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Resumen

En este trabajo se estudió la vida media del muón mediante la detección de su paso y
posterior decaimiento en un arreglo de tres módulos centelladores. A partir de las señales re-
gistradas con una placa DRS4, se identificaron eventos con dos picos en una misma ventana
temporal, correspondientes al muón y al electrón emitido en su desintegración. Se estimaron
los parámetros del modelo —la vida media del muón y la probabilidad de detección real— uti-
lizando el test de máxima verosimilitud para una distribución exponencial truncada. También
se evaluó la eficiencia del detector y se aplicó el test de Wilks para determinar intervalos de
confianza. El valor obtenido para la vida media resultó compatible con el tabulado, dentro de
las incertezas asociadas al muestreo limitado y a la ventana temporal reducida.

1. Introducción

Según el Modelo Estándar hay 17 part́ıculas elementales, las cuales componen toda la materia
tal cual la conocemos. [1]El muón, descubierto en 1936, es una de ellas. Esta part́ıcula tiene 207
veces la masa del electrón y su misma carga. [2] Al igual que este último, pertenece al grupo
de los leptones, que son aquellas part́ıculas que interactúan eléctricamente y débilmente, pero
no experimentan interacciones fuertes. Los muones son inestables (ya que decaen mediante una
interacción débil en un electrón, un antineutrino electrónico y un neutrino muónico) teniendo una
vida media en torno a los 2,2 µs en su marco de referencia. Este valor es una de las pruebas
de la validez de la relatividad especial, ya que los muones formados en la ionósfera debido a la
interacción de rayos cósmicos con la materia (en particular por la desintegración del mesón pi,
π− → µ−+νµ) llegan masivamente a la superficie terrestre, lo cual seŕıa imposible en ese tiempo si
no sufrieran de dilatación temporal por los efectos relativistas. Al nivel del mar, el flujo de muones
es ≈ 1 cm−2 min−1. [3]

La probabilidad que tiene un muón de decaer es constante, y se corresponde con el inverso de
su vida media ( 1τ ). En particular, el número de muones que sobreviven a un tiempo t sigue una
distribución exponencial negativa. [3] Entonces, si se grafica el tiempo de vida medido para un
gran número de muones, el histograma resultante debeŕıa ajustarse a una función de la forma

f(t) =
1

τ
e−t/τ ,

caracteŕıstica de un proceso de decaimiento con tasa constante.

Teniendo esto en cuenta, en este trabajo se buscó estimar el tiempo de vida media del muón,
detectando su arribo con un arreglo de tres centelladores apilados, y la posterior aparición de un
electrón asociado al decaimiento. También se estudió la eficiencia de los centelladores,

eff =
m

n
, (1)

donde n es el número de veces que se detectó un muón en el primer y tercer centellador y m la
cantidad de veces que se detectó en los tres.
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Para estimar la vida media del muón con los decaimientos detectados se utilizó una función
de distribución truncada temporalmente (ya que, por cuestiones experimentales desarrolladas más
adelante, las ventanas temporales obtenidas eran de tan solo 1700 ns) que se expresa como

f(t; τ, α) = α g(t, τ) + (1− α)U(tmı́n,tmáx). (2)

La constante α representa la probabilidad de que la medición se deba efectivamente a un
decaimiento y no a una falla de los centelladores (o a la aparición de otra part́ıcula). Luego tmı́n y
tmáx representan los tiempos mı́nimo y máximo de la ventana de medición, y

g(t, τ) =
e−t/τ

τ
(
e−tmı́n/τ − e−tmáx/τ

) (3)

la función de distribución truncada.
Si se quiere obtener a partir de un set de datos estimaciones para los parámetros τ y α, se puede

realizar un test de máxima verosimilitud. La verosimilitud representa la probabilidad conjunta de
los datos, es decir, el producto de las probabilidades individuales. Para obtener los parámetros (en
este caso estimadores de máxima verosimilitud, MLE) se debe maximizar esta cantidad. [4] Como
resulta más conveniente trabajar con sumas que con productos, se utiliza el logaritmo natural de
la verosimilitud. De este modo, se tiene que la cantidad a maximizar es

logL = log

(
n∏

i=1

f(ti; τ, α)

)
=

n∑
i=1

log (f(ti; τ, α)) . (4)

2. Equipo experimental

Para estudiar la detección de muones se utilizaron tres módulos centelladores colocados uno
encima del otro, como se muestra en la figura 1. Cada módulo inclúıa un centellador de acŕılico con
forma de prisma de 4,5×4,5×46 cm, que emite luz cuando es atravesado por una part́ıcula ionizante.
Esa luz era captada por un fotomultiplicador (PMT), encargado de transformarla en una señal
eléctrica. Como la corriente generada por el PMT es muy pequeña, se enviaba a un preamplificador
(PREAMP) para amplificarla antes de su digitalización. Los módulos se alimentaron con una
fuente de alta tensión, necesaria para que el fotomultiplicador pueda operar y realizar el proceso
de multiplicación electrónica.

