- Supongamos un condensador de capacidad ${\cal C}$ con una diferencia de potencial φ_{12} .
- En un conductor hay una carga Q mientras que en el otro, -Q.
- Quitemos una carga dQ del conductor con carga -Q y llevémos la al conductor que tiene carga Q a lo largo de la diferencia de potencial φ_{12} .

• El diferencial de trabajo dW que realizamos viene dado por:

$$dW = \varphi_{12}dQ = Q \frac{dQ}{C}$$

ullet Entonces, para cargar un conductor descargado inicialmente hasta alcanzar una carga final Q_f el trabajo será:

$$W = \int_0^{Q_f} \varphi_{12} \, dQ = \frac{1}{c} \int_0^{Q_f} Q \, dQ = \frac{Q_f^2}{2c}$$

ullet Esta es la energía almacenada en el capacitor U

• La energía almacenada también se puede escribir como :

$$U = \frac{1}{2} C \varphi_{12}^2$$

• Para un **condensador plano** $C = \epsilon_0 \frac{A}{s}$ y $Es = \varphi_{12}$. Entonces:

$$U = \frac{1}{2}\epsilon_0 \frac{A}{s} (Es)^2 = \frac{\epsilon_0 E^2}{2} (As)$$

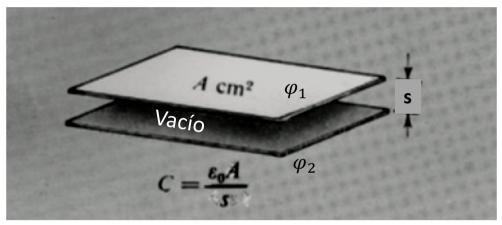
• Entonces, $\frac{\epsilon_0 E^2}{2}$ es la energía almacenada en el capacitor por unidad de volumen.

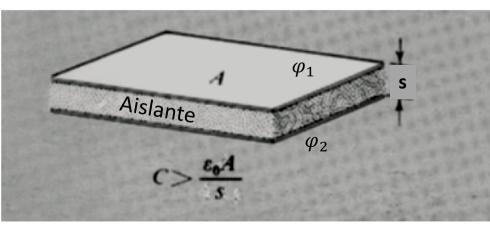
- Esta expresión es general y quiere decir que es posible almacenar energía en un campo electrostático cualquiera.
- Más adelante veremos cómo almacenar energía en un campo magnético.

Dieléctricos:

- Propiedades:
 - Son básicamente aislantes
 - Se polarizan en presencia de un campo eléctrico externo
- Usos:
 - Colocados entre conductores aumentan la capacidad por acumulación de carga polarizada.
 - Como aislantes para impedir descargas eléctricas.
 - Colocados entre placas permite achicar distancia entre ellas para aumentar la capacidad.

Experiencia con condensadores en vacío y con dieléctricos



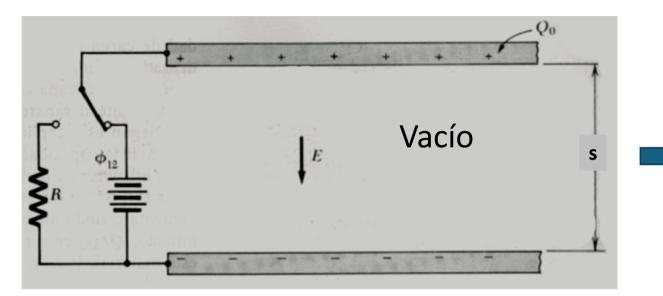


 En el vacío: dos conductores aislados uno del otro. Para uno plano:

$$C = \frac{Q}{\varphi_1 - \varphi_2} = \frac{\epsilon_0 A}{S}$$

 Cuando metemos un material aislante entre las placas, manteniendo la diferencia de potencial, tenemos una capacidad mayor.

 Esto se debe a una mayor cantidad de carga en las placas.

