence is
their vast body of meticulous, rigorous mathematical reasoning.

There is no better illustration of the “physics style” than the delta function δ(x), introduced
into mathematical physics by P. A. M. Dirac. This function has two key properties:
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• δ(x) = 0 for all x �= 0.

•
∫ +∞

−∞
δ(x) dx = 1.

These are clearly problematic as rigorous statements! Intuitively, we think of δ(x) as a
function whose graph is a thin “spike” at the origin. Even though the spike is extremely
narrow, it is also very high, so that the area under the curve is 1.

The delta function δ(x) is actually a shorthand for a limit involving a family of spike
functions that become narrower and higher. Expressions involving δ(x) stand for much
more complex limiting expressions. However, it is more convenient to pretend that δ(x) is
an actual function that may be manipulated in the usual way. This works surprisingly well.

Exercise B.1 Show that δ(−x) has exactly the same two defining properties as δ(x). We
can thus regard δ(x) as an “even” function: δ(x) = δ(−x). (This is our shorthand for the
fact that we can consider only symmetric spike functions in our limit.)

The most useful property of the delta function is the sampling property. Suppose we
have a continuous function f (x) defined on an interval C containing a. We consider the
integral

I =
∫

C
f (x)δ(x− a) dx. (B.1)

The integrand is zero (since δ(x− a) is zero) for all values of x except x = a. We can thus
replace f (x) by f (a) inside the integral, since this has no effect on the value of the integrand
at any point). Furthermore, we can replace the integral over C by an integral from −∞ to
∞, since the delta function is zero outside of C. Then

I =
∫ +∞

−∞
f (a)δ(x− a) dx = f (a)

∫ +∞

−∞
δ(x− a) dx = f (a). (B.2)

The sampling property of the delta function is thus

f (a) =
∫

C
f (x)δ(x− a) dx. (B.3)

That is, the factor δ(x− a) in the integrand causes the integral to “pick out” the value f (a)

from the function on the interval C.
A second useful property involves the derivative δ′(x). If f (x) is differentiable on the

interval C containing a, then

f ′(a) = −
∫

C
f (x)δ′(x− a) dx. (B.4)

We call this the derivative property of the delta function.

Exercise B.2 Obtain the derivative property via integration by parts.

The delta function δ(x) can be seen as a continuous version of the Kronecker delta δmn. The
delta function “collapses” integral expressions in much the same way that δmn “collapses”
discrete sums.
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B.2 Fourier series

Suppose that the function f is periodic with period L. That is, f (x + L) = f (x) for all x.
Among such functions are the basic “sinusoidal” functions

un(x) = eiknx, (B.5)

where kn = 2πn
L

and n is an integer, which may be positive or negative. These have an
orthogonality property over the interval from −L/2 to +L/2:∫ +L/2

−L/2
u∗m(x) un(x) dx =

{
L m = n
0 m �= n . (B.6)

Exercise B.3 Derive Eq. B.6 from the definition of un(x).

Our essential idea, first advanced by Joseph Fourier, is that any reasonable periodic
function f (x) can be written as a sum of sinusoidal components:

f (x) =
∑

n
cn eiknx, (B.7)

where n = . . . ,−1, 0,+1, . . . This is called the Fourier series for f (x). The coefficients are
given by

cn = 1
L

∫ L/2

−L/2
f (x)e−iknx dx. (B.8)

Exercise B.4 Under the assumption that f (x) is given by the Fourier series in Eq. B.7, use
the orthogonality property in Eq. B.6 to derive the Fourier coefficients in Eq. B.8.

The Fourier coefficients provide an alternative way of describing the periodic function
f (x). Various properties of the function are related to properties of the coefficients:

• If f (x) is real, then c−n = c∗n.
• If f (x) is even, then c−n = cn.
• If f (x) is odd, then c−n = −cn, and as a consequence c0 = 0.

B.3 Fourier transforms

In the Fourier series for functions that are periodic with period L, the adjacent values of kn
are separated by


k = 2π

L
. (B.9)

We define f̃ (kn) to be related to the Fourier coefficient cn by

f̃ (kn) = L√
2π

cn. (B.10)
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Then

f (x) =
∑

n

√
2π

L
f̃ (kn) eiknx = 1√

2π

∑
n

f̃ (kn) eiknx
k, (B.11)

and

f̃ (kn) = 1√
2π

∫ L/2

−L/2
f (x)e−iknx dx. (B.12)

If we let the period L → ∞ then the discrete variable kn becomes a continuous k. In this
limit, we have

f (x) = 1√
2π

∫ +∞

−∞
f̃ (k) eikx dk, (B.13)

f̃ (k) = 1√
2π

∫ +∞

−∞
f (x) e−ikx dx. (B.14)

The function f̃ (k) is called the Fourier transform of f (x). Equations B.13 and B.14 give
the relationship of f (x) and f̃ (k).

