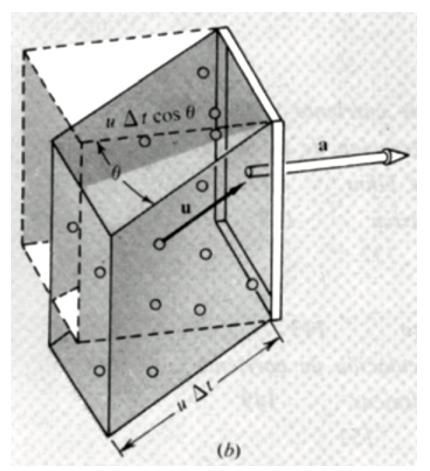

Corrientes estacionarias y circuitos

Corriente eléctrica

Carga en movimiento

- La corriente I por un cable es la cantidad de carga que atraviesa la sección transversal en un punto fijo por unidad de tiempo.
- Se expresa en Ampères: A = C/s
- J es la densidad superficial de corriente $J = \frac{I}{A}$ y se expresa en A/m²

Densidad de corriente y corriente


- En realidad importan las velocidades medias en una porción del espacio
- Para un portador de carga k, n_k cantidad de portadores por unidad de volumen

$$\vec{J}_k = n_k q_k \langle \vec{v}_k \rangle$$

• Entonces, si tengo muchas especies 'k'

$$\vec{J} = \sum_{k} \vec{J}_{k}$$

$$I = \int_{A} \vec{J} \cdot \overrightarrow{da}$$

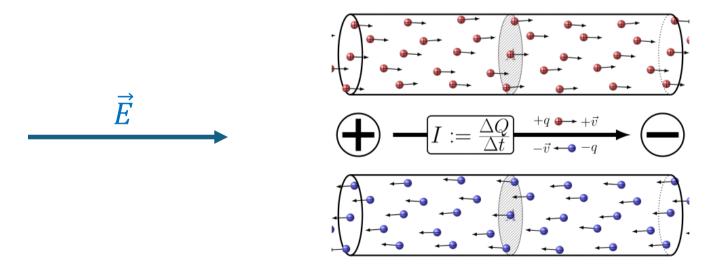
Corriente estacionaria y conservación de la carga

- Una corriente estacionaria es aquella cuyo campo \vec{J} no depende del tiempo en cada punto del espacio donde ocurre.
- Como vimos hoy, la divergencia de un campo permitía ver si había manantiales o sumideros de campo.
- El campo de densidad de corriente debe cumplir la conservación de la carga. Esta se escribe

$$\vec{\nabla} \cdot \vec{J} = -\frac{\partial \rho}{\partial t}$$

Esto quiere decir que el flujo saliente de cargas va a ir vaciando el diferencial de volumen de ellas, mientras que el flujo entrante contribuye a la acumulación de carga en el lugar.

Corrientes estacionarias

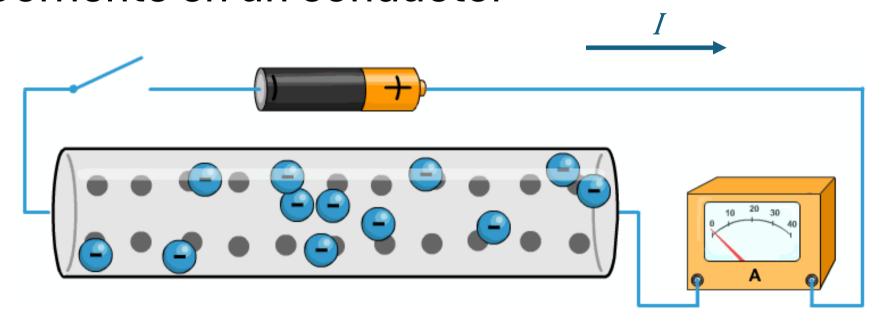

- En esta parte del curso nos centraremos en corrientes que no varían en el tiempo.
- Si la densidad de carga no varía en el tiempo, la conservación de la carga queda:

$$\vec{\nabla} \cdot \vec{l} = 0$$
 En todo punto del espacio

En otras palabras, toda carga que llega a un punto, continúa hacia otro lado

Transporte de carga

- El agente más común para producir y mantener el transporte de carga es el campo eléctrico.
- El campo eléctrico mueve a los portadores de signos distintos en distintos sentidos


Ley de Ohm

• Es una relación lineal empírica entre el \vec{E} y \vec{J} que se cumple para muchos materiales en un rango muy amplio de intensidades de campo.