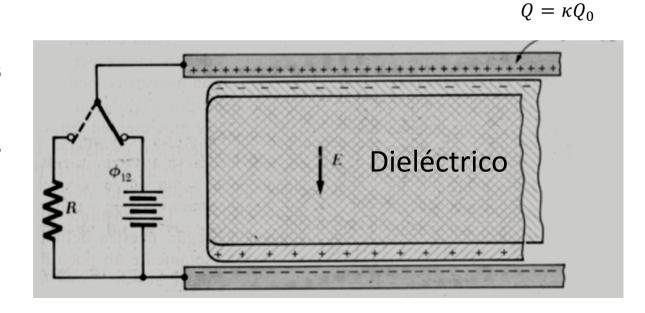


La batería mantiene la diferencia de potencial φ_{12} . Con una carga Q_0 , tenemos:

$$Q_0 = C_0 \varphi_{12}$$

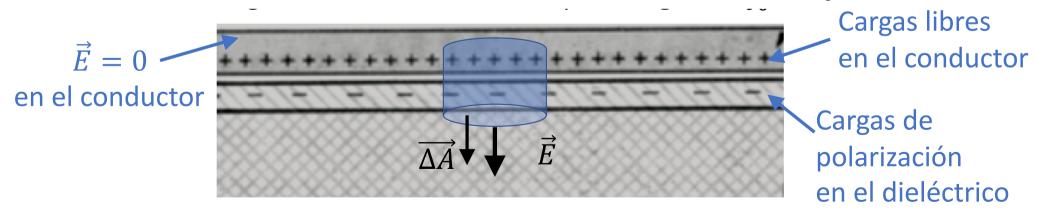
El campo eléctrico desplaza en el aislante las cargas positivas hacia abajo y las negativas hacia arriba. Capas no compensadas se ubican junto a las placas. En las placas hay ahora una carga mayor

$$Q = \kappa Q_0 \quad \kappa > 1$$



Cargas libres y de polarización

- En el vacío, el campo es $E = \frac{\varphi_{12}}{s}$
- Cuando metemos el dieléctrico, en todo el espacio, la diferencia de potencial es la misma (por acción de la batería) y la distancia es la misma con lo cual *E* no cambia.
- Esto quiere decir que la carga en el conductor Q, más la carga en el borde contiguo del dieléctrico tiene que ser igual a Q_0 .



Cargas libres y de polarización

• Entonces definiendo $\kappa>1$ tal que $Q=\kappa Q_0$, la carga en el borde contíguo del dieléctrico es

$$Q' = -(\kappa Q_0 - Q_0) = (1 - \kappa)Q_0$$

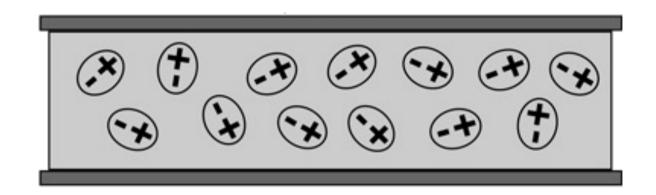
• κ es la constante dieléctrica

Tabla 10.1 Constantes dieléctricas de varias substancias κ

Substancia	Condiciones	Constante dieléctrica
Aire	Gas, 0° C, 1 atm	1,00059
Metano	Gas, 0° C, 1 atm	1,00088
Ácido clorhídrico, HCl	Gas, 0° C, 1 atm	1,0046
Agua H ₂ O	Gas, 110° C, 1 atm	1,0126
	Líquido, 20° C	80
Benceno, C_6H_6	Líquido, 20° C	2,28
Metanol CH ₃ OH	Liquido, 20° C	33,6
Amoníaco, NH ₃	Líquido, — 34° C	22
Aceite de transformador	Líquido, 20° C	2,24
Cloruro sódico, NaCl	Cristal, 20° C	6,12
Azufre, S	Sólido, 20° C	4,0
Silicio, Si	Sólido, 20° C	11.7
Polietileno	Sólido, 20° C	2,25-2 3
Porcelana	Sólido, 20° C	6,0-8,0
Cera de parafina	Sólido, 20° C	2,1-2,5
Vidrio pyrex 7070	Sólido, 20° C	4,00