The Fourier transform of the delta function is particularly simple:

δ̃(k) = 1√
2π

∫ +∞

−∞
δ(x) e−ikx dx = 1√

2π
. (B.15)

This means that we can use Eq. B.13 to give a highly useful formula for the delta function:

δ(x) = 1
2π

∫ +∞

−∞
eikx dk. (B.16)

We can use the delta function to prove the uniqueness of the Fourier transform. Suppose

g(k) is a function such that f (x) = 1√
2π

∫ +∞

−∞
g(k)eikx dx. Then

f̃ (k) = 1√
2π

∫ +∞

−∞
f (x)e−ikx dx

= 1
2π

∫ +∞

−∞

(∫ +∞

−∞
g(k′)eik′x dk′

)
e−ikx dk. (B.17)

Exchanging the order of integration and combining terms, we obtain

f̃ (k) = 1
2π

∫ +∞

−∞
g(k′)

(∫ +∞

−∞
ei(k′−k)x dx

)
dk

=
∫ +∞

−∞
g(k′)δ(k′ − k) dk

f̃ (k) = g(k). (B.18)

Any function g(k) that yields f (x) via the Fourier integral in Eq. B.13 must in fact be the
Fourier transform f̃ (k).
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Exercise B.5 All of the factors of 2π in this section are determined by the 2π in Eq. B.10.
If we had omitted this factor in the definition of f̃ (kn), how would our expressions change?

It is handy to have a couple of other examples of the Fourier transform in our “toolkit.”
Consider a function that is a rectangular pulse centered on the origin:

h(x) =
{

0 |x| > 1
1 |x| ≤ 1

. (B.19)

The Fourier transform can be computed pretty easily

h̃(k) =
∫ 1

−1
e−ikx dx

= 1
−ik

(
e−ik − eik

)
h̃(k) = 2

sin k
k

. (B.20)

The function
sin k

k
is sometimes denoted sinc(k).

Exercise B.6 Suppose we consider a rectangular pulse of width 2a instead of 2, for some
a > 0. What is the resulting Fourier transform?

Also consider a function of the form

f (x) = e−b|x|. (B.21)

This has a pointed “peak” of unit height at x = 0, and drops off exponentially in both
directions. Its Fourier transform is

f̃ (k) =
√

2
π

b
b2 + k2 . (B.22)

Note that a narrower f (x) (given by a greater value of the exponential parameter b) leads
to a wider f̃ (k).

Exercise B.7 Derive f̃ (k) in Eq. B.22.

The Fourier transform defined by Eq. B.13 and B.14 has a number of elementary prop-
erties, which can be used to greatly extend the range of functions whose transforms we can
compute:

• Linearity. If f (x) = af1(x)+ bf2(x), then f̃ (k) = ãf1(k)+ b̃f2(k).
• Shift property. The Fourier transform of f (x− x0) is e−ikx0 f̃ (k).
• Modulation property. The Fourier transform of e−ik0x f (x) is f̃ (k − k0).
• Dilation property. If α > 0 is a real parameter, the Fourier transform of f (αx) is

1
α

f̃
(

k
α

)
.

Linearity follows from the linearity of the integral in Eq. B.14. The other properties are
easy to prove by appropriate changes of variable.
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Exercise B.8 Prove the modulation property of the Fourier transform.

Now suppose that f (x) has Fourier transform f̃ (k). What is the Fourier transform of the
derivative f ′(x)?

f ′(x) = d
dx

∫ +∞

−∞
f̃ (k)eikx dk

=
∫ +∞

−∞
f̃ (k)

(
∂

∂x
eikx

)
dk

=
∫ +∞

−∞
ik̃f (k)eikx dk. (B.23)

From the uniqueness of Fourier transforms, we see from this that the Fourier transform of
the derivative f ′(x) is just ik̃f (k). We can call this the derivative property of the Fourier
transform.

Exercise B.9 What is the Fourier transform of f ′′(x)? How about the function δ′(x− a)?

