
 

 Serie 3         pág. 1 

Estructura de la materia 3 
Serie 3 – Aplicaciones de Hartree-Fock 

Cátedra: Diego R. Alcoba 
Verano 2026 

 

1. Se quiere estudiar la estabilidad de la molécula de hidrógeno ionizada H2
 , para lo cual se 

utiliza una base mínima  (compuesta por los orbitales espaciales atómicos As1  y Bs1   

centrados respectivamente en los átomos A y B de la molécula). 

a-i) Demuestre que las siguientes combinaciones de los orbitales espaciales atómicos:  
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son autoestados del operador paridad ̂  y que a su vez   0ˆ,ˆ H  . 

ii- Escriba la matriz que surge de proyectar el hamiltoniano en la base dada por 1  y 2 . 

iii- Del resultado anterior muestre que 1  es la mejor aproximación al estado fundamental 
de la molécula para esta base mínima desde el punto de vista  variacional. 

b)  Demuestre que la energía de la molécula H2
 , a una distancia internuclear R en su 

estado fundamental es: 

RRSRVRVEE H /1)](1/[)]()([ 21   

donde EH  es la energía del átomo de H y A
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(Para hallar esta expresión suponga que las funciones As1  y Bs1  son autoestados del 

hamitoniano de átomo de hidrógeno centrado en el núcleo correspondiente) 

c) Use los datos de la tabla 1 para hallar la curva de energía  E(R) y determine 

i) la energía de disociación del enlace. 

ii) la longitud de equilibrio del enlace. Compare con la longitud de equilibrio de H2 
(=1.4 au (exp) y 1.346 au (STO3G)) 

d) ¿Se puede asegurar que el sistema es ligado a partir de este cálculo rudimentario? 
Justifique. 

e) Muestre que el orbital   2  es antiligante. 

Tabla 1 
-------------------------------------------------------------------------------------------------- 
 R/a0    0      1      2      3    4 
-------------------------------------------------------------------------------------------------- 
 V1/RH 1.000  0.729  0.473  0.330  0.250 
 V2/RH 1.000  0.736  0.406  0.199  0.092 
 S             1.000  0.858  0.587  0.349  0.189 
-------------------------------------------------------------------------------------------------- 

E R eV  y  aH H H   1
2 027 0, .3 .53  R Å 

 (*)Necesitará evaluar el término de repulsión nuclear 
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2. Muestre que  

a) el elemento de matriz general del operador de Fock tiene la forma: 


)(ocub

bjbijijiij hff   

b) el operador de Fock es hermítico probando la hermiticidad del elemento de matriz f ij . 

 
3. Muestre que la expansión de las energías orbitales en términos de los espín-orbitales de 

Hatree-Fock se puede convertir, para un sistema de capa cerrada, a la expresión:  

  
n

b
bibiiii KJh 2 , donde n (igual a N/2, con N el número de electrones del sistema) 

es el número de orbitales espaciales ocupados. 

 

4. Potencial de Ionizacion: Considerando un estado ionizado del sistema en el cual un 
electrón ha sido sacado del espín-orbital a del estado de Hartree-Fock N

0 , 

Naa
N  ................... 1121
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Demuestre que la energía necesaria para este proceso de ionización IP es, 

a
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5. Doble ionización: Muestre que la energía requerida para mover un electrón de  c y uno de 

d  para producir el determinante N
cd

2  es : 

     c d cd cd cd dc . 

 

6. Muestre que la afinidad electrónica EA es  

EA E E r h r rb rbN N r

b
r       0

1   

 
7. ¿Cuál es el estado de Hartree-Fock para el H2 en base mínima? Para el estado propuesto: 

a) Escriba en forma explícita el operador de Fock. 
b) Halle los elementos de matriz del operador de Fock hallado en a) en la propia base 

mínima. ¿Cuál es la dimensión de la matriz hallada? 
c) ¿Qué características debe tener dicha matriz  si el estado propuesto es efectivamente el 

de Hartree-Fock?  
d) Para este estado, evalúe la contribución a la energía de cada término del hamiltoniano. 