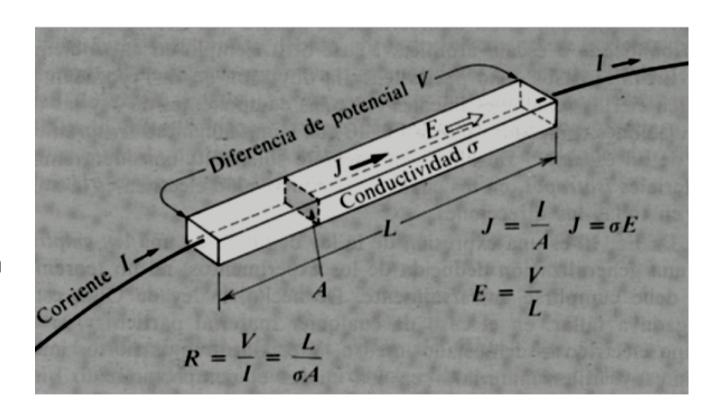
$$\vec{J} = \sigma \vec{E}$$

- σ es la conductividad del material
 - Constante en un rango determinado de condiciones
 - Es un escalar cuando el medio es isotrópico (no tiene en su estructura ninguna dirección privilegiada)

Corriente en un conductor

Los electrones libres en la banda de conducción circulan en respuesta a la diferencia de potencial entre los extremos del circuito mantenida por la batería, mientras que los núcleos del material conductor se mantienen quietos. Fijarse en el sentido de

Ley de Ohm


 Vamos a usar otra versión de la misma Ley de Ohm que relaciona a I y la diferencia de potencial V

$$V = IR$$

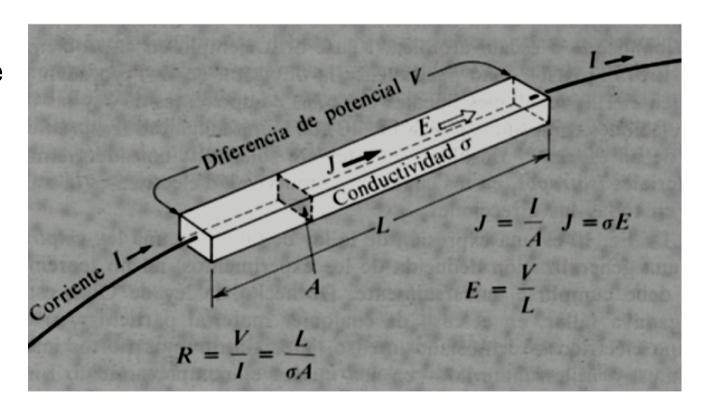
- R es la resistencia del conductor entre los dos terminales que están a una diferencia de potencial V.
- La unidad SI de R es el Ohm ($\Omega = \frac{V}{A}$)

Conductividad de una varilla conductora

- Sea una varilla de maciza de sección recta de área A y longitud L entre sus extremos.
- Una corriente estacionaria *I* circula a lo largo de la varilla.
- Entre los extremos hay una diferencia de potencial *V* .

Conductividad de una varilla conductora

 Dentro de la varilla, la densidad de corriente es


$$J = \frac{I}{A}$$

• El campo eléctrico es

$$E = \frac{V}{L}$$

• Entonces

$$R = \frac{V}{I} = \frac{LE}{AJ} = \frac{L}{A\sigma}$$

Conductividad y resistividad

• La conductividad σ tiene unidades de corriente por unidad de área dividido unidad de campo eléctrico. En el sistema SI:

$$[\sigma] = \frac{\frac{A}{m^2}}{\frac{V}{m}} = \frac{A}{Vm} = \frac{1}{\Omega m}$$