A very deep fact about Fourier transform is known as Parseval’s theorem. Suppose we
have two functions f (x) and g(x), and consider the integral

I =
∫ +∞

−∞
f ∗(x) g(x) dx. (B.24)

How can we write this using Fourier transforms? We can figure this out using the properties
of the Fourier transform, exchanging the order of integration on the way:

I = 1
2π

∫ +∞

−∞

(∫ +∞

−∞
f̃ (k)eikxdk

)∗ (∫ +∞

−∞
g̃(k′)eik′x dk′

)
dx

=
∫ +∞

−∞
dk
∫ +∞

−∞
dk ′̃f ∗(k) g̃(k′)

(
1

2π

∫ +∞

−∞
ei(k′−k)x dx

)
=
∫ +∞

−∞
dk
∫ +∞

−∞
dk ′̃f ∗(k) g̃(k′)δ(k′ − k). (B.25)

From this we find that ∫ +∞

−∞
f ∗(x) g(x) dx =

∫ +∞

−∞
f̃ ∗(k) g̃(k) dk. (B.26)

This is Parseval’s theorem. As a simple consequence, it follows that, for all f (x),∫ +∞

−∞
|f (x)|2 dx =

∫ +∞

−∞
∣∣̃f (k)

∣∣2 dk. (B.27)

Parseval’s theorem has implications for the position and momentum wave functions
introduced in Chapter 10. See, for example, Eq. 10.45.
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B.4 Application to PDEs

The Fourier transform is so amazingly useful that we cannot hope to do more than suggest
a few of its applications. One such application is to the solution of differential equations.

Suppose a substance is diffusing in one dimension through a uniform medium. Then
the concentration of the substance is represented by a function c(x, t) depending both
on location x and time t. The concentration function obeys the 1-D diffusion equation,
which is

∂c
∂t
= D

∂2c
∂x2 , (B.28)

where D is a constant called the diffusion constant. How can we find a general solution to
this partial differential equation?

The answer lies in re-expressing c(x, t) by its Fourier transform1 c̃(k, t). Taking the
Fourier transform of both sides of Eq. B.28 gives us

∂

∂t
c̃(k, t) = D(−ik)2̃c(k, t) = −k2D c̃(k, t). (B.29)

This is now a differential equation only in t, and can be solved analytically for each
value of k:

c̃(k, t) = c̃(k, 0) e−k2D t. (B.30)

Each part of the Fourier transform c̃(k, t) decays independently in an exponential way. The
rate of decay is determined by D and k2. Components with higher spatial frequencies k will
decay away more rapidly, which is why the c(x, t) function “smooths out” over time. The
main point here is that, given any initial concentration function c(x, 0), we can find c̃(k, 0)

and then work out the concentration – both c̃(k, t) and c(x, t) – for any later time t.

Exercise B.10 Suppose the initial concentration of the diffusing material is a Gaussian:

c(x, 0) = c0e−a0x2
. (B.31)

Show that the concentration at a later time is also a Gaussian distribution. Write an
explicit solution for c(x, t). (You will need the results for Gaussian functions from the
next appendix.)

1 Notice that only the x variable is undergoing a Fourier transform to k, and the time variable t is left alone.
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A Gaussian function has the general form

g(x) = e−ax2
, (C.1)

for a > 0. This is the famous “bell curve” function, which is important in probability
theory.

The Gaussian has a finite integral:∫ +∞

−∞
e−ax2

dx =
√

π

a
. (C.2)

The fact that we can evaluate this integral is slightly surprising, since there is no elementary
antiderivative of e−ax2 . The definite integral is done using a famous and very clever trick.
We actually compute the square of the integral:(∫ +∞

−∞
e−ax2

dx
)2
=
(∫ +∞

−∞
e−ax2

dx
)(∫ +∞

−∞
e−ay2

dy
)

=
∫ +∞

−∞
dx
∫ +∞

−∞
dy e−a(x2+y2)

=
∫

R2
e−a(x2+y2) dA. (C.3)

This is the integral over the whole plane of the function e−a(x2+y2). But we can do this
integral in any coordinate system. If we choose polar coordinates (r, θ), then the integrand
is e−ar2 , which is radially symmetric. For the area element dA we choose thin circular rings,
which have an area dA = 2πr dr. Then the integral becomes

2π

∫ ∞

0
e−ar2

r dr = π

a

∫ ∞

0
e−u du

= π

a
. (C.4)

Equation C.2 follows.
A Gaussian probability density has the general form

P(x) =
√

a
π

e−a(x−b)2
. (C.5)

The constant ensures that the probability density is normalized.
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To determine more about the Gaussian probability density, it helps to have two further
integrals: ∫ +∞

−∞
x e−ax2 = 0, (C.6)∫ +∞

−∞
x2 e−ax2 = 1

2a

√
π

a
. (C.7)

From these we can evaluate 〈x〉 and
〈
x2〉 for the Gaussian P(x).

Exercise C.1 Show that for the Gaussian distribution in Eq. C.5, 〈x〉 = b and
〈
x2
〉
= 1

2a
+b2.

