Estructura de la materia 4 - Primer cuatrimestre del 2025

Guía 10: Mecanismo de Higgs y modelo estándar

Ruptura espontánea de simetría

1. Simetría global discreta. Considere un sistema descripto por un campo real tal que

$$L = \frac{1}{2} \partial^{\mu} \phi \partial_{\mu} \phi - V(\phi) , \qquad V(\phi) = \frac{\lambda}{4} (\phi^2 - v^2)^2 ,$$

donde λ y v son parámetros constantes y positivos.

- a) Muestre que el sistema tiene simetría discreta $\phi \to -\phi$.
- b) Muestre que $\phi=0$ y $\phi=\pm v$ son soluciones de las ecuaciones de movimiento.
- c) Muestre que $\phi = 0$ es un extremo inestable del potencial.
- d) Escriba el lagrangiano en términos de las fluctuaciones alrededor de $\phi=0$, es decir, tomando $\phi(x)=0+\varphi(x)$, y muestre que φ tiene un término que parece de masa pero con $m_{\varphi}^2<0$. Esto es porque expandimos alrededor de una solución inestable.
- e) Muestre que $\phi = \pm v$ son extremos estables del potencial.
- f) Expanda el lagrangiano alrededor de las fluctuaciones correspondientes $\phi(x) = \pm v + h(x)$ y muestre que h(x) tiene un término de masa con $m_h^2 > 0$.

Piense algunos ejemplos de sistemas de este tipo en base a péndulos y modelos de Ising.

2. (*) Simetría global continua. Considere el lagrangiano para un campo complejo

$$L = (\partial^{\mu}\phi)^*\partial_{\mu}\phi - V(|\phi|), \qquad V(|\phi|) = \lambda (|\phi|^2 - v^2)^2.$$

- a) Muestre que el sistema tiene simetría continua global $\phi \to e^{i\alpha}\phi$.
- b) Muestre que $\phi = 0$ y $\phi = ve^{i\theta_0}$ son soluciones (para cualquier θ_0).
- c) Muestre que $\phi=ve^{i\theta_0}$ corresponde a una familia uniparamétrica de mínimos del potencial.
- d) Escriba el lagrangiano en términos de las fluctuaciones correspondientes. Como ϕ es complejo tiene dos grados de libertad, y por lo tanto hay dos direcciones en las cuales fluctuar: $\phi(x) = [v + h(x)]e^{i\theta(x)}$. (Hemos elegido $\theta_0 = 0$.)
- e) Muestre que se obtiene un lagrangiano para un campo h(x) masivo y para un campo $\theta(x)$ que tiene masa nula. Este campo se denomina bosón de Goldstone, y está asociado a la posibilidad de moverse entre distintos mínimos sin costo energético. Este tipo de modos aparecen siempre que el mínimo elegido rompe una simetría global continua.
- f) Muestre que, aún después de expandir en términos de las fluctuaciones, el lagrangiano sigue teniendo la simetría global U(1), que ahora corresponde a $\theta(x) \to \theta(x) + \alpha$. Lo que rompe la simetría es la configuración de vacío, pero el lagrangiano sigue siendo invariante.

- 3. Simetrías globales no abelianas. Repita el ejercicio anterior pero para lagrangianos con simetrías SU(2), SU(3), y U(1)×SU(2). Para esto, trabaje con potenciales de la forma $V = \lambda (\Phi^{\dagger}\Phi v^2)^2$, donde Φ un multiplete de campos complejos que transforme en la representación fundamental del grupo de simetría correspondiente.
 - a) Muestre que para SU(2) y $V(\Phi)$ tal que $\Phi_0 = \begin{pmatrix} 0 \\ v \end{pmatrix}$ es solución, el vacío rompe todas las simetrías, y aparecen 3 bosones de Goldstone.
 - b) Muestre que para SU(3) y $V(\Phi)$ tal que $\Phi_0 = \begin{pmatrix} 0 \\ 0 \\ v \end{pmatrix}$ es solución, el vacío rompe la simetría a SU(2). En este caso la ruptura es parcial: el vacío elegido es simétrico ante la acción de 3 de los 8 generadores, y por lo tanto aparecen 8-3=5 bosones de Goldstone.
 - c) Muestre que para U(1)×SU(2) y $V(\Phi)$ tal que $\Phi_0 = \binom{0}{v}$ es solución, el vacío rompe la simetría a U(1), y aparecen sólamente 3 bosones de Goldstone. ¿Cuál es el generador de la simetría que no se rompe?
 - d) ¿Cambia algo en todo lo anterior si elegimos expandir alrededor otra solución $\Phi_1 = {w_1 \choose v_1}e^{i\theta_1}$ con θ_1, v_1, v_2 constantes tales que $v_1^2 + w_1^2 = v^2$?