Conductividad y resistividad

• Entonces,

$$R = \frac{V}{I} = \frac{L\rho}{A}$$

• La inversa de la conductividad es la resistividad $\rho = \frac{1}{\sigma}$

$$[\rho] = \frac{\frac{V}{m}}{\frac{A}{m^2}} = \frac{Vm}{A} = \Omega m$$

TABLA 4.1

Resistividad y su recíproco, conductividad, para ciertos materiales

Material	Resistividad ρ	Conductividad o
Cobre puro, 2.73 K	$1,56 \times 10^{-6} \text{ ohm-cm} $ $1,56 \times 10^{-8} \Omega \cdot \text{m}$	$6.4 \times 10^{5} (\text{ohm-cm})^{-1}$ $6.4 \times 10^{7} (\Omega \cdot \text{m})^{-1}$
Cobre puro, 373 K	$2,24 \times 10^{-6}$ ohm-cm $2,24 \times 10^{-8} \ \Omega \cdot m$	$4.5 \times 10^{5} \text{ (ohm-cm)}^{-1}$ $4.5 \times 10^{7} (\Omega \cdot \text{m})^{-1}$
Germanio puro, 273 K	200 ohm-cm 2 Ω • m	$0.005 \text{ (ohm-cm)}^{-1}$ $0.5 \text{ (}\Omega \cdot \text{m)}^{-1}$
Germanio puro, 500 K	$0.12 \text{ ohm-cm} \\ 1.2 \times 10^{-3} \ \Omega \cdot \text{m}$	8,3 $(\Omega \cdot m)^{-1}$ 830 $(\Omega \cdot m)^{-1}$
Agua pura, 291 K	2.5×10^7 ohm-cm $2.5 \times 10^5 \Omega \cdot m$	$4.0 \times 10^{-8} \text{ (ohm-cm)}^{-1}$ $4 \times 10^{-6} \text{ (}\Omega \cdot \text{m)}^{-1}$
Agua del mar (varía con la salinidad)	25 ohm-cm 0,25 Ω ⋅ m	0,04 (ohm-cm) ⁻¹ 4 ($\Omega \cdot m$) ⁻¹

Nota: 1 ohm-metro = 100 ohm-cm.

Disipación de la energía en una resistencia

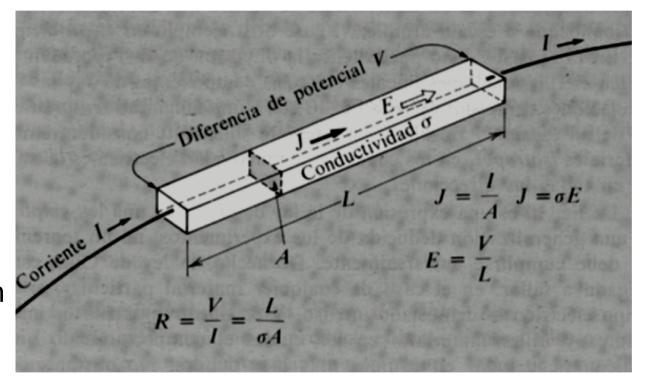
- Sea \vec{F} una fuerza para mover un portador de carga q en un campo \vec{E} $\vec{F}=q\vec{E}$

ullet El trabajo de $ec{F}$ por unidad de tiempo es (suponiendola estacionaria)

$$\frac{dW}{dt} = \vec{F} \cdot \frac{\vec{dl}}{dt} = \vec{F} \cdot \vec{v} = q\vec{E} \cdot \vec{v}$$

• La energía potencial es transformada de este modo en calor y $P=\frac{dW}{dt}$ es la potencia disipada.