¿Qué término es responsable de la energía de enlace de la molécula? Relaciónelo con el 
solapamiento de las funciones atómicas.  (Véase Problema 1) 

Datos: 2528,111 h ; 0,475622 h  ; 0,674611 j  ; 0,663612 j  ; 0,181312 k  ; 

0,697522 j  (para R=1,4 u.a.)
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8. Usando los datos de la tabla, obtenga las curvas de disociación del H2 en base mínima 

empleando RHF. ¿Cuál es la distancia de equilibrio?  
R   J11 J12 J22 K12 

0,6 -0,7927 1,3327 0,7496 0,7392 0,7817 0,1614 
0,8 -0,7321 1,1233 0,7330 0,7212 0,7607 0,1655 
1,0 -0,6758 0,9418 0,7144 0,7019 0,7388 0,1702 
1,2 -0,6245 0,7919 0,6947 0,6824 0,7176 0,1755 
1,4 -0,5782 0,6703 0,6746 0,6636 0,6975 0,1813 
1,6 -0,5368 0,5715 0,6545 0,6457 0,6786 0,1874 
1,8 -0,4998 0,4898 0,6349 0,6289 0,6608 0,1938 
2,0 -0,4665 0,4209 0,6162 0,6131 0,6439 0,2005 
2,5 -0,3954 0,2889 0,5751 0,5789 0,6057 0,2179 
3,0 -0,3377 0,1981 0,5432 0,5512 0,5734 0,2351 
4,0 -0,2542 0,0916 0,5026 0,5121 0,5259 0,2651 
5,0 -0,2028 0,0387 0,4808 0,4873 0,4947 0,2877 
7,5 -0,1478 -0,0114 0,4533 0,4540 0,4547 0,3206 
10,0 -0,1293 -0,0292 0,4373 0,4373 0,4373 0,3373 
20,0 -0,1043 -0,0543 0,4123 0,4123 0,4123 0,3623 

100,0 -0,0843 -0,0743 0,3923 0,3923 0,3923 0,3823 

(Extraída de Modern Quantum Chemistry, Attila Szabo - Neil S. Ostlund.) 
Cálculos usando la base de funciones Slater sto-3g (exp=1,24). 
y energías orbitales, R distancia intermolecular, Jab y Kab integrales de Coulomb e 
intercambio. (De la página web de la materia se puede obtener esta tabla en formato excel) 
 
 
9. Explique por qué la curva de energía potencial V(R) para dos átomos de He y para 

dos átomos de H son radicalmente diferentes (para el estado electrónico 
fundamental). Relacionarlo con el llenado de orbitales enlazantes y antienlazantes 
en cada caso. 

 
He - Lennard Jones              H - Morse 
 << kT (T ambiente)                          >> kT (T ambiente) 

 
 
10. El oxígeno es paramagnético. En estado gaseoso y a T=293K su susceptibilidad 

magnética es =3,449x10-3 por mol en unidades cgs. La relación entre la 
susceptibilidad macroscópica y el momento dipolar magnético permanente 0 de 
cada molécula puede estimarse (para campos débiles, es decir tales que 0B<<kT) a 
partir de: 

V(R) 
V(R) 

R R 
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kT

n 2
0   

donde  es una constante del orden de 1, n es el número de Avogadro y  
k = 1,38x10-16erg K-1 es la constante de Boltzmann. 
a) Estime el valor del momento dipolar magnético de la molécula de O2. (Para 

efectuar dicha estimación requerirá algunos de los datos que figuran en el punto 
b)) 

b) El isótopo A=16 de O2 es un núcleo par-par y, por lo tanto, no tiene momento 
dipolar magnético. El isótopo A=17 tiene abundancia natural 0,037%, tiene espín 
no nulo y momento magnético g0N donde N es el magnetón nuclear que se 
relaciona con el magnetón de Bohr  mediante el cociente de las masas del 
protón y el electrón, N=me/Mp. El factor giromagnético del 17O es g0=-0,76. En 
unidades atómicas =3,8x10-3 y en unidades cgs =0,922x10-20 (ues.cm). De 
acuerdo al resultado de a) y estos datos determine si el magnetismo del O2 es de 
origen nuclear o electrónico. 

