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This paper describes, analyzes, and explains a novel twisting phenomenon 
which occurs in a triaxial rigid body (such as a tennis racket) when it is rotating 
about an axis initially near its unstable intermediate principal axis. 
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1. I N T R O D U C T I O N  

The classical treatments of the dynamics of a tennis racket about its inter- 
mediate axis fail to describe a remarkable aspect of its motion which is 
revealed in the following experiment. Mark the faces of the racket so that 
they can be distinguished. Call one rough and the other smooth. Hold the 
racket horizontally by its handle with the smooth face up. Toss the racket 
into the air attempting to make it rotate about the intermediate axis 
(namely, the axis in the plane of the face which is perpendicular to the 
handle). After one rotation, catch the racket by the handle. The rough face 
will almost always be up! In other words, the racket typically makes a half- 
twist about its handle. 

The experiment above was shown to one of us (R.C.) by Professor 
W. Burke of the University of California at Santa Cruz. The twisting 
phenomenon seems to be new. It is not mentioned in a recent article on the 
Eulerian wobble (Colley, 1987), in general texts on classical mechanics 
(Arnol'd, 1978; Goldstein, 1950; Landau and Lifschitz, 1976), or in 
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specialized texts on rigid body motion (Klein and Sommerfeld, 1897-1910; 
Webster, 1920). 

In this paper we explain the twist by analyzing the equations of 
motion of the tennis racket in space. These differential equations, which we 
call the full Euler equations (see Section 2), are given in terms of suitably 
chosen Euler angles. Our treatment of the twist has two main parts. In the 
first part we prove two theorems which show that the handle moves nearly 
in a plane and rotates nearly uniformly (see Section 3). The near-planarity 
of the motion of the handle allows us to define what we mean when we 
say that the racket undergoes a "half-twist" about its handle. Namely, let 
(el, ~2, ~3) be a frame which corotates with the racket and lies along its 
principal axes (see Fig. 1). We say that the racket performs a half-twist 
about its handle (which lies along el), if the vector ~2 (which lies along the 
intermediate axis of the racket) crosses from being perpendicular to and 
lying on one side of the plane of motion of the handle to being per- 
pendicular to and lying on the other side of the plane of motion of the 
handle. The fact that the handle rotates nearly uniformly means that when 
we stop the experiment, the amount of twist will be reproducible. In the 
second part, we discuss how the twist and rotation of the handle are 
related. More specifically, we demonstrate that for a high percentage of 
initial conditions which lead to near-rotations about the intermediate axis, 
the racket will perform a near-half-twist in the time it takes the handle to 
make a full rotation. This we do by analyzing a special case where the 
motion is along the unstable manifold (see Section 4). In the Appendix we 
prove an estimate which gives the size of a region of initial conditions 
where a near-half-twist does not take place. These results are then com- 
bined with numerical studies which show that, for most suitable initial 
conditions, the handle does perform a near-half-twist. 

2. THE FULL EULER EQUATIONS 

The problem, of course, is to explain the twist as a consequence of the 
classical mechanics of a rotating tennis racket. Since the only effect of a 
uniform gravitational field is to cause a uniform acceleration of the center 
of mass of the racket, we can ignore this force in what follows. We 
begin by discussing Euler's equations for the components of the angular 
momentum M = (M1, M2, M3) of the tennis racket in a noninertial frame 
(~,, ~2, ~3) which corotates with the racket and lies along its principal axes 
(Fig. 1). We then make a choice of Euler angles and derive the full Euler 
equations which describe the evolution of the orientation of the racket in 
space. 

The components of the angular momentum of a tennis racket about its 
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~'2 

Fig. 1. The principal axes of a tennis racket. 

center of mass are governed by Euler's equations (Goldstein, 1950; Landau 
and Lifschitz, 1976): 

dM~=dt - (~2 - l l  

dM2=(%_ 1) 
dt \11 ~ MIM3 (1) 

dM3=dt - (~ - ~) M1M2 

Here I1, 12, 13 are the principal moments of inertia of the racket, which we 
assume satisfy 

0 < 1 1  < 1 2 < 1 3  (2) 

11 '~I2 (3) 

and 
I l q - 1 2 ~ I 3  4 (4) 

4 For a standard tennis racket such as the Wilson T-2000 the values of I1,/2, and 13 
are I1 =0.00121 kg-m 2, I2=0.01638 kg-m 2, and 13=0.01748 kg-m 2 as measured by Brody 
(1985). These values are used in all of our numerical examples. 



