
Gúıa 5: Cuerpo negro, efecto fotoeléctrico, efecto Compton

Nota: Los problemas se explican en forma esquemática adrede para que se realice una lectura cŕıtica y de
elaboración personal. Sin embargo, si encuentra uno o varios errores por favor escŕıban a carlosv@df.uba.ar,
gracias. Carlos Vigh

Problema 5: a) Suponiendo que la densidad de potencia espectral (enerǵıa espectral multiplicada por tiempo)
uν(T ) depende solamente de ν, T y de las constantes dimensionales c (velocidad de la luz en el vaćıo) y kB (con-
stante de Boltzmann = R/Na) mostrar v́ıa analisis dimensional que

uν(T ) = Π
ν2kBT

c3

donde Π es un número real.
b) Suponiendo que existe una nueva constante fundamental que interviene en el problema, mostrar que

uν(T ) =
ν2kBT

c3
f

(
hν

kBT

)
=

hν3

c3
f1

(
hν

kBT

)
donde

f1 (x) ≡
f(x)

x

Ayuda: Uno tendrá una nueva constante adimensional Π′ tal que Π = f (Π′) . Mostrar que no se pierde
generalidad escribiendo Π′ = ανTχ con α una combinación de c, kB y la nueva constante. Determine χ usando
la ley de Stefan-Boltzmann. Se obtiene la forma exacta del resultado definiendo, al final, α ≡ h/kB . Wien,
usando datos experimentales, propuso f1(x) = exp (−x).
c) Mostrar que se puede escribir el resultado anterior de la forma siguiente

uλ(T ) =
hc

λ5
g(y)

con g(y) ≡ yf( 1y ), y ≡ λkBT/(hc). Usando este último resultado, demostrar la ley de desplazamiento de Wien

λmT = cte

Solución:
La idea es a partir de análisis dimensional ver cómo se pueden reobtener las leyes que ya tenemos.
A partir del teorema Π busquemos el número adimensional buscando con el conjunto de variables que nos
interesan:

Π · cα · kβB · T γ · νδ · uϵ (1)

Nótese que lo que se busca modelar es densidad de potencia espectral, esto es en términos dimensionales,
potencia, por unidad de área y espectro (es decir, longitud de onda).
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agrupando convenientemente se llega a que hay que resolver el siguiente sistema:

α+ 2β − ϵ = 0 (3)

α+ 2β + δ + ϵ = 0 (4)

β + ϵ = 0 (5)

β − γ = 0 (6)



Resolviendo este sistema se llega a que:

uν =
kBTν

2

c3
Π (7)

b) Proponemos una nueva constante adimensional:

Π = f(Π′) siendo Π′ = ανTχ (8)

Aśı que ahora podemos reescribir u como:

uν =
kBTν

2

c3
f(Π′) =

kBTν
2

c3
f(ανTχ) (9)

Para determinar χ usamos la ley de Stephan-Boltzmann:

σT 4 =

∫ ∞

0

uν(T )dν =
kT

c3

∫ ∞

0

ν2f(ανTχ)dν (10)

para continuar hacemos el siguiente cambio de variables: z = ανTχ y dz = αTχdν, aśıla integral queda:

σT 4 =
kT

c3

∫ ∞

0

z2

T 2χ
f(z)

1

αTχ
dz =

kT 1−3χ

αc3

∫ χ

0

z2f(z)dz (11)

Para mantener la adimensionalidad, χ = −1, si α = h/k, entonces

uν =
kBTν

2
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(12)

Se puede reescribir esta ley proponiendo una función que elimine la temperatura de la constante adimensional
original: f(x) = xf1(x)

uν =
hν3

c3
f1

(
hν

kT

)
(13)

c) Procedamos conforme a lo pedido: g(y) = yf(1/y) donde y = λ
kBT

hc
queda de la siguiente manera:

g(y) =
kBT

hν
f

(
hν

kBT

)
(14)

Retomemos la expresión de uν :

uν =
hν3

c3
g(y) (15)

Dado que ν =
c

λ
⇒ dν = − c

λ2
dλ

uν(T )dν = −uν(T )
c

λ2
dλ = −hc

λ5
g(y)dλ = −uλ(T )dλ (16)

En consecuencia:

uλ(T ) =
hc

λ5
g

(
λ
kBT

hc

)
=

(
kBT

hc

)5
1

y5
hc g(y) (17)

Proponiendo la forma de Wien:

uλ(T ) =

(
kBT

hc

)5
hc

y5
ye−1/y (18)

Falta derivar respecto de y, igualar a cero y se obtiene la ley de desplazamiento.
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