Mecanismo de Higgs

4. (*) Simetría de gauge U(1). Considere ahora un lagrangiano con simetría U(1) local

$$L = -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} + (D^{\mu}\phi)^*D_{\mu}\phi - V(|\phi|), \qquad V(|\phi|) = \lambda \left(|\phi|^2 - v^2\right)^2, \qquad D_{\mu} = \partial_{\mu} - iqA_{\mu}.$$

- a) Escriba el lagrangiano en términos de $\phi(x) = [v + h(x)]e^{i\theta(x)}$, y muestre que, además de los términos ya conocidos de masa m_h , auto-interacciones de h e interacciones entre h y θ , se generan ahora un término de masa para el A_{μ} , junto con nuevas interacciones.
- b) Incialmente había 4 grados de libertad: 2 del campo escalar complejo y 2 del campo de gauge. Ahora el sistema parece tener un campo A_{μ} masivo con 3 grados de libertad (en vez de 2 porque está permitida la polarización longitudinal), sumado a los dos de los escalares reales h y θ . Discuta si hay o no una contradicción.
- c) Muestre que el lagrangiano del ítem a) en realidad sigue teniendo invariancia de gauge ante $\theta(x) \to \theta(x) + q\alpha(x)$ junto con $A_{\mu}(x) \to A_{\mu}(x) + \partial_{\mu}\alpha(x)$.

Esto muestra que, incluso en presencia del potencial, sigue estando mal tomar a la fase $\theta(x)$ como un grado de libertad, porque en general lo podemos eliminar con una transformación de gauge apropiada. Lo más conveniente es fijar el gauge $\theta(x) = 0$. Así funciona el mecanismo de Higgs: cuando la simetría es local, el bosón de Goldstone es espúreo, y se dice que se lo come el campo de gauge. Lo que sucede es que los 4 grados de libertad originales, dos del campo complejo y dos del campo de gauge no masivo, se reordenan: uno corresponde al campo real h(x), mientras que los otros 3 están en el vector A_{μ} , que ahora es masivo.

5. Simetría de gauge U(1) bis. Derive nuevamente el lagrangiano del ítem a) del ejercicio anterior pero trabajando en el gauge $\theta(x) = 0$. Dibuje todos los vértices de interacción.

6. (*) Higgs para $U(1)\times SU(2)$. Considere el lagrangiano

$$L = -\frac{1}{4} G^{a}_{\mu\nu} G^{\mu\nu,a} + (D^{\mu}\Phi)^{\dagger} D_{\mu}\Phi - V(|\Phi|), \qquad V(|\phi|) = \lambda \left(\Phi^{\dagger}\Phi - v^{2}\right)^{2},$$

ahora con $\Phi = \left(\begin{smallmatrix} \phi^+ \\ \phi^0 \end{smallmatrix}\right)$ un doblete de campos complejos y

$$D_{\mu} = \partial_{\mu} - ig_B B_{\mu} \frac{Y}{2} - ig_W W_{\mu}^a T^a \,,$$

donde Y es proporcional a la identidad y $T^a=\frac{1}{2}\sigma^a$. Elegimos además que Φ tenga hypercarga Y=1. Para ser más precisos, la idea es que ϕ^0 tenga carga nula y ϕ^+ tenga carga +1, en unidades de |e|, de manera tal que $Y=2(Q-I_3)=2(0-(-\frac{1}{2}))=1=2(1-\frac{1}{2})$. La idea es expandir alrededor del mínimo $\Phi_0=\begin{pmatrix} 0 \\ v \end{pmatrix}$. En este ejercicio interesan las masas que adquieren los bosones de gauge, por lo tanto podemos ignorar las fluctuaciones alrededor de Φ_0 .