Figura 1: Esquema del dispositivo experimental. Tres módulos compuestos por un centellador, un
PMT y un preamplificador alimentados por una fuente de alta tensión. Cada módulo se conectó a
un canal independiente en una placa digitalizadora DRS4.

Cada módulo se conectó a un canal independiente de la placa de adquisición DRS4. Esta
placa cuenta con 1024 celdas de memoria por canal, lo que significa que en cada medición solo
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pueden registrarse 1024 puntos de muestreo. El tamaño temporal de cada ventana de adquisición
queda determinado por el intervalo entre muestras, que depende directamente de la frecuencia de
muestreo. La placa funciona, como mı́nimo, a aproximadamente 0,7GHz, por lo tanto, la duración
temporal de una medición es

∆t =
1024

0,7GHz
≈ 1698, 3 ns,

de modo que cada evento guardado estaba limitado a esa ventana temporal.

2.1. Procesamiento de datos

Durante la toma de datos, el dispositivo estuvo funcionando de manera continua. Sin embargo,
no cualquier señal en los centelladores corresponde al paso de un muón, por lo que fue necesario
aplicar criterios de selección. Para ello se configuró un trigger en el primer centellador: cada vez que
la señal cáıa por debajo de −80 mV, el sistema registraba la ventana temporal completa. Luego,
para identificar eventos compatibles con muones, se filtraron los datos conservando únicamente
aquellos en los que aparećıan picos simultáneos en más de un centellador. Este requisito asegura
que la part́ıcula haya atravesado más de un módulo y permite descartar señales locales o espurias.

Con este conjunto ya depurado, se identificaron los eventos útiles para obtener la vida media
del muón. Se corresponden a aquellos que, dentro de una misma ventana de adquisición, contienen
dos picos separados por un intervalo temporal ∆t: el primero asociado al paso del muón por el
centellador y el segundo al electrón producido en su decaimiento.

Para minimizar el ruido en las mediciones se aplicó inicialmente un filtro de suavizado Savitzky-
Golay, el cual permite reducir el ruido manteniendo la forma y caracteŕısticas principales de la señal.
En la figura 2 se ilustra un ejemplo de un decaimiento con y sin filtrado.

Figura 2: Comparación de un gráfico del voltaje en función del tiempo de un centellador entre los
datos crudos y los suavizados por Savitzky-Golay.

Luego del suavizado, se analizaron todas las mediciones para detectar aquellas que presentaban
dos picos distinguibles en un mismo canal, y en cada caso se calculó el valor de ∆t entre ellos.
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3. Análisis de la vida media

En primer lugar se estudió la eficiencia del detector. Para eso, se obtuvo la cantidad de eventos
detectados en el primer y tercer centellador (que se corresponden con un muón que atravesó los
tres) y la cantidad de eventos detectados en los tres centelladores. Si la eficiencia es máxima, se
espera que ambas cantidades coincidan. Se obtuvo, según (1), un valor de eff = (0,982± 0,001).

Una vez obtenidos los intervalos temporales, se realizó una estimación del valor de la vida
media τ y la eficiencia α mediante la maximización del logaritmo de la función verosimilitud
(4) para la distribución esperada. Se trabajó con la inversa del logaritmo para aśı minimizar la
función utilizando el método numérico L-BFGS-B. Este necesita de valores iniciales para comenzar
la iteración, por lo que se usó como valor inicial de α el obtenido para la eficiencia del detector,
mientras que para τ se utilizó el valor tabulado τtab = (2196,98±0,04) ns [5]. Se obtuvieron valores
de α̂ = 0,978 y τ̂ = 2199,96 ns, como puede observarse en la figura 3.

Figura 3: Valores de máxima verosimilitud para α y τ .

Para la determinación de errores, en primera instancia se utilizó la inversa de la información
de Fisher, derivada a partir de la matriz hessiana; obteniéndose como incertezas σα̂ = 1,28 y
στ̂ = 2938 ns, ambos superiores al 100%.

Con el fin de evaluar la confiabilidad de estas incertezas, se revisó el condicionamiento de la
matriz, a lo que se observó que estaba fuertemente mal condicionada; esto debido a las pequeñas
variaciones de la verosimilitud cerca del mı́nimo, las cuales provocan amplificaciones en los términos
de la matriz. Debido a esto, se realizó una segunda aproximación diferente al problema, realizándo
un Test de Wilks sobre ambas variables.