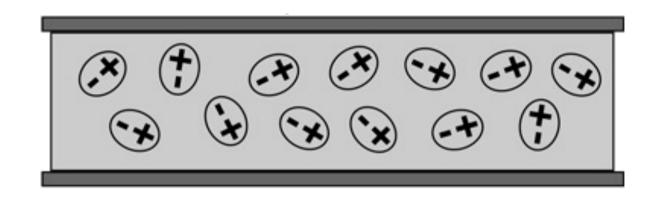
Origen de la respuesta dieléctrica

Moléculas dipolares permanentes o inducidas orientadas desordenadamente

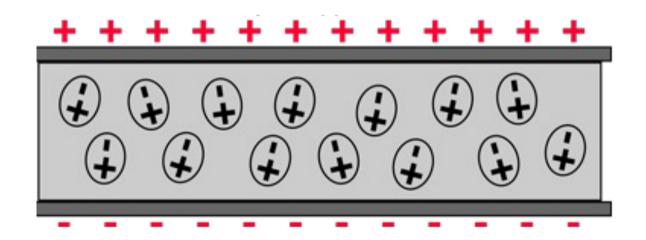


Origen de la respuesta dieléctrica

Moléculas dipolares permanentes o inducidas orientadas desordenadamente



La presencia de un campo externo orienta los dipolos



Polarización

• Definamos la **polarización** \vec{P} como la densidad volumétrica de momentos dipolares eléctricos en un dieléctrico. Si N es el número de dipolos por unidad de volumen dentro de un dieléctrico y \vec{p} es el momento dipolar promedio:

$$\vec{P} = N\vec{p}$$

• Para dieléctricos lineales \vec{P} es proporcional al campo externo \vec{E} :

$$\vec{P} = \varepsilon_0 \chi_e \vec{E}$$

• Donde χ_e es la susceptibilidad eléctrica (cuan fácilmente un dieléctrico se polariza en presencia de un campo externo).