c) A continuación se dan los datos de un cálculo RHF de capa cerrada para la 
molécula de O2 con 14 electrones (z es el eje internuclear). 

i) Analice en qué orbitales debe ubicar los dos electrones adicionales para 
formar el estado unideterminantal 0  de menor energía para la molécula 

de O2 con sus 16 electrones. 
 

Molecular Orbital Coefficients 
                           1         2         3         4         5 
                       (SGU)--O  (SGG)--O  (SGG)--O  (SGU)--O  (SGG)--O 
     EIGENVALUES --   -21.96877 -21.96868  -2.75167  -2.08231  -1.70982 
 
   1 1   O  1S          0.70336   0.70398  -0.16270  -0.18778  -0.07758 
   2        2S          0.01795   0.01156   0.54730   0.80063   0.37288 
   3        2PX         0.00000   0.00000   0.00000   0.00000   0.00000 
   4        2PY         0.00000   0.00000   0.00000   0.00000   0.00000 
   5        2PZ        -0.00542  -0.00035  -0.21755   0.11766   0.60038 
   6 2   O  1S         -0.70336   0.70398  -0.16270   0.18778  -0.07758 
   7        2S         -0.01795   0.01156   0.54730  -0.80063   0.37288 
   8        2PX         0.00000   0.00000   0.00000   0.00000   0.00000 
   9        2PY         0.00000   0.00000   0.00000   0.00000   0.00000 
  10        2PZ        -0.00542   0.00035   0.21755   0.11766  -0.60038 
 
 
                           6         7         8         9        10 
                       (PIU)--O  (PIU)--O  (PIG)--V  (PIG)--V  (SGU)--V 
     EIGENVALUES --    -1.66681  -1.66681  -0.98011  -0.98011  -0.53112 
 
   1 1   O  1S          0.00000   0.00000   0.00000   0.00000   0.08620 
   2        2S          0.00000   0.00000   0.00000   0.00000  -0.54956 
   3        2PX         0.65863   0.00000   0.76816   0.00000   0.00000 
   4        2PY         0.00000   0.65863   0.00000   0.76816   0.00000 
   5        2PZ         0.00000   0.00000   0.00000   0.00000   0.95125 
   6 2   O  1S          0.00000   0.00000   0.00000   0.00000  -0.08620 
   7        2S          0.00000   0.00000   0.00000   0.00000   0.54956 
   8        2PX         0.65863   0.00000  -0.76816   0.00000   0.00000 
   9        2PY         0.00000   0.65863   0.00000  -0.76816   0.00000 
  10        2PZ         0.00000   0.00000   0.00000   0.00000   0.95125 
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Integrales bielectrónicas en la base molecular: 
tipo <aa|aa> = Jaa 
<8 8|8 8> = <9 9|9 9> = 0.593187965  
<10 10 |10 10> = 0.740876798 
tipo <ab|ab> = Jab 
<8 9|8 9> = 0.548715273 
<8 10|8 10> = <9 10|9 10> = 0.607744325 
tipo <aa|bb>=<ab|ba>=Kab 
<8 8|9 9>  = 0.025030126 
<8 8|10 10> = <9 9|10 10> = 0.0222363459 
 

 
ii)  ¿Cuánto vale el momento dipolar magnético de la molécula de O2 en ese 

estado? Comparar con b). 
 