El test de Wilks nos permite construir intervalos de confianza para un cierto parámetro basándo-
se en comparaciones de verosimilitudes [6]. Mediante la construcción de los estad́ısticos

Λ(τ0) = −2(logL(α̂(τ0), τ0)− logL(α̂, τ̂)) (5)

Λ(α0) = −2(logL(α0, τ̂(α0))− logL(α̂, τ̂)) (6)

se puede ver las diferencias entre las verosimilitud de dos modelos que difieren en una cierta
cantidad de grados de libertad. Para este caso, podemos afirmar que Λ(τ0) ∼ χ2

1 y Λ(α0) ∼ χ2
1 [6],

donde los grados de libertad de la distribución chi cuadrado vienen dados por la diferencia en el
número de parámetros libres entre las dos log-verosimilitudes.
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Esto nos permite desarrollar un intervalo de confianza al definir un cierto cuantil de referencia
en la distribución χ2

1, por lo que se decidió tomar un intervalo del 68%, para lo cual se obtuvo
τ̂ = (2200+691

−1314) ns (IC = 68%) y α̂ = (0,98+0,01
−0,42) (IC = 68%). El resultado puede observarse en

la figura 4.

Figura 4: Función de distribución f(t; τ̂ , α̂) junto con el intervalo de confianza del 68% superpuestos
a los datos experimentales.

Luego, se utilizó el Test de Wilks para analizar la mejora del modelo propuesto (2) con respecto
al modelo de la exponencial truncada sin el término uniforme (3), con el objetivo de analizar si esta
hipótesis era realmente significativa en nuestro set de datos. Para ello, se construyó el estad́ıstico

Λ̂ = −2(logL(1, τ0))− logL(α̂, τ̂)), (7)

donde α = 1 representa una aproximación de que todos los datos obtenidos son efectivamente un
decaimiento, la cual tomaremos como la hipótesis nula H0.

El estad́ıstico alcanzó un valor Λ̂ = 0,004231, lo que para una distribución χ2
1 representa un

p-valor p = 0,9481. Esto implica que el valor observado Λ̂ es altamente probable bajo H0, lo que
implica que la adición de un término uniforme U(tmı́n,tmáx) en la distribución no aportó una mejora
significativa a la calidad del ajuste. Esto podŕıa deberse al tamaño del intervalo tmax−tmin ≃ 1489,
el cual resulta comparable con el orden de τ̂ = 2200. Esto provoca que la relación g(t)/U nunca
difiera en más de un 40% para el rango [tmin, tmax], lo cual podŕıa implicar que la diferencia entre
ambos términos no sea lo suficientemente significativa como para que sean distinguibles.

Por este motivo, se realizó una maximización de la verosimilitud para la distribución exponencial
truncada (3) utilizando el mismo método númerico propuesto anteriormente. Se derivó un valor
nominal de τ̂ , mientras que para su error se utilizó el método de la matriz hessiana; a lo que se
obtuvo un valor de vida media del muón de τ̂ = (2259± 498) ns, como se observa en la figura 5 .
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Figura 5: Función de distribución g(t; τ̂) junto con el intervalo de confianza del 68% para τ̂ super-
puestos a los datos experimentales.

4. Conclusiones

Se estudió la vida media del muón a partir de una distribución exponencial truncada junto a
un término uniforme, ponderados por un factor α. Mediante la maximización del logaritmo de la
verosimilitud, se obtuvo τ̂ = 2199,96 ns y α̂ = 0,978. Se realizaron dos enfoques diferentes para
la asignación de incertezas mediante la matriz hessiana y el test de Wilks, comprobándose que el
segundo es un método más confiable para el cálculo de intervalos de confianza, ya que la matriz
hessiana estaba fuertemente mal condicionada. Con dicho método se obtuvo τ̂ = 2200+691

−1314 ns

(IC = 68%) y α̂ = (0,98+0,01
−0,42) (IC = 68%), siendo el tiempo de vida medio coincidente con el

tabulado τtab = (2196,98± 0,04) ns.

Luego, se utilizó el test de Wilks para evaluar si el término uniforme (1 − α) efectivamente
representaba una mejora relevante para el modelo. Para ello se compararon las verosimilitudes del
modelo completo y del modelo reducido tomando α = 1. Se comprobó que la diferencia entre los
modelos no es significativa, y se especula que esto es debido al hecho de que el intervalo [tmin, tmax]
resulta comparable con τ̂ , por lo que ambos términos en la distribución resultan poco distinguibles
para el intervalo. Queda abierta una investigación a futuro con una ampliación en los posibles
intervalos de tiempo registrados.

La reducción de nuestro modelo nos permitió calcular la vida media utilizando únicamente la
exponencial truncada. Bajo esta hipótesis se obtuvo que τ̂ = (2259±498) ns, nuevamente mediante
el análisis de la maximización de la log-verosimilitud y la matriz hessiana.
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