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Gúıa 4: Modelo de enlaces fuertes

1. Derivación del modelo enlaces fuertes (TB, tight-binding).

Considere un cristal periódico descripto por

Ĥψ(r) =
[
ĤA +∆U(r)

]
ψ(r) = E ψ(r),

donde ĤA es un Hamiltoniano local de referencia y ∆U(r) es un potencial periódico.

Sea {|n,R⟩} una base de orbitales localizados centrados en los sitios R de la red de Bravais, con

n = 1, . . . , Norb. En la aproximación de enlaces fuertes, este subespacio describe bien las bandas

de interés. Suponga ortonormalidad:

⟨n,R|m,R′⟩ = δnm δRR′ .

a) Expansión LCAO. Aproxime un autoestado del cristal como

|ψ⟩ =
∑
n,R

cnR |n,R⟩ .

Inserte esta expansión en Ĥ |ψ⟩ = E |ψ⟩ y proyecte con ⟨n,R| para mostrar que los coefi-

cientes satisfacen un sistema lineal homogéneo:∑
m,R′

Hnm(R,R
′) cmR′ = E cnR, Hnm(R,R

′) ≡ ⟨n,R|Ĥ|m,R′⟩ .

b) Invariancia traslacional. Usando que el cristal es periódico, muestre que

Hnm(R,R
′) = Hnm(0,R

′ −R) ≡ hnm(R
′ −R).

c) Enerǵıas de sitio (onsite) y salto (hoppings). Defina

εn ≡ ⟨n,R|Ĥ|n,R⟩ , γnm(R) ≡ − ⟨n,0|Ĥ|m,R⟩ (R ̸= 0),

y deduzca

⟨n,R|Ĥ|m,R′⟩ = εn δnm δRR′ − γnm(R
′ −R).

d) Transformada de Fourier en la red (Wannier–Bloch). Defina los estados de Bloch

construidos a partir de la base localizada:

|n,k⟩ = 1√
N

∑
R

eik·R |n,R⟩ , k en la 1ZB.

Muestre que la transformación inversa puede escribirse como

|n,R⟩ = 1√
N

∑
k

e−ik·R |n,k⟩ .
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Interprete |n,R⟩ como una función de Wannier (estado localizado) y |n,k⟩ como el estado

de Bloch correspondiente (estado extendido).

e) Hamiltoniano en espacio rećıproco. Calcule

Hnm(k) ≡ ⟨n,k|Ĥ|m,k⟩

y muestre que

Hnm(k) = εn δnm −
∑

R∈RD

eik·R γnm(R),

donde RD es el conjunto de desplazamientos retenidos. La aproximación de enlaces fuertes

práctica consiste en truncar RD a unos pocos vecinos (por ejemplo, primeros o segundos

vecinos), asumiendo que γnm(R) decae rápidamente con |R|.

f ) (Opcional) Hermiticidad. A partir de Ĥ = Ĥ†, pruebe que

γmn(−R) = γ∗nm(R),

y concluya que H(k) es hermı́tico para todo k.

2. Modelo TB sin base (1NN – 1D/2D/3D).

Considere el modelo de enlaces fuertes (TB) en redes monoatómicas con un orbital s por sitio,

enerǵıa de sitio ε y salto t sólo a primeros vecinos. Estudie:

a) cadena lineal (1D),

b) red cuadrada (2D),

c) cúbica simple (3D).

Para cada caso:

a) Halle la dispersión E(k) y graf́ıquela a lo largo de los puntos de alta simetŕıa (Γ, X, M , R,

según corresponda). A T = 0, ubique EF para 1 electrón por orbital.

b) A partir de la dispersión, dibuje cualitativamente g(E) sobre el mismo eje de enerǵıa, indi-

cando los bordes de banda y el tipo de singularidades de van Hove.

3. Modelo TB sin base (1NN+2NN – 3D).

Considere una red cúbica simple (SC) de parámetro a con un orbital s por sitio, enerǵıa de sitio

ε, salto t a primeros vecinos (distancia a) y salto t′ a segundos vecinos (distancia
√
2a).

a) Halle la dispersión E(k) en la aproximación 1NN+2NN.

b) Grafique E(k) a lo largo del recorrido Γ → X →M → R → Γ, con

Γ = (0, 0, 0), X =
(π
a
, 0, 0

)
, M =

(π
a
,
π

a
, 0
)
, R =

(π
a
,
π

a
,
π

a

)
.

c) A partir de la dispersión, dibuje cualitativamente g(E) sobre el mismo eje de enerǵıa, indi-

cando los bordes de banda y cómo se modifican las enerǵıas asociadas a singularidades de

2



van Hove al variar t′.

d) A T = 0, ubique EF para 1 electrón por orbital. Discuta qué cambia respecto del caso t′ = 0.

4. Modelo TB con base (1NN – 1D).

Considere modelos TB en 1D con una base (más de un sitio/orbital por celda). En cada caso,

halle la relación de dispersión En(k) (todas las bandas), ubique el nivel de Fermi EF a T = 0 para

distintas ocupaciones y dibuje cualitativamente la densidad de estados g(E), indicando bordes de

banda y singularidades de van Hove.

a) Cadena dimerizada (dos sitios por celda). Cadena 1D con dos átomos A y B por celda

y saltos alternados t y t′ entre primeros vecinos.

b) Red tipo escalera (dos cadenas acopladas). Dos cadenas 1D acopladas: salto t∥ a lo

largo de cada pierna y salto t⊥ entre piernas (peldaños). Suponga un orbital por sitio.

c) Cadena con dos orbitales por sitio (s y px). Cadena 1D con dos orbitales por sitio, s y

px, con enerǵıas εs y εp. Los saltos a primeros vecinos son −ts (entre s–s), +tp (entre px–px)
y tsp (hibridación s–px).

Para cada modelo, discuta el efecto de igualar o anular saltos (por ejemplo t = t′, t⊥ = 0, tsp = 0):

¿se abren o cierran gaps?, ¿cómo cambia g(E)? y ¿cuándo espera un comportamiento metálico o

aislante a T = 0?

5. Modelo TB con base (1NN+2NN – 2D).

Un material está formado por una capa bidimensional de átomos idénticos que forman una red

cuadrada de parámetro a en el plano xy. En cada sitio hay dos orbitales, px y py, con la misma

enerǵıa de sitio ε. Considere un modelo TB con acoplamientos hasta segundos vecinos:

Primeros vecinos (1NN) a distancia a. Por simetŕıa, sólo hay acoplamiento entre orbitales

del mismo tipo. Los parámetros de salto se definen como

txx(±ax̂) = t, tyy(±ax̂) = −t′, txy(±ax̂) = 0,

tyy(±aŷ) = t, txx(±aŷ) = −t′, txy(±aŷ) = 0.

Segundos vecinos (2NN) a distancia
√
2a. Sólo hay acoplamiento entre orbitales distintos:

txy(a, a) = −t′′, txy(−a,−a) = −t′′, txy(a,−a) = +t′′, txy(−a, a) = +t′′,

mientras que txx(2NN) = tyy(2NN) = 0. Suponga hermiticidad: tyx(R) = txy(R).

a) Escriba el Hamiltoniano H(k) en la base {px, py} y halle las bandas E±(k).

b) Grafique E±(k) a lo largo del recorrido Γ → X → M → Γ, con Γ = (0, 0), X = (π/a, 0),

M = (π/a, π/a).

c) Dibuje cualitativamente la densidad de estados total g(E) e identifique las enerǵıas asociadas

a singularidades de van Hove.
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