Photogates: Cálculo de la velocidad de un móvil

Supongamos que se tiene un móvil (con una cebra) que se desliza por una pista y que un photogate detecta su paso por un punto de la pista. Para este ejemplo consideramos que la cebra tiene las siguientes distancias características L_1 y L_2 :

1- ¿Cómo obtenemos la frecuencia de muestreo a partir de nuestros datos experimentales?

La señal se muestrea cada T segundos (T: tiempo característico de muestreo) siendo $f_m = 1/T$ la frecuencia de muestreo. Para determinar f_m tengo que hallar el valor de T. Esto se puede hacer de la siguiente manera:

Si Col(A) es el tiempo y Col(B) es el voltaje medido, voy a Set Colum Values y calculo el tiempo transcurrido entre dos medidas consecutivas: Col(A)[i+1] - Col(A)[i]

						1.46.47	-(.)	9(1)
	A(X)	B(Y)	C(Y)	Long	Name			
Long Name					Units			
Units				Com	ments			
Comments				Spar	klines			
Sparklines			Set Values - [ORIGINAL]test22!Col(C)					
			Formula wcol(1) Col(A) F(x)		1	0	4,734868	0.0002
1	0	4,734868			2	0.0002	4,732356	0.0002
2	0,0002	4,732356	Row (i): From Auto To Auto		3	0,0004	4 73989	0.0002
3	0,0004	4,73989			4	0,0006	4 732356	0.0002
4	0,0006	4,732350			5	0,0008	4,702000	0,0002
C	0,0008	4,121334	K< << >> >> Co((C) =		6	0,0000	4,727054	0,0002
7	0,001	4,734000			7	0,0012	4,734000	0,0002
7	0,0012	4,734000	Col(A)[1+1]-Col(A)[1]		(0,0012	4,734808	0,0002
9	0.0014	4,734868		· · · · · · · · · · · · · · · · · · ·	8	0,0014	4,73989	0,0002
10	0.0018	4 729845			9	0,0016	4,734868	0,0002
11	0.002	4 734868			10	0,0018	4,729845	0,0002
12	0.0022	4,732356			11	0,002	4,734868	0,0002
13	0.0024	4,737379			12	0,0022	4,732356	0,0002
14	0,0026	4,732356	Recalculate Manual 🔻 Apply Cancel OK 😵		13	0,0024	4,737379	0,0002
15	0,0028	4,729845			14	0,0026	4,732356	0,0002
16	0,003	4,732356			15	0,0028	4,729845	0,0002
17	0,0032	4,742401			16	0,003	4,732356	0,0002
↓ test22 /					17	0,0032	4,742401	0,0002
					ost22 /			
				1 7 1 4	COLLE F			

Cuando hacemos esto vemos que las mediciones se registraron cada 0.0002 s (ver columna C). Entonces, $f_m = \frac{1}{T} = \frac{1}{0.0002 \ s} = 5000 \ Hz$

Y la incerteza en el tiempo es $\Delta t = 0.0002 s$

2- Variación de la velocidad en el tiempo

Sabemos que la velocidad es $v = \frac{\partial x}{\partial t}$. ¿Cómo estimo v a partir de mis datos experimentales?

Experimentalmente es posible estimar la velocidad media de la siguiente manera:

 $v = \frac{L}{T_m} = \frac{desplazamiento}{intervalo \ de \ tiempo}$

Siendo T_m el intervalo de tiempo correspondiente al desplazamiento L del móvil.

Hay varias formas de estimar la velocidad: Puedo considerar L = L1 + L2.

¿Por qué convendría hacerlo de esta forma en vez de considerar por separado *L1* y *L2*?

Vimos que el photogate tiene un sensor de luz (detector) y un led emisor. Si un objeto obtura el haz del led cambia el valor de voltaje (de 0 a 5 V).

El led tiene un cierto tamaño y su haz diverge rápidamente. Estas características podrían afectar la medición de los tiempos dependiendo de si la rendija está en la zona *L1* (obstrucción) o la zona *L2* (ventana). Para evitar este problema consideramos L = L1 + L2.

3

Variación de la velocidad en el tiempo

Si considero L = L1 + L2. En este caso T_m será el intervalo de tiempo definido por los círculos rojos.

¿Cómo obtengo *T_m*?

Una posibilidad es usar la opción *Worksheet Query* de Origin. Dada una lista de datos, esta opción permite extraer (o filtrar) aquellos datos que cumplan con alguna condición específica.

1- Seleccionar la columna Voltaje.

2- Ir a Worksheet > Worksheet Query > Seleccionar las columnas que se quieren usar y escribir la condición:

Col(B)[i] - Col(B)[i-1] > 4

Supongo que en la columna B están los datos de voltaje.

¿Por qué escribo esta condición?

Si hago la operación: i – (i-1) > 4

- La mayoría da cero (o cercano a este valor considerando los datos reales).
- > En los flancos de subida (datos marcados con círculos rojos): i (i+1) ~ 5
- En los flancos de bajada (datos marcados con cuadrados amarillos): i (i+1) ~ -5
- > El programa guarda los datos del elemento *i* que cumplen la condición dada.