70 Ashbaugh, Chicone, and Cushman 

Qualitatively the solutions of (1) lie on the intersection of the energy 
ellipsoid 

1 / M  2 M s M e) 1 2 +  3 

and the angular momentum sphere 

2 2 M = M I + M ~ + M  ~ (6) 

because E and M 2 are conserved quantities (see Fig. 2). 
Quantitatively the solutions of Euler's equations are given by Jacobi 

elliptic functions (Abramowitz and Stegun, 1964; Gradshteyn and Ryzhik, 
1980; Tricomi, 1953; Rauch and Lebowitz, 1973). The nonequilibrium 
solutiong of (1) break up into three cases depending on whether 

6 = M 2 - - 2 1 2 E  (7) 

is positive, negative, or zero. These solutions are displayed in Table I. In 
the table, 

/ I 1 ( 2 1 3 E -  M 2 )  M / 1 1 ( 1 3 -  I2) 
A1 = ~/ ~3----~1 ' A'x = ~/12(I3 - -  I1)' 

/ ( 1 3  -- I2)(M 2 -- 211 E) 
Z l = / V  ~ + c = B t + c  

/ I 2 ( 2 1 3 E - M  z) / I 2 ( M 2 - 2 1 1  E) 
A2= V I 3 _ 1 2  ' A'2= V L ~  ' 

t M  x/(I3 - I2)(I  2 - I1) 
722 = ~ 2  - -  1113 + c = Bot + c 

: / I 3 ( M 2 - - 2 1 1  E)  M / I 3 ( I 2 - I 1 )  
A3 V ' A ; =  

z3 = t --./(12 -- I~)(213E-- M 2) + c = B't  + c 
111213 

Table L Solutions of Euter's Equations 

6>0 6=0 6<0 

M1 gA 1 cn(z~, m) elA~ sech % eA l dn(z3, m') 
M2 A2 sn(~,, m) ezM tanh z2 A~ sn(%, m') 
M a eA 3 dn(zt, m) eleeA' 3 sech z 2 eA a cn(%, m') 
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Fig. 2. Solutions of Euler's equations for a fixed value of energy and angular momentum. 

and 

m = k 2 = (12 - 11 )(213 E -  M 2) 1 
( I3 - I2) (M2-211E)  rn' 

The constants  c, e, el,  e2 are determined by the initial conditions. When  
6 r 0 and E, M are fixed, the intersection of the energy ellipsoid (5) with 
the angular  m o m e n t u m  sphere (6) is two closed orbits of (1). The choice 
of e is determined as follows. If 6 > 0, then 

1, if M 3 > 0 

e = - 1, if M 3 < 0 

If  6 < O, then 

1, if M1 > 0  
e =  - 1 ,  if M1 < 0  

When  6 = O, there are four trajectories of (1) which lie on the intersection 
of the energy ellipsoid (5) with the planes 

II+_ : ~/ I3(I2--  I1) M 1 = +x/I1(I3 -12) M3 (8) 

They are the stable and unstable manifolds  of  the hyperbol ic  equil ibrium 
points  B: (0, 2x/~2E, 0) and B': (0, - 2x/~-E2E, 0) (see Fig. 2). The  choice of  
e2 = _1  determines whether  we are on the stable or  unstable manifold of  
B, while the choice of  el determines which of the two branches  of these 
manifolds we are on. 

The Eulerian picture of the mot ion  of the tennis racket  has two 
short-comings.  The first one is that  it is based on the noninert ial  f rame 
(el ,  e2, e3) which is corota t ing  with the body.  To  remedy this, we recall 
that  M is a cons tant  of the mot ion  of the tennis racket  when referred to an 
inertial f rame (X, Y, Z) fixed in space. Thus,  apparen t  mot ions  of M along 
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trajectories of (1) in the noninertial flame translate into rotations of the 
triad (~1, ~2, ~3) with respect to M in the fixed spatial frame. In particular, 
we can determine the angles between M and each Ei from this picture. 
However, we cannot determine the amount of rotation about M. This 
second defect can be corrected only by going to the full Euler equations 
which describe the motion of the racket in the spatial frame in terms of 
Euler angles. 