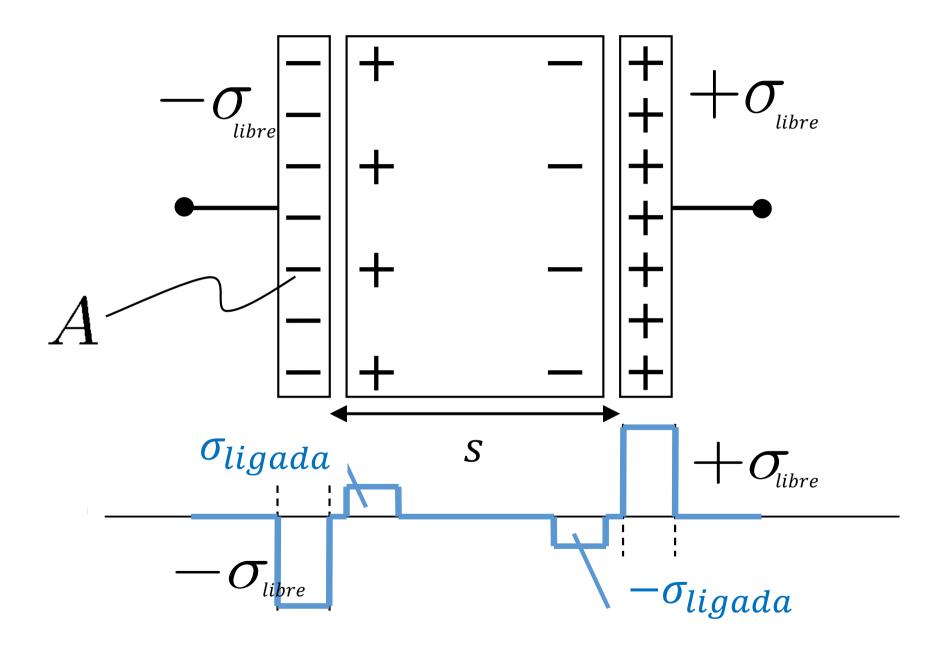
$$\frac{P}{\epsilon_0 E} = \chi_e$$

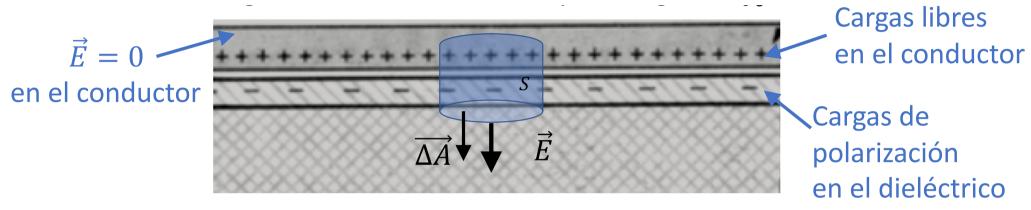
Cargas ligadas

- Por oposición a la carga libre en los conductores, se denomina carga ligada a la carga asociada a la polarización.
- Su distribución volumétrica ho_{ligada} se define como:

$$\rho_{ligada} = -\vec{\nabla} \cdot \vec{P}$$

• Definida así, en el caso del capacitor plano tenemos, σ_{ligada} es un exceso de carga superficial negativa de polarización frente a la placa conductora cargada positivamente y viceversa.





• Volviendo a nuestra superficie cerrada de Gauss:

$$\oint \varepsilon_0 \vec{E} \cdot \overrightarrow{da} = \iiint (\rho_{libre} + \rho_{ligada}) dV$$

• Como $\rho_{ligada} = -\overrightarrow{\nabla} \cdot \overrightarrow{P}$

$$\oint \varepsilon_0 \vec{E} \cdot \overrightarrow{da} = \iiint (\rho_{libre} - \vec{\nabla} \cdot \vec{P}) dV$$

• Por teorema de Gauss:

$$\oint \vec{P} \cdot \overrightarrow{da} = \iiint \vec{\nabla} \cdot \vec{P} \, dV$$

Entonces

$$\oint (\varepsilon_0 \vec{E} + \vec{P}) \cdot \overrightarrow{da} = \iiint \rho_{libre} \, dV$$

• El campo $\overrightarrow{D}=\varepsilon_0\overrightarrow{E}+\overrightarrow{P}$ se llama corriente de desplazamiento. Entonces:

$$\iint \overrightarrow{D} \cdot \overrightarrow{da} = \iiint \rho_{libre} dV \qquad \text{Ley de Gauss} \\
\text{para Dieléctricos}$$

• Para dieléctricos lineales $\vec{P} = \varepsilon_0 \chi_e \vec{E}$:

$$\vec{D} = \varepsilon_0 \vec{E} + \varepsilon_0 \chi_e \vec{E} = \varepsilon_0 (1 + \chi_e) \vec{E} = \varepsilon_0 \kappa \vec{E} = \varepsilon \vec{E}$$

- Donde $\varepsilon = \varepsilon_0 \kappa \ge \varepsilon_0$
- Entonces la Ley de Gauss para dieléctricos lineales dada una superficie cerrada S que encierra un volumen V:

$$\oint_{S} \varepsilon \vec{E} \cdot \overrightarrow{da} = \iiint_{V} \rho_{libre} \, dV$$

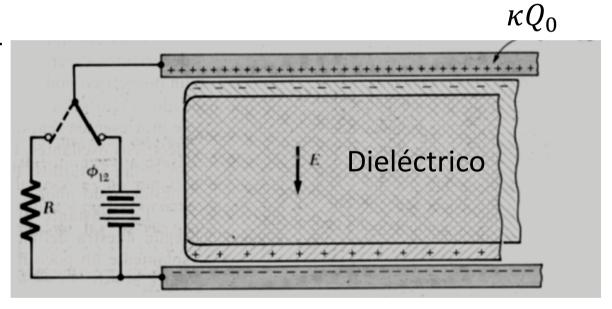
• Recordando el teorema de la divergencia, otra forma de escribir la ley de Gauss es:

$$\vec{\nabla} \cdot \vec{D} = \rho_{libre}$$

Esta es una de las cuatro ecuaciones de Maxwell del electromagnetismo, nos dice que las cargas son manantiales o sumideros de campo eléctrico

