SciDAVis: Parte I

Contenido: Importar datos, calcular estimadores estadísticos, trabajar con subconjuntos de datos.

Al abrir SciDAVis vemos la siguiente página de inicio:

1

Al igual que Origin, SciDAVis nos permite trabajar con tablas, gráficos, notas, etc.

Para visualizarlos correctamente nos conviene activar el explorador de proyecto con Ver -> Explorador de proyecto o ctrl + e

Acá aparecerán nuestras tablas y gráficos. Podemos por ejemplo ocultarlos tocando el botón rojo de cerrado en las ventanas de cada uno y volver a visualizarlos clickeando su nombre en el explorador

Para <u>importar datos</u> vamos a **Archivo** -> **Importar ASCII** -> seleccionamos nuestro archivo de datos prestando atención a las opciones

EciDAVis - sin título Archivo Editar Ver Programación Gráfico Análisis Tabla Ventana Ayuda 🗅 🕞 🛩 🖀 🔚 🔚 🖨 🧶 🔯 🖽 🛆 D Tabla2 - C:/Users/constanza/Desktop/Datos laboratorio/s... X Descripción ⊞1[X] Tipo Fórmula . 1 1,6 Aplicar 2 1,94 Ξ Tipo: Numérico 3 1,85 Automático (e) Formato: -4 1,78 • Digitos decimales: 6 5 1,72 1,97 1,72 1,9 1,75 1,69 Tipo de columna seleccionado: n 1 Precisión doble × valores con punto flotante ч Ejemplo:123.123 2 2,06 1,81 1,93 1,87 1,78 11 17 15 14 15 In 1,78 1,84 2,07 1,88 1,84 1,9 1,6 17 IX 14 /11 11 11 1,88 1,75 15 14 15 2 1,75 /h 1,63 11 X 2 1,72 1,72 1,72 1,84 1,97 1,84 1,75 14 311 51 41 ** 44 17

Se cargan los datos en la columna 1

Para seleccionar la columna hacemos click en donde dice **1[X]**, la columna se colorea azul.

					n A	
			16661	子 子) 在	ਸ	 ▲
						₩°
		Tabla2 - C:/l	Jsers/constan	za/D	eskto	pp/Datos
		- 4 5 2 7				Decerie
		HI[X]				Descrip
	1	16				
		-/-				
	2	1,94		\equiv		Tino
	3	1.85				npo.
			-			Formato
	4	1,78				
	5	1.72				Digitos
	n	1.97				Tipo de
		1,72				Precisio
	×	1,9				valores
		1,/5				Fiempl
		2				-Jeb.
	17	2,06				
	14	1,81				
	14	1,93				
	In	1.78				
	17	1,84				
	IX	2,07				
ч		1,88	-			
	71	1.9				
	"	1,6				
	14	1,88				
	14	1,/5				
	7m	1.75				
		1,63				
	/x	2				
	511	1,72				
	41	1.72				
	47	1,84				
	**	1,97				
8	44	1,84		-		
		1,/3				

Vamos a Análisis -> Estadística de columna

🛃 Sc	:iDAVis - sin	i título	1.0		and the second second	•
Archi	vo Editar Ve	er Programación	Gráfico	An	álisis Tabla Ventana Ayuda 🔒	
	🗄 🗃 🛱 🖀] 🖪 🧔 🛃 🔍 !	m a	Σ∥	Estadística de columna	-¢-
LE	70 I I I I I I I I I I I I I I I I I I I		¥ 🚺 🎄	E	Estadística de Fila	
Tabla2 - C:/Users/constanza/Desktop/Da					FFT	
	⊞1[X]	<u> </u>	Desc		Correlacionar Autocorrelacionar	
1	1,6				Convolucionar	
2	1,94	=			Deconvolucionar	
3	1,85		lipo:		Asistente de ajuste Ctrl+Y	
4	1,78		Form	ato	Automático (e)	
5	1.72		Digit	os d	lecimales: 6	
n	1,97		Tipo	de	columna seleccionado:	

El programa nos proporciona la siguiente información:

8	Columna[]	⊪Filas[Y]	⊞Media[Y]	⊞DesvEstán		⊞Suma[Y]	⊞iMax[Y]	⊞Max[Y]	⊞iMin[Y]	⊞Min[Y]	⊞N[Y]
1	-	[1:200]	1,8041	0,106696	0,0113841	360,82	18	2,07	48	1,59	200

Columna: columna analizada

Filas: filas analizadas

Media: valor medio o promedio

DesvEstándar: desvío estándar

Varianza:varianza

Suma: suma total de los datos (esto no nos interesa)

iMax: posición del Max en la lista

Max: valor más grande que figura en la lista de datos

iMin: posición del Min en la lista

Min: valor más chico que figura en la lista de datos

N: número total de datos procesados

or estándar calculando: $\frac{DesvEstandar}{=}$

6

Cómo trabajar con subconjuntos de datos:

Por ejemplo, queremos analizar los primeros 30 datos de nuestra lista. Una forma de hacerlo es volver a importar el archivo en una nueva columna

⊞1[X]	A Descripción Tipo Fórmula Ila
1,6 1,94	Anlicar
1,85 1,78	Timportar archivo(s) ASCII
1,72 1,97 1,72	Look in: 🍋 C:\Users\constanza\Desktop\Datos laboratorio 🔹 🔾 🗿 🗿 📑 📰 🗏
1,9 1,75 1,69 2 2,06 1,81 1,93	My Computer constanza
1,87 1,78 1,84 2,07 1,88	File name: set1-prueba.txt Open
1,84 1,9	Files of type: Todos los archivos (*) Cancel
1,6 1,88 1,75	Importar cada archivo cono: Nuevas columnas UUsar primera fila para nombrar columnas
2	Separador: TAB Quitar espacios en blanco de los finales de línea
.,63	Ignorar las primeras 0 líneas 🗦 🗔 Simplificar espacios en blanco
,72 ,72	✓ Datos numéricos Separadores decimales 1 000,0 ▼
1,72 1,84 1,97 1,84	Recordar las opciones de arriba
1,75 1,7 1, <u>69</u>	

Ahora tenemos dos columnas iguales de 200 datos.