Let us denote the mean of x by μ and the variance of x by σ 2. Then it follows that b = μ

and a = (2σ 2)−1. We can therefore write the Gaussian probability distribution as

P(x) = 1√
2πσ 2

exp

(
− (x− μ)2

2σ 2

)
. (C.8)

Notice that a Gaussian distribution is completely determined by its mean μ and variance
σ 2. The form in Eq. C.8 is particularly useful, since these parameters appear explicitly.

Let g(x) = e−ax2 be a Gaussian function. Then the Fourier transform of g(x) is

g̃(k) = 1√
2a

e−k2/4a. (C.9)

Note that the Fourier transform of a Gaussian function is also a Gaussian function. If the
parameter a is increased, the width of the bell curve g(x) decreases – but the width of the
Gaussian g̃(k) increases by exactly the same factor. In general, a narrowly peaked function
g(x) has a spread-out transform g̃(k).

The Dirac delta function can be viewed as a limiting case of a normalized Gaussian, in
the limit as the curve becomes narrower and higher. That is, as a →∞,

δa(x) =
√

a
π

e−ax2 −→ δ(x). (C.10)

The Fourier transform of δa(x) is

δ̃a(k) = 1√
2π

e−k2/4a −→ 1√
2π

, (C.11)

which is the (constant) Fourier transform of the delta function.
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D.1 Completely positive maps

In Chapter 9 we described the dynamics of a system Q that interacted with an external
“environment” system E, which was initially in a standard state |0〉. This open system
evolution was described by the map E , so that the initial density operator ρ evolved by

ρ → E(ρ) = Tr(E)U
(
ρ ⊗ |0〉〈0|

)
U†, (D.1)

for a unitary operator U on the composite system QE. From this, we derived a second way
of expressing the map E , the Kraus or operator–sum representation:

E(ρ) =
∑

k
AkρA†

k , (Re 9.10)

where the Kraus operators Ak are normalized according to Eq. 9.12.
We then made the claim that any “physically reasonable” time evolution of density

operators could be expressed in this way. Our business here is to explain what we mean by
this, and to prove the theorem.

What do we mean by a “physically reasonable” map E? We begin by noting that E must
be linear in the input density operator.2

Exercise D.1 Use an ensemble argument to show this. (See the argument leading up to
Eq. 9.51.)

Since the map is linear, it is a superoperator, an element of B (B (H)).
The necessary properties of the evolution superoperator E are determined by the require-

ment that the output of E must be a valid density operator for any valid input state. This
leads us at once to two properties:

• E must be a positive map, in the sense that it maps positive operators to positive operators.
• E must be a trace-preserving map, so that Tr E(A) = Tr A for all operators A.

The first property is easy to prove because every positive operator is a scalar multiple of a
possible density operator. The second is not much harder.

2 Throughout, we are assuming that the later state of affairs depends on the initial system density operator ρ only,
and not on any more elaborate description of the system.
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Exercise D.2 Prove that a superoperator E is trace-preserving for all operators if and only
if it is trace-preserving for density operators. To do this, you will need to write an arbitrary
operator as a linear combination of density operators. See Exercise 3.40 and Problem 3.4
for ideas.

Exercise D.3 Suppose E is a linear map on operators, and we know that E( |ψ〉〈ψ | ) is a
positive, trace-1 operator for input pure states |ψ〉〈ψ | . Show that E must be a positive,
trace-preserving map – that is, show that E(ρ) must be a positive, trace-1 operator for any
input state ρ.

We might hope that we are finished, that any positive, trace-preserving map E is a
possible time evolution for an open quantum system. However, things are not so simple!
There are positive, trace-preserving maps that cannot correspond to the time evolution of a
quantum system.

We will show this by considering a qubit example. We saw in Section 8.4 that any
operator A on the qubit Hilbert space can be written in terms of basis operators 1, X, Y,
and Z:

A = 1
2

(a01+ aX X+ aY Y+ aZZ) . (D.2)

(In Eq. 8.37, we took advantage of the fact that a0 = Tr A = 1 for density operators.) Our
proposed map T acts on the basis operators as follows:

T (1) = 1, T (X) = X,
T (Y) = Y, T (Z) = −Z.

(D.3)

Thus, T maps an operator given by components (a0, aX , aY , aZ) to one given by components
(a0, aX , aY ,−aZ).

Exercise D.4 Use the geometry of the Bloch sphere to describe how T acts on qubit density
operators.

Exercise D.5 Show that T is a positive, trace-preserving map. (Hint: For positivity, first
show that an operator is positive if and only if 	a · 	a ≤ a0

2.)

