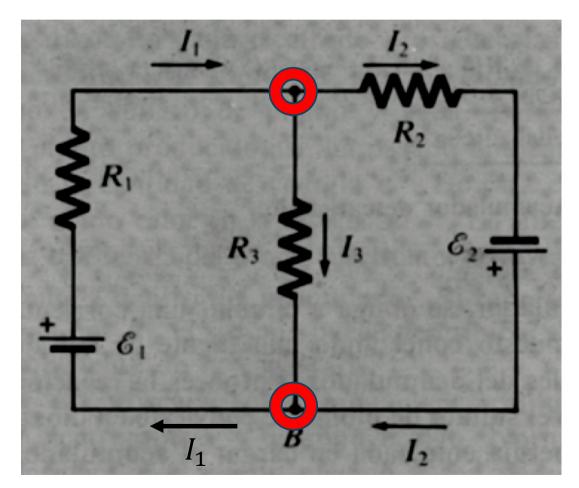
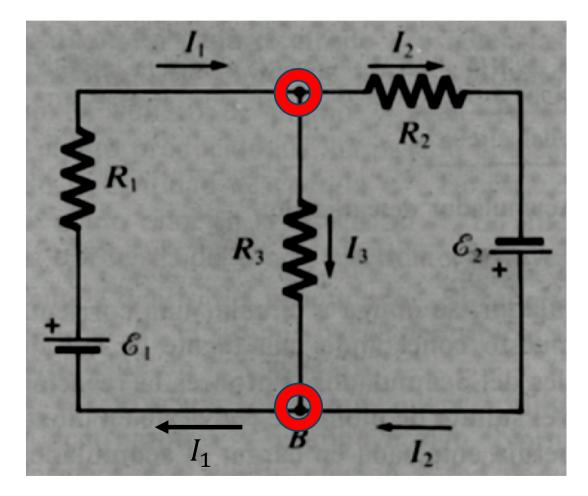
• Datos: las FEM ε_1 y ε_2 y las resistencias R_1 , R_2 y R_3 .

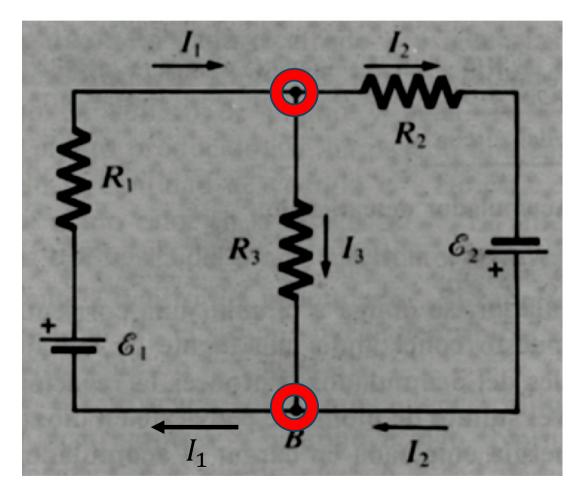


- Datos: las FEM ε_1 y ε_2 y las resistencias R_1 , R_2 y R_3 .
- En cada nodo de corriente, planteamos la ley de Kirchhoff para las corrientes

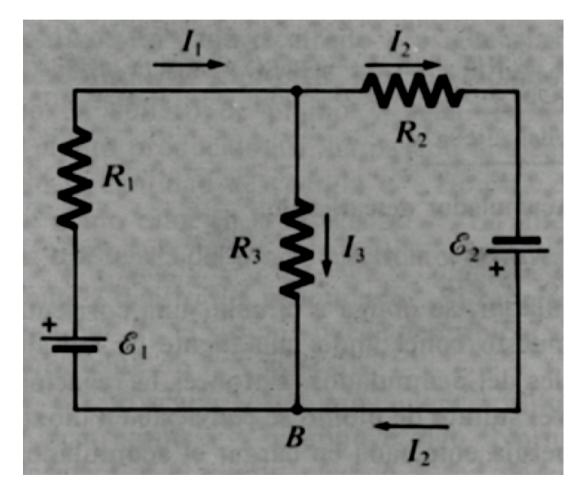


- Datos: las FEM ε_1 y ε_2 y las resistencias R_1 , R_2 y R_3 .
- En cada nodo de corriente, planteamos la ley de Kirchhoff para las corrientes