In the remainder of this paper we use the two choices of Euler angles 
which are illustrated in Fig. 3. In Euler angles I the vector M, which lies 
along the Z-axis, has components 

Ml=MsinOcos~/, M2=McosO, M3=MsinOsin~, (9) 

in Euler angles H it has components 

Ml=McosO, M2=MsinOsintp, M3=MsinOcosO (10) 

The full Euler equations for Euler angles I are obtained by first solving the 
equations 

M1 = ~ sin 0 cos ~, - 0 sin 
11 

M2 = ~ cos 0 + ~b 
12 

M3 = ~ sin 0 sin ~ + 0 cos 
13 

5 

Z 
/ x  

e 3  ^ 

\N 
II 

Fig. 3. Two choices of Euler angles. N is the line of nodes: the intersection of the ~1-~3 plane 
in 1 (the E2 k3 in H) with the X-Y plane 
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for the angular velocities 0, ~, ~ about N, 82, and the Z-axis, respectively, 
and then using (9). This gives 

- - =  - M  - sin 0 sin ~ cos 
dt 

&b = M sin2 ~ + M cos2 
dt 13 11 

d~ ( M  Msin2~b Mcos2~t) 

d-~= ~2 13 I1 
cos 0 

(11) 

A similar argument shows that the full Euler equations for Euler angles H 
are 

- -  = M - s in  0 s in  ~p cos  ~p 
dt 

m 2 
&b=MsinZO+)TC~ 12 ~' 

d O - (  M d t  ~ Msin2 O I 2  Mc~ ~)  c ~  

(12)  

[see Goldstein (1950) and Landau and Lifschitz (1976) for more details]. 

3. THE MOTION OF THE HANDLE IN SPACE 

In this section we prove two theorems which show that the handle of 
the tennis racket rotates nearly uniformly and nearly in a plane. 

First we show that the handle moves nearly in a plane. Let 

t--*(8,(t), ~2(t), 83(t)) 

be the time evolution of the frame in Fig. 3 governed by the full Euler 
equations (t2). Thinking of ~l(t) as a point moving on the unit sphere, we 
show that it stays in a small band about the equator of the sphere, which 
lies on the X - Y  plane. Let c~(t) be the angle between ~l(t) and the X - Y  
plane. We prove the following. 

Theorem 1. Given E and M, then for all t ~ 

0 ~< tan ~(t) ~< /I1(213E- M 2) 
X/ I3(M 2 - 211 E) 

(13) 
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Proof. In Euler angles II, it follows that 

[Ml(t)l 
sin ~(t) = Icos 0(t)l = M 

since ~( t )=  17z/2-O(t)l. Therefore we need only look for the maximum 
value of IMl(t)l. The argument now breaks up into three cases depending 
on whether 6 is positive, negative, or zero. 

Suppose that 6 > 0. Then from the second column in Table I and the 
fact that Icn(t, m)l ~< 1, we find that the maximum value of sin ~(t) is 

A1 1 / I I ( 2 1 3 E - M  2) 
M - M  ~/ 13-11 

(14) 

which, after a bit of manipulation, gives (13). 
Suppose that 6 < 0. Then from the fourth column in Table I and the 

fact that 1 - m ~< dn(t, m) ~< 1, we find that the maximum of sin ~(t) is again 
given by (14). 

Suppose that 6 = 0. Then from the third column in Table I and the fact 
that sech(t) ~< 1, we find that the maximum of sin e(t) is given by 

A'~ /11(13-12)  

which agrees with (14), because M 2-~ 212E in this case. | 

If we use the approximations 

M 2 = 212 E and /3 ~ 11 +/2  

then the right-hand side of (13) becomes 

~ ~ - - 1  ~ I1 
�9 2 2 ~ -  

using (3). Therefore c~(t) is small for a tennis racket whose principal 
moments of inertia satisfy (2), (3), and (4). 5 

Let fl(t) be the angle that the vector ~2 makes with the Z-axis (in Euler 
angles I this is 0). Then the amount of twist that the tennis racket makes 
about its handle in time t is 

z(t) = fl(t) -- fl(O) ~ fl(t) 

