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1. Coordenadas curvilíneas ortogonales
Estas son las expresiones para los operadores diferenciales en coordenadas curvilíneas ortogonales:
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Como vemos, son en realidad sencillas de memorizar debido a la simetría de las expresiones. Veamos cómo
interpretarlas y cómo usarlas.

Por un lado, tenemos las coordenadas cartesianas habituales, que denominaremos x, y y z. Y supongamos
que tenemos un sistema de coordenadas curvilíneas ortogonales con componentes dadas por:

ξ1 = ξ1 (x, y, z) (5)

ξ2 = ξ2 (x, y, z) (6)

ξ3 = ξ3 (x, y, z) (7)

Supongamos que tenemos la superficie dada, por ejemplo, por la expresión

ξ3(x, y, z) = constante.

En ese caso, si dx, dy y dz son las componentes de un desplazamiento sobre esa superficie, debe valer

dξ3 = ∂ξ3

∂x
dx + ∂ξ3

∂y
dy + ∂ξ3

∂z
dz = 0,

es decir que el gradiente de ξ3(x, y, z) debe ser perpendicular a la superficie. La norma de este vector es
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por lo cuál el versor normal a dicha superficie puede definirse como

ê3 = h3∇⃗ξ3.

Es posible extender fácilmente estas mismas definiciones a las otras componentes del sistema de coordenadas
curvilíneas que tenemos. Complementariamente, podemos definir los factores de escala h1, h2 y h3 como:
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2. Consideremos, por ejemplo, coordenadas esféricas
En esféricas, tenemos

x = r sin θ cos ϕ (11)

y = r sin θ sin ϕ (12)

z = r cos θ (13)

con 0 ≤ θ ≤ π, y 0 ≤ ϕ ≤ 2π. En este caso, serían ξ1(x, y, z) = r(x, y, z), ξ2(x, y, z) = θ(x, y, z), y
ξ3(x, y, z) = ϕ(x, y, z).

Calculemos los factores de escala h1, h2 y h3. Tenemos:
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Para h2, se obtiene
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∣∣∣∣ = |(r cos θ cos ϕ) x̂ + (r cos θ sin ϕ) ŷ + (−r sin θ) x̂| = r,

y el tercer factor de escala resulta
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Usando estos tres factores de forma en las 4 primeras expresiones generales es posible obtener la determinación
de cualquier operador diferencial en coordenadas esféricas.
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3. Sí, es útil pero . . . cómo se derivaron esas expresiones?
Comentemos brevemente cómo se derivan las expresiones generales para los operadores en coordenadas
curvilíneas ortogonales. Para eso, comencemos por considerar cómo se escriben las componentes de un vector
cualquiera en dichas coordenadas.

Consideremos el vector A⃗, cuyas componentes en un sistema cartesiano ortogonal se escriben en términos
de los versores x̂, ŷ y ẑ. Ese mismo vector, escrito en coordenadas curvilíneas ortogonales tendrá distintas
componentes, y estará escrito en término de los versores ê1, ê2 y ê3. Deberá valer

A⃗ = a1 x̂ + a2 ŷ + a3 ẑ = a′
1 ê1 + a′

2 ê2 + a′
3 ê3.

Si ahora usamos las expresiones con las que contamos para escribir los versores curvilíneos en términos de los
versores cartesianos, tenemos

a1 = a′
1h1∂xξ1 + a′

2h2∂xξ2 + a′
3h3∂xξ3, (14)

a2 = a′
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3h3∂yξ3, (15)

a3 = a′
1h1∂zξ1 + a′

2h2∂zξ2 + a′
3h3∂zξ3. (16)

Este es un sistema lineal de 3 × 3 cuya inversión permite calcular las a′
i (desconocidas) en función de las ai.

Notemos que invertir el problema no es tan complejo como puede parecer. En principio, observamos que la
derivada de una cualquiera de las funciones ξi respecto de cualquier otra, digamos, ξj , debe ser nula excepto
cuando i = j, es decir
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3.1. Forma general del gradiente en coordenadas curvilíneas
Según sabemos, en coordenadas cartesianas tenemos

∇ϕ = ∂xϕ x̂ + ∂yϕ ŷ + ∂zϕ ẑ.

Aplicando las reglas de derivación usuales, resulta
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Luego podemos escribir el gradiente como
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Ahora teniendo en cuenta las definiciones de los gradientes de ξi, podemos reescribir
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que constituye la expresion del gradiente en el sistema de coordenadas curvilíneas ortogonales de componentes
ξ1, ξ2 y ξ3 y cuyos versores fundamentales son ê1, ê2 y ê3.

De manera análoga, aunque con un poco más de esfuerzo, pueden calcularse los demás operadores diferenciales
fundamentales, tales como la divergencia, el rotor y el laplaciano. Esto último sólo en el caso en que se
necesite demostrar las primeras 4 expresiones generales de este apunte. Para casos prácticos en los que sólo
queremos poder escribir un operador dado en un sistema de coordenadas curvilíneas ortogonal usual, basta
con recordar esas 4 expresiones (que tienen alta simetría) y tener en mente también los factores de escala de
cada sistema de coordenadas. Aquí debajo dejamos un cuadro con los más usados en el curso.

h1 h2 h3

Cartesianas (x, y, z) 1 1 1

Cilíndricas (r, θ, z) 1 r 1

Esféricas (r, θ, ϕ) 1 r r sin θ

Cuadro 1: Factores de escala h1, h2, h3 en coordenadas ortogonales

Recordemos, por completitud, las definiciones de estas magnitudes en cilíndricas y esféricas.

En coordenadas cilíndricas (r, θ, z), θ es el ángulo azimutal, que se mide en el plano xy desde el eje x positivo
en sentido antihorario. Su rango típico es 0 ≤ θ < 2π.

En coordenadas esféricas (r, θ, ϕ), θ es el ángulo polar o colatitud. Se mide desde el eje z positivo hacia abajo,
y su rango típico es 0 ≤ θ ≤ π. Notar que ϕ (y no θ) es el ángulo azimutal en esféricas, equivalente al θ de
cilíndricas.
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