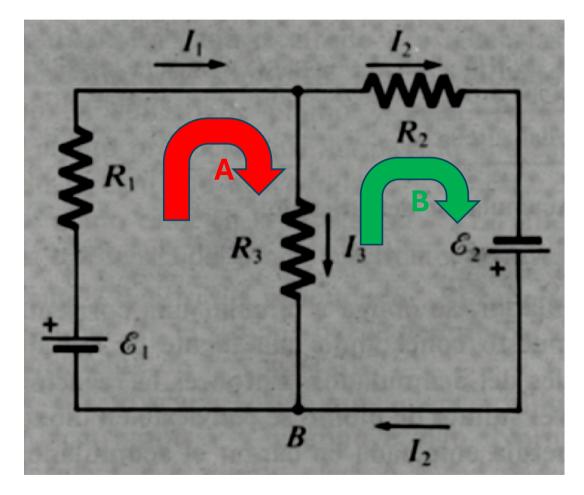
$$I_1 - I_2 - I_3 = 0$$



 Para calcular las corrientes, aplicamos la ley de Kirchhoff de los voltajes a dos lazos del circuito.



- Para calcular las corrientes, aplicamos la ley de Kirchhoff de los voltajes a dos lazos del circuito.
- Elegimos los lazos A y B, recorriéndolos en dirección de las flechas

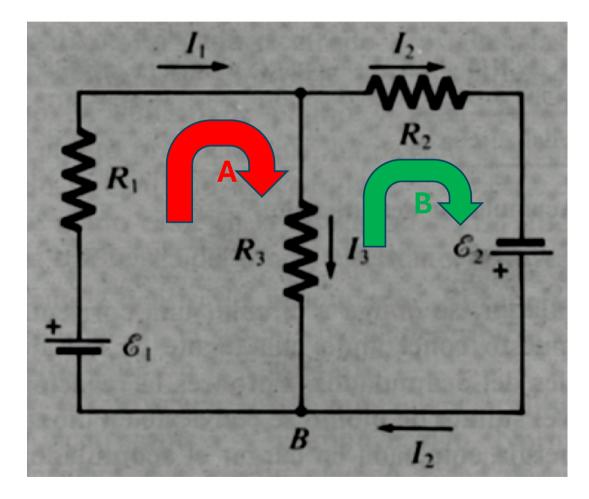


• Lazo A:

$$\mathcal{E}_1 - R_1 I_1 - R_3 I_3 = 0$$

• Lazo B:

$$\mathcal{E}_2 + R_3 I_3 - R_2 I_2 = 0$$

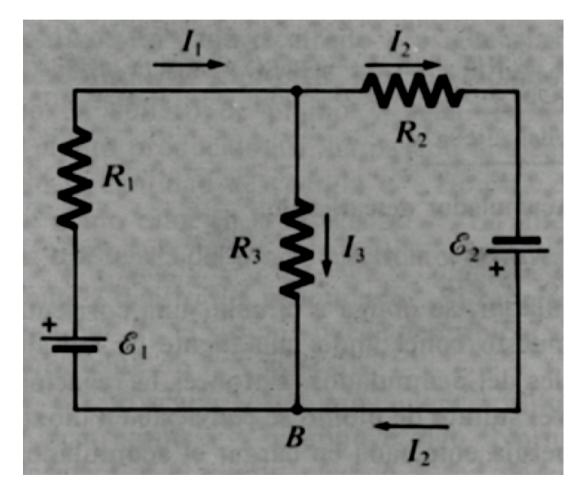


 Tenemos tres ecuaciones con tres incógnitas

$$I_{1} - I_{2} - I_{3} = 0$$

$$\mathcal{E}_{1} - R_{1}I_{1} - R_{3}I_{3} = 0$$

$$\mathcal{E}_{2} + R_{3}I_{3} - R_{2}I_{2} = 0$$

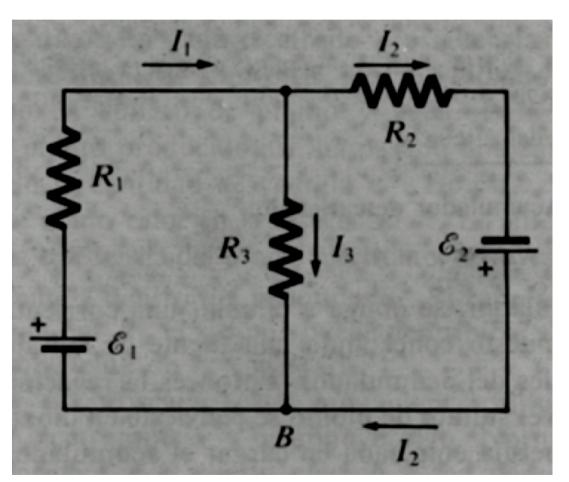


 Tenemos tres ecuaciones con tres incógnitas

$$I_1 - I_2 - I_3 = 0$$

(2)
$$\mathcal{E}_1 - R_1 I_1 - R_3 I_3 = 0$$

(3)
$$\mathcal{E}_2 + R_3 I_3 - R_2 I_2 = 0$$

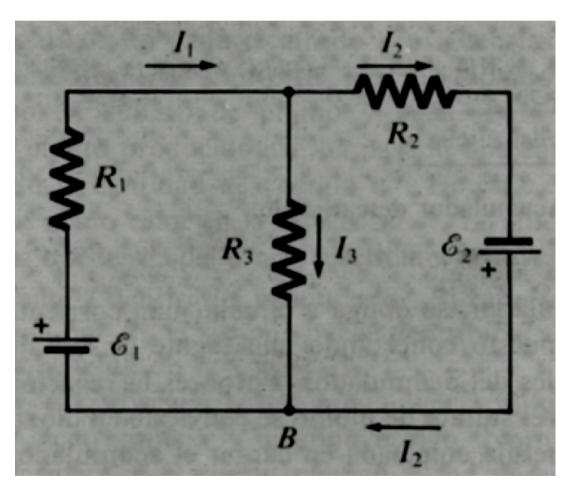


• Reemplazando I_1 de (1) en (2) tenemos:

$$\varepsilon_1 - R_1 I_2 - R_1 I_3 - R_3 I_3 = 0$$

$$\varepsilon_1 - R_1 I_2 - (R_1 + R_3) I_3 = 0$$

(2')
$$I_2 = \frac{\varepsilon_1 - (R_1 + R_3)I_3}{R_1}$$



• Reemplazando I_2 de (2') en (3) tenemos:

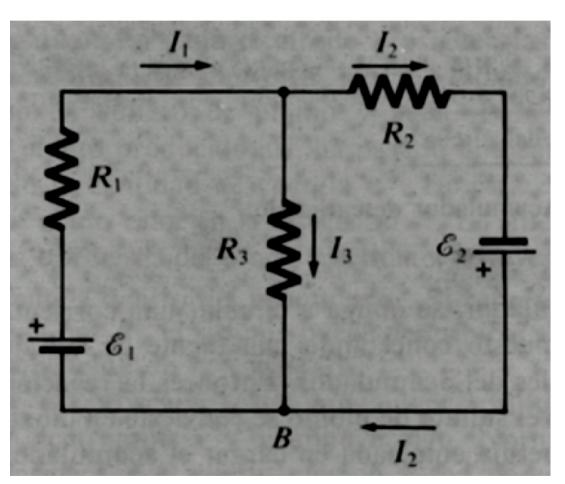
$$\varepsilon_2 + R_3 I_3 - R_2 \frac{\varepsilon_1 - (R_1 + R_3)I_3}{R_1} = 0$$

$$R_1 \varepsilon_2 + R_1 R_3 I_3 - R_2 \varepsilon_1 + R_2 (R_1 + R_3) I_3$$

= 0

$$I_3(R_1R_3 + R_2R_1 + R_2R_3) = R_2\varepsilon_1 - R_1\varepsilon_2$$

$$I_3 = \frac{R_2 \varepsilon_1 - R_1 \varepsilon_2}{R_1 R_3 + R_2 R_1 + R_2 R_3}$$