5 For the standard tennis racket, substituting M 2 = 212 E and the values of Ia , /2 ,  13 into (13), 
we find that c~(t) is at most 4.05 ~ 
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The approximation is valid because the face of the racket is initially nearly 
horizontal, f l (0)~ 0. The following theorem shows that the handle rotates 
nearly uniformly. Therefore, the amount of twist r(T) after one revolution 
is a quantity which can be reproducibly measured. More precisely, we show 
that the projection of ~l(t) on the X - Y  plane moves almost uniformly. 
Using Euler angles II, this means that ~b(t) (which measures the rotation 
of the handle) increases nearly linearly with time. We now prove the 
following. 

Theorem 2. 
(12). Then for all t >>. 0, 

M M 
s-~ t <. ~( t )  - ~o <. --I2 t 

Moreover, there are constants Jo, J1, 61 >>- O, 62 >/0 such that 

-61  <~ r (Jot+J1)<~ 62 

and 

Proof. Since 12 < / 3 ,  (15) 
equation of (12). 

Let O(t), (J(t), t~(t) be solutions of  the full Euler equations 

(15)  

M M 
-~3 <~ J ~ <~ -12 

(16) 

(17) 

follows immediately from the second 

To prove (16), we must use the explicit solutions of Euler's equations 
given in Table I. We argue case by case based on the sign of 6. When 6 > 0, 
after some straightforward manipulations using (10), the second equation 
in (12) reads 

dq) M ( M 2 - 2 I I E ) + ( 2 1 3 E - M 2 ) s n Z ( B t + c ' m )  
d---/= I3(M 2 - 2IIE) + I~(213E- M z) sn2(Bt + c, m) (18) 

Since sn2(t, m) is period 2K, where K = K ( m )  is the complete elliptic 
integral 

1 

o [ (1-- t2)(1-- mt2) ] 1/2 dt 

from (18) we see that d4/dt is periodic of period 2K/B. Let Jo be the 
average of the right-hand side of (18) over a period, then a straightforward 
change of the variable of integration gives 

J _Mf~C ( M Z _ Z l a E ) + ( 2 1 3 E _ M Z ) s n 2 ( s , m )  
o - K Jo I3(M 2 - 211E) + I1(213E- M 2) sn2(s, m) ds 
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Let q~l(t)= ~ ( t ) -  Jo t. Then ~1 is periodic of period 2K/B, since 

=~(t)+jo N(t+s)ds-Jo t+ 

2K 2K 
= ~(t /+ Jo ~ - J o t  - Jo ~ 

=r 

Let J1 be the average of ~bl over a period and put ~b2(t)= ~bl(t)- J l .  Then 
~b2 is a continuous periodic function with average 0. Hence there are 
constants 6~, 62/> 0 such that - 6 1  ~< ~b2(t) ~< 62 for all t. This establishes 
(16). When 6 < 0, the argument can be carried out in essentially the same 
manner. When 6 = 0, we have 

dqJ=M ( I z - I 1 ) +  (13 - I2 ) t anh2 (B t+  c) 
dt I3(12- I~) + Ia(I3- I2) tanhZ(Bt + c) 

which can be explicitly integrated to give 

~b(t)= C + ~ 2  t - t a n  ' L~/I3(I2_I1) tanh(Bt + c)]  

where C is a constant of integration. Putting J0 = 34/12 and J1 = C gives 
(16) with 

, 

6, = 62 = t an -  LVI3(I2 - / 1 ) J  

To finish the argument we need to prove (17). From the definition 

Jo - 2K 3o dt 

Substituting t =  2K/B into (15) and then using (19) yields 

M 2 K  2K M 2 K  
13 B <~ - f f  J ~ <<" I 2 B 

Multiplying through by B/2K> 0 gives (17). 1 

Although the theorems in this section do not prove that the tennis 
racket twists, they do show that the handle's motion is close to being 
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uniform periodic rotation in the X-Y plane. This allows us to make the 
definition of half-twist presented in Section 1 meaningful and to formulate 
a simple criterion for idealizing the experiment of tossing a tennis racket, 
viz., the toss is completed when the handle returns close to its starting 
point, as compared to an ideal toss of a racket rotating uniformly in a 
plane. Once it is known that the handle returns close to its starting point, 
the twist angle is measured by the Euler angle 0 (in Euler angles I). 