Disipación de la energía en una resistencia


 Entonces en una dimensión y suponiendo que en Δt pasan N portadores de carga q por el área A

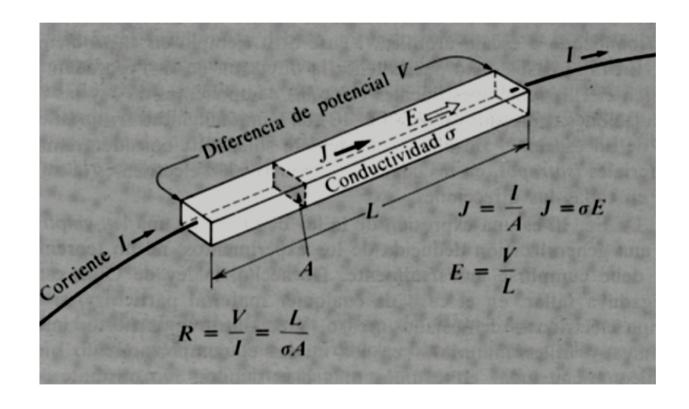
$$P = NqEv$$

donde $\Delta L = v \Delta t$

• Entonces por ley de Ohm

$$P = \frac{Nq\rho J\Delta L}{\Delta t}$$

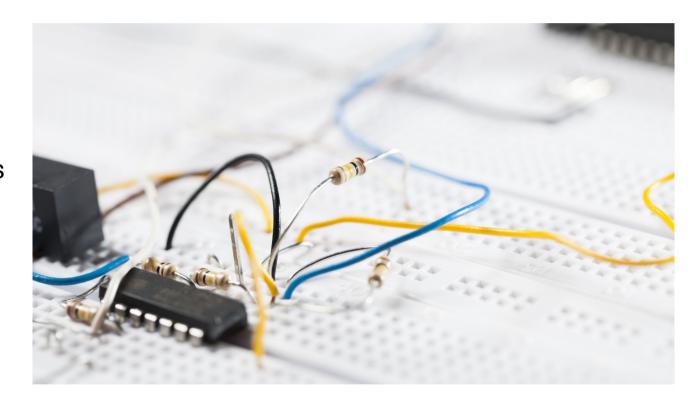
Disipación de la energía en una resistencia


• Entonces como

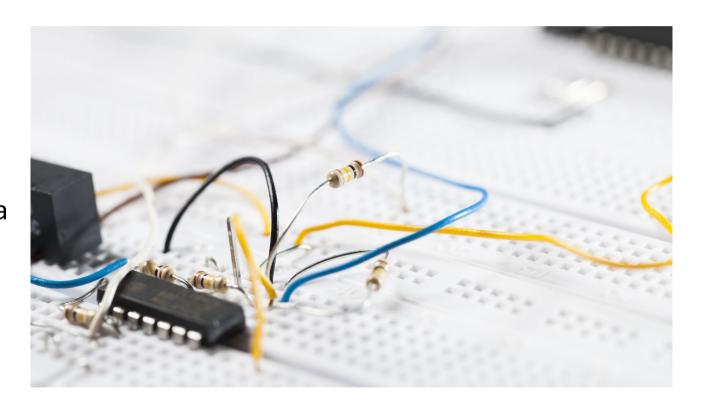
$$I = \frac{Nq}{\Delta t} \quad y \quad J = \frac{I}{A}$$