Why does T not describe a possible evolution of the state of a qubit? The reason is that
our qubit is not necessarily alone in the Universe. Consider a second, independent qubit
whose state evolves according to the identity map I. If the first qubit evolved according to
T , then the composite system would evolve according to T ⊗ I, defined by its action on
product operators:

T ⊗ I (A⊗ B) = T (A) ⊗ B. (D.4)

Amazingly, even though both T and I are positive superoperators, the combination T ⊗ I
is not. There is an entangled input state of the two qubits which is mapped by T ⊗ I
to an operator that is not positive, and thus not a legitimate output density operator. The
following pair of exercises construct such an example.
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Exercise D.6 Show that

T ( |0〉〈0| ) = |1〉〈1| , T ( |1〉〈1| ) = |0〉〈0| ,
T ( |0〉〈1| ) = |0〉〈1| , T ( |1〉〈0| ) = |1〉〈0| . (D.5)

Exercise D.7 Calculate T ⊗ I( |�+〉〈�+| ). Show that this operator is not positive by
showing that

〈�−| T ⊗ I( |�+〉〈�+| ) |�−〉 < 0. (D.6)

Here |�±〉 are the Bell states from Eq. 7.13.

What does all this mean? If we wish to confine our attention to possible dynamical
evolutions of an open system, we will need to be more choosy. We need a stronger property
for E that will exclude non-physical cases like the T map. Luckily, the structure of our
example provides a clue to what this stronger property looks like.

The map E for a system is said to be completely positive if the map E ⊗ I is positive
whenever we include an independent quantum system in our consideration. This means
that, for any initial pure state |�〉 of the composite system, the operator E ⊗ I( |�〉〈�| )
is positive. We conclude that any map describing the evolution of the state of a quantum
system must be a linear, trace-preserving completely positive map. These are the “physically
reasonable” maps describing the generalized evolution of a quantum system.

Exercise D.8 For a qubit system, suppose that R(ρ) = |0〉〈0| for every input system ρ.
This map simply “resets” the state of the system to |0〉〈0| . Show that R is completely
positive.

Now we ask the question of whether every generalized evolution has to be regarded as a
physically reasonable time evolution of a quantum system. Our answer is contained in the
following important theorem:

Representation theorem for generalized dynamics. The following conditions are
equivalent for a map E :
(a) E is a linear, trace-preserving, completely positive map on Q-operators.
(b) E has a “unitary representation;” that is, we can introduce an environment system

E, an initial environment state |0〉 and a joint unitary evolution U on QE so that

E(G) = Tr(E)U
(
G⊗ |0〉〈0|

)
U†. (Re 9.2)

(c) E has a Kraus representation; that is, we can find operators Ak such that

E(ρ) =
∑

k
AkρA†

k . (Re 9.10)

The Kraus operators satisfy the normalization condition
∑

k
A†

kAk = 1 (Eq. 9.12).

Any generalized evolution map E that is linear, trace-preserving, and completely positive
can be “realized” by unitary dynamics on a larger system. We thus should regard any such
map as a “physically reasonable” time evolution for the system.
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The representation theorem is a fundamental and powerful result. Its proof, which is
somewhat technical, is presented in the next section.

D.2 The representation theorem

We now prove the representation theorem stated above. The structure of our proof is to
show that (a) implies (b), (b) implies (c), and (c) implies (a). Some of these implications
are quite easy to see. Our discussion of generalized evolution in Section 9.1 defined E via
its unitary representation, and then derived its Kraus representation. We have thus already
proven that (b) implies (c) in our theorem. Another implication is equally straightforward.

Exercise D.9 Show that any map described by a normalized Kraus representation is linear,
trace-preserving, and completely positive. Thus, (c) implies (a).

It only remains to prove that (a) implies (b). There are several systems to keep track of in that
proof, together with their various states and operators, so for the remainder of this section
we will be scrupulous to indicate the quantum system associated with each mathematical
object.

Let E (Q) be a linear, trace-preserving completely positive map for a quantum system Q,
which has a Hilbert space of finite dimension dimH(Q) = d. As in Section 7.5, we append
an identical quantum system R and consider the maximally entangled state∣∣�(RQ)

〉 = 1√
d

∑
k

∣∣k(R), k(Q)
〉
. (Re 7.28)

Any initial state |ψ (Q)〉 of Q could arise in the following way. The system RQ is initially in
the entangled state |�(RQ)〉, and then a measurement is performed on R. The resulting state
of Q, conditional on the particular measurement outcome for R, happens to be |ψ (Q)〉.