11. Muestre 

a) Que  )(0 ifH  es tal que cualquier estado unideterminental ......0 a  es 

autofunción de H0  con autovalor E a0   .  

b) Que en consecuencia, el hamiltoniano H puede partirse en la forma: 

H = H0 + V 

donde V es el “potencial de fluctuaciones” 

V v ir
i j

HF

i
ij

 

 1 ( ) , 

es decir el potencial de interaccion al que se le ha restado el “campo medio” 

v i J i K iHF
b b( ) ( ) ( )   

c) considerando a V como perturbación y utilizando la teoría de perturbaciones de 
Rayleigh-Schrödinger, halle la corrección a segundo orden a la energía debida a la 
correlación electrónica, y la corrección consistente en la función de onda. 

 
 
Hartree Fock Irrestricto 
 
12. Muestre que las energías orbitales irrestrictas (  

iii f̂  y  
iii f̂ ) están dadas 

por:  
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13. El estado fundamental no restricto del átomo de Li es    

     
2110 ,,  

i- Muestre que la energía de ese estado es:  


211112122211110 JJKJhhhE 

 

ii-  Calcule el potencial de ionización para arrancar el electrón menos energético.   
iii- Calcule la energía necesaria para agregar un electrón  en el segundo nivel. 
iii- Muestre que el estado dado por: 
    

2111 ,,  
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      tiene la misma energía que el estado 0  (el estado fundamental tiene degeneración 2) 

iv- Muestre que  0  no es autoestado de 2ˆ
TS  (ni 1 ).  

   
14. Se realiza un cálculo Hartree-Fock Restricto de Capa Abierta (ORHF) para el átomo de Li 

obteniéndose el estado: 

  211 ,,HFR  

i- Rehaga los puntos i y ii del ejercicio anterior para este caso. 
ii- Muestre que el estado HFR  es autoestado de 2ˆ

TS  y forma un doblete con el estado 

 211 ,,HFR .   

 
 
Cálculo autoconsistente explícito: 

 
15. Usando las integrales de uno y dos electrones dadas más abajo, realice un cálculo SCF de 

capa cerrada para el estado fundamental 1 2  del sistema HeH. 

Para llevar a cabo el cálculo se presenta la información respecto de la distancia internuclear 
R=1.4ua. Los exponentes orbitales de Slater 1s del He y H son 1.6875 y 1.0 
respectivamente. Las integrales requeridas en la base de orbitales atómicos son (en au): 

6250.0   3504.0    2469.0

5664.0    4744.0   0547.1
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donde el índice a se refiere a 1sHe y el índice b a 1sH. Como elección inicial para el orbital 
molecular ocupado use  1 1 sHe  y siga los siguientes pasos: 

a) Formar una matriz de Fock con esta elección inicial del orbital molecular ocupado. 

b) Resolver la ecuación de autovalores para obtener las energías orbitales y un orbital 
molecular ocupado mejorado. Observar que la condición de normalización requerida 
para los coeficientes es  1 1 1 . 

c) Determinar la energía SCF total en esta etapa del procedimiento iterativo. 

d) Utilizar el orbital mejorado del ciclo anterior para una entrada en el nuevo. Recalcular 
todo. Observar la variación de la energía y la desviación cuadrática de la matriz 
densidad. 

e) Luego de algunos pasos los orbitales convergidos son: 

 1 0 9 0 8324  . . 1sHe + 0.1584 1sH       1sHe +1.2156 1sH2  

Verificar que estén ortonormalizados y si no es así, hacerlo. 

f) Mostrar, usando las integrales de uno y dos electrones en la base de orbitales 
moleculares 

 
1 1 2 6158 1 2 0 1954 2 2 1 3154
11 11 0 9596 11 21 0 1954 12 12 0 6063
12 21 0 1261 22 21 0 0045 22 22 0 6159

h h h    
   
   

. . .
. . .
. . .

         
        
        

 

 que los valores convergidos de las energías orbitales son 

 1 1 6562 0 2289   . .    2  


