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Estructura de la materia 3 
Serie 1 – Sistemas de partículas indistinguibles 

Cátedra: Diego R. Alcoba 
Verano 2026 

 
 
1. Sea una base no ortogonal  i  del espacio de estados de un sistema físico y 

ijji S , el elemento ij de la matriz de “overlap” S  entre dichos estados. 

1.1. Proponga formas de obtener una base ortonormal que genere el mismo espacio 
vectorial que la original. 

1.2. Verifique que la ortogonalización simétrica  
i

iijj  )(' 2/1S  es una 

posibilidad para contestar 1.1. 
1.3. Construya el proyector ortogonal P sobre el subespacio generado por un 

subconjunto  Ni  ,....,  de funciones de la base. ¿Qué condiciones debe 

satisfacer? 
1.4. Verifique que  10 P . 

 
2. Dado un operador F, compare las representaciones matriciales jiijF  F  y  ijf  tal 

que i
i

ijj f  F . 

2.1. ¿Cómo se relacionan ambas matrices? 
2.2. ¿En qué casos coinciden? 
 

3. Dado un conjunto de K funciones espaciales ortonormales  )(ri

  y otro conjunto de K 
funciones espaciales ortonormales  )(ri

 , tales que el primer conjunto no es ortogonal al 

segundo: ijii Srrrd  )(*)(  
    donde S es la matriz de "overlap" (o solapamiento). 

Muestre que el conjunto  i  de los 2K espín-orbitales construidos por multiplicación de los 
i  por la función de espín   y los i  por la función   de la forma: 

)()()(12   rx ii


 ; )()()(2   rx ii


  (i=1,2,..........,K)  

es un conjunto ortonormal  
 
 
4. Se pide: 

4.1 Demostrar que el operador permutación P es unitario. 

4.2 Demostrar que el operador de antisimetrización    PA pN )1()!( 1  satisface 

AA †  y AA !2 N . 
4.3 Mostrar que dada una base ortonormal de funciones de una partícula para una 

sistema de N fermiones,  i ,  el conjunto  
PHiNi NA )(),....,1(1   es una base 

ortonormal. 
4.4 Si la base de funciones de una partícula tiene K elementos, ¿cuántos elementos tiene 

el conjunto  
PHiNiA  ,....,1  (es decir, cuál se su dimensión)? 

 4.5  Observe que mientras en un producto de Hartree, iNiPHiNi   ....,...., 11  , 

cada índice se puede pensar que identifica unívocamente a cada partícula, en cambio 
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en un determinante de Slater, 
PHiNiiNi A  ,....,,...., 11  , dicha interpretación se 

pierde por completo. 
 
 
5. Definiendo  los  operadores de un cuerpo como: 





N

i

ioO
1

1 )(ˆˆ  

y los  operadores de dos cuerpos como: 





N

ji

jigO ),(ˆˆ
2  

Pruebe los siguientes conmutadores:    0,ˆ
1 AO  y     0,ˆ

2 AO  
 
6. Dado niPHnini AA   ....,....,,....,  y recordando la definición de un 

operador de un cuerpo : 

 



N

p

poO
1

1 )(ˆˆ  

      a) Demuestre: 
          ninkinini oooO  ˆ....,....,....,ˆ,....,....,....,ˆ,....,ˆ

1   
      Ayuda: Tenga en cuenta el ejercicio anterior. 
 
      b) Suponiendo que el conjunto de espín-orbitales  m  conforma una base ortonormal de 

del espacio de una partícula, halle los elementos de matriz del operador 1Ô  entre 
determinantes de Slater. 

 
      c) Halle la expresión general para la aplicación de dos operadores de un cuerpo sobre un      

determinante de Slater , es decir, calcule: niWO  ,....,ˆˆ
11  

      Ayuda: note se obtienen  términos del tipo nkji ow  ,..,ˆ,..,ˆ,..,  y también otros del 

tipo  nki wo  ,..,ˆˆ,..,..,  

 

7. Pruebe que para el estado de partícula independiente antisimetrizado  representado por el 
determinante de Slater kji  ...... , se tiene: 

kjiskjikjiz MNNS   ............)(......ˆ
2

1   

donde se ha supuesto que αr)(mm    o bien βr)(mm   .  