- a) En el ejercicio anterior argumentamos que en el caso global se generaban 3 bosones de Goldstone (y no 4). ¿Cuántos bosones de gauge espera que adquieran masa? ¿Cuáles?
- b) Muestre que, en este mínimo, se obtiene

$$(D^{\mu}\Phi)^{\dagger}D_{\mu}\Phi = \frac{v^2}{4} \left[g_W^2 (W_{\mu}^1 W^{\mu,1} + W_{\mu}^2 W^{\mu,2}) + (g_W W_{\mu}^3 - g_B B_{\mu})^2 \right] .$$

- c) Derive los términos de masa para los bosones W^\pm_μ . Relacione el resultado con el acoplamiento G_F del modelo de Fermi.
- d) Derive, si existen, los términos de masa para los bosones

$$Z_{\mu}^{0} = \frac{g_{W}W_{\mu}^{3} - g_{B}B_{\mu}}{\sqrt{g_{W}^{2} + g_{B}^{2}}}, \qquad A_{\mu} = \frac{g_{B}W_{\mu}^{3} + g_{W}B_{\mu}}{\sqrt{g_{W}^{2} + g_{B}^{2}}}.$$

e) Muestre que esta descomposición es exactamente la que hicimos con el ángulo de Weinberg θ_W en la guía anterior, y que además $m_W = \cos \theta_W m_Z$.

Modelo estándar

Para el caso $U(1)_Y \times SU(2)_L$ las masas de los bosones de gauge se generan análogamente. Lo que falta obtener son las masas de los campos de materia, la del Higgs, y las interacciones entre ellos.

7. (*) Masas para los leptones. Se agrega al lagrangiano un término de interacción

$$-g_e\left[\overline{\Psi}_{e,L}\Phi e_R + \overline{e}_R\Phi^\dagger\Psi_{e,L}\right]\,,\qquad \Psi_{e,L} = \left(\begin{smallmatrix} \nu_{e,L} \\ e_L \end{smallmatrix}\right),\qquad \Psi_{e,R} = e_R\,,\qquad \Phi = \left(\begin{smallmatrix} \phi^+ \\ \phi^0 \end{smallmatrix}\right).$$

- a) Muestre que este término de interacción (tipo Yukawa) es invariante $\mathrm{U}(1)_Y \times \mathrm{SU}(2)_L$.
- b) Evalúelo en la solución de vacío $\Phi_0 = \begin{pmatrix} 0 \\ v \end{pmatrix}$ y muestre que se genera el término de masa esperado para los electrones con $m_e = g_e v$, pero los neutrinos permanecen no masivos.

8. Masas para los quarks. En este caso se busca generar masa para ambas componentes de los dobletes. Se incorpora el campo conjugado Φ_c , y se agrega un término de interacción

$$-g_d \left[\overline{\Psi}_{u,L} \Phi d_R + \overline{d}_R \Phi^{\dagger} \Psi_{u,L} \right] - g_u \left[\overline{\Psi}_{u,L} \Phi_c u_R + \overline{u}_R \Phi_c^{\dagger} \Psi_{u,L} \right] ,$$

donde $(\phi^{-} = (\phi^{+})^{*})$

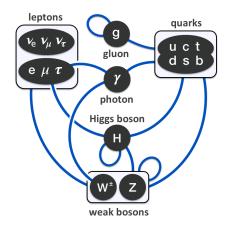
$$\Psi_{u,L} = \begin{pmatrix} u_L \\ d_L \end{pmatrix}, \qquad \Phi = \begin{pmatrix} \phi^+ \\ \phi^0 \end{pmatrix}, \qquad \Phi_c = -i\sigma_2 \Phi^* = \begin{pmatrix} -\phi^{0,*} \\ \phi^- \end{pmatrix}.$$