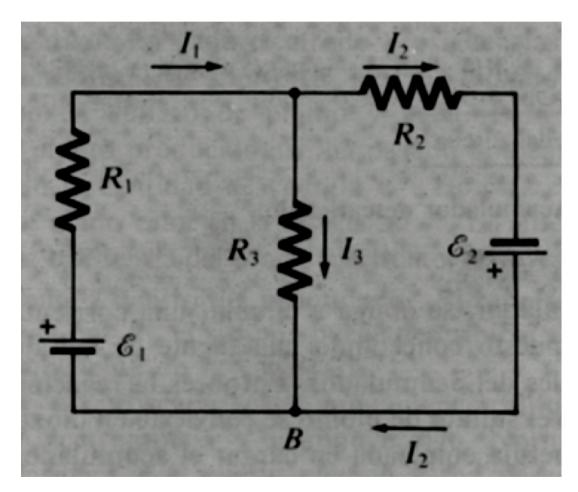
Las otras soluciones son:

$$I_{1} = \frac{\mathcal{E}_{1}R_{2} + \mathcal{E}_{1}R_{3} + \mathcal{E}_{2}R_{3}}{R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3}}$$

$$I_{2} = \frac{\mathcal{E}_{2}R_{1} + \mathcal{E}_{2}R_{3} + \mathcal{E}_{1}R_{3}}{R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3}}$$

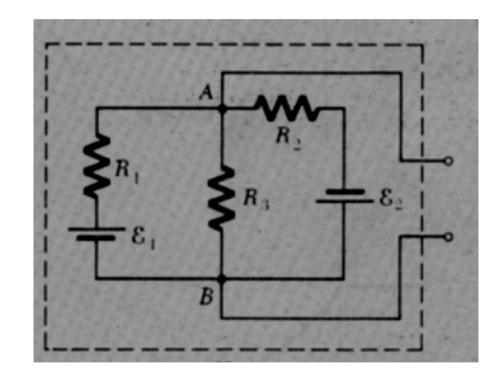
$$I_{3} = \frac{\mathcal{E}_{1}R_{2} - \mathcal{E}_{2}R_{1}}{R_{1}R_{2} + R_{2}R_{3} + R_{1}R_{3}}$$

 I_3 puede cambiar de dirección dependiendo de la relación entre las FEM, no así I_1 e I_2

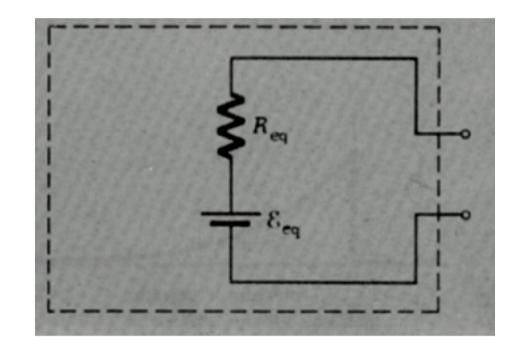


Teorema de Thévenin

 Supongamos que el circuito que resolvimos se encuentra dentro de una caja negra que no podemos abrir y sólo es accesible a través de dos terminales conectadas a dos puntos del mismo.

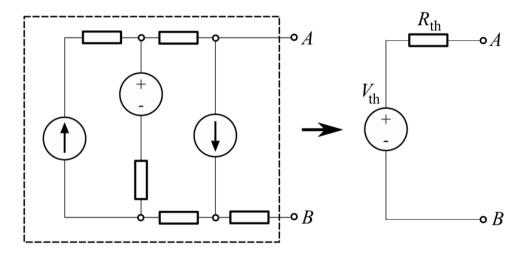


- Supongamos que el circuito que resolvimos se encuentra dentro de una caja negra que no podemos abrir y sólo es accesible a través de dos terminales conectadas a dos puntos del mismo.
- El **Teorema de Thévenin** dice que esta caja con terminales es equivalente a una sola fuente de voltaje ε_{eq} conectada en serie a una resistencia R_{eq}



Teorema de Thévenin

Si una parte de un circuito eléctrico lineal está comprendida entre dos terminales A y B, esta parte en cuestión puede sustituirse por un circuito equivalente que esté constituido únicamente por un generador de tensión en serie con una resistencia, de forma que al conectar un elemento entre los dos terminales A y B, la tensión que queda en él y la intensidad que circula son las mismas tanto en el circuito real como en el equivalente.