Let us do this a bit more mathematically. Given |ψ (Q)〉 =
∑

k
ck |k(Q)〉, we can construct

the R-state ∣∣∣ψ̃ (R)
〉
=
∑

k
c∗k
∣∣k(R)

〉
. (D.7)

The significance of this state is seen here:

Exercise D.10 With the definitions given, show that〈
ψ̃ (R)

∣∣�(RQ)
〉
= 1√

d
∣∣ψ (Q)

〉
. (D.8)

If
∣∣∣ψ̃ (R)

〉
corresponds to one outcome of a basic measurement on R, then the probability of

that outcome is 1/d and the conditional state of Q is |ψ (Q)〉.
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In terms of operators, we can let π
(R)
ψ =

∣∣∣ψ̃ (R)
〉〈

ψ̃ (R)
∣∣∣ and write∣∣ψ (Q)

〉〈
ψ (Q)

∣∣ = d Tr(R)

( ∣∣�(RQ)
〉〈
�(RQ)

∣∣π (R)
ψ

)
=M(R)

ψ

( ∣∣�(RQ)
〉〈
�(RQ)

∣∣ ) . (D.9)

The operation M(R)
ψ can be loosely translated, “Make the appropriate measurement on R

and obtain result ψ̃ .”3 This map takes the maximally entangled state |�(RQ)〉〈�(RQ)| to the
particular Q-state |ψ (Q)〉〈ψ (Q)| . As both a physical and mathematical fact, we can see that
M(R)

ψ only acts on R and therefore commutes with operations on Q and any other systems.
Note: To simplify our notation, we often omit the identity operator when the context

is clear. Thus, in Eq. D.9, we wrote π
(R)
ψ rather than π

(R)
ψ ⊗ 1(Q). We will do the same for

superoperators. The map D(A) acting on the state ρ (AB) is automatically taken to be D(A)⊗I (B),
where I (B) is the identity map for B.

For instance, suppose we wish to evolve the initial state |ψ (Q)〉〈ψ (Q)| by the map E (Q).
We can begin with |�(RQ)〉〈�(RQ)| , apply M(R)

ψ to obtain |ψ (Q)〉〈ψ (Q)| , and then act with E (Q).
But since M(R)

ψ and E (Q) commute, we could do things in the reverse order: act with E (Q) on
|�(RQ)〉〈�(RQ)| and then apply M(R)

ψ . Either way, we must wind up with E (Q)( |ψ (Q)〉〈ψ (Q)| ).
This can be represented diagrammatically:

|�(RQ)〉〈�(RQ)| M(R)
ψ−−−−→ |ψ (Q)〉〈ψ (Q)|

E (Q)

⏐⏐; E (Q)

⏐⏐;
ω(RQ)

M(R)
ψ−−−−→ E (Q)( |ψ (Q)〉〈ψ (Q)| ), (D.10)

where ω(RQ) = E (Q)
(
|�(RQ)〉〈�(RQ)|

)
. We have shown that

E (Q)(
∣∣ψ (Q)

〉〈
ψ (Q)

∣∣ ) =M(R)
ψ

(
E (Q)(

∣∣�(RQ)
〉〈
�(RQ)

∣∣ )) . (D.11)

This gives us a rather curious way of interpreting the diagram in Eq. D.10. We can
either select the initial Q-state |ψ (Q)〉〈ψ (Q)| (using M(R)

ψ ) and then evolve it (according to
E (Q)); or we can first evolve the system Q and then select the input Q-state |ψ (Q)〉〈ψ (Q)| .
To put it another way, applying the generalized evolution map E (Q) to the entangled state
|�(RQ)〉〈�(RQ)| of RQ is formally like applying it to every pure input Q-state at once. The
operator ω(RQ) somehow includes a complete description of how E (Q) acts on those inputs.

3 The reader may have some misgivings about the operation M(R)
ψ . After all, we cannot force the R-measurement

to yield the result ψ . Two points may provide some reassurance. (1) M(R)
ψ can be regarded as a purely

mathematical construction, defined by Eq. D.9, whose properties do not rely on our physical interpretation. (2)
If we insist on the physical interpretation, we have to think of M(R)

ψ as a chancy sort of operation – one which
may or may not work in a given instance, but which has the specified effect when it does.
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Operator ω(RQ) is a density operator for RQ. (This operator is positive and has unit trace
because the map E (Q) is completely positive and trace-preserving.) We can append a system
E and find a global pure state |�(RQE)〉 such that

ω(RQ) = Tr(E)

∣∣�(RQE)
〉〈
�(RQE)

∣∣ . (D.12)

Exercise D.11 Explain why the system E need have a Hilbert space dimension no larger
than d2 to do the job. Under what circumstances might it be smaller?