En la segunda columna, seleccionamos los datos desde la fila 31 a la fila 200 clickeando el primero y arrastrando hasta el último (o usando **shift**).

> Los borramos con **Del** o click derecho -> Limpiar

Otra forma de trabajar con un subconjunto de datos es copiar y pegar los primeros 30 en una nueva columna.

Para eso hacemos click derecho -> Agregar Columna

Seleccionamos los primeros 30 datos de la primer columna y hacemos **click derecho** -> **Copiar**, luego seleccionamos el primer lugar de la segunda columna y hacemos **click derecho** -> **Pegar**

	⊞1[X]	⊞2[Y]		^
	1,6			
/	1,94		Gráfico	
4	1,85		11 1 1 17	
+	1,78		Llenar la selección con	
•	1,72	u	Castan	
•	1,97	ð	Cortar	
1	1,72	E .	Copiar	
*	1,9		D D	
-1	1,75		Pegar	
	1,69		Limpiar	
	2		Emplai	
11	2,06	Chillin .	Normalizar la Selección	
1.4	1,81	dillitib	Normalizar la Selección	
14	1,93	F(ar)	Acignar Eérmula	
15	1,87	I(X)	Asignal Formula	AIU
in	1,78		Recalcular	Ctr
1.1	1,84			
N N	2,07		Mostrar Comentarios	
ч	1,88		Hostial contentatios	
211	1,84	==	Ocultar Controles	F12
11	1,9		Mada da Edición da Eórmula	
"	1,6		modo de Edición de Formula	
14	1,88		Colonaionan Tada	
14	1.75		Seleccionar louo	

⊞1[X]	⊞2[Y]	
1,6	1,6	
1,94	1,94	
1.78	1.78	
1,72	1,72	
1,97	1,97	
1,72	1,72	
1,9	1,9	
1,/5	1,/5	
2	2	
2.06	2.06	
1,81	1,81	
1,93	1,93	
1,87	1,87	
1,/8	1,/8	
1,84	1,84	
1.88	1.88	
1.84	1.84	
1,9	1,9	
1,6	1,6	
1,88	1,88	
1,/5	1,/5	
1 75	1 75	
1.63	1.63	
2	2	
1,72	1,72	
1,72	1,72	
1,/2		
1,84		
1.84		

IMPORTANTE: Puede que el programa suponga incorrectamente que los nuevos datos son de tipo "Texto". Debemos cambiar esto para poder seguir trabajando. No olvidar clickear APLICAR luego de cambiar a tipo numérico!

Users/constanza/Desktop/Dat	os de prueba/set1-prueba.txt	Descrinción Tipo		
1,6 1,94 1,85 1,78 1,72 1,97 1,97 1,97 1,97 1,97 1,97 1,97 1,99		Aplicar Tipo: Texto Formato: Texto Tipo de columna sele Texto	eccionado:	
2 2.06 1.81 1.93 1.87 1.87 1.87 1.84 2.07 1.88 1.84 1.9	•	Ejemplo:Hola mundo	91	
1,6 1,88 1,75 2 1,75 1,63 2				Aplicar
1,72 1,72			Tipo:	Numérico 🔹
			Formato:	Automático (e)

Repitiendo los pasos de la diapositiva 5 en la segunda columna obtenemos datos estadísticos del nuevo subconjunto.

	Tabla1 - C:	/Users/constanza/	Desktop/Datos laboratorio/set1	-prueba.txt			x					
	⊞1[X1]	₽2[X2]	Tabla1-EstadísticaC	olumnas - Estadí	ísticas de filas d	le Tabla1						- 0
/ × 4 > n / × .	1,6 1,94 1,85 1,78 1,72 1,97 1,72 1,97	1.6 1.94 1.85 1.72 1.97 1.72 1.97 1.72	BColumna[; BFilas[Y 2] ⊞Media[Y] 1,83167 Digitos decimi	⊞DesvEstán ⊞ 0,130545 0, ales: 6	Varianza[\ ,017042	⊞Suma[Y] 54,95	⊞iMax[Y] 18	⊞Max[Y] 2,07	⊞iMin[Y] 1	⊞Min[Y] 1,6	⊞N[Y] 30
	$\begin{array}{c} 1.75\\ 1.69\\ 2\\ 2.06\\ 1.81\\ 1.93\\ 1.87\\ 1.78\\ 1.78\\ 1.78\\ 1.84\\ 2.07\\ 1.88\\ 1.75\\ 1.88\\ 1.75\\ 1.6\\ 1.88\\ 1.75\\ 1.6\\ 2\\ 1.75\\ 1.63\\ 2\\ 1.72\\ 1.72\\ 1.72\\ 1.72\\ 1.72\\ 1.72\\ 1.84\\ 1.97\\ 1.72\\ 1.72\\ 1.78$	1./5 1.69 2 2.06 1.81 1.93 1.87 1.78 1.78 1.84 2.07 1.88 1.84 1.9 1.6 1.88 1.75 2 1.75 1.63 2 1.72 1.72 1.72		Tipo de colur Precisión dob valores con p Ejemplo:123.	nna seleccionac le unto flotante 123	lo:						