- a) Muestre que estos terminos de interacción (tipo Yukawa) son invariantes $U(1)_Y \times SU(2)_L$.
- b) Evalúelos en la solución de vacío $\Phi_0 = \begin{pmatrix} 0 \\ v \end{pmatrix}$ y muestre que se generan términos de masa para los quarks u y d con $m_u = g_u v$ y $m_d = g_d v$.
- 9. Masa del Higgs. Vuelva a los términos $(D^{\mu}\Phi)^{\dagger}D_{\mu}\Phi V(|\Phi|)$ y ahora incorpore las fluctuaciones $\Phi(x) = \Phi_0 + H(x) = \begin{pmatrix} 0 \\ v+h(x) \end{pmatrix}$, donde hemos fijado el gauge más conveniente. De esta manera, el campo de higgs asociado a las fluctuaciones H(x) es neutro. Muestre que para el potencial definido más arriba su masa queda definida como $m_H = 4\lambda v^2$, de manera que es un parámetro libre del modelo estándar. El valor experimental medido en el LHC en el 2012 es de aproximadamente $m_H = 125$ GeV.

10. (*) Interacciones del Higgs.

- a) Incorpore las fluctuaciones en los términos que originan las masas de los leptones en el problemas 7 y derive las interacciones $H\bar{\ell}\ell$ para cada leptón $\ell=e,\mu,\tau$. En particular, debería ver que no hay acoplamiento con los neutrinos.
- b) Haga lo mismo con las interacciones que se derivan de los términos incorporados en el problema 8, que dan lugar a interacciones $H\overline{q}q$.
- c) Derive, a partir de $(D^{\mu}\Phi)^{\dagger}D_{\mu}\Phi$, las interacciones $HW^{+}W^{-}$ y $HZ^{0}Z^{0}$. No hay $HA_{\mu}A^{\mu}$.
- d) Encuentre las auto-interacciones del campo H, a partir $V(|\Phi|).$
- e) Calcule las constantes de acoplamiento para cada una de estas interacciones.

Todas estas interacciones del modelo estándar están resumidas en el siguiente esquema.



11. (*) Decaimientos y producción del Higgs.

- a) Dibuje los diagramas de Feynman más simples asociados a los decaimientos $H \to W^+W^-$, $H \to Z^0Z^0$, y $H \to \bar{f}f$ (para todos los fermiones f posibles) y ordénelos según el valor de las correspondientes constantes de acoplamiento. (Sugerencia: use las masas conocidas.)
- b) Dibuje los diagramas de los decaimientos $H\to gg$ y $H\to \gamma\gamma$ a primer orden no trivial. (Ayuda: pueden involucrar loops.)
- c) Dibuje dos diagramas de producción de Higgs que contribuyan a procesos tipo $qq' \rightarrow qq'H$, donde q y q' son cualquier par de quarks. Repita reemplazando quarks por protones.
- d) En realidad, $H \to W^+W^-$ no es posible por sí solo porque $2m_W > m_H$, pero sí como proceso intermedio, donde alguno de los bosonoes W^{\pm} se produce de manera virtual. Dibuje un decaimiento $H \to \bar{\ell}\nu_{\ell}\ell\bar{\nu}_{\ell}$ del Higgs que involucre al vértice HW^+W^- .

Detalles para que completen ustedes

- 12. (****) Gravedad. El modelo estándar describe las interacciones electromagnéticas, fuertes y débiles, pero no las gravitatorias. Incorpore la gravedad de una manera auto-consistente.
- 13. (****) Materia y energía oscuras. Según estimaciones basadas en observaciones cosmológicas, la materia del modelo estándar describe tan solo el 5 % de la energía que hay en el universo. Incorpore lo que falta, es decir,
 - a) el 27 % de materia oscura, necesaria por ejemplo para justificar las observaciones de la rotación de galaxias, detallando su naturaleza, y
 - b) el 68 % de energía oscura, cuya presencia asegura la expansión acelerada del universo.