Esta operación genera una nueva tabla de datos con la información filtrada (Origin se queda con el elemento *i*).

	A(X)	B(Y)	C(Y)	D(Y)
Long Name	tiempo	Señal	Tm	t_prom
Units				
Comments				
1	0,13871	4,68178	0,01843	0,14793
2	0,15714	4,69433	0,018	0,16614
3	0,17514	4,67676	0,01714	0,18371
4	0,19229	4,68931	0,01614	0,20036
5	0,20843	4,6868	0,01528	0,21607
6	0,22371	4,68429	0,01472	0,23107
7	0,23843	4,68178	0,014	0,24543
8	0,25243	4,68178	0,01357	0,25921
9	0,266	4,68931	0,01314	0,27257
10	0,27914	4,6868	0,01271	0,2855
11	0,29186	4,68429	0,01229	0,298
12	0,30414	4,68429	0,012	0,31014
13	0,31614	4,6868	0,01143	0,32186
14	0,32757	4,55879		
15				
40				

De los datos filtrados (flanco de subida) solo me interesa la columna A que corresponde a los tiempos.

• Calculo el tiempo transcurrido entre dos **tiempos filtrados** consecutivos (1 y 2, 2 y 3, 3 y 4,...):

$$T_m = tiempo(i+1) - tiempo(i)$$

En Origin:

Set Colum Values \rightarrow Col(A)[i+1] – Col(A)[i]

De esta manera obtengo el intervalo de tiempo T_m .

• t_{prom} es el tiempo medio transcurrido entre 2 valores consecutivos de **tiempo filtrado** (1 y 2, 2 y 3, 3 y 4,...). En Origin:

Set Colum Values \rightarrow (Col(A)[i+1] + Col(A)[i])/ 2

¿Cómo obtengo *L* = *L*1 + *L*2?

Supongamos que en la columna A tenemos las mediciones de L1 y L2. Queremos calcular (1 y 2, 3 y 4, 5 y 6,...).

En Origin: Set Colum Values \rightarrow Col(A)[2^{*}i] + Col(A)[2^{*}i-1]

¿Cómo obtengo la velocidad media?

$$v = \frac{L}{T_m}$$

¿Qué tiempo le asocio a cada velocidad?

Para responder esta pregunta tengo que ver que tiempos usé para calcular la velocidad. t_{prom} es el tiempo medio transcurrido entre 2 valores consecutivos de **tiempo** (1 y 2, 2 y 3, 3 y 4,...).

¿Cómo calculo los errores de L y V? Hay que propagar errores.

Comentario: supongamos que midieron L1 Y L2 con calibre y consideraron asignar un error = 0,02 mm. Si grafican velocidad en cm/s entonces el error es 0,002 cm. Tengan cuidado con las unidades!! ESTO AFECTA SIGNIFICATIVATIVAMENTE EL ERROR DE *v*.

Esta ta	bla no	va en el	informe

Equation	y = a + b*x		
Weight	Instrumental		
Residual Sum of Squares	1,25581		
Pearson's r	0,99937		
Adj. R-Square	0,9986		
		Value	Standard Error
veloc	Intercept	22,03622	0,53985
veloc	Slope	204,6009	2,41812

Figura 1: Variación de la velocidad en función del tiempo. Parámetros de la curva de ajuste: a = (22,03 \pm 0,54) cm/s y b = (204,6 \pm 2,4) cm/s², siendo y = a + b.x. Coeficiente de Pearson: 0,999. χ^2 reducido = 0,14.

Sigue valiendo lo que vimos en las clases anteriores:

1- Grafico el error en las dos variables.

2- Para aplicar cuadrados mínimos ubico en el eje x la variable medida con mayor precisión (menor error relativo).

3- Nombre en todos los ejes con sus respectivas unidades.

4- No dejar en el gráfico la tabla con los valores del ajuste. Reescribir esa información en el cuerpo del informe o en el epígrafe con sus respectivas unidades y respetando el criterio de cifras significativas.

Gráfico de residuos

Pero Origin también me informa los valores (ver solapa FitLinearCurve1)

Copio los datos en una nueva tabla y agrego el error de la variable del eje y (en este caso la velocidad).

	A(X)	B(Y)	C(yEr±)
Long Name	t_prom	Residuos	error
Units			
Comments			
1	0,16614	0,193	0,64074
2	0,18371	-0,47486	0,70677
3	0,20036	-0,21594	0,79582
4	0,21607	0,48745	0,89169
5	0,23107	0,00337	0,96135
6	0,24543	0,46307	1,059
7	0,25921	0,2359	1,13074
8	0,27257	-0,04457	1,20495
9	0,2855	-0,06595	1,28698
10	0,298	-0,31154	1,36955
11	0,31014	-0,32509	1,44351
10			