Since we obtain ω(RQ) from |�(RQ)〉〈�(RQ)| by E (Q), which acts only on Q, it follows that the
subsystem state of R is the same in each case. Appending E does not change this fact,

Tr(Q)

∣∣�(RQ)
〉〈
�(RQ)

∣∣ = Tr(QE)

∣∣�(RQE)
〉 = 1

d
1(R). (D.13)

Choose an E-state |0(E)〉 and consider the two pure state vectors |�(RQ)〉⊗ |0(E)〉 and |�(RQE)〉.
In the terminology of Exercise 8.16, both of these are “purifications” of the same R-state
in the system QE. Therefore (by the same exercise) they are related by a unitary operator
that acts only on QE: ∣∣�(RQE)

〉 = U(QE)
∣∣�(RQ)

〉⊗ ∣∣0(E)
〉
. (D.14)

This unitary transformation on vectors defines a map U (QE) on operators:

U (QE)(σ (QE)) = U(QE)σ (QE)U(QE)†. (D.15)

At this point it is worthwhile to remind ourselves that the RQE pure state |�(RQE)〉〈�(RQE)| ,
the E-state |0(E)〉〈0(E)| and the unitary mapU (QE) are constructed on the basis of the maximally
entangled state |�(RQ)〉〈�(RQ)| and not on any particular choice |ψ (Q)〉〈ψ (Q)| of input state
for Q. The “input selection” operation M(R)

ψ commutes with both U (QE) and the partial trace
operation Tr(E). We can therefore construct the following diagram:

|�(RQ)〉〈�(RQ)| ⊗ |0(E)〉〈0(E)| M(R)
ψ−−−−→

(Eq. D.9)
|ψ (Q)〉〈ψ (Q)| ⊗ |0(E)〉〈0(E)|

U (QE)

⏐⏐;(Eq. D.14) U (QE)

⏐⏐;(Eq. D.15)

|�(RQE)〉〈�(RQE)| U(QE)( |ψ (Q)〉〈ψ (Q)|
⊗ |0(E)〉〈0(E)| )U(QE)†

Tr(E)

⏐⏐;(Eq. D.12) Tr(E)

⏐⏐;
ω(RQ)

M(R)
ψ−−−−→

(Eq. D.11)
E (Q)( |ψ (Q)〉〈ψ (Q)| ). (D.16)

Equation D.16 is the “road map” of our argument. The whole diagram must lead to the
same lower right-hand result whichever way it is traversed. The various arrows are justified
by the referenced equations. This leaves one last arrow, which must also express a valid
relation. For any pure Q-state |ψ (Q)〉,
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E (Q)(
∣∣ψ (Q)

〉〈
ψ (Q)

∣∣ ) = Tr(E)U(QE)
( ∣∣ψ (Q)

〉〈
ψ (Q)

∣∣ ⊗ ∣∣0(E)
〉〈

0(E)
∣∣ )U(QE)†. (D.17)

Since this is true for all pure states, it must by linearity also hold for any mixture of pure
states. Thus, we have established the existence of a unitary representation for the map E (Q).

The representation theorem is thus proved.

D.3 Measurement and conditional dynamics

The projection rule of Section 4.3 tells us how the state of a quantum system is changed
in a measurement process, at least in some situations. An outcome x of the measurement
is associated with a projection operator �x. If the system starts out in the state |ψ〉, and if
a measurement is made yielding the outcome x, then the subsequent state of the system is
K�x |ψ〉, where the coefficient K is determined by normalization.

Unfortunately, the projection rule applies only to highly idealized measurement
processes. Now that we have developed the mathematical machinery of generalized
measurements and evolution maps, it is time to formulate a more universal rule.

Our measurement is a generalized one characterized by positive operators Eμ whose sum
is the identity 1. If the system is in the state ρ, the probability that the outcome μ appears
is P(μ) = Tr ρEμ. When the measurement yields μ, the system ends up in a state that
we denote ρμ. Our goal is to find the rule by which this state ρμ arises from ρ and the
measurement.

If we average the final state over all measurement outcomes, then the resulting map is a
generalized evolution:

ρ → E(ρ) =
∑
μ

P(μ)ρμ. (D.18)

We can call this the unconditional evolution of the state in the measurement process, since
it describes a situation in which the measurement is made, but its result is not specified. For
the individual measurement outcomes, we break the unconditional E into a set of partial
maps:

E =
∑
μ

Eμ, (D.19)

where Eμ(ρ) = P(μ)ρμ. The partial maps, of course, are not trace-preserving, since
Tr Eμ(ρ) = P(μ) rather than 1. However, the maps make up for this deficiency by being
both linear and completely positive.

Exercise D.12 By an ensemble argument, show that Eμ is linear. Also explain, by means
of a plausible counter-example, why the map ρ → ρμ (without the P(μ) factor) might not
be linear in ρ.

