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Gúıa 6: Dinámica semiclásica de electrones

1. Corriente nula en una banda llena.

En la aproximación semiclásica (banda única, sin transiciones inter-banda), la corriente asociada

a una banda n se escribe como

jn = −e

∫
1ZB

d3k

(2π)3
fn(k)vn(k), vn(k) =

1

ℏ
∇kεn(k),

donde fn(k) es la ocupación y 1ZB es una celda primitiva de la red rećıproca.

Demuestre que si la banda está completamente llena, fn(k) = 1 en toda la 1ZB, y εn(k) es

periódica en la red rećıproca
(
εn(k+K) = εn(k)

)
, entonces la corriente es nula:

jn = − e

ℏ

∫
1ZB

d3k

(2π)3
∇kεn(k) = 0.

Para ello, se sugiere probar el siguiente lema de periodicidad: si f(r) es una función periódica en

una red de Bravais, f(r+R) = f(r), y C es una celda primitiva, entonces∫
C

dr∇f(r) = 0,

∫
C

dr∇2f(r) = 0.

Sugerencia: aplicar el teorema de Gauss y usar que en caras opuestas f toma el mismo valor

por periodicidad, mientras que la normal cambia de signo. El mismo resultado vale en el espacio

rećıproco tomando C = 1ZB.

2. Dinámica semiclásica con campo eléctrico.

En la aproximación semiclásica, el electrón se describe como un paquete de ondas de Bloch. La

dinámica del centro del paquete para una banda n está gobernada por

ṙ = vn(k) =
1

ℏ
∇kεn(k), ℏk̇ = F = −e

(
E+ ṙ×B

)
.

Recuerde que el vector ℏk es el momento cristalino (cuasi-momento) y no coincide, en general,

con el momento mecánico del electrón. Note que vn(k) ̸= ℏk/m (salvo en electrón libre).

En el régimen parabólico local, la aceleración puede escribirse en términos de la inversa del tensor

de masa efectiva:

r̈i =
∑
j

[
M−1

n (k)
]
ij
Fj,

[
M−1

n (k)
]
ij
=

1

ℏ2
∂2εn(k)

∂ki ∂kj
.

Considere la dispersión tight-binding de una red cuadrada:

ϵ(k) = ϵ0 − 2 t0 [cos(kxa) + cos(kya)] ,

bajo la acción exclusiva de un campo eléctrico y sin campo magnético.
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a) Calcule la velocidad de grupo y descŕıbala sobre la recta ky = 0.

b) Si no hay campos externos, determine r(t) para un electrón con k = k0.

c) Con E = (0, Ey), obtenga k(t) y describa la trayectoria en espacio real.

d) Calcule el tensor de masa efectiva y la aceleración del electrón para el mismo campo eléctrico.

Discuta si, en general, la aceleración es paralela al campo.

3. Condición para observar oscilaciones de Bloch.

En un cristal sometido a un campo eléctrico uniforme E, el peŕıodo de la oscilación de Bloch es

TB =
2π

ωB

, ωB =
eEa

ℏ
,

donde a es el parámetro de red caracteŕıstico en la dirección del campo. Para que las oscilaciones

sean observables, se requiere t́ıpicamente que el electrón complete al menos una oscilación antes

de relajarse, es decir, TB ≲ τ, donde τ es el tiempo de relajación.

Calcule el valor mı́nimo del campo E para observar oscilaciones de Bloch en los siguientes casos:

a) Cobre. El tiempo de relajación es τ ≃ 20×10−14 s y el orden del parámetro de red a ≃ 3,6 Å.

b) GaAs. A bajas temperaturas, el GaAs alcanza τ ≃ 3× 10−10 s y se pueden construir estruc-

turas artificiales con celdad unidad del orden de a ≃ 100 Å.

4. Dinámica semiclásica con campo magnético.

Considere electrones en un cristal bidimensional cuya relación de dispersión es anisótropa:

ε(k) = ε0 − 2tx cos(kxa)− 2ty cos(kya), (tx ̸= ty).

En la Fig. 1 se muestran curvas de enerǵıa constante en la primera zona de Brillouin.

Considere que el sistema solo está sometido a un campo magnético perpendicular, homogéneo y

estacionario; de modo que las ecuaciones semiclásicas quedan

ṙ =
1

ℏ
∇kε(k), ℏk̇ = −e ṙ×H, H = H ẑ.
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Figura 1: Curvas de nivel ε(k) =cte en la 1ZB para una dispersión anisótropa.
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Estudie el movimiento del electrón de la siguiente forma:

a) Movimiento en el espacio k.

Pruebe que ε(k(t)) se conserva y concluya que la trayectoria en k queda confinada sobre

una curva de nivel. Indique qué elecciones de k(0) llevan a órbitas cerradas y a órbitas

abiertas en k, y determine el sentido de recorrido para H > 0.

Aclaración: no es necesario usar la forma expĺıcita de ε(k); alcanza con la geometŕıa de

las curvas de nivel de la Fig. 1 y las ecuaciones semiclásicas.

b) Movimiento en el espacio real.

A partir de las ecuaciones semiclásicas, demuestre que

H× (ℏk̇) = −eH2 ṙ, r(t)− r(0) =
ℏ
eH

ẑ ×
[
k(t)− k(0)

]
.

Use esta relación para describir la trayectoria en espacio real correspondiente a una órbita

cerrada en k y a una órbita abierta en k.

5. Frecuencia del ciclotrón.

Si un campo magnético se aplica en la dirección ẑ, la masa efectiva de ciclotrón se define como:

m⋆ =

(
det (M)

ẑ ·M · ẑ

)1/2

=

(
det (M)

Mzz

)1/2

,

donde M es el tensor de masa efectiva y Mij sus componentes.

a) Calcule la frecuencia de ciclotrón para los electrones en la superficie de Fermi en una banda

casi vaćıa

ε(k) = − (E1 cos kxa+ E2 cos kyb+ E3 cos kzc) .

b) Muestre que el resultado obtenido en a) es igual a la frecuencia de ciclotrón de electrones

libres de masa m⋆.

6. (Opcional) Oscilaciones cuánticas en un material cuasi-2D

Un campo magnético uniforme es aplicado perpendicularmente a las capas conductoras de un

material cuasi-bidimensional. La estructura cristalina de las capas es tetragonal con parámetro de

red a = 3,5 Å. La banda de enerǵıa electrónica de las capas puede describirse correctamente con

un modelo de enlaces fuertes y no hay dispersión en la otra dirección.

La resistencia y otras propiedades exhiben oscilaciones cuando la intensidad del campo vaŕıa. La

oscilación es periódica en 1/H y el peŕıodo es 6,1× 10−8 G−1. ¿Cuál es la densidad de electrones

de conducción (en unidades de cm−2) para este material?
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