4. AN EXPLANATION OF THE TWIST 

In this section we give an explanation of the twist of the tennis racket, 
Informally stated our analysis shows the following. 

(a) The twist occurs when M starts near--but not too near (see the 
Appendix )--the hyperbolic equilibrium point B on its unstable 
manifold. 

(b) There is a characteristic time for the half-twist. Moreover, the 
time it takes for the handle to complete one revolution is larger 
than the characteristic twisting time. 

(c) Because B and B' are hyperbolic equilibrium points, trajectories 
of Euler's equations traverse neighborhoods of B and B' very 
slowly. 

These facts constitute our explanation for the twisL Here (a) states 
that the twist exist, (b) that the handle will have enough time to twist, and 
(c) that the racket is likely to be caught after a half-twist. 

We begin by discussing (a). To establish that a half-twist occurs as M 
traverses the unstable manifold of B to B', we use Euler angles/. From (8) 
and (9) note that the stable and unstable manifolds of B are given by 

+/13(12--11) 
tan ~ =  --X/I1(13 12) 

(20) 

If our initial 6 = 6o satisfies (20), then (11) reduces to 

dt - sin 0 sin 6 cos 6 

M 
m ~ m  

o 
dt 

(21) 
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where M =  2~22E. Integrating (21) gives 

M 
@=~o,  r t+{b 0, c o s 0 =  +_tanh(Bot+C) 

where c is an integration constant and Bo is given in Table I. Note that 0 
is the amount of twist around the handle. Even though the time taken to 
go from B to B' along the unstable manifold is infinite, most of the twist 
takes place in a characteristic time of 2/Bo; see Fig. 4. 

In order to verify (b) we note that theorem 2 implies that the time T 
needed for the handle to make one revolution is at least 2~I2/M. This is 
larger than the characteristic twisting time, because 

2 212 /"  1113 
4- B o M (I3-I2)(I2-I , )  

212 /12+11 (using the approximation 13 ,~ I1 + I2) 
~---M ~/12--11 

212 
- -  (using 11 ~ 12) 
M 

COSO 

B.8 
~.? 

B.5 

0,3- 
0.2: 

~.~ 
4.1 
-B2 
-0.3 
-OA, 
-0.5~ 

-B'6 I 

-0,7 -8.8 -0.9 
- 1 . B j ,  1 

-1.8 -8.8 
' I ' I ' I ' 1 ~ 1 ' 1 ' I ' 1 ' I ~ t  

-ft.6 -I] ,4 -92 fl,I] fl,2 8.4 0.6 0,8 1.0 

Fig. 4. The graph of cos 0 = - t a n h  Bot. Here the characteristic time for the twist is 
0.35836 sec when E = 0.32333 J. The time for one revolution of the handle is 1 sec. 
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To verify (c) we linearize Euler's equations at the hyperbolic equi- 
librium points B and B' with coordinates (0, _+x/~2E, 0) on the angular 
momentum sphere (5). In the tangent plane at B or B' with coordinates 
(M1, 0, M3), we obtain the system of linear differential equations 

m l  = '~ aM3 

M3 = ~ bM1 
(22) 

where 

1 1 

Choosing new coordinates (4, t/) so that 

(22) becomes 

(23) 

Now choose small segments on t /= d and ~ = - d ,  called sections, 
which meet the coordinate axes and are transverse to the trajectories of 
(23) which they intersect (see Fig. 5). The neighborhood transit time T N for 

# 
at B 

Fig. 5. 

__ AM 3 M3=~ ~, 

\ T }_o.,, 

~ / 1 

-axis 

! I I \ --~IM3= ~-b M 1 

at B 

A neighborhood of the hyperbolic equilibrium point B. 