$$P = \frac{I^2 \rho \Delta L}{A}$$

• Lo que equivale a

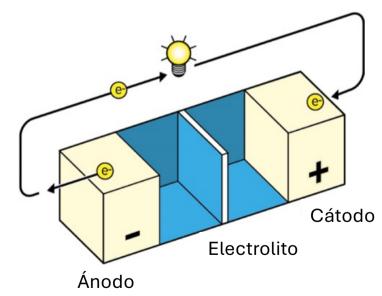

$$P = I^2 R$$

La potencia P o energía disipada por unidad de tiempo en SI se mide en Watt

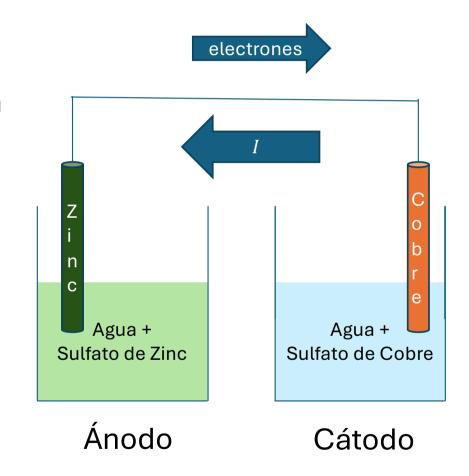

Circuitos

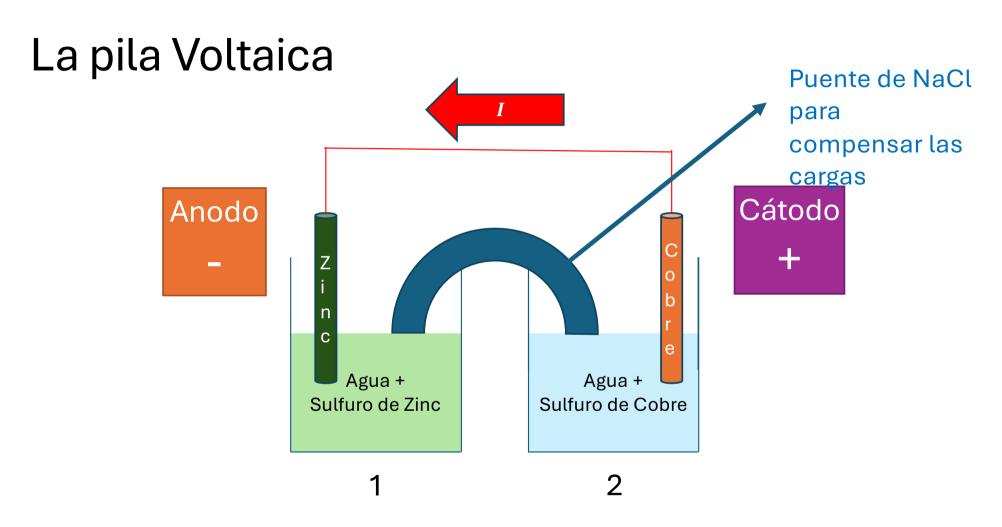
- Un circuito o red eléctrica es una agrupación de elementos unidos unos a otros por conductores de resistencia despreciable (cables).
- La corriente circula por él, movida por una fuerza electromotriz.

Elementos de un Circuito

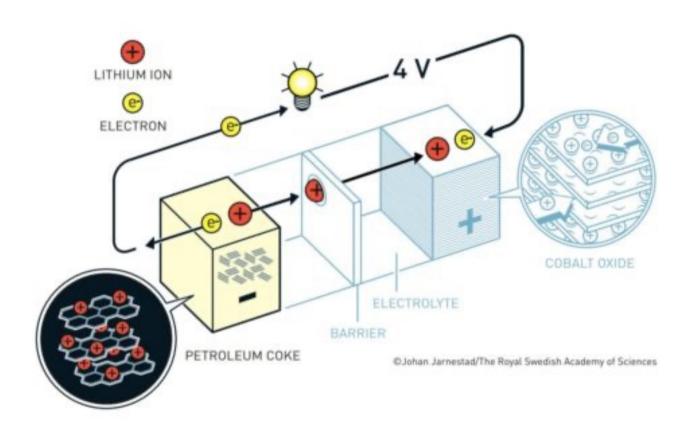

- Cables: Conductores perfectos, conducen corrientes sin resistencia.
- Fuerza electromotriz (FEM): diferencia de potencial que obliga a la corriente circular por el circuito.
- Elementos: Resistores, capacitores, diodos, LED, bobinas

Fuerza electromotriz (FEM) y baterías


- La FEM es la diferencia de potencial generada por una fuente no eléctrica (o inducción)
- Las baterías producen FEM a partir de procesos químicos que ocurren en unidades llamadas celdas.


Principio de funcionamiento de una batería

La pila Voltaica


- Basado en oxidación/reducción
- Los iones Cu⁺⁺ en el recipiente 2 van a ser más fuertes en 'reclamar' electrones que los iones Zn⁺⁺.
- Electrones provenientes de la barra de Zn neutro (oxidación) van a viajar hacia la barra de cobre, creando una corriente I desde el cobre al zinc.
- Los electrones van a neutralizar los iones Cu⁺⁺ que pasan a engrosar la barra del recipiente 2 (reducción).

FEM máxima = 1.1V por celda

Batería de Litio

