
Estructura de la Materia 2 - Verano de 2026

Gúıa 5: Dinámica de redes

1. (Opcional) Formalismo de matriz dinámica.

Considere un cristal periódico de Bravais con una base de p átomos por celda. Sea R un vector

de Bravais que etiqueta celdas unitarias, y sea s = 1, . . . , p el ı́ndice de átomo dentro de la base.

Denote por uRsi(t) el desplazamiento pequeño del átomo s en la celda R en la dirección cartesiana

i ∈ {x, y, z}. La masa del átomo s es ms.

a) Aproximación armónica. Suponga que la enerǵıa potencial U del cristal puede expandirse

alrededor del equilibrio como

U = U0 +
1

2

∑
Rsi

∑
R′tj

uRsi Φsi, tj(R,R′)uR′tj,

donde

Φsi, tj(R,R′) ≡ ∂2U

∂uRsi ∂uR′tj

∣∣∣∣
eq

son las constantes de fuerza (Hessiano del potencial).

1) Explique por qué, si el cristal es periódico e invariante por traslaciones, se cumple

Φsi, tj(R,R′) = Φsi, tj(R−R′),

es decir, la constante de fuerza depende sólo de la diferencia de celdas.

2) (Regla de suma acústica) Justifique que la invariancia por traslación ŕıgida del cristal

implica ∑
R′,t

Φsi, tj(R−R′) = 0 para todo (s, i, j).

b) Ecuaciones de movimiento. Usando que la fuerza es FRsi = −∂U/∂uRsi, muestre que las

ecuaciones de movimiento en la aproximación armónica son

ms üRsi(t) = −
∑
R′tj

Φsi, tj(R−R′)uR′tj(t).

c) Ansatz de Bloch para modos normales. Busque soluciones de la forma

uRsi(t) =
1

√
ms

ei(k·R−ωt) esi(k),

donde esi(k) es el vector de polarización.

1) Sustituya el ansatz en las ecuaciones de movimiento y muestre que el factor eik·R se

factoriza, reduciendo el problema a un sistema de tamaño 3r.
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2) Defina la matriz dinámica D(k) como el objeto que satisface∑
tj

Dsi, tj(k) etj(k) = ω2(k) esi(k),

y pruebe que sus elementos pueden escribirse como

Dsi, tj(k) =
1

√
msmt

∑
R

Φsi, tj(R) eik·R.

3) Use la regla de suma acústica para deducir que en k = 0 existen tres (en 3D) modos

traslacionales con ω(0) = 0.

d) Potencial armónico central (resortes).

Considere que el átomo de referencia (0, s) y otro átomo (R, t) se pueden modelar mediante

un enlace armónico central (resorte) con constante Cst(R), tal que

Ust(R) =
Cst(R)

2

[
δ̂st(R) ·

(
uRt−u0s

)]2
, δst(R) ≡ (R+τ t)−τ s, δ̂st(R) ≡ δst(R)

|δst(R)|
,

donde δst(R) es el vector de enlace en equilibrio.

Verifique que, para (R, t) ̸= (0, s), las constantes de fuerza pueden escribirse como

Φsi, tj(R) = −Cst(R) δ̂st,i(R) δ̂st,j(R) = −Cst(R)
[
δ̂st(R)δ̂Tst(R)

]
ij
.

2. Cálculo de matrices dinámicas (potencial armónico central).

Considere los siguientes sistemas armónicos. Por defecto, el parámetro de red es a, la masa es m

y la constante de fuerza es C, salvo que se indique lo contrario:

a) Cadena monoatómica (1D, 1NN).

b) Cadena diatómica (1D, 1NN). Masas alternadas m1 y m2.

c) Cadena monoatómica con constantes alternadas (1D, 1NN). Constantes alternadas

C y C ′ (vecinos a distancia a/2).

d) Red rectangular monoatómica (2D, 1NN+2NN). Parámetros a y b; constantes C1

(1NN) y C2 (2NN).

e) Red cúbica simple monoatómica (3D, 1NN).

f ) Red tipo escalera (quasi-1D). Dos cadenas acopladas con constantes C∥ (a lo largo) y

C⊥ (entre cadenas).