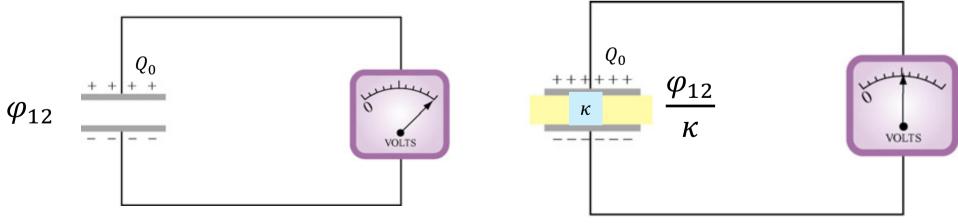
Dieléctrico en capacitor a potencial constante

- Colocamos un dieléctrico de constante κ llenando el espacio entre placas a potencial constante φ_{12}
- La carga en el conductor aumenta un factor κ .
- Al mantenerse el potencial en φ_{12} , la capacidad aumenta a κC .
- El campo total $E=\varphi_{12}/s$ en el dieléctrico no cambia

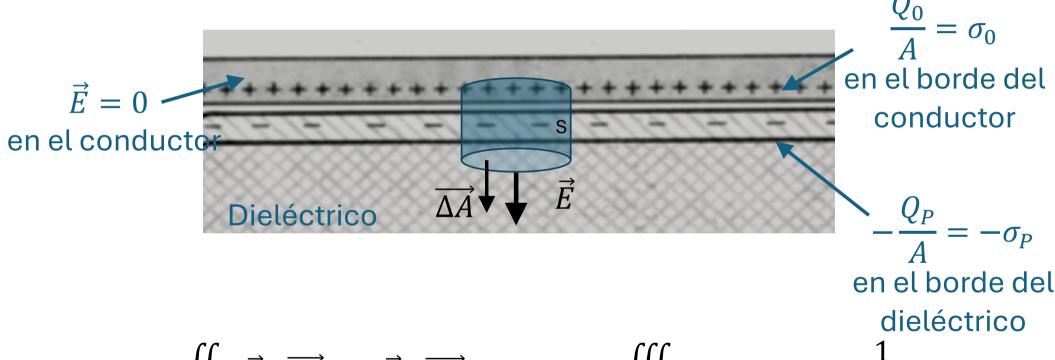


Dieléctricos en capacitor a carga constante

- Colocamos un dieléctrico de constante κ manteniendo la carga Q_0 .
- Experimentalmente se ve que el potencial cae a $\frac{\varphi_{12}}{\kappa}$, con lo cual, el campo cae a $\frac{\varphi_{12}}{s\kappa}$.
- La capacidad aumenta a $\kappa \mathcal{C}$.



Dieléctricos en capacitor a carga constante (sin batería)



$$\oint \int \varepsilon \vec{E} \cdot \overrightarrow{da} = \varepsilon \vec{E} \cdot \overrightarrow{\Delta A} = \varepsilon E \Delta A = \iiint \rho_{libre} dv = Q_0 \frac{1}{A} \Delta A$$

Dieléctricos en capacitor a carga constante (sin batería)

- Simplificando, tenemos $E = \frac{Q_0}{\varepsilon A} = \frac{Q_0}{\varepsilon_0 \kappa A}$
- Para el caso sin dieléctrico el campo vale $E\kappa = \frac{Q_0}{\epsilon_0 A}$
- Entonces, juntando las dos últimas expresiones para E:

$$\frac{Q_0}{\kappa \varepsilon_0 A} = \frac{Q_0 - Q_P}{\varepsilon_0 A} \Longrightarrow \frac{Q_0}{\kappa} = Q_0 - Q_P$$

• con lo cual la carga de polarización es

$$Q_P = \left[1 - \frac{1}{\kappa}\right] Q_0$$
, ó $\sigma_P = \left[1 - \frac{1}{\kappa}\right] \sigma_0$