80 Ashbaugh, Chicone, and Cushman 

the trajectory of (23) through P = ( -6 /x /2 ,  6/x/2) to pass from the section 
= - d  to the section t /= d is easily computed to be 

2 in xf2 d 
T N - ~ ~) 

Returning to the original coordinates on the energy ellipsoid, the transit 
time between the corresponding transverse segments, which to first order 
lie at a distance D = d ~/a + b along the stable and unstable manifolds, is 
to first approximation TN. Thus the neighborhood transit time for B and B' 
is 2TN. The remaining part of the period of the trajectory of (1) through P 
is twice the time Ts needed to go from the section on the unstable manifold 
at B' to the symmetrically chosen section on the stable manifold of B. By 
continuity with respect to parameters, Ts approaches a finite limit Ts(O) as 
6 goes to 0. In fact Ts(O) represents the transit time between the sections 
for the trajectory along the separatrix. Thus, the ratio of the neighborhood 
transit time to the period of the trajectory has limiting value 1 as 6 goes 
to 0. This makes precise the statement that a point on the trajectory spends 
most of its time in a neighborhood of one of the equilibrium points B 
or  B'.  

This completes our demonstration that the face of the tennis racket 
twists about the handle. 

5. NUMERICAL RESULTS 

To show for a large percentage of suitable initial conditions that the 
tennis racket does perform a near-half-twist, we have simulated the tennis 
racket experiment described in Section 1 on a computer by integrating the 
full Euler equations (11). This allows us to simulate performing a large 
number of experiments with a variety of initial conditions. We use the 
values of 11,/2, and 13 of the standard racket and the value 0.32333 for E. 
We choose the initial ~b o from [0, ~) and take small initial values of 00. The 
total angular momentum M is then determined by 

M2=2E( c~176176 + Tc~ 00 -~ sin2 ~9~ sin2 0~ - 1 1 3  

using (5) and (9). Finally, we choose ~bo so as to make ~1 (that is, the 
racket handle) as near to the direction of the positive Y-axis as possible for 
the given values of 0o and ~9 o. This is accomplished by taking ~b o to be the 
angle between (cos ~bo cos 0o, - s i n  ~bo) and (1, 0), that is, 

( - sin ~bo 
~o = arctan \cos ~o cos OoJ 
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Before we can proceed further we need an estimate of the amount  of 
scatter about 0 = 0 introduced by a person trying to toss a tennis racket 
about its intermediate axis. We make the following experimental observa- 
tion: tosses which lead to rotation about the ~3-axis are nearly always 
stable. This result is useful, because looking at Fig. 2 we see that significant 
deviations from rotation about the ~3-axis lead to trajectories which stray 
far away from the equilibrium point. Since such large instabilities are not 
observed, we can be sure that, with a little practice, one can toss a racket 
so that its axis of rotation is within a few degrees of ~3. We assume that 
this tolerance can be carried over to rotations about d2. To be specific, an 
error in the toss about 63 of magnitude exceeding 

tan - 1 F  /I1(I3-I2!]~007073 r a d i a n t 4 . 0 5  ~ 
L V I 3 ( / 2  - L ) J  " 

would lead to wide excursions. Therefore we assume that 0 o e [0, 0.025]. 
Using these initial conditions (0o, 0o )e  [0, 0.025] x [0, n), we 

integrated (11) until the angle of the projection of Or(t) on the X - Y  plane 
increased by 2n. In other words, we kept track of the polar angle of the 
vector 

( - sin 0 cos ~b - cos 0 cos 0 sin ~, - sin 0 sin ~b + cos ~ cos 0 cos ~b) 

Finally, we checked the value of O(t) at the stopping time. If ~2(t) was 
within 27 ~ of the negative Z-axis, i.e., within 15% of completing a half- 
twist, then we considered that a near-half-twist had occurred; otherwise it 
had not. The results of the numerical experiments are presented in Fig. 6. 

Figure 6 suggests that, to a good approximation, the region of no 
near-half-twist is a strip of constant width at an angle 0 = 1.5001 radians 
and centered on the stable manifold through B. Assuming this to be correct 
we can derive the half-width 0.004426 for the strip from our knowledge 
of how the twist occurs along the unstable manifold. This compares 
reasonably well with the rigorous bound 0~< 0.00019 for the no near-half- 
twist region found in the Appendix. In addition, one can use the initial con- 
ditions (00, 0o) = (0.0044, 0) to show by numerical integration that the 
near-half-twist occurs. This confirms Fig. 6. 

