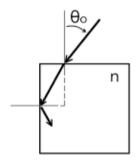
Física 2 (Q) - Primer Cuatrimestre 2025

Guía 8: Óptica geométrica

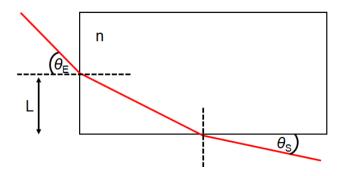

Utilizar nagua = 1,33.

Ejercicio 1: Dos espejos planos M_1 y M_2 forman un ángulo de 120° entre sí. Un rayo de luz incide sobre M_1 con un ángulo de 65° con la normal. Encuentre la dirección del rayo después de que se refleja en el espejo M_2 .

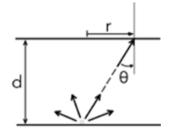
Ejercicio 2: Un rayo incide en la interface entre agua y vidrio ($n_{vidrio} = 1,5$) formando un ángulo $\theta_0 = 80^{\circ}$ con la normal.

- a) Calcule los ángulos que forman con la normal los rayos reflejado y transmitido, cuando el rayo incide desde el agua.
- **b)** Analice el caso equivalente cuando el rayo incide desde el vidrio.

Ejercicio 3: Un rayo de luz incide sobre una placa de vidrio inmersa en aire con un ángulo de incidencia $\theta_0 = 45^\circ$. ¿Cuál debe ser el índice de refracción n del vidrio para que haya reflexión total en la cara vertical?



Ejercicio 4: Considere tres medios con diferentes índices de refracción n_1 (desconocido), n_2 = 1,5 y n_3 = 1,2. Las interfases entre ellos son planas y paralelas entre sí. Un rayo que incide sobre la interfase que separa los medios con n_1 y n_2 , formando un ángulo de θ_0 = 45° con la normal, sale rasante luego de refractarse en la interfase n_2 – n_3 .


- a) Calcule n₁.
- b) ¿Qué sucedería si n₁ = n₃? ¿Son los resultados dados independientes de n₂?

Ejercicio 5: Un rayo de luz ingresa en un bloque rectangular de un material transparente, cuyo índice de refracción n es desconocido, con un ángulo respecto a la normal de $\theta_E = 45^\circ$. Emerge de él con un ángulo $\theta_S = 14^\circ$.

- a) Calcule n.
- **b)** ¿Cuánto tiempo tarda la luz en atravesar el bloque, si el punto de incidencia se encuentra a una distancia de L = 50 cm de la base?

Ejercicio 6: Un objeto luminoso pequeño situado en el fondo de un depósito de agua de d = 100 cm de profundidad emite rayos en todas direcciones. Si en la superficie de agua existen partículas finas, se observa en ésta un círculo luminoso. Calcule el radio del círculo y explique por qué se observa este fenómeno.

Ejercicio 7: Una moneda se encuentra en el fondo de un vaso que contiene agua hasta una altura de d = 5 cm. Un observador mira la moneda desde arriba. ¿A qué profundidad la observa?

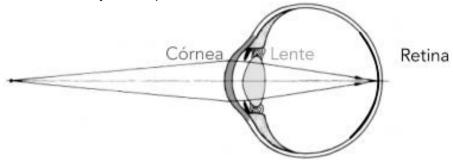
Ejercicio 8: Dentro de un recipiente, una capa de agua de 2 cm de espesor flota sobre una capa de 3 cm de espesor de tetracloruro de carbono (n_{CCl4} = 1,46). En el fondo del recipiente hay una moneda. Un observador la mira desde arriba. ¿A qué profundidad aparente se ve la moneda?

Ejercicio 9: Cuando un haz de luz de rayos paralelos incide desde la izquierda perpendicularmente sobre una lente convergente, aparece su imagen a una distancia d = 4 cm a la derecha de la misma. Si se coloca un objeto luminoso a una distancia D = 3 cm de la lente,

- a) ¿Cuántas veces mayor (o menor) es la imagen?
- b) ¿Es real o virtual?
- c) Haga el trazado de rayos.
- **d)** Resuelva nuevamente el problema si el objeto se encuentra a una distancia D = 12 cm de la lente.

Ejercicio 10: Resuelva analíticamente usando la ecuación de la lente y geométricamente realizando el trazado de rayos. Para un objeto que mide $y_0 = 1$ cm, determine la posición s_i en la cual se genera la imagen, y si la misma es real o virtual y si es directa o invertida para los siguientes casos

- a) Objeto puntual a 20 cm de una lente de distancia focal f = 10 cm.
- **b)** Objeto puntual a 20 cm de una lente de distancia focal f = 5 cm.
- c) Objeto puntual a 3 cm de una lente de distancia focal f = 5 cm.
- d) Objeto puntual a 20 cm de una lente de distancia focal f = -40 cm (lente divergente).


Ejercicio 11: Se coloca un objeto a 18 cm de una pantalla, y entre ambos se ubica una lente delgada convergente.

- a) En qué lugar entre la pantalla y el objeto se puede colocar una lente delgada convergente de distancia focal f = 4 cm para que la imagen del objeto se produzca sobre la pantalla? Si hubiera más de una posición posible, analice qué diferencia hay entre colocar la lente en las distintas posiciones posibles. Haga el trazado de rayos.
- **b)** ¿Y si la distancia focal fuera f = 5 cm?

Ejercicio 12: Un haz de rayos paralelos incide sobre una lente convergente con una distancia focal de 40 cm. ¿A qué distancia de esta lente debe colocarse una lente divergente con una distancia focal de 15 cm para que, al atravesar ambas lentes, el haz de rayos siga siendo paralelo?

Ejercicio 13: El ojo como sistema óptico

El punto más cercano que el ojo humano puede enfocar se conoce como *punto próximo*, y para un adulto con visión normal se encuentra a una distancia de 25 cm. La distancia máxima a la que el ojo puede enfocar se denomina *punto remoto*, y para adultos de visión normal, es prácticamente infinita. La miopía es una afección que se caracteriza por la dificultad para ver objetos que se encuentran lejos, es decir, para el ojo que sufre miopía, el punto remoto está a una distancia finita. Por otro lado, la hipermetropía se caracteriza por la dificultad para ver con nitidez los objetos próximos, esto es, el punto próximo es mayor al considerado normal. Matemáticamente, la distancia focal está dada por la misma fórmula que para lentes pero, en este caso, la distancia focal no es constante sino que depende de la posición del objeto so (es una lente de distancia focal ajustable).

- a) ¿Cuánto cambia la distancia focal del sistema lente-córnea si el objeto se mueve desde infinito hasta el punto próximo $s_0^{próximo} = 25$ cm? Asumir que todo el foco se produce en el sistema lente-córnea y que la distancia de la córnea a la retina (dónde debe formarse la imagen) es de 2,5 cm.
- **b)** El punto próximo del ojo de una persona está a 75 cm. Usando anteojos (a una distancia despreciable del ojo), el punto próximo del sistema anteojo-ojo está a 25 cm.
 - i. Calcular la potencia y el aumento lateral de la imagen formada por la lente anteojo.
 - ii. ¿Qué produce una imagen más grande en la retina: el objeto visto sin anteojos a 75 cm, o el objeto visto con anteojos a 25 cm del ojo?
 - iii. Realizar un diagrama y trazado de rayos correspondiente.
- c) Un ojo miope tiene el punto remoto situado a 5 m, es decir, no ve con nitidez más allá de esa distancia. ¿Cuánto debe valer la distancia focal y la potencia de la lente que corrija este defecto? ¿De qué tipo de lente se trata?