Ayuda:  recuerde que    0,ˆ ASz . 

 
8. Dadas dos funciones espaciales )(ra


  y )(rb


 , teniendo en cuenta las funciones de espín  

y   pueden construirse funciones antisimétricas de dos partículas donde queden 
factorizadas la parte espacial y la de espín. 
8.1 Haga todas las combinaciones posibles. 
8.2 Relacione la simetría de intercambio de la parte espacial y de espín con los autovalores de 

2Ŝ  y de zŜ  del estado correspondiente.       
8.3 Analice si puede expresar a cada una de ellas como un único determinante de Slater. 
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8.4 En general, ¿Es posible reducir cualquier función de N fermiones a un único 
determinante de Slater? 

Ayudas: 

Para 

S  un operador de impulso angular vale: 

 

  zz

zzzz

SSSSSSSS

SSSSSSSSS

21212121

222

ˆˆˆˆˆˆ
2

1ˆ.ˆ

ˆˆˆˆˆˆˆˆˆ









  

Para 2
1

21  SS   se tiene 

  zzSSSSSSSSSSSS 2121212
3

21
2
2

2
1

2

21
ˆˆˆˆˆˆˆˆ2ˆˆ  


 

 

9. Pruebe que 0......ˆ 2 kkjjiiS   

Pruebe además que ésta es la única forma de tener un autoestado de 2Ŝ  con autovalor cero 
para un estado monodeterminantal. 

Ayudas:  

 Usar Ŝ  y Ŝ . 

 Por simplicidad suponga que αr)(mm    o bien βr)(mm   . 

 
10. Muestre  

a) que si  j  son tales que )()()1(ˆ 11 xexh iii   , el producto de Hartree:  

 )(.).........()(),.......,( 211 NkjiN
PH xxxxx    

es una autofunción del hamiltoniano   N

l lhH 1 )(ˆˆ  con autovalores dados por 

kji eeeE  .........  

b) que el determinante de Slater dado por  
)(.).........()(),.......,( 211 NkjiN

PH xxxAxxA   tiene el mismo autovalor (Esto 

justifica llamar “estados de partícula independiente” a los determinantes de Slater.) 
 
 

11. Muestre que para un operador de un cuerpo 1̂ , 

s
b

r
a  1

ˆ    






















 sr b,a  si                     ˆˆˆ

sr b,a  si                                                   ˆ

 sr b,a  si                                                      ˆ

sr b,a  si                                                              0

)(

N

ocuc

rhrahachc

ahb

shr
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12. Calcule, por simple inspección, la energía de los siguientes estados cuya función de onda 
es unideterminantal:  

 

       (a)                 (b)                   (c)                   (d)                 (e)                   (f) 

                                             
 

13. En forma similar a lo hecho en el problema  11 pero para operadores de 2 cuerpos 2 , 

calcule los elementos de matriz tu
cd

rs
ab  2

ˆ para las distintas combinaciones de 

orbitales dcba ,,,  y utsr ,,, . 
 

14. Calcule la energía del siguiente estado bideterminantal:     3,2,13,3,1
2

1
  

 
15. Para el hamiltoniano (independiente de los espines electrónicos) 

)(
2

1ˆ                
1ˆˆˆ 2

12

21 iii rVh
r

hhH


  

a)  Calcule HE ˆ  para cada uno de los estados del problema 8. 

b*) Analice el signo de las integrales de Coulomb y de intercambio.  
Ayuda: Para probar que la integral de intercambio es real y mayor que cero, construya  
una “densidad auxiliar”  dada por  )()( 2

*
1 rr  aux   (note que puede ser compleja) y 

haga la analogía con la demostración de que la energía de un campo electrostático es 
mayor que cero. 

 c) ¿Cuál es el estado de menor energía? 
d) ¿Qué pasa con el estado triplete si )()( 12 rr


  ? 

 