En cada caso:

a) Identifique la dimensionalidad espacial d y el número de átomos por celda p.

b) Prediga cuántas ramas fonónicas se esperan (acústicas y ópticas) y justifique el conteo.
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c) Construya la matriz dinámica D(k) mediante el formalismo general y obtenga la relación de

dispersión ωn(k).

d) Analice ĺımites o reǵımenes de interés (por ejemplo m1 ≫ m2, C⊥ → 0, C ′ → C) e interprete

los modos normales en dichos casos.

e) (Opcional) Grafique ωn(k) a lo largo de un recorrido de alta simetŕıa en la 1ZB y discuta

cualitativamente g(ω).

Sugerencia. Para cada modelo, una estrategia sistemática es:

a) Fijar una celda unitaria conveniente (definir p y τ s).

b) Listar los enlaces (0, s) ↔ (R, t) y sus constantes.

c) Escribir Φsi,tj(R) para cada enlace (y luego Φsi,sj(0) por regla de suma acústica).

d) Calcular Dsi,tj(k) =
1√

msmt

∑
R Φsi,tj(R)eik·R.

e) Diagonalizar D(k) para obtener ω2
n(k) y polarizaciones.

Comentario. La matriz dinámica D(k) es de dimensión dp× dp, donde d es la dimensionalidad

espacial y p el número de átomos por celda. Sus dp autovalores ω2
n(k) generan dp ramas fonónicas:

en general hay d ramas acústicas (ω → 0 cuando k → 0) y d(p− 1) ramas ópticas.

Recordatorio. La densidad de estados fonónicos por unidad de volumen presenta singularidades

de Van Hove cerca de frecuencias donde la velocidad de grupo ∇kωn se hace pequeña (bandas

planas, extremos, puntos silla).

3. Modelos de Debye, Einstein y Debye–Einstein.

Consideraremos dos modelos simples para aproximar la densidad de estados fonónicos: un espectro

acústico continuo tipo Debye, un conjunto de modos ópticos degenerados tipo Einstein, y luego

su combinación (Debye–Einstein).

La densidad de estados fonónicos por unidad de volumen puede escribirse como

g(ω) ≡ G(ω)

V
=

∑
n

∫
1ZB

ddk

(2π)d
δ
(
ω − ωn(k)

)
.

El calor espećıfico volumétrico puede escribirse como

cV (T ) ≡
CV (T )

V
=

∫ ∞

0

dω g(ω) kB

(
ℏω
kBT

)2
eℏω/kBT

(eℏω/kBT − 1)
2 .

a) Modelo de Debye.

Suponga dispersión acústica lineal e isotrópica ω = vk y reemplace la 1ZB por una esfera

k < kD, con ωD ≡ v kD.

1) Calcule expĺıcitamente la densidad de estados fonónicos por unidad de volumen gD(ω).

Utilice coordenadas esféricas (d3k = 4πk2dk) y la identidad

δ(ω − vk) =
1

v
δ
(
k − ω

v

)
.
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2) Determine la frecuencia de corte ωD imponiendo la normalización de modos acústicos:∫ ωD

0

gD(ω) dω = 3n, n ≡ N

V
.

3) Inserte gD(ω) en la expresión de cV (T ) y use el cambio x = ℏω/(kBT ) para llegar a una

integral adimensional con ĺımite superior TD/T , donde TD es la temperatura de Debye

TD =
ℏωD

kB
.

4) Estudie los ĺımites T ≪ TD y T ≫ TD, mostrando que cV (T ) ∝ T 3 a bajas temperaturas

y que cV (T ) → 3nkB (Dulong–Petit) a altas temperaturas.

b) Modelo de Einstein.

Suponga que todos los modos vibran a una misma frecuencia ωE.

1) Proponga una densidad de estados gE(ω) (por unidad de volumen) y verifique que∫ ∞

0

gE(ω) dω = 3n.

2) Evalúe cV (T ) usando la delta de Dirac e indique los ĺımites T ≪ TE y T ≫ TE, donde

TE es la temperatura de Einstein

TE =
ℏωE

kB
.

c) Modelo de Debye–Einstein (combinado).

Modele 3N modos acústicos tipo Debye y 3(p− 1)N ópticos tipo Einstein con ωE ≫ ωD:

g(ω) = gD(ω) + 3(p− 1)n δ(ω − ωE).

Verifique que la normalización total es 3pn, escriba cV (T ) = c
(D)
V (T ) + c

(E)
V (T ) y discuta:

1) el ĺımite T → 0,

2) la activación óptica cerca de T ∼ TE,

3) el ĺımite clásico T → ∞, cV → 3pnkB.

d) (Opcional). Ejercite el procedimiento análogo para los casos 1D y 2D.
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