Moreover, we have computed the expected percentage of the time that 
the twist occurs, using the initial conditions in Fig. 6, our twist criterion, 
and the formula 

success ratio = 52 ......... sin 0i(60i)(60i) 
Za,l poi,ts sin Oi(~Oi)(~Oi ) 
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Iql 3 

M 1 

Fig. 6. The black dots are those points (0 cos ~,, 0 sin 0) corresponding to initial conditions 
(0, 0) in [-0, 0.025] x [-0, 27z) where the racket makes a near-half-twist according to our 
criterion. 

We obta ined the value 0.804. Fur thermore ,  assuming a uniform distribu- 
t ion of initial angular  m o m e n t u m  vectors within the region displayed in 
Fig. 6, the expected a m o u n t  of twist is given by the fomula  

expected a m o u n t  of twist = ~au points (angle of twist) sin 0i(60,-)(6~i) 
~ , n  poi.ts sin Ot(fOi)(f~b~) 

We obta ined  the value 2.769 radians (~159~  This demonst ra tes  that  a 
twist is quite likely in our  experiment.  
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A P P E N D I X  

In this Appendix we give an estimate of the radius of a small ball of 
initial conditions about unstable equilibrium point B such that each initial 
condition in the ball results in the tennis racket not performing a near-half- 
twist. The existence of such a ball about B follows from 

(a) the continuous dependence of solutions of Euler's equations on 
initial conditions and 

(b) the fact that, if the initial condition is the unstable equilibrium, 
then the racket rotates uniformly about its intermediate axis and 
does not twist. 

To estimate the region of no near-half-twist, we introduce the function 

f(M1, M2, M3) = (~--~ - / ~ )  M~ + ( ~  - ~3) M3S (24) 

on the energy ellipsoid 

E --/--I[M~ M s M~ ~"2+ 
= 2 \ I 1  + I2 13 // 

Computing the Lie derivative o f f  with respect to the vector field defined 
by Euler's equations gives 

M1M2M3 (25) f= -4\i1 I2]\I2 

Using IM21 ~ M and the inequality 

where 

[M1M31 <~'~ M 1 + 

/I1 (13 -- I s) 
(r = X//--~2 " 11 ) 

we obtain the estimate 

1 1 

Here B o is given in Table I. Integrating (26) gives 

f ( t )  ~<f(0) e 2"~ 

(26) 

(27) 
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By (15) the largest time required for the projection of the racket handle to 
have completed one revolution is 

2rcI 3 
t 0 - -  

M 

Therefore if f (0)  is sufficiently small, by (27)f( t )  cannot be too large for 
all t e [0, to]. 

To complete the argument we must find a bound on f(t) which 
precludes the occurrence of a near-half-twist. Toward this goal, observe 
that along a solution of Euler's equations the values o f f ( t ) =  2 determine 
a family of ellipses o~;. in the M1 - M3 plane. If for every t e [0, to], gx lies 
in the interior of the ellipse 

m 2 2 
~: 2E = 1 + M3 (28) 

11 13 

which is the intersection of the energy ellipsoid (5) and the plane { m  2 = 0 } ,  

then the solution M(t) of Euler's equations on the energy ellipsoid does not 
cross the {M2 = 0} plane. Thus no near-half-twist can occur. Since 

13 - / 2  ~< I2  - -  11 

which follows from the approximations (3) and (4), we have 

I3J \  11 + 13 /t 

For d~ to lie in the interior of g, we need 

Therefore if 

f(O)<213E(1-1~ e - 2~~176 (29) 
\12 I3J 

no near-half-twist will occur. Using Euler angles I (9) one finds that 

s n 00)sin 0o 
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where (0o, ~bo) are the initial values of (0, ~b). Combining (29) and (30), we 
see that no near-half-twist occurs if 

/211E(I3-12) 13/(I3-I2)(I2-I,!] 
Msinuo<  / ~ e x p [ - 2 ~ /  / ~  _~ (3i) 

For the standard tennis racket with E =  0.32333 J and M 2 = 212E, (25) 
gives 

0o ~< 0.000190 radian 

This bound is rigorous when M2<212E. This covers 95% of all initial 
conditions due to the small size of the acute angle sectors at B in Fig. 2. 
Even when M2> 212E the corrections to this estimate will be very small. 
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