Exercise D.13 By considering a measurement made on one subsystem of a composite
system, show that Eμ must be completely positive.
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Since each Eμ is linear and completely positive, it has an operator–sum representation:

Eμ(ρ) =
∑

k
AkμρA†

kμ, (D.20)

(see Problem D.3).
What are these Kraus operators Akμ? If we sum over both k and μ, then we get the

unconditional evolution map:

E(ρ) =
∑
kμ

AkμρA†
kμ, (D.21)

with
∑
kμ

A†
kμAkμ = 1. The probability of the measurement outcome μ is

P(μ) = Tr Eμ(ρ) = Tr ρ

(∑
k

A†
kμAkμ

)
. (D.22)

Since this is true for all input states ρ, we can conclude that the outcome operator Eμ is
related to the Akμ operators via

Eμ =
∑

k
A†

kμAkμ. (D.23)

Equation D.20 gives us the conditional evolution of the quantum state in the measurement
process, while Eq. D.23 relates the generalized measurement (the Eμ operators) to that
evolution.

Sometimes things are a bit simpler. We say that a measurement process is ideal if the
operator sum in Eq. D.20 has only one term for each outcome μ. Then

Eμ(ρ) = AμρA†
μ, (D.24)

where Eμ = A†
μAμ. As suggested in Problem D.4, we can regard any measurement process

as an ideal measurement process in which the outcome is incompletely recorded. An ideal
measurement is called minimally disturbing if Aμ = E1/2

μ for all μ.

Exercise D.14 Show that the projection rule holds for minimally disturbing (and thus ideal)
projection measurements, and only for those.

(See also Problem D.5.)
For a specific example, let us once again recall the discussion of the projection rule

in Section 4.3. There, we considered a two-beam interferometer which had either one
or zero photons in it. The Hilbert space for the system had basis states |0〉 (no photon),
|u〉 (one photon in the upper beam), and |l〉 (one photon in the lower beam). We make
a measurement by putting an absorbing photodetector in the lower beam and registering
whether the detector “clicks” either once or not at all. (This is the situation described in
Exercise 4.10.) A detector “click” registers that a photon was in the lower beam, but it also
destroys the photon, leaving the system in the final state |0〉.
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Exercise D.15 Show that the measurement process described is an ideal one with Kraus
operators

A0 = |0〉〈0| + |u〉〈u| , A1 = |0〉〈l| . (D.25)

What are the corresponding measurement outcome operators E0 and E1? Verify that these
add up to 1.

Problems

Problem D.1 Consider a generalized evolution map on a qubit system as a transformation
of the Bloch sphere of qubit states.

(a) Suppose the linear map F leaves both |0〉〈0| and |1〉〈1| unaffected, but that
F( |0〉〈1| ) = F( |1〉〈0| ) = 0. Describe how F acts on the Bloch sphere and show
that it is trace-preserving and completely positive.

(b) Suppose the linear map G leaves both |0〉〈1| and |1〉〈0| unaffected, but that
G( |0〉〈0| ) = G( |1〉〈1| ) = 1

2 1. Describe how G acts on the Bloch sphere and show that
it is trace-preserving but not completely positive.

Problem D.2 Suppose E is a generalized evolution map for a quantum system whose
Hilbert space has dimH = d. Show that there is an operator–sum representation for E that
has no more than d2 operators Aμ (see Exercise D.11).

Problem D.3 Review the arguments of Section D.2. Adapt them to prove that a linear and
completely positive map has an operator–sum representation of the form in Eq. 9.10. If the
map is not trace-preserving, however, the representation need not be normalized, so that
Equation 9.12 need not hold.

Problem D.4

(a) Suppose we make a generalized measurement described by the outcome operators Ekμ.
The outcome of the measurement is designated by the compound index kμ. However,
only part of this outcome is recorded, so that we find out the value of μ but not of k.
Show that this procedure can be effectively described by outcome operators

Eμ =
∑

k
Ekμ. (D.26)

(b) The conditional evolution map for a measurement process is given in Eq. D.20. Show
that we can view this as the result of an ideal measurement followed by a partial
recording of the result, as in part (a).

Problem D.5

(a) First, prove the polar decomposition theorem for operators. This states that any operator
A can be written A = UP, where U is unitary and P is positive. (This is analogous to the
polar decomposition of complex numbers: z = eiφr, where φ and r are real and r ≥ 0.)
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The operator P is given by

P =
(
A† A

)1/2
. (D.27)

For a positive operator G, G1/2 is the unique positive operator whose square is G. We
know that A† A is positive, a fact first proven in Exercise 3.39.

(b) Show that any ideal measurement operation can be viewed as a minimally disturbing
measurement operation followed by conditional unitary evolution. (That is, if the
outcome μ arises in the minimally disturbing measurement, then the unitary operator
Uμ is applied to the conditional state ρμ.)
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