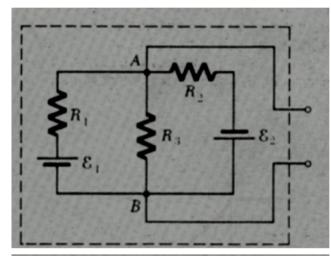


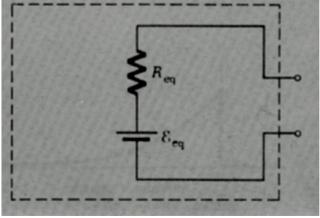
Léon Charles Thévenin 1857-1926

Esto se aplica a cualquier red de fuentes de voltaje y resistencias

• Hallar ε_{eq} es simplemente medir la diferencia de potencial entre los terminales que salen de la caja.

• Hallar R_{eq} es simplemente encontrar la resistencia equivalente de circuito reemplazando las fuentes por cables (cortocircuitando las fuentes)



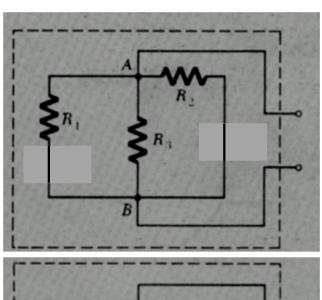


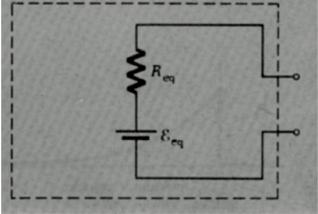
• En este caso $\varepsilon_{eq}=I_3R_3$ donde $I_3=\frac{R_2\varepsilon_1-R_1\varepsilon_2}{R_1R_2+R_2R_1+R_2R_2}$

• Al cortocircuitar las fuentes ε_1 y ε_2 quedan R_1 R_2 y R_3 en paralelo. Por lo tanto:

$$\frac{1}{R_{eq}} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}$$

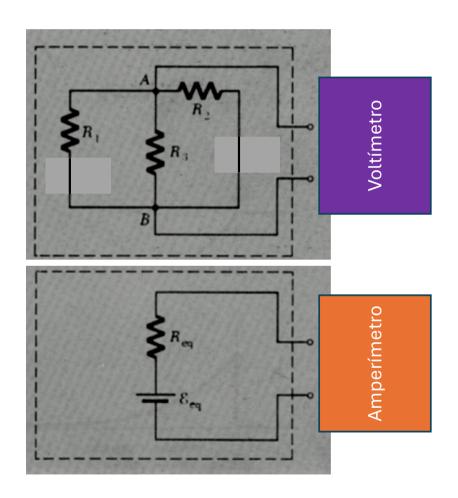
$$R_{eq} = \frac{R_1 R_2 R_3}{R_1 R_2 + R_2 R_3 + R_1 R_3}$$





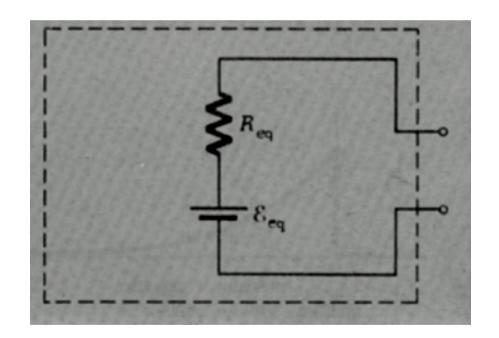
- Si no sé qué hay adentro ε_{eq} se obtiene midiendo la diferencia de potencial entre los dos terminales.
- Como no hay corriente pues el circuito está abierto, la diferencia de potencial es efectivamente ε_{ea} .
- Para obtener R_{eq} habiendo calculado ε_{eq} se coloca un amperímetro entre los terminales y se mide la corriente en cortocircuito I_c , entonces:

$$\varepsilon_{eq} = I_c R_{eq}$$



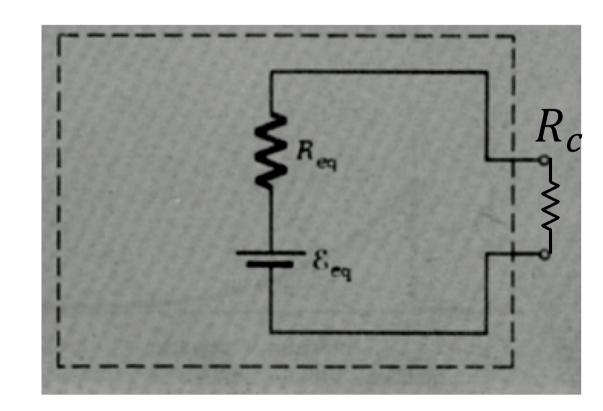
Teorema de Thévenin y fuentes

- La simplificación de un circuito a través del Teorema de Thévenin permite aplicarlo a circuitos que trabajan como fuentes
- Las fuentes normalmente traen asociada una resistencia interna
- Por lo tanto si lo usamos como fuente para alimentar otro circuito, tendremos una FEM de valor ε_{eq} y resistencia interna R_{eq}



Teorema de potencia máxima

- Supongamos que colocamos una resistencia llamada 'de carga' R_c entre los terminales de un circuito / fuente de FEM y resistencia equivalentes ε_{eq} y R_{eq} .
- El teorema de la potencia máxima dice que la máxima potencia que puede disipar R_c se da cuando $R_c = R_{eq}$



Teorema de potencia máxima

• Esto se demuestra escribiendo la potencia disipada en R_c .

$$P_c = R_c I^2$$

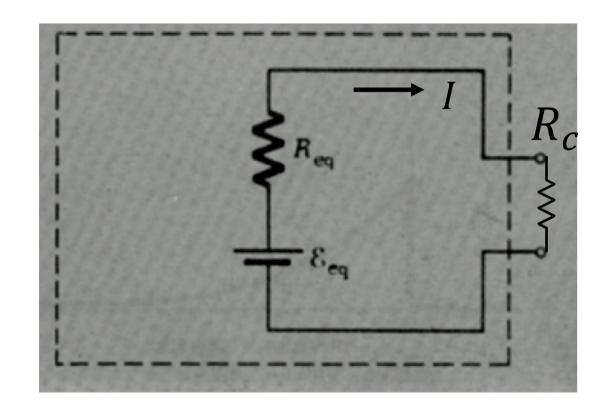
donde I es la corriente que pasa por R_c

• Aplicando Kirchhoff

$$I = \frac{\varepsilon_{eq}}{(R_c + R_{eq})}$$

entonces

$$P_c = R_c \left[\frac{\varepsilon_{eq}}{(R_c + R_{eq})} \right]^2$$



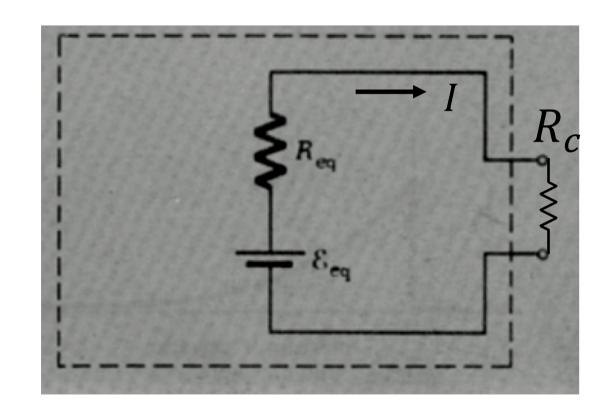
Teorema de potencia máxima

• Efectivamente, el máximo de esta función tiene lugar cuando ocurre cuando

$$R_c = R_{eq}$$

y vale:

$$P_{cmax} = \frac{\varepsilon_{eq}^2}{4R_{eq}}$$



Problema

• Demostrar que el máximo de esta función tiene lugar

cuando
$$R_c = R_{eq}$$

$$P_c(R_c) = R_c \left[\frac{\varepsilon_{eq}}{(R_c + R_{eq})} \right]^2$$